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Abstract

Bio-signals such as EMG (Electromyography), EEG (Electroencephalography), EOG (Electrooculogram), ECG
(Electrocardiogram) have been deployed recently to develop control systems for improving the quality of life of
disabled and elderly people. This technical report aims to review the current deployment of these state of the art
control systems and explain some challenge issues. In particular, the stages for developing EMG and EEG based
control systems are categorized, namely data acquisition, data segmentation, feature extraction, classification, and
controller. Some related Bio-control applications are outlined. Finally a brief conclusion is summarized.
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1 Introduction

Bio-signals are physical quantities that vary with time[88], which can be used to control machines and systems. There
are different types of bio-signals, including EMG (Electromyography signal: electrical activity generated during the
contraction of a skeletal muscle), EEG (Electroencephalography signal: electrical activity of the brain recorded from
the scalp ), EOG (Electrooculogram signal: electrical activity of the movements of the eyeball “eye gaze position”
recorded around the eyes) and ECG(Electrocardiogram signal: electrical activity of the heart).

Human Machine Interaction (HMI) is a discipline with the goal of designing a control system in which the human
can communicate with the computer or other devices more naturally. It is necessary for the elderly and disabled
people to use different ways of communication and interaction with machines. On the other hand an interface using
EEG signals as a way of communication is called BCI (Brain Computer Interface). This document overviews two
kinds of bio-signals, namely EMG and EEG.

According to [91, 93, 3], there are 4 stages in EMG or EEG based control systems: 1) data acquisition and data
segmentation, 2) feature extraction, 3) classification and 4) controller, as shown in Figure 1. The stage 1 is also called
signal conditioning and preprocessing, in which the signal is acquired from the human body and is filtered to reduce
the noise produced by other electrical activities of the body or inappropriate contact of the sensors, namely artifact.
At this stage the outcome is raw signal.
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Figure 1: Stages for developing control systems using EMG or EEG signals

The feature extraction stage converts the raw signals obtained from the stage 1 into a feature vector. The feature
vector represents relevant structure in the raw data. Dimensionality reduction eliminates redundant information in
the feature vector, generating a reduced feature vector [93]. The Stage 3, classification, is also called as translation
algorithm, involving pattern recognition, since a classification algorithm is applied to the reduced feature vector in
order to obtain categories. Finally, the stage 4, controller, is to translate the categories obtained from Stage 3 to control
commands for execution.

The rest of the survey is organized as follows. Section 2 presents the anatomy of the EMG and EEG signals.
The stage of data acquisition and data segmentation are described in Section 3. Then Sections 4 and 5 explain the
feature extraction and dimensionality reduction stage, and the control system classification stage respectively. Finally
Section 6 outlines some applications of EMG and EEG signals based control systems.

2 Anatomical background in EMG and EEG signals

This section briefly introduces a general idea of how skeletal muscles and the brain work, which are the source of
EMG and EEG signals respectively.

2.1 EMG: anatomy of the muscles

Reaz et al. [73] explain that muscles are composed of bundles of specialized cells capable of contraction and re-
laxation; they are in charge of producing motion, moving substance within the body, providing stabilization and
generating heat. There are three types of muscle tissue depending on the basis of structure, contractile properties and
control mechanism: a) skeletal muscle, b) smooth muscle and c¢) cardiac muscle [73, 80]. According to S6rnmo and
Laguna [80], skeletal muscle is attached to the skeleton and facilitates movement and position of the body; smooth
muscle is found within the intestines and position of the body, while the cardiac muscle is responsible for creating a
heartbeat. EMG signal is acquired from the skeletal muscle.
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In skeletal muscle, contraction is controlled by electrical impulses propagating between the central and peripheral
nervous systems and the muscles. The contraction of a muscle fiber is initiated when neuronal action potentials reach
the neuromuscular junction ' and fire action potentials which spread along the excitable membranes of the muscle
fiber. A Motor Unit Action Potential (MUAP) results from spatial and temporal summation of individual action
potentials (electrical activity) as they spread through the different muscle fibers of a single motor unit 2 [57, 7].

According to Bida [8], a MUAP is the response of the motor unit to a single motor neuron excitation, while a
MUAPT (motor unit action potential train) is a repetitive sequence of stimulations to the motor units; as a result of the
motor unit responses to the impulse train is independent from the sequence and the total series response is random,
the EMG signal is the superposition of the MUAPTSs and can be treated as a stochastic process (see Figure 2).

2.2 EEG: anatomy of the brain

The brain consists of 10'°-10'! neurons that are very closely interconnected via axons and dendrites [61]. The
neurons are in charge of communicating information to and from the brain. According to Malmivuo and Plonsey
[55], the brain has 5 main parts: a) the interbrain (diencephalon), b) the midbrain, c) the pons Varolii and cerebellum,
d) the medulla oblongata and e) the cerebrum, including the two cerebral hemispheres, as shown in Figure 3.
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Figure 3: Anatomy of the brain [55]

Malmivuo and Plonsey [55] explain that the interbrain or diencephalon includes the thalamus and the hypothala-
mus. The Thalamus is a bridge connecting the sensory paths, while the hypothalamus is important for the regulation of
the autonomic (involuntary) functions; together with the hypophysis, it regulates hormonal secretions. The midbrain

'Neuromuscular junction. Specialized synapse connecting each motor neuron to muscle fiber and allowing the action potentials to stimulate
contraction

2Motor unit. Basic functional unit of a muscular contraction, it is the collection of the a-motor neuron in the spinal cord and the fibers, which
it innervates[70]



is a small part of the brain. The pons Varolii is an interconnection of neural tracts; while the cerebellum controls
fine movement. On the other hand, the medulla oblongata resembles the spinal cord to which it is immediately
connected. Many reflex centers, such as the vasomotor center and the breathing center, are located in the medulla
oblongata.

Finally, the cerebrum, which is the largest area of the brain, includes the higher cerebral functions, accurate
sensations and the voluntary motor control of muscles. It consists of two hemispheres, the right and left cerebral
hemispheres. The right cerebral hemisphere controls the left side of the body and the left cerebral hemisphere the
right. The outer layer of the cerebrum, called the cerebral cortex, is made up of grey matter. The inner portion of
the cerebrum is white matter. Grey matter is composed of nerve cells, these cells control brain activity; while white
matter is composed of nerve cell axons that carry information between nerve cells in the brain and spinal cord. Deep
indentations called fissures divide each hemisphere of the cerebrum into four lobes: a)frontal lobe, b) parietal lobe, c¢)
temporal lobe and d)occipital lobe, Novék et al. [60].

Penfield and Rasmussen [69] state that in the cerebral cortex are located many different areas of specialized brain
function; the higher brain functions occur in the frontal lobe, the visual center is located in the occipital lobe, and the
sensory area and motor area are located on both sides of the central fissure. There are specific areas in the sensory
and motor cortex whose elements correspond to certain parts of the body. The size of each such area is proportional
to the required accuracy of sensory or motor control, see figure 4.
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Figure 4: The division of sensory (left) and motor (right) functions in the cerebral cortex [69]

Based on Malmivuo and Plonsey [55], S6rnmo and Laguna [80], and Novak et al. [60], there are several waves
that can be differentiated from the EEG signal as follows:

e alpha (a) waves, have the frequency spectrum of 8- 13 Hz; they can be measured from the occipital region
in an awake person when the eyes are closed; alpha activity disappears normally with attention (e.g., mental
arithmetic, stress, opening eyes);

e beta () waves, have the frequency band of 13 - 30 Hz, these are detectable over the parietal and frontal lobes,
beta activity is generally regarded as a normal rhythm and is the dominant rhythm in patients who are alert or
anxious or who have their eyes open;

e delta (9) waves, have the frequency range of 0.5-4 Hz; they are detectable in infants and sleeping adults, and
can be an indicative of cerebral damage or brain disease;

o theta (0) waves, have the frequency range of 4-8 Hz; they are obtained from children and sleeping adults; the
theta activity occurs during drowsiness and in certain stages of sleep, being abnormal in awake adults but is
perfectly normal in children up to 13 years and in sleep; and

e gamma () waves, have the frequency spectrum of upper 30 Hz, it is related to a state of active information
processing of the cortex.



3 Stage 1: data acquisition and data segmentation

As described above, the first stage of a control system is data acquisition and data segmentation. In this stage, it is
necessary to collect the data from the muscle for EMG signals or from the scalp for EEG signals. Once we have the
data collected, the second part is to divide the signal into representative segments in order to extract features from
each one.

3.1 EMG: data acquisition and data segmentation
3.1.1 EMG data acquisition
Sornmo and Laguna [80] explain that myoelectric activities can be acquired:

e invasively by inserting a needle electrode through the skin directly into the muscle. This technique is a standard
clinical tool used mainly for diagnostic purposes, since it provides a high-resolution, localized description of
the muscle’s electrical activity, albeit relatively painful for the patient; or

e non-invasively by placing a surface electrode on the skin overlying the muscle. The applications using this
technique are discussed in section 6.1. The spatial resolution of this technique is more limited than that of the
needle EMG, and the high frequency content of a MUAP is smoothed.

3.2 EMG data segmentation

According to Oskoei and Hu [66], there are two methods of EMG segmentation: disjoint and overlapped segmenta-
tion. In disjoint segmentation, separate segments with a predefined length are used for feature extraction, while in
overlapped segmentation the new segment slides over the current segment, with an increment 3 time less than the seg-
ment length and more than the processing time. Therefore, disjoint segmentation is associated with segment length,
while overlapped segmentation is associated with length and increment, as shown in Figure 5.

