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Abstract

Quasi-Newton methods wupdate, at each iteration, the existing Hessian
approximation (or its inverse) by means of data deriving from the step just
completed. We show how "multi-step" methods (employing, in addition, data
from previous iterations) may be constructed by means of interpolating
polynomials, leading to a generalization of the "secant" (or "quasi-Newton")
equation. The issue of positive-definiteness in the Hessian approximations is
addressed and shown to depend on a generalized version of the condition which
l1s required to hold in the original "single-step" methods. The results of
extensive numerical experimentation indicate strongly that computational
advantages can accrue from such an approach (by comparison with "single-step"®

methods), particularly as the dimension of the problem increases.

Abbreviated Title: Multi-step quasi-Newton methods

Keywords: Unconstrained optimization, gquasi-Newton methods



1. Introduction

The deficiencies of Newton’s method as a practical algorithm for
optimization are well-known (see, for example, Broyden [4]); one of the most
serious is the fact that, in many practical applications, the Hessian of
the objective function may be too costly to evaluate or may even be
unavailable in explicit form. Quasi-Newton methods endeavour to circumvent
this difficulty (while retaining the basic structure of Newton’s method and
thus preserving, as far as possible, its advantages) by constructing
approximations for the Hessian. The starting-point for the development of
such methods is the Newton equation (Ford & Saadallah [14]), which prescribes
a condition which the Hessian (evaluated at a specified point) must satisfy.
This equation is derived as follows: let f(x) be the objective function, where
xeR. We denote the gradient and Hessian of f by g and G,
respectively. Let X denote a differentiable path, x(t), in ﬁn, where T € R.
Then a straightforward application of the Chain Rule to the vector function

g(x(t)) shows that, at any point on X (corresponding to T = T*, BERV],

G(x(T*)) must satisfy

G(x(t*)) dx = _d_g (1)

dt dTt
T=-T* T=T*

- the Newton equation. The standard technique for exploiting this relation in
the construction of quasi-Newton algorithms is to focus attention on the

situation in which a new point x . has been generated, by some means, from a
1+

previous estimate, x , of the desired minimum. The curve X is defined, for
1

this case, to be the straight line (denoted by L) which interpolates these two

iterates:

x{x) X + 'rsi . {2)



where

A
LT a7 (3)
Thus, from (2), we have
x{0) = x ., »l1) = x . (4da)
1 i+1
and
S e Ve (4b)
i
dT

Relation (4b) is then substituted in equation (1), where we take =¥ a1

(because we wish to derive a relation satisfied by G(x 1) = Hix(y)). In
1+

order to be able to approximate G(xi+l)) . We thus have (for these particular

choices of X and the value of T%*)

G(x =
o T e S : (5)
dTt
T=1
Except 1n special cases (for example, when f is a quadratic function), it is

not practicable to determine the derivative (dg/dt) which is required by this

equation to define G(x l). We therefore resort to numerical techniques 1in
1+

order to estimate the derivative, using available values of g. In doing so,

it is important to bear in mind that evaluations of g are to be regarded as
computationally expensive and, therefore, that it is very desirable to utilize
only those values of g (pertaining to the line L) which are already known,
rather than requiring additional evaluations to be made. In general, the only
values of g which satisfy this criterion are g(x(0)) and g(x(1l)). (The
situation when further values of g on L are available has been considered by
Ford [9]). Hence we are naturally led to approximate g by the interpolating
linear polynomial g(x(0)) + Tlg(x(1l)) - g(x(0))] and, thus, to estimate the
derivative of g by that of the polynomial (a process which amounts to using

backward differences) : -



dg o  Tix(l)) - gilx(0))

— Fa™d

dt

T=1

g{xi+l) - g(xi)

ne

PR (6)

Thus, (5) becomes

1+1 1 1
For any non-negative integer j, let Bj denote an approximation to GXXj}. The
standard quasi-Newton approach to using this approximate condition for G{xil)

4
1s to require thatiB_l should satisfy the relation as an equality:-
1+
2. .8 =y (7)
i+1 1 1

- the so-called secant (or quasi-Newton) equation (Dennis [6]). Other

approximations to (5) have been developed by a number of authors (for example,
Biggs [1,2], Ford & Saadallah [13], Ford & Ghandhari [10,11,12]). These may
be viewed as techniques for constructing alternative estimates of the
derivative dg/dt and are derived from various models of the behaviour of

either f or g, when restricted to L.

