ALTERNATIVE PARAMETER CHOICES FOR MULTI-STEP QUASI-NEWTON METHODS

J.A. Ford and I.A. Moghrabi

Department of Computer Science, University of Essex, Wivenhoe Park,

Colchester, Essex, United Kingdom, C04 350

Dedicated to Professor Charles Broyden

on the occasion of his sixtieth birthday

Abstract

In a previous paper, Ford and Moghrabi [7] introduced a new, generalized
approach to quasi-Newton methods, based on employing interpolatory
polynomials which utilize information from the m most recent steps (where
standard quasi-Newton methods correspond to m = 1, working only with the most
recent step). In these new methods, the iterates were interpolated by a
curve 1n such a way that consecutive points corresponded to a unit-spacing of
the parameter defining the curve. In this paper we derive and evaluate some
alternative choices for defining the parameter-values which correspond to the
iterates on the curve. The experimental results show clearly that such
methods can give substantial gains in performance (by comparison with the
"unit-spaced" method, which itself vields improvements over standard

quasi-Newton methods).

Keywords: Unconstrained optimization, quasi-Newton methods

1. Introduction

Quasi-Newton methods for unconstrained optimisation of an objective
function f(x) [where x € R' and f is assumed to be twice continuocusly
differentiable with gradient denoted by g(.) and Hessian by G(.)] imitate

Newton’s method, without requiring that the Hessian be available in explicit

form. Instead, they compute approximations (B}, say, to the Hessian
- -
matrices at the wvarious iterates {xi} which are generated. In standard
quasi-Newton methods, the new approximation Bi : 1s required to satisfy what
+

is known as the Secant (or gquasi-Newton) Egquation (Dennis [2]):-

5 5 =Y , (1)

i+l i i

In this equation, s 1is the step taken from X, to oo
1 +

¥ =X - t 8]

and ¥, is the corresponding change in the gradient:

¢ g{xi+l) - g{xi)- (3)

g

Equation (1) is a particular approximation to the Newton Egquation:-

I
Qu
Q

G(x(T*)) dx dg i

dTt dt
T=T* T=T%*

[obtained by applying the Chain Rule to the vector function g(x(T)), where

*
x(T) 1s any differentiable curve (denoted by X, say) in an]. Here, T 1is

*

chosen so that x(t) = X 1 the most recent iterate. Equation (4) thus
+

defines a condition which G(xi 1) must satisfy and, by approximating the
+

derivative dg/dt, we may obtain a relation which can then be used to
construct the required estimate Bi % of the Hessian G(x 1) . For example, in
- i+

the traditional quasi-Newton approach, the curve X is taken to be the

straight line which interpolates the two most recent iterates:

xtrY) xi > T . (5)
By analogy, the behaviour of the gradient (when restricted to X) is
approximated by a linear polynomial interpolating the corresponding values of
g, so that

a3 "olx) -glx) =y,

i+l i

and (1) is obtained as an approximation to (4).

The multi-step methods, developed by Ford and Moghrabi [7], considered
polynomial forms (of degree larger than one) for X. These polynomials are

chosen to interpolate (for a prescribed set of values {Tk}r}:_ﬂ) the m+1 most

recent iterates:

XiT) & ¥ - Ter kw9 1., , I, (6)
K 1-m+k+1
where, now, m is (in general) greater than one. The curve, thus, may be
represented 1n its Lagrangian form:
m
X = g ¢
. k)_:o'fk{ﬂxi-mml (7)

where fk{r) 1s the standard Lagrangian polynomial

fk{T}E'U i iT - Tj)/(Tk - Tj)}-
j=0
iFk

(8)

By analogy, the gradient (when restricted to X) may be approximated by the

corresponding interpolatory polynomial

m
glx(t)) = k)_:ﬂfk(t)g(xi_m+k+l) : (9)