Christodoulou and Pattichis [17] employed a window with a constant length and a segmentation algorithm that
calculated a threshold depending of the maximum value and the mean absolute value of the whole EMG signal.
Peaks over the calculated threshold were considered as candidate segment. Gut and Moschytz [33] used a sliding
time window to determine the beginning and the end of a segment. If the mean slope within this window exceeded a
certain threshold, the beginning of an segment was detected; while the end of a segment was reached when the total
variation of the EMG within the window fell below another threshold.

Oskoei and Hu [66] evaluated disjoint and overlapped segmentation by comparing classification performance over
disjoint segments with a length of 50ms and overlapped segments, with those with a length of 200ms and an increment
of 50ms. Their results showed that a disjoint segmentation with a length of 200ms provided high performance during
EMG classification and a reasonable response time to allow real-time application, whereas overlapped segmentation
with a length of 200 ms and an increment of 50ms shortened the response time without a noticeable degradation in
accuracy.

Kaur et al. [48] analyzed three EMG segmentation techniques: 1) by identifying the peaks of the MUAPs, 2) by
finding the beginning extraction point (BEP) and ending extraction point (EEP) of MUAPs, and 3) by using discrete
wavelet transform (DWT). In the first technique, the EMG signal was segmented using an algorithm that detected
areas of low activity and candidate MUAPs; the second technique identified the BEPs and EEPs of the possible
MUAPs by sliding a window throughout the signal; and in the third technique, EMG signal was decomposed with the
help of daubechies4 (db4) wavelet to detect MUAPs. In general, the first technique had the best performance with
a total success rate of 95.90%, in comparison with the total success rates of 75.39% and 66.64% for the second and
third techniques respectively.

3.3 EEG: data acquisition and data segmentation
3.3.1 EEG data acquisition

The most used recording technique for clinical EEG and for the study of event related potentials in non-clinical
settings is the International 10/20 system; which is a standardized system for electrode placement proposed by Jasper
[43]. This system employs 21 electrodes attached to the surface of the scalp at locations defined by certain anatomical
reference points; the numbers 10 and 20 are percentage signifying relative distances between different electrode
locations on the skull perimeter. The sampling rate for EEG signal acquisition is usually selected to be at least 200Hz
[80].

3Increment. It is the time interval between two consecutive segments [66].
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Figure 5: Disjoint (left) and overlapped (right) segmentation [66].

3.3.2 EEG data segmentation

Based on Biscay er al. [9], there are three methods to segment EEG recording into consecutive, stationary intervals:
1) adaptive segmentation, which is based on the detection of changes of an auto-regressive model that describes the
data within a moving time window of fixed length; 2) a priori piece-wise segmentation followed by clustering; and 3)
the syntactic approach, which incorporates grammatical rules to take into account the temporal contextual information
for segmentation.

According to Kaplan ef al. [45], there are two main approaches to divide the EEG signal into segments, a)
fixed-interval segmentation, which separates the EEG recording into segments of the same length, and b) adaptive
segmentation, which splits the EEG recording into quasy-stationarity segments of variable length. The adaptive
segmentation methods can be classified as parametric methods and non-parametric methods.

Fixed-length segmentation

Kaplan et al. [45] explain that the fixed-length segmentation consists of four stages: 1) the EEG recording is
divided preliminary into equal minimal ("elementary’) segment lengths, 2) each segment is characterized by a certain
set of features (e.g., spectral estimations or auto-regressive coefficients), 3) the main EEG segments are assigned to
one of a number of classes accordingly to their characteristics, using one of the multivariate statistical procedures, and
4) the boundaries between the segments belonging to a same class are erased. Each of these stationary segments is
characterized by its specific duration and typological features, but some EEG fragments contain transition processes
and, are not strictly stationary, since this segmentation approach do not take into account the properties of the EEG
recording.

Adaptive segmentation

Kaplan and Shishkin [46] state that the procedure of adaptive segmentation could be based on the estimation of
the extent of similarity of an initial fixed interval of EEG with an EEG interval of the same duration viewed through
the time window running along the EEG recording. The similarity index will drop sharply when the window runs
over a segment boundary, giving a formal indication of the transition to the following segment.

Parametric methods

Parametric methods allow to describe adequately the piecewise stationary structure of the EEG signal. However,
a drawback is that all these methods designed for the analysis of nonstationary processes are based on a procedure
which may be applied only to stationary processes [45]. These methods make a good many assumptions, and rather
stringent ones, about the nature of the population (in this case the EEG recording) from which the observations were
drawn [77].




Parametric methods are effective if the phenomenological model of the process under study is known [37]. Nev-
ertheless in the case of EEG, no phenomenological model is generally accepted and different mathematical models
can be fitted to the same signal, resulting in different estimates of change-points *. The correctness of application of
parametric methods for the EEG segmentation is therefore questionable [24]. Dvordk and Holden [23] established
auto-regressive model (AR), autoregressive moving average (ARMA) and Kalman filter, as the most used parametric
methods of EEG signal analysis.

Aufrichtigl et al. [4] examined AR model for segmenting EEG signals in four ways: 1) an AR-model estimated for
the reference window and the signal in the moving window filtered with the corresponding inverse filter; 2) AR model
estimated for the moving window, followed by an inverse filtering and calculation of test statistic for the reference
window; 3) an asymptotic Gaussian distribution of the AR-parameters used to achieve a test statistic for the difference
between the AR-parameters of the reference and moving windows; and 4) a calculated sum of two statistical tests,
one corresponding to the difference between the AR-parameters of the reference and moving windows and the other
one was the same difference, but inverted the order of the windows, both differences using an asymptotic Gaussian
distribution of the AR-parameters.

Non-parametric methods

Non-parametric methods do not make numerous or stringent assumptions about the population (EEG recording),
they do not need a priori information about probability distributions of random sequences [77, 45]. Brodsky et
al. [24] proposed a non-parametric method for the segmentation of the EEG, the algorithm of change-point detection
consisted of five steps: 1)construction of the diagnostic sequence > from an initial signal, 2) checking the homogeneity
hypothesis, 3) preliminary estimation of change-points, 4) rejecting doubtful change-points, and 5) final estimation
of change-points.

Other methods

Biscay et al. [9] proposed an EEG segmentation method that could incorporate the relevant information on the
signal through parametric and non-parametric methods. The segmentation was performed according to an optimality
criterion derived from the maximum a posteriori criterion and was not constrained by any predefined time scale of
analysis, locating arbitrarily change points on the time axis.

4 Stage 2: feature extraction

As described above, the feature extraction stage involves the transformation of the raw signal to relevant data struc-
ture, called feature vector, by deleting noise and highlighting important data. Also, it could imply “dimensionality
reduction”, which eliminates redundant data from the feature vector, with the aim to facilitate the classification pro-
cess.

4.1 EMBG feature extraction

According to Zecca et al. [93], there are three types of features in EMG control systems: a) time domain, b) frequency
domain and c) time-frequency domain.

4.1.1 Time domain

The time domain features are the most popular in EMG pattern recognition, because they are easy and quick to cal-
culate, since they do not require a transformation. The time domain features are computed based on signal amplitude
and resultant values give a measure of waveform amplitude, frequency and duration within some limited parameters
[65].

1. Integrated EMG (IEMG). This parameter is found by calculating the summation of the absolute values of
EMG signals. It can be treated as a signal power estimator. It is defined as [39]:

N
IEMGy = |z

i=1

where x; is the value of each part of the segment k, and NV is the length of the segment.

4A change point indicates a division in the EEG recording to produce a segment.
SDiagnostic sequence. A random sequence of detection of changes [24].



10.

. Mean Absolute Value (MAV). Estimates the mean absolute value of a signal M AV}, by adding the absolute

value of all of the values z; in a segment k and dividing it by the length of the segment N [26].

1 N

i=1

. Modified Mean Absolute Value 1 (MMAV1). An extension of MAV using weighting window function w;

[71].
N
MMAV1, = ;wi\xi\
=] L 0.25N <i < 0.75N
W) = 0.5, otherwise
Modified Mean Absolute Value 2 (MMAV2). Another extension of MAYV, but here the weighting window
function w; is improved, because it is a continuous function [71].

N
1
MMAV2, = 2%-\9@\

1, 0.25N < i < 0.75N
w(i) = 4i/N,  0.25N >i
4(i— N)/N, 0.75N <i

. Mean Absolute Value Slope (MAVS). Estimates the difference between mean absolute values of the adjacent

segments k + 1 and k [71].
MAV S, = MAVi4 1 — MAVE

Root Mean Square (RMS). It is modeled as amplitude modulated Gaussian random process whose RMS is
related to the constant force and non-fatiguing contraction [71].

Variance (VAR). It is given by [65]:

where Z is the mean value of the segment k.

. Waveform Length (WL). It is the cumulative length of the waveform over the segment. The resultant values

indicate a measure of waveform amplitude, frequency and duration all within a single parameter [26].

N-1
WLy = Z |9Ci+1 - 351|

i=1

Zero Crossings (ZC). It is the number of times the waveform crosses zero, it is the number of times when the
waveform changes its sign. A threshold ¢ must be included in the zero crossing calculation to reduce the noise
induced zero crossings. Given two consecutive samples x; and x; 1, increment the zero crossing count [26], if

{z; >0and 2,11 < 0} or {z; < 0and z;41 > 0} and |x; — ;41| > €

Slope Sign Changes (SSC). A feature that may provide another measure of frequency content is the number
of times the slope changes sign. Again, a suitable threshold must be chosen to reduce noise induced slope sign
changes. Given three consecutive samples, x;_1, z; and x;1, [26] the slope sign change is incremented if

{JI,’ > x;_1 and x; > $i+1} or {Ii < x;_qpand x; < JJ7‘,+1}
and

|z — xip1| > €or|z; —aim1| > €



11.