2. Multi-step Methods

Although it has the virtue of being the simplest case to consider, the
choice of the straight line L for the path X is evidently not the only
possibility. To be more specific, we propose to develop methods which utilize
interpolatory polynomial forms for x(T) and, correspondingly, estimate the
required derivative dg/dt by techniques of higher order than backward

differencing. Let us suppose that, in addition to the two current iterates X
1



4 X generated by

- % o
1-m+2 i-1

and X, , the m-1 most recent points x i
1+1 1-m+1l

some algorithm (together with the corresponding gradient values) are available
to us. Thus, we have a total of m+l iterates and (generalizing the argument
used in constructing the secant equation) we may define the path X to be a
polynomial, x(t), of degree m which interpolates these points (compare

equation (4a)):

xXe ) =% S L A R SRR RN (8)
Kk i-m+k+1

The precise form of this polynomial will depend upon the wvalues {Tk}:_ﬂ which

_—

we choose to assign to the variable T, in order to correspond to the iterates

m

{x }

T Rt From consideration of the "base case" discussed above in the
1-M+K+ =

derivation of the secant equation (that is, m =1, T = 0, Tl = 1), a natural
O

choice is to retain a unit spacing of the T-values:

Tk=k-m+1, 0 B8, Yoo, W (9)

It is convenient to represent the interpolating curve X in its Lagrangian

form: -

m
x(t) = ):.fk(r)x (10)
k=0

i-m+k+1”

where .‘Bk('l:) is the standard Lagrangian polynomial

m
Bl > ) J 1% ~%))
] k J
j=0
i #k

fk(r}

Analogously, we may approximate g(x(T)) (compare the discussion in Section
1) by the corresponding interpolatory polynomial, based on the available

values of the gradient (when restricted to the chosen path X):

-m+k+1

m
gix(x)) » ) -‘f'k('r)g(xi ks (11)
k=0



Since T =T { = 1) corresponds to x

, we wish to apply the Newton
m s € 5 4

stmaation (1) with T = %

, 1in order to be able to derive a relation satisfied
m

(from
+1

(approximately) by G(xi ). We therefore need to determine dx{'rm)/d'r

equation (10)) and to estimate dgixitm))/dt (from the approximation given by

t211)s From (319},

m
x’{'rm) = kiz}z (Tm)xi—m+k+l A4

I

r. (13)

and the values of the coefficients (£/(t )}  are readily available from

tables (for example), since they arise from numerical differentiation
performed on equally-spaced data. Explicitly, we have
1 m-1
> {3 ) = { — %) gsfir %3 1 v ~-%2.}}
k m k m ' m J k J
1=0
i #k
m-k
= (=1) C / (m-k), for k # m; (14)
I
m-1 o
EZEI2 ) = AT %)
m m m ]
=0
m _ S TR
= & t3713); (15)
i=1

The same coefficients are employed to form an estimate for the derivative of

g, via differentiation of (11):

m
dg(x(rm})fd'r = ::U.‘E];('rm)g(xi_mkﬂ) (16)
- (17)
1

Thus, by analogy with the construction of equation (7), we derive (from (1))

the condition



. = W (18)
i+1 1 i
on the new Hessian approximation Bi . as a replacement for the condition
+
imposed by the secant equation. This condition for B, , may therefore be met
i+

by selecting any standard quasi-Newton formula which satisfies the secant
equation, and then replacing s, and with r, and W, o respectively. (A
suitable example of a "standard" formula would be any member of the Broyden

family (Fletcher [8]):

B =8 ~ B 2 85 +yVy *T9P VvV, (19)
i+l ;1 - S Wi il - S Sl
T T
s B s IS
T 13 iyi
where
T 172
vV = B B 5 - B s
i (iii} yi - T
: o ¢y
S s B s
iyi o

and ¢ € R.)