We now determine x’{rm) from (8) and estimate g’{tm) by means of (9), so that

we may substitute for the derivatives in (2) and obtain a condition for B

i+1
to satisfy. Thus, we derive the regulirement

£ 3 B i)

where

e

I
™M 3
.
a
X

: {13)
K m 1-m+k+1

and

Q
™M =S

g’ i{xiT)) Z(r Yolx)
m K m

i-m+k+1

ne

il (12)
i

The coefficients in (11) and (12) are given explicitly by

m-1
F e b . -l i _—
.‘f.’k('rm) = ('rk Tm) j1_'[[]{{1.'1“ ‘rj) / (Tk Tj)} for k # m
j #k
and
m-=1 1
21T) » T -~ ¥,
m m m J
1=0

It was shown by Ford and Moghrabi that r, and w, could be represented in
i

Cerms of the most recent "step-vectors" (s ,}Tﬁl and (y }Thl:-
1= 9=0 i=-1 3=0
m-1 m
r = &8 {1 ¥ 2iv i) (13a)
i i-j K m
j=0 K=m-j
m-1 m
¥ o 5% 1 ¥ $iw). (13b)
i-7 k m
3 =0 K=m-j
In the traditional quasi-Newton approach, m = 1 and the wvalues {Tk}i_ﬂ
are given by (using (5) and (6))
T. = 9 T = 1
0 1

Therefore, Ford and Moghrabi [7] chose to use a unit-spacing for the values
{Tkhvﬂ required in the higher-degree interpolations discussed above:

T =k-m+ 1, for k B Fecaua (14)

Numerical experiments reported in that paper showed that, for m = 2 and
m = 3, significant gains in computational efficiency can be made (by
comparison with the standard approach for which m = 1), particularly as the

dimension (n) of the pProblem increases. However, it was observed that (14)

intention here to consider some alternative choices. In the following

{Tk}k—ﬂ and, thus, the precise form of the Polynomials which are used to
m m

1 t l -

lnterpolate the values {xi—m+k+1}k=0 and {g(xi~m+k+l)}k:9

2. Alternative Parameter Values

In describing the different approaches to defining the values of {'rk};:_ﬂ,

it will be useful to employ metrics on R of the following general form:-
T 1/2
[(zl - z,) M{zl - z,)] (15)

for all points Z 32 € R and for a given symmetric positive-definite matrix

M e ﬂ?nm.

(A) THE ACCUMULATIVE APPROACH

This approach locates the iterates L }rn on the curve by
1-m+k+1 k=0

focussing attention on one of the points (x say) as the chosen

. " F
l-m+Jj+1

"base-point" or "origin". This point corresponds to the value T and we
J

therefore select 'rj to be zero. For any integer k in the range [0, m],

except k = j, the wvalue L (corresponding to the iterate ey 1} is now
-m+k+

computed by accumulating the distance (measured by the chosen metric @H}

between each consecutive palr of points in the seguence from X, $51 to
-m+ 3+
xi ST inclusive. IR Carryving out this computation, we impose the
-m+k+
convention that iterates earlier than N e in the sequence are to
i1-m+3+

correspond to negative values of T, and points occurring later than x

i-m+3+1
to positive values. Thus, we have
j
- - ’ ’ 'r 6
T) QM(xi*m+p+1 xi_mp) for 'k < 3 (l16a)
p=k+l
Tj = U, (16b)
k
=] . 6
T,): QH(xi-m+p+1' xi_mp}, fer k > 3 (16c)
P=3+1
In our implementation, we have chosen J = m-1, thus continuing the
(somewhat arbitrary) convention that ; g 0, so that equations (16)
m-_-
become: -
T = 1, T =9t .¥). (17a)
m-1 m M 1+1 A -
m-1
T & =3 & (x . S j. SO k=0, 1,..., 2. (17b)
k i M i-m+p+1 1-m+p
p:

Equivalently,

T = @H(}{ fxi).f

o @ (x ' X_
K k+1 M i-m+k+2 i-m+k+1

~
I
~

Fe- O w9, F....; el

Evidently, as long as no consecutive pair of iterates is identical, the

values {';\':]{}2_{_:l vYielded by this approach satisfy :-

RS o ” : 5 D, 1. ..uv W=l (18)

(B) THE FIXED-POINT APPROACH

As with the first approach, we fix attention upon one of the iterates

(LS .) B X

: Lk say) . This time, however, we determine a value for 'rk
=) 1-M+7]+

(k € [0, m], k # j) by measuring (again using the chosen metric &) the

M

distance from x. _ - R directly. The same convention regarding
1-m+j+1 1-m+k+1

positive and negative values of T is also observed here. In this method,

different forms of the algorithm result from distinct choices of the index §

(For example, for m = 2 and j = m-1 = 1, this construction is identical to

the "Accumulative Approach" described previously.) To be specific, we have

selected J = m, so that the "base-point" for the measurement of distances is
the most recent iterate, x . It follows that
i+
T =0 3 T = -9 iy . ¥ do EOE K & Q. .00 (19)
m K M i+l i1+k-m+1

In this approach, it is possible that some of the parameters [‘1:1{}::0 will be
assigned equal (or nearly equal) values, so that some form of remedial action
(for example, varying the metric or ignoring some of the iterates) will be
necessary. In the tests reported below, we reverted to the unit-spaced
method in such circumstances.

Clearly, for both the "Accumulative™ and "Fixed-Point"

approaches, different choices of the matrix M in the definition of the metric

tIiM (equation (15)) will lead to different values for the parameters {Tk}i—ﬂ
and, thus, to differing algorithms. In the next section, we introduce some

possible choices for M and discuss how the expressions thus arising for

{tk}m may be computed efficiently.

3. Particular Choices for the Metric

Ford and Moghrabi [7] reported that numerical results obtained from the
"unit-spaced" methods were better (over the range of dimensions [2 to 80]
considered in their experiments) for m = 2 than for m = 3. We conjecture
that this may be due to the fact that, as m increases, the relative
contribution of s, to r, and of ¥, to W, is reduced, so that the most recent

step-vectors (namely, si and y) have a decreased effect on the formation of
1

B . Thus, for ms = 2. ri ls given (in normalised form) by
1+

while, for m = 3, it is given by

e B UE R F ST 3
1 1-1

i

+ (2/11)5i 4

with corresponding expressions for W, in tezmm of ¥y, v g and y. g* A T
1 R A

clear that the relative contribution of si and yi has decreased. Whether

similar features will occur in the methods being proposed here will depend,

of course, on the metric ¢M in use and the wvalues for {‘L‘k}m which are

thus generated. Preliminary experiments indicated that , ©f the methods
considered, those for which m = 2 were generally superior to those
corresponding to m = 3. It was therefore concluded that the extra storage

and housekeeping required by the "m = 3" methods was not worthwhile and we
shall therefore, for the remainder of the paper, restrict our consideration
to the case m = 2.

We now discuss some of the possible choices for the matrix M defining the

metric @M and consider the resulting algorithms.

(A) ACCUMULATIVE ALGORITHMS

Algorithm Al

This algorithm is generated by choosing M to be the unit matrix. Thus,

from (15) and (17), we have

g 5 . (20)

T. = s 8., T =0 and T
i 2 : 4 0 i-1 2

2

10

Algorithm A2

For this algorithm, we choose M to be the matrix B, (the approximation to
1

the Hessian at x). Hence, in addition to Tl = 0, we have
1
1/2 T 372
T = =-|8§ TB_S,] f - T = i1 B8] f :
0 i=1 1 1=} 2 - . S
If, as was the case with the algorithms tested here, x e is determined from
1+
X, by means of a line-search along the "quasi-Newton" step —Bflg(x_}, then
1 : 1 i