12.

13.

Willison Amplitude (WAMP). Calculates the number of times that the absolute value of the difference between
EMG signal amplitude of two consecutive samples (x; and x;4) exceeds a predetermined threshold, e [71].

N-1
WAMP, = > f(lzi — ziq1])

i=1

f(x):{ 1 z>e¢

0 otherwise

Simple Square Integral (SSI). Uses the energy of the EMG signal as a feature [71].

N

SSI = 3 ()

i=1

Histogram of EMG (HEMG). Divides the elements in EMG signal into b equally spaced segments and returns
the number of elements in each segment [71].

4.1.2 Frequency domain

The frequency domain features are based on signal’s estimated power spectrum density (PSD) and are computed
by periodogram or parametric methods, but these features in comparison with time domain features require more
computation and time to be calculated [65].

1.

Auto-Regressive coefficients (AR). Describes each sample of EMG signal as a linear combination of previous
samples plus a white noise error term. AR coefficients are used as features in EMG pattern recognition [71].

N
T = — E aiTp—; + ek
i=1

where a; is AR coefficients, ey is white noise or error sequence, and N is the order of AR model.

. Frequency Median (FMD). The frequency median splits the power spectrum density into two equal parts. It

is given by [65]:
| M
Fup =5 Z} PSD;
where M is the length of the power spectrum density, and P.SD; is the i*” line of the power spectrum density.

Frequency Mean (FMN). The frequency mean is given by [65]:

SM HPSD;

Fun =
MN M psD,

where M is the length of the power spectrum density, f; = (i * sampling,qs.)/(2 * M), and PSD; is the i*"
line of the power spectrum density.

. Modified Frequency Median (MFMD). This feature was proposed by Phinyomark et al. [71], it is the fre-

quency at which the spectrum is divided into two regions with equal amplitude. It is given by:

1 M
MFMD = 5 z; A;
iz

where A; is the EMG amplitude spectrum at frequency bin j.

. Modified Frequency Mean (MFMN). Also, this feature was proposed by Phinyomark ef al. [71], it is the

average of the frequency. MFMN is calculated as the sum of the product of the amplitude spectrum A; and the
frequency f;, divided by the total sum of the spectral intensity, it is given by:

M
Zj:l fid;

M
Zj:l Aj

MFMN =



where f; is the frequency of the spectrum at frequency bin j.

It is important to remark, as Phinyomark e al. [71] said, that traditional frequency median (F'M D) and
frequency mean (F'M N) are calculated based on power spectrum density; the outline of amplitude spectrum
and power spectrum are similar, but the amplitude value of amplitude spectrum is larger than the amplitude
value of power spectrum.

6. Frequency Ratio (FR). It was proposed by Han et al. [35] in order to distinguish the difference between
contraction and relaxation of a muscle in frequency domain, by applying fast Fourier transform to EMG signals
in time domain. .
FR] _ | (')ljlowfreq
[E'()  jnigh freq
where |F'(-)|; is the fast Fourier transform of EMG signal in channel j, low freq is the low frequency band, and
high freq is the high frequency band. The threshold for dividing a low frequency band and a high frequency
band is decided through experiments.

4.1.3 Time-Frequency domain

In his thesis [25], Englehart explains that time-frequency representation can localize the energy of the signal both in
time and in frequency, allowing a more accurate description of the physical phenomenon; but these features generally
requires a transformation that could be computationally heavy.

1. Short Time Fourier Transform (STFT). Gabor [30] extended the applicability of Fourier transform method
by dividing the input signal into segments, by doing this the signal in each window can be assumed to be
stationary. The STFT for a given signal z:(¢) can be expressed as:

STFT,(t,w) = /W*(T —t)x(r)e T dr

where W () is the window function ®, * is the complex conjugate, 7 represents time, and w stands for frequency.

2. Wavelet Transform (WT). It is a transform where a signal is integrated with a shifted and scaled mother
wavelet function. The continuous wavelet transform is represented by [88]:

W, (a,b) = /x(t) (%) o <t ; b) dt

where z(t) is the function representing the input signal, ¥* is the complex conjugate of the mother wavelet
function, and W((¢ — b)/a) is the shifted and scaled version of the wavelet at time b and scale a.

3. Wavelet Packet Transform (WPT). WPT is a generalized version of the continuous wavelet transform and the
discrete wavelet transform [93]. The basis for the WPT is chosen using an entropy-based cost function [19].

The main difference between STFT, WT and WPT is the way each one divides the time-frequency plane. The
STFT has a fixed tiling, each cell has an identical aspect ratio; while the WT has a variable tiling and the aspect ratio
of the cell varies in a form that the frequency resolution is proportional to the centre frequency. Finally, the WPT has
an adaptive tiling, providing several alternatives of tilings [27], as shown in Figure 6.
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Figure 6: The time-frequency tiling of a) the STFT, b) the WT and c) the WPT [27].

SWhen in a STFT is used a Gaussian window is often called Gabor transform [30].
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Huang and Chen [39] did a comparison of the performance of EMG time domain features (integrated EMG
(IEMG), variance (VAR), bias zero crossings (BZC) 7, slope sign changes (SSC), waveform length (WL) and Willison
amplitude (WAMP)) and EMG frequency domain features (auto-regressive coefficients (AR) of order four), in order
to distinguish hand movements. Their work consisted in two stages. In the first stage, they applied the Davies-
Bouldin index 8 with the aim to evaluate each feature, resulting that variance (VAR), wavelength (WL) and IEMG
had better cluster separability than others. In the second stage, in order to get the best performance, the best features
(VAR, WL and IEMG) determined in the previous stage were combined with other features (WAMP, BZC and AR
of second order) to reinforce the whole clustering performance. From the results, two combinations of features were
used in the neural network classification engine to test the results. The first combination consisted of IEMG, VAR,
WL and WAMP; and the second combination composed of IEMG, VAR, WL, WAMP, BZC and second order AR
model parameters. The combination of IEMG, VAR, WAMP, WL, BZC and second order AR parameters had the best
performance for the pattern recognition of the hand movements.

Oskoei and Hu [65] applied advanced subset search algorithms rather than comparing index to evaluate EMG
features of upper limb. These algorithms consisted of a genetic algorithm ° adopted as the search strategy, Davies
Bouldin index and Fishers linear discriminant index ' employed as the filter objective functions !! and linear dis-
criminant analysis '? used as the wrapper objective functions !*. An artificial neural network was implemented as the
classifier in the upper limb EMG system. Oskoei, and Hu evaluated EMG time domain features such as mean abso-
lute value (MAV), mean absolute value slope (MAVS), root mean square (RMS), variance (VAR), waveform length
(WL), zero crossings (ZC), slope sign changes (SSC) and Willison amplitude (WAMP), and auto-regressive coeffi-
cients (AR), frequency mean (FMN), frequency median (FMD) and frequency ratio(FR), as EMG frequency domain
features. As a result, they found that WL demonstrated high capability in providing discriminating information for
EMG classification; after that MAV and RMS were placed in second grade and AR in third grade.

Phinyomark et al. [71] compared eighteen time domain features (integrated EMG (IEMG), mean absolute value
(MAYV), modified mean absolute value 1 (MMAV 1), modified mean absolute value 2 (MMAV2), mean absolute value
slope (MAVS), simple square integral (SSI), variance (VAR), root mean square (RMS), waveform length (WL), zero
crossings (ZC), slope sign changes (SSC), Willison amplitude (WAMP) and histogram of EMG (HEMG)) and fre-
quency domain features (auto-regressive coefficients, frequency mean, frequency median, modified frequency mean
and modified frequency median) in a noisy environment, with the aim to determine which one has a better tolerance
of white Gaussian noise '*. Their results showed that from the point of view of white Gaussian noise, modified fre-
quency mean (MFMN) was the best feature comparing with others on the quality of the robustness of EMG features.
MFMN had an average error of 6% on strong EMG signals and 10% on weak EMG signal at signal-to-noise ratio '
value of 0 dB; also MFMN had an average error of 0.4% in both strong and weak EMG signals at signal-to-noise ratio
value of 20 dB. In addition, MFMN and other robust features (WAMP and HEMG) were used as an input to the EMG
pattern recognition. The experiment showed that these features were excellent candidates for a multi-source feature
vector.

4.2 EEG feature extraction

Although there are time domain, frequency domain and time-frequency domain features in EEG feature extraction,
there are different features used in EEG signal in comparison with EMG signal; this is because of the characteristics
of the EEG signal, besides there are different waves in this signal, such as «, (3, §, v and 6 that have an important role
in some applications (e.g. detecting sleeping disorders and brain diseases).

4.2.1 Time domain

These features are derived directly from the signal and include the (averaged) time-course.

7In this paper, it is called bias zero crossings because, they added a bias to the calculation of the zero crossings value in order to prevent
influence from background disturbance.

8Davies-Bouldin index (DBI). It is a measure that reflects the degree of overlapping of the clusters with respect to their nearest neighbors. A
lower value of the DBI implies a higher degree of cluster separability [39].

9Genetic algorithm. It is an optimization technique that mimics the evolutionary process of survival of the fittest [65].

10Fishers linear discriminant index. This index represents clusters’ dispersion comparing to their scatter [65].

I Filter objective functions. Evaluate candidate subsets according to their information content(interclass distance, statistical dependence, or
information-theoretic measures) and return a measure of their “goodness” as a feedback to select the new candidates [65].