A more useful and slightly more compact representation of r and w, may be

i i
derived as follows:- by differentiating the identity
m
L£ (r) =1,
k=0
we obtain (on setting T = Tm}
m
Zf};’(rm) = 0. (20)
k=0
Thus, concentrating on the representation of ri (to be definite), (12) gives
m-2
r st is +« (B ) % (1= » F E'(t )=
3 N s 3 m m m-1 m i il Kk m i-m+k+1
= Em(tm}si + {.T.m{'rm) + ﬂm_l(rm]}si_l +
m-3
{Em(rm} . Em-l(rm) " i’m—Z{Im)}xi—l . £k(Tm}xi—m+k+l

k=0



m-1 m

S R e S Lo P using (20), (21)
, i-3 e e
=0 K=m-j
m-1

= LW 6 . »ay. (22)

i-j m-j
J=0
Similarly, a corresponding representation of wi in terms of {'yi _}T_; may be
-3 3=

derived. It follows that the vectors r:,L and wi required for updating Bi to

produce Bi , may be formed from the m most recent "step-vectors® i ; I'fl*;
i o 1=

-l ‘ ‘ |
and {J’i j}?-u' respectively. In the numerical experiments to be reported

below, we have tested the algorithms (denoted by M2 and M3, respectively)

which correspond to taking m = 2 and m = 3, 1n addition to the basic

single-step method (m = 1), denoted by Ml. For these values of m, ri, w_ and
1

the condition on B are given by (in each case, the representations of both

i+1

ri and w, have been normalized by setting the coefficient of s,/yi [the most
1

recent step-vectors] to unity):-

M1: S (23a)
i i
(1)
ol > (23b)
- r{“- w‘lg (23¢c)
3+% % i
(2)
M2: r wme -~ (33w , (24a)
1 1 1-1
£ )
i 1 1-1
ol el AW (24c)
141 1 i
(3)
M3: r =~ {Pri e + (2/11)s . (25a)
i i i- i-2
Ky - My s GADY. (25b)
i i i-1 i-2
o (25¢)

el 3



A proposal which readily suggests itself, at this point, 1s to select two

or more of the conditions ((23¢), (24c), (25¢), etc.) upon Bi which have

+1

been proposed and seek a matrix which satisfies all the chosen conditions,

rather than just one. For example, we might require Bi ; to satisfy both the
+

secant equation

1) (1)
r = W
i+1 i i

and the corresponding two-step condition:

(2) (2)
r = W .
i+l 1 i

B

However, as has been observed in similar circumstances by a number of authors,

T T
: £ : . 2 1 2 |
it is easily established that, unless rf ) wF }= w{ ) rf )

, , it is not possible
L b § 3 i

to satisfy both conditions simultaneously without sacrificing the symmetry of
B ek Furthermore, such an observation is generally true for any combination
1+

of such conditions on JEri .
+

As with multi-step methods used in the numerical solution of ordinary
differential equations, some form of *start-up" procedure will clearly be
necessary during the first (m-1) steps of the proposed m-step methods (1f
m > 1). The natural procedure for accomplishing this is to use the i-step
method on iteration i, for i =1, 2,..., m, and this is the strategy we have

adopted in the numerical tests.