3ti > 0 such that

=1
- - B -
xi+1 xi ti i g(xi}
Therefore,
-
F§ =L B olx)
i : . | i
and
T 1/2
T. & «f<C ¥ gix)] : (21)
2 < S | 1

o daaE 2 . :
2, requiring O(n) operations, is replaced by the

Thus, the term -[s B s]/
2 X &
more efficient expression (necessitating O(n) operations) given in (21). In
order to reduce the cost of calculating 1:{:J (which would similarly require
O(nz) operations), we resort to an approximation. Although the multi-step
methods we are developing here do not satisfy the Secant Equation (1), it
seems reasonable to assume that (1) will hold approximately for the matrices
Bi generated by these methods. We claim that this assumption is wvalid
because the intention is that Bi shall approximate G(xi), which does satisfy

the Newton Equation (4), from which (1) was derived. Thus, applying (1) with

1+1 replaced by i, we obtain

11

: ; T 4 .
and this gquantity (—[si_lyi_l]) is the wvalue used for TG used 1in the

implementation of this method.

Algorithm A3

If we now choose M 1in (15) to be Bi : and use similar techniques of
-

approximation to those employed 1in constructing algorithm A2 above, we

obtain:-
;o /4 E § 1/2
= 0; - 2 22
Tl 0 TE [EiBi+lsi] I:Eiyil (a)
and
F i 1/2 ;i 1/2

= - N - ¥ 22b
0 LTS (8, _1Yi-q] -

(B) FIXED-POINT ALGORITHMS

Algorithm F1

Choosing M to be the unit matrix again, we have (from (15) and (19)), the

following values for T:-

T =0, T = ~sll , a0 T - =~ + 8 1 . (23)
1 1 2 0 i i-1 2

4

Algorithm F2

For M = Bi, the resulting values are (using the arguments employed 1in

constructing algorithm A3) :-

T 1/2
.90, % »slaaiets) (24a)
2 1 =3 i
and
¥ T 5 3 1/2
'I.'D = [tisig(xi) + zsiBisi_l + Si—lBiSi-l]
i T T 1/2
o] : b
RS) 2 n Ty * $1-1¥1-,])

We remark that it is simple to construct variations of this particular

) T A :
algorithm; for example, the term 2s,yi : in the expression for 1:0 could
l i

(with equal validity) be replaced with -2tisiTlg{xi) (by rewriting the term

2STB s in the form 25_TB,5_} or with [sTy, ~ t‘siTg{x_)] (through
i 1 1-1 =3 5 3 1™ 1-1 i i-1 i
rewriting the same expression as [sTB,s‘ + E,T B s]).
i 3 3=] =3 3 3
Algorithm F3
Finally, using M = Bi o we obtain: -
+
T 1/2
— 0, ~ - ’ 25
T, %, (siyi) (25a)
and
- T T 1/2
N - 2 -
%o o G U R iy

Again, it is clearly possible (as with F2) to construct variations of this

method.

13

4. Numerical experiments

The new methods described above, together with the standard BFGS method
and the unit-spaced 2-step method (denoted by the name M2) introduced in Ford
& Moghrabi [7], were applied to the minimization of a test set of 107
functions. This set included many test functions which are well-known and
well-documented in the 1literature, such as the eXxtended Powell singular
function, the Chained Wood function, Coope'’s ot -1 T function, the
Trigonometric function, the Engvall function and the Gragg-Levy function.
Some of the other functions in the test set are described below. Each
function was minimized from four different starting points, giving a total of
428 test problems. The dimensions of these functions ranged from 2 to 80.
All the multi-step methods were implemented using the BFGS formula, with Si
and yi substituted by the appropriate definitions of rﬁ and wi (see equations
(l13a) and (13b)). In all cases, xi+1 was calculated from xi by means of a
line-search algorithm which accepted the predicted point if the two
conditions given Dbelow were satisfied and which, otherwise, used
step-doubling and cubic interpolation, as necessary. For x to be

1+1

accepted, the following conditions were imposed (see Fletcher [3]) :-

fix) E(x)+ 0 s otx) 3
1+1 1 1 : |

T T
2 0ix) > 8 gilx)-
: § 1+1 1 :

14

Where the dimension of the function was 10 or greater, the 1initial Hessian
approximation (the unit matrix) was scaled by the method of Shanno &
Phua [10] before the first update was performed.