12Linear discriminant analysis. Using training sample set, discriminant function g(z) divides the feature space to distinct and labeled subspaces
by the hyperplane decision surfaces [65].

I3Wrapper objective function. It is a classifier evaluating candidate subsets according to the accuracy of its classification and returning a measure
of their goodness as a feedback to select the new candidates [65].

14 A5 a result, noise removal algorithm is not needed [71].

15Signal-to-noise ratio. It is a function of complicated interactions between the electrolytes in the skin and the metal of the detection surfaces of
the electrode [21].
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1. Mean Value. Since the sum of (positive and negative) EEG potential is usually on the order of a few microvolts
when the analysis time is not too short, the mean is essentially a constant, although of a small value. Any shifts
in values of the mean, therefore, are indicative of changes in potential that are of technical origin [11]. The

mean value is given by:
xr = — xZ;
N3

where x; is time series for i = 1,2, ..., N, and N is the number of data points.

2. Standard deviation. It is given by:

Tstd =

where T is the mean value.

3. Maximum peak value. It is the maximum absolute value of the segment k and is given by [31]:

X = max|;|

4. Skewness. Bronzino [11] explains that the skewness measures the degree of deviation from the symmetry of
a normal or Gaussian distribution. This measure has the value of zero when the distribution is completely
symmetrical and assumes some nonzero value when the EEG waveforms are asymmetrical with respect to the
baseline(as is the case in some characteristic sleep patterns, mu rhythms, morphine spindles, etc.)

N (wi—i)g’
s, dici N

‘me T _ 3/2
N (xz;—%)2
s, sty

where S is the moment coefficient of skewness.

me

5. Kaurtosis. According to Bronzino [11], this measure reveals the peakedness or flatness of a distribution. In clin-
ical electroencephalography, when EEG with little frequency and amplitude modulation is analyzed, negative
values of kurtosis are observed; on the other hand high positives values of kurtosis are present when the EEG
contains transient spikes, isolated high-voltage wave group, etc. The moment coefficient of Kurtosis K, is
given by:

N (:xv,ﬁi)4
ch — Zi=1 N -3

=Y, [es]

6. Cross correlation. A cross correlation sequence between two energy signals measures the extent of similarity
between these two signals [72]. Chandaka et al. [14] explain that if a signal is correlated with itself, the
resulting sequence is called the auto correlation sequence. The cross correlation of z(n) and y(n) is given by:

Ne—m—
Zn:Om ' Tn+mYn M > 0
Ryy(m) =

Ry (—m) m <0

where z(n) and y(n) are two signal sequences, each of which with a finite energy, m = ... — 2, —1,0,1,2, ...,
represents the time shift parameter, and subscript xy stands for sequences being correlated. The order of the
subscripts, with = preceding y, indicates the direction in which one sequence is shifted, relative to other.

4.2.2 Frequency domain

These features characterize the power of the brain signal in several frequency bands.

1. Auto-Regressive coefficients (AR). As we can see in works of [38], [75] and [92] this feature is used in EEG
signal as well as in EMG signal.
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2. Power spectrum density (PSD). It shows at what point frequency variations are strong and weak. The power
spectrum density (P.SD) is calculated by [40]:

N—1 2

—j2mki
E xr,e N

=0

PSD =

where £ =0,1,..., N — 1, N is the length of the EEG data, and x; represents the discrete samples of EEG data.

3. Band power. Based on Sabeti ef al. [75] and Iscan ef al. [40], EEG contains different specific frequency
components, which carry the discriminative information. This type of feature reflects the energy in several
bands (a, £, 8, v and 6 '°). Once that the bands are filtered, the power spectrum density can be applied to each
one in order to obtain important features.

4. Asymmetry ratio PSD. According to Palaniappan [67], this value is derived from the power spectrum density
and can be used as a feature, also this feature is useful for EEG analysis when the mental activities that are
studied exhibit inter-hemispheric difference. The asymmetry ratio power spectrum density is given by:

AS _ | PSDy — PSD,
PSP | PSD; + PSD,

where PSD; is the power spectrum density in one channel, and PS Dy is the power spectrum density in another
channel, but in the opposite hemisphere.

4.2.3 Time-Frequency domain

These features describe how spectrum power varies over time. As well as in EMG signal, the short time Fourier
transform and the Wavelet transform are the most used.

4.2.4 Spatial filtering

This type of filtering uses signals from multiple electrodes to focus on activity at a particular location in the brain.

¢ Bipolar montage. Bipolar channels are computed subtracting the signals from two neighboring electrodes
[87].

o Common average reference. This technique subtract the average value of the entire electrode montage (the
common average) from that of the channel of interest [56].

e Laplacian method. It calculates for each electrode location the second derivative of the instantaneous spatial
voltage distribution. The value of the Laplacian at each electrode location is calculated by combining the value
at that location with the values of a set of surrounding electrodes. The distances to the set of surrounding
electrodes determine the spatial filtering characteristics of the Laplacian [56].

o Common spatial patterns. It is a technique to analyze multi-channel data based on recordings from two
classes (tasks). It is given by:
resp(t) = x(t) - W

where x(t) is the signal, and W is a matrix that projects the signal in the original sensor space to a surrogate
sensor space z¢sp(t). Each column vector of a W is a spatial filter. CSP filters maximize the variance of the
spatially filtered signal under one task and minimize it for the other task [87].

4.2.5 Kalman filter

Welch and Bishop [90] defined the Kalman filter as a set of mathematical equations that provides an efficient compu-
tational (recursive) means to estimate the state of a process, in a way that minimizes the mean of the squared error.
Omidvarnia et al. [64] proposed the Kalman filter as an EEG feature vector.

16The frequencies and characteristics of each type of wave are explained in subsection 2.2
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4.2.6 Fractal dimension

Sabeti et al. [75] explain that fractal dimension has a relation with entropy, and entropy has a direct relationship
with the amount of information inside a signal; fractal dimension represents the degree of meandering (or roughness
or irregularity) of a signal. According to Sabeti, there are three methods for calculating fractal dimension: Higuchi
method, Katz method and Petrosian method.

Omidvarnia et al. [64] compared the features of AR, power of signal in different EEG bands («, 3, J, v and
0), wavelet coefficients and Kalman filter. Bayesian with a Gaussian kernel, Parzen estimation, K-nearest neighbor
and back-propagation neural network were employed as the classifiers of the features. Kalman filter had the best
performance over the other features when Parzen estimation, K-nearest neighbor and back-propagation neural network
were used; while AR had better performance than Kalman filter when Bayes with a Gaussian kernel was used.

Sabeti et al. [75] tested the performance of the features of AR, band power, fractal dimension (calculated by
Katz’s, Higuchi and Petrosian methods) and wavelet energy, by using as a classifier linear discriminant analysis and
support vector machines with the aim to select the most relevant features for EEG signal classification of schizophrenic
patients. As a result the most consistent feature for discrimination of the schizophrenic patients and control partici-
pants was AR coefficients.

4.3 Dimensionality reduction

Once that we have our feature vector, in order to increase the performance of the classifier it is advisable to reduce
its dimensionality by keeping the representative information in the feature vector and eliminating the redundant one
from it. The resulting vector is called reduced feature vector. Based on Englehart [25], there are two main strategies
of dimensionality reduction:

o Feature projection. This strategy tries to determine the best combination of the original features to form a
new feature set, generally smaller than the original one [93]. Principal component analysis (PCA) is used in
this type of strategy, it is an orthogonal linear transformation that can be used for dimensionality reduction in a
signal dataset by retaining those characteristics of the dataset that contribute most to its variance, in order to do
this, lower-order principal components are kept and higher-order ones are dismissed [6]. This could be applied
to EMG or EEG signals.

o Feature selection. This strategy chooses the best subset of the original feature vector according to some
criteria for judging whether one subset is better than another. The ideal criterion for classification should be the
minimization of the probability of misclassification, but generally simpler criteria based on class separability
are chosen [93].

Englehart et al. [27] compared principal component analysis (PCA) as a feature projection technique and Eu-
clidean distance class separability (CS) as a feature selection technique. The features used were the Hudgins’ time
domain features (MAV, MAVS, ZC, SSC and WL), the short time Fourier transform, the wavelet transform and the
wavelet packet transform in the classification of EMG signal. The result was that PCA provided more effective means
of dimensionality reduction than feature selection by CS, when time-frequency feature sets were employed.

5 Stage 3: classification

Once the features have been extracted from the raw signal (“feature extraction”) and the features with redundant
information have been reduced (“dimensionality reduction”) in the previous stage; it is necessary to distinguish dif-
ferent categories among the features by applying a classifier. These obtained categories are going to be used for the
controller in the next stage. There are several techniques to classify data, for instance neural networks (NN), Bayesian
classifier (BC), fuzzy logic (FL), linear discriminant analysis (LDA), support vector machines (SVM), hidden Markov
models (HMM) and K-nearest neighbor (KNN).

5.1 Neural networks (NN)

A neuron is a cell in the brain whose principal function is the collection, processing and dissemination of electrical
signals [74]; while an artificial neuron is an information-processing unit that is fundamental to the operation of a
neural network [36]. This artificial neuron receives inputs x and weights w; inside the neuron is performing an
arithmetic summing 7 followed by an activation function [50]. The arithmetic summing net consists in:

7The arithmetic summing constitutes a linear combiner [36].

14



n
net = E W;T;
i=0

where z; is the input to the neuron, and w; is the weight associated to x;.