3. Preserving positive-definiteness
Suppose that B 1is symmetric-positive-definite and let 5 (< 0) be defined
- 3

¢ =[1-(sBe)ly By .
L L 4 £ & 'k

where H = B;l. It 1s well-known (see, for example, Fletcher ([8]) that any
:

member of the Broyden family (19) corresponding to a value of ¢ which 1s

greater than @ will generate a matrix B, . which is also
1+
L Ll Ll L] Ll T - - -
symmetric-positive-definite, provided that siyi - (This 1nheritance of

such a property guarantees that the successive search directions will always
(in theory) be descent directions.) Essentially the same proof shows that a

similar result will hold for the new multi-step methods, with the

- T - L
condition rTwi > 0 replacing that on Siy" If we consider the matrices .S'i
1 i
and Y. which are formed from the step-vectors used in determining ri and
-
W -
1
». = 1 8. 5 B G B ]
i 1 i-1 i-m+1
and
Y = - ' ese 3
i [ Yy * ¥4 Y w1 I

r = 838, W =g, (26)
i i m i i m
where
d - [ 6 r a r ;6 ]T'
m m m-1 1
Thus,
r?w = dT.S'TY_dI



and a sufficient condition for B : to be symmetric-positive-definite is,
1+

T Lada o .
therefore, that SiYi be positive-definite (we observe that, in general,

T . . . .
SiYi will not be symmetric). This requirement may be regarded as a natural

generalization of the inequality sfiryi > 0 for the single-step methods.

Furthermore, since the diagonal of a positive-definite matrix must be positive

. - T i . .
and the diagonal elements of - 35 & are {s_y_}%_ + 1t 1s therefore
- S 7 3 J=1-m+1

. . : o ;-
desirable to continue the requirement that the condition sjy' > 0 be

]
satisfied at each iteration. (If, as was the case in our tests, the new
iterate x is determined from the previous point x, by means of a

j+1 J

line-search, then the imposition during such a process of a condition of the

form

4 & 4 }Ts. o Bg(x,)Ts , Where B = 1, (27)
J+1 J J J

¢ 3 .
(compare Fletcher [8]) ensures that sjyj >0, as long as s is a descent
]

direction at x .)
j

In the "ideal" case when f is a quadratic function with positive-definite

- e x ; .
Hessian A, Y = AS and the condition on S Y 1s met, provided that the

1 h | i 2
steps {si j}T_; are linearly independent. Such an argument lends support to
= ]-_-

the view that the condition on Sfl’i 1s not unreasonable and is likely to be
satisfied on most (if not all) occasions. In practice, we have not attempted
to enforce this condition - we have merely evaluated rfwi and tested the
sign, reverting to the use of a lower-order method 1f the sign is
non-positive. Practical experience shows that it is relatively rare for this
to happen; for example, during the solution (by means of the algorithm M2) of
a test set of 700 problems with dimensions ranging from 2 to 80, rjwi was
non-positive in only 1167 instances from a total of 153,392 iterations (that

is, less than 0.8% of cases). The corresponding figures for M3 over the same

set were 3024 instances in 161,518 iterations (less than 1.9% of cases).

- =2



Finally, it is important to observe that the requirement that Sr,rY‘ be
1l 1

positive-definite is sufficient to guarantee (when using an updating formula

from the Broyden family, with ¢ > Ea) that Bi will inherit the property of

+1

being symmetric-positive-definite from B, for any method which requires Bi .
h § +

to satisfy an equation of the form (18), where r, and w, may now be any linear

combination of previous step-vectors. (In making this statement, it is to be

understood that the same set of coefficients is used in forming both r and
1

Wi' =B In  128)). This 1inheritance property holds because only the
coefficients {6}{}1l : (and, thus, the wvector d‘m) which define ri and w will
. i

have been modified. An example of such a method would be one which bases the

choice of r and w, on interpolations employing a non-constant spacing of the
1

b &
i_ , 1n place of (9), and which even permits the choice of these

values {1 } ;

k

values to vary from one iteration to another.