Limitations of space preclude giving a full report of the results
obtained from these experiments. We will, therefore, first present a brief
summary and discussion of the performance (on the full problem set) of all
the methods and then give more details for a subset of ten functions and a
selected group of four of the methods. Over the complete set of 428
problems, the eight methods under consideration vielded the following results
(the term "evaluation" refers to one evaluation of the relevant function
and its gradient; all times are measured in seconds and percentages relate to

the corresponding figure for the BFGS method) :-

Table 1 : Overall Results for 428 Problems

Total Total Total No. of

Method Evaluations Iterations Time Failures
BFGS 98425 (100%) 91304 (100%) 3402.16 (100%) 0
M2 20275 (91.7%) 82153 (90.0%) 3024.58 (88.9%) 0
Al 80616 (81.9%) 73435 (80.4%) 2660.09 (78.2%) 0
A2 B3752 (85.1%) 75676 (82.9%) 2709.01 (79.6%) 1
A3 82318 (83.6%) 72648 (79.6%) 2703.47 (79.5%) 0
Fl 19390 (80.7%) 71375 (78.2%) 2620.62 (77.0%) 0
F2 79276 (80.5%) 71743 (78.6%) 2418.42 (71.1%) 0
F3 82895 (84.2%) 12620 (79.5%) 2657.04 (78.1%) 0

We observe that all six of the methods proposed here show a substantial
improvement (in terms of evaluations, iterations and time) over the standard
BFGS method and over the unit-spaced 2-step method M2. In particular, F2
requires 29% less than the execution time needed by the BFGS method and the
other five new methods show improvements which are not much lower. The
improvement in the number of function evaluations required is not quite so
high (about 20% for F2). The main reason for this appears to be that the new
methods show an increasing improvement over BFGS as the dimension (and
therefore, 1in general, the time required to solve the problem) increases,
which we regard as a very desirable feature. In order to substantiate this

assertion, we show, in Tables 2 to 4, a breakdown of the results shown in

Table 1. We have classified the test problems into three subsets, according
to the dimension of the problem. We observe that, for the low-dimensional
problems (Table 2), the improvement in performance (if it exists) is not wvery

large (although even in this case, a more detailed breakdown demonstrates
that the performance of the multi-step methods, by comparison with that of
BFGS, tends to improve as the dimension increases). However, as we move to
higher dimensions (Tables 3 and 4), the increasing benefits yielded by the
new methods are clear. We also draw attention to the fact that, in Table {4,
the improvements in time correspond closely to the improvements in the number
of evaluations and in the number of iterations. This provides evidence of a
practical nature that the overheads of implementing the new methods become
increasingly negligible (by comparison with the costs of evaluating the
function and its gradient, and with housekeeping costs such as updating the

matrix) as the dimension rises.

16

Table 2 : Results for Dimensions from 2 to 15 (116 Problems)

Total Total Total No. of

Method Evaluations Iterations Time Failures
BFGS 20619 (100%) 16865 (100%) hi.11 (100%) 0
M2 20940 (101.6%) 16733 (99.2%) 52.43 (102.6%) 0
Al 20164 (97.8%) 16328 (96.8%) 50.38 (98.6%) 0
A2 19677 (95.4%) 15606 (92.5%) 46.48 (90.9%) 0
A3 20431 (99.1%) 14897 (88.3%) &7.17 (92.3%) 0
Fl 18852 (91.4%) 15016 (89.0%) 48 .90 (95.7%) 0
F2 21161 (102.6%) 17446 (103.4%) >V.43 (598.3%) 0
F3 21224 (103.1%) 15669 (92.9%) 51.01 (99.8%) 0