An activation function f,; is applied to net, giving as a result the output of the neuron O. This activation function
limits the amplitude of the output of a neuron [36]; it needs to meet two conditions: 1) “activate” the neuron (near +1)
when the “right” inputs are given and “inactive” it (near 0) when the “wrong” inputs are given; and 2) the activation

needs to be nonlinear [74]. According to Kil, and Shin [50], there are several activation functions, such as, threshold
linear, step, arbitrary step, exponential and sigmoid '®, see figure 7.

Types of activation functions:

0 =f_4(net) .
Output a) Threshold linear
Types of f. P b) Step

y \ (#]
2 (1] I“:, i > c) Arbitrary step
= B o d) Exponential

e) Sigmoid
dr’| el
Input
. PR
function AR
functions

Figure 7: An artificial neuron

Feedforward networks are usually arranged in layers, such that each unit receives input only from units in the

immediately preceding layer (feedforward type) [74]. In a multilayer feedforward network, there are one input layer,
one or more hidden layers '° and one output layer.

* Input node
Hidden neuron

Output neuron

= Feedforward connections
fL[. Activation function

Z Arithmetic summing process

X  Inputvalue

W Weight from the input node to
the hidden neuron

0y, Output from the hidden neuron

Wy

Weight from the hidden neuron

- to the output neuron
l. JI Input layer

Hidden layer

—

[ | Output layer
—

Figure 8: A fully connected feedforward network with one input layer, one hidden layer and one output layer

Haykin [36] explains that the input nodes in the input layer of the network supply respective elements of the
activation pattern (input vector), which constitute the input signals applied to the neurons (computation nodes) in the
second layer (i.e., the first hidden layer). The output signals of the second layer are used as inputs to the third layer
(i.e., the second hidden layer or the output layer) and so on for the rest of the network. The set of output signals of
the neurons in the output layer of the network constitutes the overall response of the network to the activation pattern
supplied by the input nodes in the input layer, see figure 8. In a fully connected network, every node in each layer is

18The sigmoid function is the most common form of activation function used in the construction of neural networks [36].
19By adding one or more hidden layers, the network is enabled to extract higher-order statistics from its input [36].
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connected to every other node in the adjacent forward layer; if some of the communication links are missing from the
network, then the network is partially connected.

5.1.1 Back-propagation neural network (BPNN)

Kil and Shin [50] define a back-propagation neural network (BPNN) as a feedforward network with at least one
hidden layer. Each neuron performs arithmetic summing followed by the sigmoid activation. The back-propagation

algorithm is an iterative gradient descent algorithm to minimize the mean-squared error between the desired output
and the actual network output.

. Input node
Hidden neuron
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Output from the hidden neuron
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6k Error term of an output neuron

6h Error term of a hidden neuron

Figure 9: A back-propagation neural network

The steps for applying the backpropagation algorithm are the following [58], see figure 9:
1. Create a feedforward network with n;,, input nodes, nx;q4er hidden neurons and 7, output neurons.
2. Initialize all network weights to small random numbers.

3. Until the termination condition 2° is met, do:

For each < X, T > in training examples, do: Propagate the input forward through the network:
(a) Input the instance X to the network and compute the output o,, of every unit u in the network.

Propagate the errors backward through the network:
(b) For each output neuron k, calculate its error term d,
O = o (1 — o) (tk — o)

(¢) For each hidden neuron h, calculate its error term dy,

Op + on(1—op) Z WhOk

k€outputs
(d) Update each network weight w;;

Wy < Wj; + (néja:ji)

20A termination condition to halt the procedure could be: a) after a fixed number of iterations through the loop; b) once the error on the training
examples falls below some threshold; c) or once the error on a separate validation set of examples meets some criterion [58].
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where n;,, is the number of input nodes; np;qden 1S the number of hidden neurons; n.,: is the number of output
neurons; < X,T > is a training example; X is the vector of network input values; T is the vector of target network
output values; ¢, is the target value associated with the kth output neuron; output is the set of output neurons in the
network; wgy, is the weight from hidden neuron A to output neuron k; n is the learning rate; x j; is the input from node
¢ to unit j; and wj; is the weight from node ¢ to unit j.

5.1.2 Bayesian neural network (BNN)

It is a directed acyclic graph where the nodes are probability variables representing certain events. According to Bu
et al. [12], a BNN can be defined as G = (V, A, P); where V = {v1, v, ..., v, } is a set of nodes (variables), A is an
assembly of directed arcs between the nodes, and P is a set of conditional probability tables that are associated with
each node. A directed arc from v; to vj, (vi, 'Uj) € A, represents the conditional dependency between the variables;
this dependency is indicated with P(v; = a|v; = b), which is the conditional probability for v; = a given that v; = b.

5.1.3 Log-linearized Gaussian mixture network (LLGMN)

LLGMN is a three-layer feedforward NN. The structure of LLGMN is based on the Gaussian mixture model (GMM)
and a log-linear model. This NN is able to estimate probability density functions (pdfs) of input patterns [12].
According to Oskoei and Hu [3], a Gaussian mixture model (GMM) has the ability to form a smooth approximation
for general probability density functions. The probability density of GMM, which is called mixture density (MD), is a
linear combination of multiple standard Gaussian probability densities (named components). The complete Gaussian
mixture model is parameterized by the mean vectors, covariance matrices and mixture weights from all component
densities.

Tsuji et al. [85] present the structure of a LLGMN, see figure 10. In the LLGMM, the pdf of class ¢(c¢ =
1,...,C) is approximated with a GMM. The input vector x is converted into the modified vector X, by applying a
log-linearization process to the a priori probability for each component {c¢, m} and the probability of z to be generated
from the component m in class c. The first layer consists of H units corresponding to the dimension X and the identity
function is used for activation of each unit. ('O}, denotes the output of the hth unit in the first layer. In the second
layer, each M, unit receives the output of the first layer weighted by the coefficient wéc’m) and outputs the a posteriori
probability of each component. The third layer consists of C' units corresponding to the number of classes and outputs
the a posteriori probability for class ¢(c = 1, ..., C); each C unit integrates the outputs of the M, units of the second
layer.

Nonlinear transformation

T oo T

Figure 10: A Log-linearized Gaussian mixture network [85]

5.1.4 Recurrent network

In a recurrent network, additional to the feedforward connections, units have self-connections or connections to units
in the previous layers. This recurrency acts as a short-term memory and lets the network remember what happened in
the past [2], see figure 11.
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Figure 11: A recurrent network

5.1.5 Wavelet neural network (WNN)

Wavelet neural network (WNN) is a neural network based on wavelet transform, in which discrete wavelet function
is used as the node activation function, see figure 12. Because the wavelet space is used as characteristic space of
pattern recognition, the characteristic extraction of signal is realized by weighted sum of inner product of wavelet
base and signal vector [82].

Output

Layer of wavelets

Input Layer

Frequency Inputs

Figure 12: A wavelet neural network model [82]

5.1.6 Applications in EMG and EEG

Huang and Chen [39] developed a myoelectric discrimination system for a multi-degree prosthetic hand. They clas-
sified eight types of hand movements, such as three-jaw chuck, lateral hand, hook grasp, power grasp, cylindrical
grasp, centralized grip, flattened hand and wrist flexion. They employed a back-propagation neural network (BPNN)
for discriminating among the feature sets. The BPNN had one hidden layer and one output layer. The transfer func-
tions for hidden layer neurons and output layer neurons were all nonlinear sigmoid functions. The discrimination
system achieved success rates of 85% for off-line test and of 71% for on-line test.

Also, Karlik [47] classified EMG signals for controlling multifunction prosthetic devices by using a three-layered
back-propagation neural network (BPNN). The inputs of the BPNN were auto-regressive (AR) parameters of al, a2,
a3, a4 and signal power obtained from different arm muscle motions, see figure 13. The result was an accuracy rate
of 97.6% for categorizing six movements (R: resting, EF: elbow flexion, EE: elbow extension, WS: wrist supination,
WP: wrist pronation and G: grasp) in 5000 iterations.

Tsuji et al. [85] proposed a neural network, called “recurrent log-linearized Gaussian mixture network (R-
LLGMN)” for classification of time series, more specific for EEG signals. The structure of this network was based
on a hidden Markov model (HMM). R-LLGMN can as well be interpreted as an extension of a probabilistic neural
network using a log-linearized Gaussian mixture model, in which recurrent connections had been incorporated to
make temporal information in use. Tsuji et al. classified EEG signals of a photic stimulation consisting in opening
and closing eyes. They compared five classifiers: LLGMN (log-linearized Gaussian mixture network), LLGMN with
RNF (recurrent neural filter), HMM, CDHMM (continuous density HMM) and R-LLGMN. Their results showed
R-LLGM as the best classifier with an average accuracy rate of 94.4%, followed by LLGMN with NF and HMM,
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Figure 13: Myoelectric control of a multifunction prosthesis, using a back-propagation neural network as a classifier
[47]

both with an accuracy rate of 92.5%. While CDHMM and LLGMN achieved accuracy rates of 92.1% and 88.5%,
respectively.

Chu et al. [18] proposed a real-time EMG pattern recognition for the control of a multifunction myoelectric
hand from four channel EMG signals. To extract a feature vector from the EMG signal, they used a wavelet packet
transform. For dimensionality reduction and nonlinear mapping of the features, they proposed a linear-nonlinear
feature projection composed of principal components analysis (PCA) and a self-organizing feature map (SOFM).
They employed to classify a multilayer perceptron (MLP) with: a) an input layer constructed from the eight outputs
of the SOFM for four channels; b) two hidden layers, each hidden layer with nine neurons and c¢) an output layer with
nine neurons for the nine hand motions to be recognized. The average classification success rates of the MLP were
97.024% when PCA+SOFM were used, 97.785% when SOFM was applied and 95.759% when PCA was employed.
Their experimental results showed that all processes, including virtual hand control, were completed within 125 ms.