4. Numerical experiments

The new methods described above were applied to the minimization of 175

functions. Each function was minimized from four different starting points,
giving a total of 700 test problems. As indicated previously, the dimensions
of these functions varied from 2 to 80. In order to provide benchmarks for

comparing the performance of the proposed methods, the standard BFGS method
(p = 0 in equation (19)) and the modification known as B2 proposed by Ford &

Saadallah [13] were also applied to the solution of the same set of test

problems. B2 employs the basic BFGS formula, but with ¥, replaced by an
alternative estimate of dg/dtr. 1In addition, M2 and M3 were implemented using
, . (2) (2) (3)
the BFGS formula, with si and y £ substituted by r and wi , Or by r, and
: 3 &

12



wig}, as appropriate. (M1 [using the BFGS formula] is simply the BFGS method
and will not be discussed, as such, any further.) In all cases, the
determination of X .. from X, was carried out by means of a line-search
algorithm which accepted the predicted point if the two conditions given below
were satisfied and which, otherwise, used step-doubling and cubic
interpolation, where necessary. It 1s evident, however, that such an
algorithm is not a mandatory feature of any of the methods proposed here; a
trust-region approach (for example) would be equally valid. To be acceptable

as a new estimate of the minimum, the following conditions were imposed on

T (see Fletcher [8]):-
1+1

f(x. ) = £(x.) + 10 °s'g(x.) ;
1+1 1 1 1

T T
Sig{xhl) ” Sig(xi) .

In the case of functions of dimension 10 or greater, the initial Hessian
approximation (the unit matrix) was scaled by the method of Shanno & Phua [19]
before the first update was performed.

Since 1t 1is clearly impractical to record the results for all 700 test
cases here, we first give details of the behaviour of the four methods on a
representative sample of ten functions. We will then also present graphs
exhibiting the relative performance of selected pairs of methods over the
complete test set.

The sample set of functions, with their dimensions and starting-points,
is described in Table 1 (unless otherwise stated, a full definition of each
function may be found in Moré, Garbow & Hillstrom [18], except for the
“Quadratic" function, which is defined below). The notation [«, B,..., wW]* is
to be understood as specifying that the vector [a, B,..., w] is repeated as

many times as necessary to create a vector of the required dimension.



(The "Quadratic®" function is defined by

T
f(x) = %x?LL.x,

where L is the unit-lower-triangular Hilbert-like matrix

Iﬁj = Ef i1 -~ 3 %%}, o 2 % 3.

The results of running the four algorithms (BFGS/M1, B2, M2 and M3) on
this sample set of 40 problems are given in Table 2. Each entry consists of
two 1integers; the first is the number of function/gradient evaluations
required to minimize the function from the stated starting-point, while the
second (in brackets) gives the number of iterations. The best performance on
each problem (judged on the number of evaluations with ties resolved by number
of iterations) is indicated by the symbol "j". The total number of best
performances for each algorithm is given in the final row of the Table
("SCORES"), together with the totals for evaluations and iterations in the
penultimate row.

These results are representative of those obtained from applying the four
methods to the full test set of 700 problems. They show that M2 is to be
preferred over the standard BFGS method and M3, while suggesting that it is
broadly comparable with B2 in its overall performance. However, the clear
indication of these results is that (of the two methods) B2 exhibits superior
performance for problems of lower dimension, while M2 reverses the situation
as the dimension increases. For example, we may note that B2 vields the best
performance of all four methods in eight of the twelve lowest-dimensional
problems (and is better than M2 in ten of these twelve cases altogether). By
contrast, over the last twelve problems (with dimensions from 60 to 80), M2
produces the best performance in all but one case (and is better than B2 even

in that case).

1A



In order to provide more evidence to substantiate these tentative
conclusions, we assess the relative performance of selected pairs of methods
by graphical means, based on the results obtained from solving all 700
problems in the full test set. In each graph, the ratio of the numbers of
evaluations required by the two selected methods to solve a specified problem
is plotted (on a logarithmic scale) against the dimension of the problem.
Evidently, a ratio greater than unity implies that the first (or base) method
was more effective 1in terms of evaluations (which is the commonly-used basis
for comparison of algorithms) than the second (or compared) method, on the
given problem. The critical ratio of unity is displayed on the graph by a
horizontal 1line; the counts of points above and below this line and the
distribution of the points provide valuable information about the relative
behaviour of the two methods, particularly as the dimension of the problem
varies. (We have constructed similar graphs based on iteration counts or
timings, instead of number of evaluations; the results and conclusions are
very similar.)