Table 3 : Results for Dimensions from 16 to 45 (172 Problems)

Total Total Total No. of

Method Evaluations Iterations Time Failures
BFGS 43009 (100%) 40152 (100%) 737.88 (100%) 0
M2 38965 (90.6%) 35771 (89.1%) 672.9V7 (91.1%) 0
Al 33956 (79.0%) 31302 (78.0%) 2987 .67 (79.6%) 0
A2 37109 (86.3%) 33708 (84.0%) 611.27 (82.8%) 0
A3 34738 (80.8%) 3337 (17.9%) s8a.72 1719.8%) 0
Fl 34254 (79.6%) 31052 (77 .3%) 586.28 (79.5%) 0
F2 34161 (79.4%) 333132 {T1.5%) 549.70 (74.5%) 0
F3 34941 (81.2%) 31148 (77.6%) 009 .29 (79.3%) 0

- I~y

Table 4 : Results for Dimensions from 46 to 80 (140 Problems)

Total Total Total No. of

Method Evaluations Iterations Time Failures
BFGS 34797 (100%) 34287 (100%) 2613.17 (100%) 0
M2 30370 (87.3%) 29649 (86.5%) 2300.08 (88.0%) 0
Al 26496 (76.1%) 25805 (75.3%) 2022.04 (77.4%) 0
A2 26966 (77.5%) 26362 (76.9%) 2051 .26 (78.5%) 1
A3 27149 (78.0%) 26476 (77.2%) 2067.58 (79.1%) 0
F1l 26284 (75.5%) 25307 {73.8%) 1985.44 (76.0%) 0
F2 23954 (68.8%) 23165 (67.6%) 1818.45 (69.6%) 0
F3 26700 (76.7%) 25803 (75.3%) 2020.74 (77.3%) 0

On the basis of the overall results presented above, we selected Al (as
the best "Accumulative" method) and F2 (as the best "Fixed-Point*" method), in
addition to the BFGS method and M2, for the purpose of exhibiting a more
detailed comparison of relative behaviour. The chosen subset of functions,
together with their dimensions and starting-points, is described in Table 5
(unless otherwise stated, a full definition of each function may be found in

Moré, Garbow & Hillstrom [8], except for the "Quadratic" function, which is

defined below). The notation [a, B,..., W]* is to be understood as
specifying that the vector [«, B,..., w] is repeated as many times as
necessary to create a vector of the required dimension. (The "Quadratic®

function is defined by

. . ¢
EXLLX,

rix)

18

where L 1s the unit-lower-triangular matrix

Lij 2713 = 5% }); IOy W Y:)

The results of executing the four algorithms (BFGS, M2, F2 and Al) on
this sample set of 40 problems are given in Table 6. Each entry consists of
two 1integers, the first of which 1is the number of function/gradient
evaluations required to minimize the function from the given starting-point,
while the second (in brackets) gives the number of iterations. The best
performance on each problem (judged, as is conventionally done, by the number
of evaluations) 1s 1ndicated by the symbol "t". The total number of best
performances for each algorithm is given in the final row of the Table
("SCORES"), together with the totals for evaluations and iterations in the
penultimate row.

These results are 1illustrative of those obtained from applying the four
methods to the full test set (although it would be unwise, of course, to draw
firm conclusions about the relative virtues of methods from such a small
sample). They underline the advantages accruing from use of the new methods
and show clearly how the "Fixed-Point" algorithm F2, in particular, is
increasingly superior to the standard BFGS method and to the unit-spaced
method (M2) as the dimension of the problem rises. On the sixteen problems
with dimension 50 or greater, F2 produces the best performance of the four
methods on no fewer than fourteen occasions. Improvements (in the number of

function evaluations) of 20-30% and greater over the BFGS method are common

for such dimensions.