Subasi et al. [82] compared back-propagation neural networks (BPNN) and wavelet neural networks (WNN) for
classifying neuromuscular disorders of EMG recordings. They used an auto-regressive (AR) model of EMG signals
as an input to classification system. The BPNN was designed with AR spectrum of EMG signal in the input layer;
the output layer consisted of three nodes representing normal, myopathic or neurogenic disorder. On the other hand,
the WNN was designed with mono-hidden-layer forward neural network with its node activation function based on
dyadic discrete Morlet wavelet basic function able to unambiguously locate the three classes. A total of 1200 MUPs
obtained from 7 normal subjects, 7 subjects suffering from myopathy and 13 subjects suffering from neurogenic
disease were analyzed. The success rate for the WNN technique was 90.7% and for the BPNN technique 88%.

5.2 Bayesian classifier (BC)

According to Mitchell [58], Bayes theorem provides a way to calculate the probability of a hypothesis based on its
prior probability, the probabilities of observing various data given the hypothesis and the observed data itself:
P(h|D) = e

where P(h), the prior probability, denotes the initial probability that hypothesis / holds, before the training data has
been observed 2!; P(D) stands for the prior probability that training data D will be observed (i.e., the probability of
D given no knowledge about which hypothesis holds), and P(D|h) is the probability of observing data D given some
world in which hypothesis h holds. The posterior probability P(h|D), reflects the confidence that h holds after the
training data D has been seen.

Bu et al. [12] proposed a task model using a Bayesian network (BN) for motion prediction. Given information of
the previous motion, this task model was able to predict occurrence probabilities of the motions concerned in the task.
Furthermore, a hybrid motion classification framework was developed based on the BN motion prediction. Besides
the motion prediction, EMG signals were simultaneously classified by a log-linearized Gaussian mixture network
(LLGMN). Then, the probabilities, which are outputs of LLGMN and the BN task model, were combined to generate
motion commands for controlling, see figure 14. Experiments were conducted with four subjects to demonstrate
the feasibility of the proposed methods. In these experiments, forearm motions were classified with EMG signals

21if there is no prior knowledge, then the same prior probability is assigned to each candidate hypothesis [58]
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Figure 14: Hybrid structure of an EMG-based human-robot interface, where the Bayesian network task model is
incorporated for motion prediction [12].

considering a cooking task. The classification rates of used only the LLGMN and the proposed (BN with LLGMN)
method were 85.1% and 92.9%, respectively.

5.3 Fuzzy Logic (FL) Classifier

According to Sivanandam et al. [78], the Fuzzy Logic tool was introduced in 1965 by Lotfi Zadeh. It is a mathematical
tool for dealing with uncertainty, imprecision and information granularity. The fuzzy theory employs fuzzy sets,
membership functions, rules, fuzzification and defuzzification. Fuzzy sets model the uncertainty associated with
vagueness, imprecision and lack of information regarding a problem; involving linguistic variables such as “low”,
“medium”, “high”, “often”, “few”, etc. In fuzzy logic, a membership function has various “degrees of membership”,
values between on the real continuous interval [0,1], these values represent the “fuzziness”. Some basic shapes of
membership functions are trapezoidal, triangular and gaussian. The rules constitute the basis for the fuzzy logic to
obtain the fuzzy output, they convert inputs to outputs. These rules have the general form “IF X is A THEN Y is B”,
where A and B are fuzzy sets.

Knowledge base

input l | Database | ‘ Rule base| | output
Fuzzification Defuzzification
interface interface
(crisp) (crisp)

Decision-making unit
(fuzzy) (fuzzy)

Figure 15: Fuzzy Inference System [78].

Two conversion processes are used in fuzzy logic, fuzzification and defuzzification. Fuzzification is the process
where the crisp quantities are converted to fuzzy (crisp to fuzzy). By identifying some of the uncertainties present
in the crisp values, the fuzzy values are formed. The conversion of fuzzy values is represented by the membership
functions. On the other hand, defuzzification converts the fuzzy quantities into crisp quantities for further processing,
since the fuzzy results generated cannot be used as such to the applications. A Fuzzy inference system, see figure 15,
consists of a fuzzification interface, a rule base (containing a number of fuzzy IF THEN rules), a database (which
defines the membership functions of the fuzzy sets used in the fuzzy rules), a decision-making unit (which performs
the inference operations on the rules) and a defuzzification interface [78].

Si et al. [76] designed an expert system for the pediatric intensive care unit with the aim of alerting experts about
the level of abnormality of the EEG of the patients. They used fuzzy logic and neural networks to classify the data
in the expert system. Four fuzzy sets were used for the amplitude of the EEG: severe, moderate, mild and normal.
Results showed an accuracy percentage of 91%.

On the other hand, James ef al. [42] developed a multi-stage system for automated detection of epileptiform
activity in the EEG; using fuzzy logic and an artificial neural network, called organizing feature map (SOFM). SOFM
was in charge of assigning a probability value to incoming candidate epileptiform discharges (ED), while fuzzy logic

20



was employed to incorporate spatial contextual information in the detection process of ED. The spatial-combiner used
a number of rules that specify allowable combinations of EDs across channels to detect an epileptiform event (EV).
Five fuzzy sets were defined to classify the probabilities of true ED (Inputs to the spatial-combiner): negative big
(NB), negative small (NS), zero (ZE), positive small (PS) and positive big (PB). While each sub-system produced a
single output that was defuzzified using the fuzzy sets zero (ZE), possible (POS), probable (PRO) and definite (DEF),
(outputs of the spatial-combiner), see figure 16. In both cases trapezoidal membership functions were used. The
fuzzy-rules were drawn-up based on the authors’ pre-defined knowledge of how an EV would manifest itself across a
bipolar electrode chain. Results showed that the system has a selectivity of 82%.
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Figure 16: Fuzzy sets used to define (a) the inputs to and (b) the outputs of the spatial-combiner [42]

Kiguchi et al. [49] developed a robotic exoskeleton for human upper-limb motion assist. The robotic exoskeleton
was controlled using EMG signals. The classifier was a hierarchical neuro-fuzzy controller, consisting of three stages:
Dinput signal selection, 2) posture region selection stage and 3) neuro-fuzzy control. Three membership functions
were used for the elbow and shoulder regions: flexed angle(FA), intermediate angle (IA) and extended angle (EA),
see figure 17. By applying these membership functions, the appropriate controllers were moderately selected in
accordance with the arm posture of the robot user. Two kinds of nonlinear functions (and) were applied to express
the membership function of the neuro-fuzzy controller. The initial fuzzy I F' — T'HEN control rules were designed
based on the analyzed human elbow and shoulder motion patterns, then they were transferred to the neural network
form.

Fitness

EA IA FA

0 40 Sb Elbow}&ngle
(deg)

(a) Elbow angle
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| P L -
0 30 60 Shoulder Angle
(deg)

{b)  Shoulder vertical and horizontal angle

Figure 17: Membership functions [49]
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Ajiboye and Weir [1] presented a heuristic fuzzy logic approach to multiple EMG pattern recognition for multi-
functional prosthesis control. Basic signal statistics (mean and standard deviation) were used for membership function
construction and fuzzy c-means (FCMs) data clustering was used to automate the construction of a simple amplitude-
driven inference rule base. The multiinput-single-output fuzzy system consisted of three parts: 1) input membership
functions that fuzzify numerical inputs, converting them to linguistic variables; 2) an inference rule base that performs
pattern classification by processing the linguistic inputs, returning linguistic outputs and associated degrees of truth
and 3) an output membership function that defuzzifies the inference rule base linguistic outputs, converting them to
one numerical value. Four fuzzy sets were defined of signal gradation (OFF, LOW, MED, HIGH). Ajiboye, and Weir,
used fuzzy -means (FCM) clustering to generate the rules. Overall classification rates ranged from 94% to 99%.

5.4 Linear Discriminant Analysis (LDA) Classifier

Balakrishnama and Ganapathiraju [5] explain that Linear Discriminant Analysis easily handles the case where the
within-class frequencies are unequal and their performances have been examined on randomly generated test data.
This method maximizes the ratio of between-class variance to the within-class variance in any particular data set
thereby guaranteeing maximal separability, with this criterion the axes of the transformed space are defined. Also, they
describe two approaches to transform data sets and classify test vectors in the transformed space: a) class-dependent
transformation, that maximizes the ratio of between class variance to within class variance and b) class-independent
transformation, that maximizes the ratio of overall variance to within class variance and each class is considered as a
separate class against all other classes.

Fukunaga [29] points out that LDA (also known as Fishers LDA) uses hyperplanes to separate the data represent-
ing the different classes. The separating hyperplane is obtained by seeking the projection that maximizes the distance
between the two classes means and minimizes the interclass variance. To solve an N — class problem (N > 2)
several hyperplanes are used.

Sabeti et al. [75] analyzed EEG signals of 20 schizophrenic patients and 20 age-matched control participants
using 22 channels, with the aim of determining the most informative channels and finally distinguishing the two
groups. Bidirectional search and plus-L minus-R techniques were employed to select the most informative channels;
while linear discriminant analysis and support vector machines (SVM) were used as the classifiers. The results were
accuracy rates of 84.62% for LDA and 99.38% for SVM when bidirectional search was used, and 88.23% for LDA
and 99.54% for SVM when LRS technique was applied.