The three graphs presented here (Figures 1, 2 and 3) permit us to assess
the performance of M2 (the compared method, in each case) with each of the
other methods. To aid in this assessment, we give the proportions of points

lying above and below the critical line in each case:

Figure Base Method Compared Method Ratio greater Ratio less
than unity than unity

1 BFGS M2 24.0% 74.4%

2 M3 M2 17.8% 79.7%

3 B2 M2 42.0% 56.0%



Figure 1 shows that BFGS is to be preferred over M2 for low-dimensional
problems (with approximate parity attained for dimensions of ten to fifteen),
while there 1is a definite preponderance of points below the 1line for
dimensions of twenty and above, indicating that M2 is to be favoured for such
problems. For example, in the case of dimensions in the range 40 to 80, M2
achieves a better performance in 87.3% of cases.

From Figure 2, we infer that, for problems with dimension up to 380, there
is little reason (if any) to prefer M3 over M2. On low-dimensional problems
in particular, the overall performance of M3 is markedly worse than that of M2
(which itself, as the other graphs clearly reveal, shows poorer results 1n
such situations than either BFGS or B2). Whether the relative behaviour of M3
might show an improvement for dimensions higher than 80 1is a question which
must be left open at this stage.

Finally, Figure 3 enables us to see more clearly how the relative
performance of B2 and M2 varies as the problem dimension increases.

Evidently, B2 exhibits superior behaviour for lower-dimensional problems (as

the sample set of results indicated), while M2 becomes dominant for higher
dimensions. We estimate that, for this pair of methods, parity 1is achieved
for dimensions of around 15 to 25. To show in gquantitative terms how the

balance alters as the dimension increases, we give the counts of points above
and below the critical line (together with the ratio of the two counts), for

different ranges of the dimension:



Dimension Range B2 superior M2 superior Ratio

(above) (below)

2 - 10 i 7 25 2.88
11 - 20 69 47 1.47
21 - 30 32 47 0.68
31 - 40 28 50 0.56
41 - 50 23 57 0.40
51 - 60 26 S 0.495
él - 70 138 61 0.30
71 - 80 26 52 0.50

For problems in the test set with dimensions in the range 41 to 80, M2 shows
an improvement over B2 in more than 70% of cases. The average improvement in
number of evaluations (for M2 over B2) for these cases 1is 5%. The

corresponding improvement for M2 over the standard BFGS method (for the same

set of problems) is 10.5%.

5. Summary and Conclusions

The standard secant (or quasi-Newton) equation, which forms the basis for
most optimization methods, has been generalized by considering a path defined
by a polynomial of degree m (instead of a straight line) in the space of
variables, and by approximation of the gradient vector (when restricted to the
path) with a polynomial interpolant. The vectors defining this revised
equation may be formed by appropriate linear combinations of the most recent

step-vectors. Positive-definiteness of the Hessian approximation 1is

1 %7



guaranteed 1f a generalized form of the condition for standard methods is
satisfied. Extensive numerical experimentation provides strong evidence that
the two-step version of the new method exhibits improved performance in the
majority of cases (as measured by the number of function/gradient evaluations
required) by comparison with the BFGS method, for problems of dimension 15 and
higher, and with the modified method B2, for problems of dimension 25 and
above. The three-step version does not appear to be competitive for
dimensions in the range considered in these tests. It is worth peointing out
here th_at ‘the extra resources of storage and time required by these new
methods will both be O([m-1]n), where m is the number of steps involved. This
is not excessive (except, possibly, for very low-dimensional problems) when
compared with, for example, the O{nz) requirements for updating the Hessian
approximation in any quasi-Newton method.

We have considered alternative choices (with non-constant spacing) for the
values {tkﬂl: which are used to define the path X, and have found that these

can lead to further, substantial gains in performance - one method based on

such a choice yields an average improvement (in terms of number of

evaluations) of 13% over M2 and 20% over the BFGS/M1 method. This work will

be reported in a future paper.

Finally, we remark that the general approach outlined here admits of
several different developments and raises a number of interesting issues: for
example: -

(a) Is 1t possible to specify an optimal or near-optimal selection of the

m

values {Tk}k(f‘ Is 1t necessary to require (as we have done

implicitly by the choice proposed and tested here) that these values

be ordered:

TO{T Lo’ §



(b)

(c)

(d)

(e)

or should account be taken of the relative positions of the iterates

i 1 & L] L] W W
[x.}J_H, in determining (T }ml and, thus, the order in which the
7 J=1-m+1 k™ k=0

interpolating curve passes through these points?

Are polynomial 1interpolants for x and/or g the most appropriate
choice?

Are there identifiable reasons for the relatively poor performance of
the unit-spaced multi-step methods on low-dimensional problems?

Do these methods possess quadratic termination properties similar to
those of standard quasi-Newton methods when applied to quadratic
functions with positive-definite Hessian, using exact line-searches?

It is easy to demonstrate that not all of these properties will be

2

inherited by the new methods; for example, in K. with
f(x) = xi + 2x§ and starting from [2, l]T,'MZ will clearly locate the

minimum of f in two iterations (because it only "parts company" with
the BFGS method when Bl 1s being updated to produce Bé' by which time
the minimum has been located). However, 32 (as determined by the
method M2) is not the Hessian of f, whereas it is well-known that 52
(as computed by the BFGS method) will be.

Does the approach discussed 1in this paper prove effective when
applied to the solution of systems of nonlinear equations? There is
no requirement, in this context, for positive-definiteness or even
symmetry 1in the matrices {B&} (which approximate the Jacobian of the
system) and the Broyden "good" rank-1 updating formula (Broyden [3])
would be the first candidate for generalization. However, other
algorithms which retain the Jacobian approximation in factored form
(for example, Dennis & Marwil [7], Hart [15], Hart & Soesianto [16]

and Johnson & Austria [17]) would also appear to be worthy of

consideration.
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TABLE 1

Problem name Dimension Starting-peoints

Rosenbrock 2 [al {~1.2. 1.0
[b] (-120, 100)
fc] (40, -20)
[d] (6.39, -0.221)

Chebyquad 5 S 0.3, B:8, 0.8, 9.8, 1.0)
[b] (10 &y 3 B 2]
[c] s =3 O, % &)
[d] (0. 086325, V.18, 9.45,;, 0.5, 1.8)

Penalty I 10 ot S TR i SURRSRRS ¥ Y
IR £23, DY)
[&) {508 1; 0 %1; %1%
(&1 {¢~-18, -20, =30, ..., -1006)

Variably-dimensioned 20 [a] (0095 0.5, 0. 8059....:90.%)
[b] {[101 Sr Or _SI —'10]*)
) . . XN A

(4] (I=100, 75, -39, 43})*)

VAR 30 [a] T (N SO ©
(Conn et al [5]) It (=32, -1, 9; 1, 231%)
(&l 11=5, =3, =%3*)
[d] (E=1.5., ~1:8; =X.3,-cs,"U.1}")

Extended 40 [l - (i~%.23, 3. 01%)
Rosenbrock [b] ([-120, 100]}*)
[c] EEE. =8, Bl eiue By 21U
(d] k. B0, <.y 29)
Toint Merged 50 IS 15 By Dyaass 3)
Quadratic (] (13, ~2. 3; ~4; D)%)
(Toint [20]) e} 11+3),. 21*)

@1 (i1=18, =9, “8,..; ~1]*)