5.5 Support Vector Machines (SVM) Classifier

Choi and Cichocki [16] explain that the purpose of the technique of support vector machines is to find a hyperplane 2
that corresponds to the largest possible margin between the points of different classes k. This hyperplane then forms
the decision boundary for classifying new data points, the points forming the boundary are called support vectors;
while the distance from the hyperplane to the instances closest to it on either side is called the margin [2], see figure
18.

The algorithm for linear SVM assigns the value of 1 or -1 to the data points 1, ..., z,, with labels y1, ..., yn,
according to:

where w is the normal to the chosen hyperplane, b is the intercept term, chosen to maximize the margin of the decision
boundary, and ¢ is the distance of the misclassified points from the hyperplane.

When there are more than two classes, k > 2, a solution is to define k two-class problems, each one separating
one class from all other classes combined and applying the algorithm for all the classes. If the classes are not linearly
separable such that there is no hyperplane to divide them, the problem can be mapped to a new space by doing a
nonlinear transformation using suitably chosen basis functions and then use a linear model in this new space. To do
this, Kernel functions, such as radial-basis, polynomial and sigmoidal, can be employed [2].

Yom-Tov and Inbar [92] designed a classifier combining a genetic algorithm and support vector machines (SVM)
to distinguish between movements of contralateral fingers using movement-related potentials embedded in EEG. Their
results showed that, it was possible to select as few as 10 subject-specific features and achieved average accuracy rates
of 87% between two limbs and 63% between three limbs. Crawford et al. [20] developed a 4-degrees-of-freedom
robotic arm. They employed linear SVM as the classifier, achieving accuracy rates of 92-98% in 3 subjects.

Halder et al. [34] proposed a combination of blind source separation (BSS) and independent component analysis
(ICA) (signal decomposition into artifacts and nonartifacts) with SVM (automatic classification); in order to isolate

22Hyperplanes. Surfaces, which could be found from prototypes (or training samples) to separate different classes of patterns in the n-
dimensional space and are used to classify unknown patterns [10].
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EMG and electrooculographic (EOG) artifacts into individual components. The accuracy percentages of the classi-
fication between artifacts and nonartifacts were 99.39% for eye blink, 99.62% for eye movement, 92.26% for jaw
muscle and 91.51% for forehead. Choi and Cichocki [16] controlled a motorized wheelchair online, they used the
linear SVM for classifying the feature vectors obtained from the EEG data into each class of motor imagery. Three
subjects participated in the experiments; each one performed an imaginary movement of the hand and foot, depending
of the direction of an arrow, showing on the computer.

Firoozabadi et al. [28] developed a hands-free control system for operating a virtual wheelchair, which was
based on forehead multi-channels bio-signals as EMG signals. SVM was used for classifying the motion control
commands (forward, left, right, backward and stop). Three subjects (one adult and two children) participated in
controlling a virtual wheelchair using an interface software on a personal computer. The accuracy percentages of
SVM classification were: 100% for the adult and 89.75% and 97.49% for the two children. Lucas et al. [54] proposed
a multi-channel supervised classification of EMG signals with the aim of controlling myoelectric prostheses. The
classification of six hand movements was performed with SVM approach in a multi-channel representation space.
The results showed an average misclassification rate of 5%.

Oskoei and Hu [66] evaluated the application of SVM to classify upper limb motions using EMG signals. Four
popular kernels were examined: radial-basis, linear, polynomial and sigmoid. The four applied kernels performed
similarly. This could be interpreted that the boundaries between classes were almost linear. The average accuracy
for all kernels was approximately 95.5 + 3.8%. Gurmanik et al. [32] proposed an integrated binary classifier based
on SVM for differentiating neuromuscular disorders, using EMG signal. The objective of SVM was to find optimal
hyperplane for separating MUAP clusters. They used threshold technique for segmentating EMG signal and auto-
regressive coefficients (AR) as features. A total of 12 EMG signals obtained from 3 normal (NOR), 5 myopathic
(MYO) and 4 motor neuron diseased (MND) subjects were analyzed. The classification accuracy of binary SVM
with AR features was 100%.

Subasy, and Gursoy [81] developed an EEG signal classification method for diagnosing epilepsy. This method
was based on discrete wavelet transform; the dimension reduction was performed by principal components analysis
(PCA), independent components analysis (ICA) and linear discriminant analysis (LDA), while the classification was
carried on by SVM with a radial basis function (RBF) as a kernel. The classification rate with LDA feature extraction
was highest (100%), ICA came as second (99.5%); while the PCA had the lowest correct classification percentage
(98.75%). SVM without using PCA, ICA or LDA achieved an accuracy rate of 98%.

Wei and Hu [89] designed a human-machine interaction (HMI) for hands-free control of a wheelchair, employing
forehead EMG signals and color face image information. They used five recognizable movements: SJC (single jaw
clenching), DJC (double jaw clenching) and CJC (continuous jaw clenching) from jaw movements and LEC (left eye
close) and REC (right eye close) from eye movements. SJC and DJC patterns were recognized using a threshold
based strategy; while CJC, LEC and REC were separated using SVM with a radial-basis function kernel. The result
achieved by SVM had an accuracy rate of over 93%.

5.6 Hidden Markov Models (HMM) Classifier

According to Kil and Shin [50], a hidden Markov model consists of: a) the number of states in the model; b) the
number of distinct observation symbols per state; ¢) the observation symbol probability distribution in each state for
the discrete HMM, usually modeled as a Gaussian mixture; d) the state transition probability and e) the initial-state
occupancy probability, see figure 19. The mainly benefits of using HMM are: a) its effectiveness in capturing time-
varying signal characteristics; b) its ability to model unknown signal dynamics statically and c) its computational
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tractability due to the inherent statistical property of Markov processes. 2>
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Figure 19: HMM components

Novék et al. [59] employed HMM in scoring of human sleep. They used three HMM states, one corresponding to
wake state, other representing deep sleep and the other one standing for REM sleep. Obermaier et al. [62] developed
a letter spelling device operated by spontaneous EEG, whereby the EEG is modulated by mental hand and leg motor
imagery. They employed two HMM for representing motor imagery; reporting that the ability of three people in the
use of the letter spelling device varied between 0.85 and 0.5 letters/min in error-free writing.

Chan and Englehart [13] used HMM to process four channels of EMG signal, with the task of discriminating six
classes of limb movement. In their work, six-state fully connected HMM were applied; each state was associated
with an intended limb motion. HMM classification of continuous myoelectric signals resulted in an average accuracy
of 94.63%. Solhjoo et al. [79] studied the performance of two kinds of HMM, discrete HMM (dHMM) and multi-
Gaussian HMM (mHMM), in the classification of EEG based mental task. This task implied the controlling of a
feedback bar by means of imagery left or right hand movements according to the cues shown to the subject. The best
performance of dHMM was 77.13 % with 2 states and 16 observable symbols/state according to 0.5s segment of data;
while for mHMM was 77.5% using first 0.5s segment, with 8 states and 2 Gaussians/state.

5.7 K-nearest neighbor (KNN) Classifier

According to Bow [10], KNN is a process to assign a pattern point to a class to which its nearest neighbor belongs.
If membership is decided by a majority vote of the k-nearest neighbors, the procedure will be called a k-nearest
neighbor decision rule. The algorithm consists of two stages: a) make pregrouping of data to obtain subclusters by
using Euclidean distance and b)merge the subclusters hierarchically by using a similarity measure.

Peleg et al. [68] employed KNN as a classifier for EMG signals in finger activation, in order to be used in a robotic
prosthesis arm. While Chaovalitwongse et al. [15] used KNN to classify normal and abnormal (epileptic) brain
activities employing EEG recordings; having as results in the classification a sensitivity of 81.29% and a specificity
of 72.86%, on average, across ten patients.

5.8 Combination of Classifiers

Lotte et al. [53] present boosting, voting and stacking techniques as classifier combination strategies used in EEG
signal analysis. Boosting consists in using several classifiers in cascade, each classifier focusing on the errors com-
mitted by the previous ones [22]. In voting, several classifiers are employed, each of them assigning the input feature
vector to a class. The final class will be that of the majority [53]. In stacking, the outputs of the individual classifiers
are used to train the “stacked” classifier. The final decision is made based on the outputs of the stacked classifier in
conjunction with the outputs of individual classifiers [41].

Okamoto et al. [63] used a hierarchical pattern classification algorithm based on boosting approach for the esti-
mation of a suitable network structure. In this algorithm, the structure of the classification network was automatically
constructed by adding LLGMN:ss (log-linearized Gaussian mixture network) as classifiers, with the aim of categorizing
EMG signals involving six Japanese phonemes.

5.9 Comparison of Classifiers

Huan and Palaniappan [38] used linear discriminant analysis and multilayer perceptron neural network trained by the
back-propagation algorithm (MLP-BP) to classify mental tasks using features that were extracted from EEG signals.

23 A Markov process is a stochastic process whose past has no bearing on the future as long as the present is specified [50].
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They employed the following feature methods: AR coefficients computed with Burgs algorithm, AR coefficients
computed with a least-squares (LS) algorithm and adaptive auto-regressive (AAR) coefficients computed with a least-
mean-square (LMS) algorithm. The results showed that sixth-order AR coefficients with the LS algorithm without
segmentation gave the best performances (93.10%) using MLP-BP and (97.00%) using LDA.