Discrete 60 ja] (i1, 2, s eesy ANTT)
Boundary-Value jib] (1-4, =1, 0, 1, 231"
(€] (139, 9, =103*)
[d] EERD . =9, B, =Tirsvss *3}7%)

Discrete 70 Il 1 3: 2: L. 0. =1 ,~3:%3}*)
Integral Equation B} 15.~4. 3.72: 1i~3i Rsievsi=d)%
[C} {[?: 6: 5:--*; lr-Tr—Gr'-f‘]—]*)
[d] EEN - 0. 9. W)
Quadratic 80 IR s 2 3, B S Briaae & %1%

[b] ([_l.r lf -2, 2;---: -Sr 5]*)
el 130, 1%, I8, ..., &:; 1)*)
[d] {1100, 10, -10, -100]+*)



TABLE 2

Problem BFGS (M1) M2 M3 B2
Rosenbrock [a] 45 (35) 51(46) 58(35) 40(35) %
[b] 544 (416) 610(482) Ta3t517) 487 (462) %
-2 i61i127) 195(151) 220(183) 160(156) %
[d] 73(59) 77 (64) 103(75) 70(65) %
Chebyquad [a] 30(18)% 35(19) 48 (28) 31(19)
[b] 157(151) 129(91) % 264(102) 153(148)
[c] 131(107) 113(66) 92(68) % 129(96)
[d] 33(23) % 38(25) 47 (30) 35(25)
Penalty I [a] 86(74) 95 (77) 126 (99) 80(76) %
[b] 145(118) 148 (131) 180(150) 129(112) %
{C] 133(107) 140(117) 154 (123) 118(110) ¢
[d] 221 (178) 232(189) 2l2(d15) 199 (176) %
Variably- (a] 26 (25) 21(20) % 30(28) 26 (25)
Dimensioned [Db] 62(61) 60(57) 61(59) 50(49) %
(¢ ] 97(96) 91(87) % 99 (97) 92(91)
[d] 92(91) S0(88) 82(89) 80(79) %
VAR [a] 38(37) 35(34) % 37(36) 38(37)
[b] 66 (65) 59(58) % 63(62) 66 (65)
[C] 70(69) 65(64) % 67 (66) 70(69)
[d] 62(61) 54(53) % 56 (55) 62(61)
Extended [a] 47 (39) % 53(48) 66(57) 47 (39) %
Rosenbrock [b] 207t1°17) 228(192) 250(21%) 204(181) %
&) 262 (252) 23582 25) ) 245 (233) 244 (236)
£-3 118(105) 129(116) 1821(137) 337¢(114)%
Toint [a] 333(332) 306(305) 304 (303) 296 (295) %
Merged [b] 243 (242) 215(214) ¢ seel(d2l) 221(220)
Quadratic [c] 102(101) 90(89) % 93(91) 101(100)
(d] 476 (473) 396 (395) 391(389) % 409 (406)
Discrete [a] 240(239) 201(200) % 205(203) 229(228)
Boundary - [b] 227 {226) 192(191) 189(188) % 214(213)
Value [c] 254(253) 229(228) ¢t 230(229) 244 (243)
[d] 273(272) 238(237)% 244 (243) 260 (259)
Discrete [a] 37(36) 35(34) % 39(38) 37(36)
Integral [b] 60(59) 59(58) % 67(66) 60 (59)
Equation [c] 68(67) 62(61) % 67 (66) 68 (67)
[d] 155(154) 13281333 % 141(140) 147 (146)
Quadratic (a ] 120(119) 101(100) ¢ 107(106) 119(118)
8% 62(61) 52(%1) % 60 (59) 62(61)
£-3 165(164) 137(136) % 147 (146) 168(167)
[d] 131(130) 106(105) ¢ 118(117) 137(136)
TOTALS 5852(5419) 5538(5035) 6119 (5354) 5499 (5280)
3 ¢ 5 | 3 14
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