Omidvarnia et al. [64] compared the performance of several classifiers using as features AR, power of signal
in different EEG bands («, 8, §, v and 6 ), wavelet coefficients and Kalman filter. The employed classifiers were
Bayesian with a Gaussian kernel, Parzen estimation, K-nearest neighbor and back-propagation neural network. When
the AR coefficients were used as a feature, the accuracy rates were: 90.44%, 87.69%, 93.16% and 83.88% for
Bayes, Parzen, KNN and MLP, respectively. When the wavelet coefficients were applied, the accuracy percentages
were 88.58% for Bayes, 75.33% for Parzen, 81.33% for KNN and 85.19% for MLP. When the power of signal was
employed as a feature, the accuracy rates were 83% for Bayes, 77.27% for Parzen, 81.72% for KNN and 82.27%
for MLP. Finally, when Kalman filter was used as a feature, the accuracy results were 78.29%, 92.23%, 96.13% and
93.86%, for Bayes, Parzen, KNN and MLP, respectively. In conclusion when the used features were AR and Kalman
filter, the best classifier was KNN; and when wavelet coefficients and power of signal were used as features, the best
classifier was Bayesian with a Gaussian kernel.

Lotte [52] compared four classifiers in order to categorize motor imagery signals using EEG signal. These clas-
sifiers were a fuzzy inference system (FIS), a support vector machines with gaussian kernel (SVM), a multilayer
perceptron (MLP) and a perceptron as a linear classifier (LC). The best performance was achievable by SVM with an
accuracy percentage of 79.4 %, followed by FIS with an accuracy percentage of 79 %. MLP and LC had accuracy
percentages of 78.9 % and 76.2%, respectively.

Bio- Accuracy percentage of the classifiers
signal Parzen KNN NN Bayes FL SVM | LDA | LC
2004, Huan, and Palaniappan EEG 93.10 97

2005, Omidvarnia et al.
AR / kalman filter EEG 87.69/ | 93.16/ | 83.88/ | 90.44/
92.23 96.13 93.86 78.29

Wavelet / power of signal 75.33/ | 81.33/ | 85.19/ | 88.58/
77.27 81.72 82.27 83

2006, Lotte EEG 789 79 79.4 76.2
2008, Oskoei, and Hu EMG N/E 955 | 945
2008, Zhou et al. EEG 90 91 88

Using own data
KNN: K-nearest neighbour FL: fuzzy logic LDA: linear discriminant analysis
NN: neural networks SVM: supportvector machines LC: perceptron as a linear classifier
N/E: not specified : best classifier

Figure 20: Comparison of classifiers

Oskoei and Hu [66] compared SVM, LDA and multilayer perceptron neural network (MLP) in classifying upper
limb motions using myoelectric signals. They used four kernels (radial-basis, linear, polynomial and sigmoid) in
SVM, and two multilayer perceptron neural network, one with one hidden layer (MLP1) and the other one with two
hidden layers (MLP2). The average accuracy for all kernels in SVM was approximately 95.5 + 3.8%. The LDA was
placed after SVM with the average performance of 94.5 & 4.9%. The MLP2 performed a similar accuracy to the
SVM and LDA, while the accuracy of MLP1 dropped approximately 6%.

Zhou et al. [94] used a feature set including higher-order statistics based on the bispectrum of EEG signals for
classifying EEG signals corresponding to left/right-hand motor imagery. Support vector machines with Gaussian ker-
nel (SVM), linear discriminant analysis (LDA) and neural networks (NN) were used as classifiers and were compared
with the winners classifier of BCI-competition 2003, using the same BCI data set and using their own data. In the NN,
they employed an input layer with 24 nodes for the features, a hidden layer with 15 nodes and an output layer with
two nodes for the classes of hand motor imagery; also they chose back-propagation algorithm to train the NN. The
results showed that, using the same BCI data set and their own features, the best classifiers were NN and SVM, both
with a minimal misclassification rate of 10%; while using their own data and their own features, the best classifiers
were SVM, NN and LDA, with minimal misclassification rates of 9%, 10% and 12 %, respectively. All the above
works are summarized in Figure 20.
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Multifunction prosthesis

Feature extraction Classifier Application
1999, Huang, and Chen | IEMG, VAR, bias ZC, SSC, WL, BPNN A myoelectric discrimination
[39] WAMP and AR system for a multi-degree
prosthetic hand
2002, Peleg et al. [68] AR and discrete Fourier trans- KNN Finger activation for using a
form robotic prosthetic arm
2006, Chu et al. [18] Wavelet packet transform Multilayer per- Control of a multifunction myo-
ceptron electric hand
2008, Oskoei, and Hu | MAV,RMS, WL, VAR,ZC, SSC, SVM Classification of upper limb mo-
[66] WAMP, MAV1, MAV2, power tions using myoelectric signals
spectrum, AR,FMN and FMD
Wheelchairs
2008, Firoozabadi et al. | MAV SVM Hands-free control system for
[28] operating a virtual wheelchair
2010, Tamura et al. | Notindicated Threshold algo-  Hands-free control system for
[83] rithm operating electric wheelchairs
with facial muscles
2010, Wei, and Hu [89] | MAV, RMS, WL, ZC, FMN and SVM Hands-free control of electric
FMD wheelchairs with forehead EMG
signals and color face image in-
formation
Other applications
2004, Jeong et al. [44] IEMG, difference absolute mean Fuzzy min-max Using a computer by clenching
value neural network  teeth
2010, Gurmanik er al. | AR SVM Differentiating  neuromuscular
[32] disorders

Table 1: EMG applications.

6 Stage 4: Control Applications

In this section, a number of bio-control applications are outlined, in which output commands produced in the classi-
fication stage are fed to a robot or device such as wheelchairs, robotic arms or computers.

6.1 EMG non-invasive applications
Sornmo and Laguna [80]; Oskoei and Hu [3] have shown, that some EMG non-invasive applications are related to:

1. kinesiology, since EMG can assist on the study of motor control strategies, mechanics of muscle contraction
and gait;

2. ergonomics, as EMG provides a valuable, quantitative measure of muscle load, often used to asses physical
load during work, therefore it can help to avoid work-related disorders and design better workplaces;

3. prosthesis control, inasmuch as the control signal is derived with surface electrodes placed over muscles or
muscle groups under voluntary control within the residual limb ([39], [68], [18], [66]);

4. wheelchair controllers ([28], [83], [89]);

5. virtual keyboards ([44]) and f) diagnoses and clinical applications, such as functional neuromuscular stimula-
tion ([32]) and detection of preterm births based on uterine myoelectric signals.

More details can be seen in Table 1.

6.2 EEG non-invasive applications

Some authors (Wolpaw et al. [91]; Sornmo and Laguna [80]; Van Gerven et al. [86]) have outlined as EEG applica-
tions the following ones:
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Mental tasks

Feature extraction

Classifier

Application

2002, Yom- | AR, PSD, Barlow, mean amplitude = Combination of Classification of movement-related
Tov, and Inbar | difference between every pair of a genetic algo- potentials recorded from the scalp
[92] recorded electrodes and standard de-  rithm and SVM
viation of the amplitude difference
between every pair of recorded elec-
trodes
2004, Huan, | AR BPNN and Two-state BCI from EEG signals ex-
and Palaniap- LDA tracted during mental tasks
pan [38]
Wheelchairs
2005, Tanaka et | Coefficient of correlation Recursive Electroencephalogram-based control
al. [84] training using of an electric wheelchair
Euclidean
distance
2007, Leeb et | Logarithmic band power Threshold algo-  BCI control of a wheelchair in virtual
al. [51] rithm environments
2008, Choi, and | Common spatial pattern SVM Control of a wheelchair by motor im-

Cichocki [16]

agery in real time

Mental and neurological disorders

2007, Sabeti et | AR, band power, fractal dimension LDA and SVM  Selection of relevant features

al. [75] and wavelet energy for EEG signal classification of
schizophrenic patients

2010, Subasi, | Mean of the absolute values and SVM Diagnostic decision support tool for

and Gursoy | standard deviation of the coefficients physicians treating potential epilepsy

[81] in each sub-band, average power of

the wavelet coefficients in each sub-
band, ratio of the absolute mean val-
ues of adjacent sub-bands

Table 2: EEG applications.

1. diagnosing mental disorders including epilepsy and schizophrenia ([75], [81]), also sleep disorders, such as
insomnia, hypersomnia, circadian rhythm disorders and parasomnia 2*;

2. monitoring mental tasks ([92], [38]) and

3. controlling spelling program, computer cursor for communication with the external world, video games, in-
telligent wheelchair ([84], [51], [16]), television, robotic arm or a neuroprosthesis that enables the multi-
dimensional movements of a paralyzed limb.

More details can be seen in Table 2.

7 Conclusion

This technical report has provided an overview of what bio-control systems have to offer, in particular on EEG and
EMG based control systems. The design of bio-control systems has four stages: data acquisition & segmentation,
feature extraction, classification and control. It is clear that bio-control technologies will begin to converge to enhance
our human-machine interaction. The technology is extremely useful for improving the quality of life of disabled and
elderly people.

In the near future we will see highly robust and flexible bio-control systems, which are based on various bio-
signals such as voice, muscle contractions, brain waves and gestures. These control systems will become increasingly
simple and intuitive, and no training is required, namely plug and play. These bio-control systems will have ability to
understand human intentions and emotions, and adept the dynamic changes in the real-world. It is no doubt that these
big inventions will change our life style forever in the 21st century just as the computers did in the 20th century.

2Insomnia: disorders in initiating or maintaining sleep; Hypersomnia: disorders causing excessive sleep and somnolence; Circadian rhythm
disorders: disorders in the sleep-wake schedule; Parasomnia: deviations in the normal sleep pattern [80].
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