19

5. Summary and Conclusions

A number of multi-step algorithms have been developed which rely on one
of two approaches to defining the distribution of recent iterates on an
interpolating curve. It has been shown how the quantities requlired to
implement such algorithms may be efficiently computed. (We observe, at this
point, that the important issue of preserving positive-definiteness in the
Hessian approximations generated by multi-step methods is covered by the
results of Ford and Moghrabi [7].) The new algorithms have been
experimentally compared with the standard BFGS method and with the
unit-spaced 2-step method developed earlier by Ford and Moghrabi. The
numerical results strongly support use of the new methods introduced here.
One particularly encouraging feature of their performance is the increasing
gain in efficiency as the dimension of the problem rises. The improvements
observed in the numerical experiments imply that the extra storage and
computation required [both of which are 0(n)] in implementing these methods
are more than justified.

Further work currently in progress seeks to combine the techniques of
Ford and Ghandhari [5,6,7] with the approaches considered here in order to
exploit the function-values which are available at each iteration. Also
under consideration 1is the construction of "hybrid" methods, where the
selection of the algorithm to be used depends on the dimension of the
function. Finally, it would be of interest to investigate limited-memory

implementations of these methods.

6. Acknowledgment

One of us (I.A.M.) gratefully acknowledges the support of the Hariri

Foundation during this research.

References

[1]

[2]

[3]

[4]

[5]

(6]

[7]

A.R. Conn, N.I.M. Gould and Ph.L. Toint, Testing a class of methods for
solving minimization problems with simple bounds on the variables,
Research Report CS-86-45, University of Waterloo (1986).

J.E. Dennlis, On some methods based on Broyden’s secant approximation to
the Hessian; 1n Numerical Methods for Non-linear Optimization, ed.
F. Lootsma (Academic Press, London, 1972).

R. Fletcher, Practical Methods of Optimization (second edition) (Wiley,
New York, 1987).

J.A. Ford and R.-A. Ghandhari, On the use of function-values in
unconstrained optimisation, J. Comput. Appl. Math. 28 (1989) 187 - 198.
J.A. Ford and R.-A. Ghandhari, Efficient utilisation of function-values
in quasi-Newton methods, 1in: Collogquia Mathematica Societatis Janos
Bolyai 59 (Numerical Methods, Miskolc, 1990), ed. D. Greenspan and P.
Rézsa, (North Holland, Amsterdam, 1991).

J.A. Ford and R.-A. Ghandhari, On the wuse of curvature estimates 1in
quasi-Newton methods, J. Comput. Appl. Math. 35 (1991) 185 - 196.

J.A. Ford and I.A. Moghrabi, Multi-step quasi-Newton methods for
optimization, Department of Computer Science Technical Report CSM-171,

University of Essex, 1992.

21

(8] J.J. Moré, B.S. Garbow and K.E. Hillstrom, Testing unconstrained
optimization software, TOMS 7 (1981) 17 - 41.

[9] D.F. Shanno and K.H. Phua, Algorithm 500: Minimization of unconstrained
multivariate functions, TOMS 2 (1976) 87 - 94.

[10] Ph.L. Toint, On large scale nonlinear least squares calculations, SIAM

J. Sci. Stat. Comput. 8 (1587) 416 - 435.

J.A. Ford

Department of Computer Science
University of Essex

Wivenhoe Park

Colchester

Essex

United Kingdom

CO4 35Q

Fax : 010.44.206.872788

e-mail : fordj@essex.ac.uk (janet)

22

Problem name

Rosenbrock

Chebyquad

Penalty I

Variably-dimensioned

VAR
(Conn et al [1])

Extended
Rosenbrock

Toint Merged
Quadratic
(Toint [10])

Discrete
Boundary-Value

Discrete
Integral Equation

Quadratic

Dimension

2

10

20

30

40

50

60

70

80

o B |

TABLE 5

[a]
[b]
(&)
[d]

[a]
[b]
[c]
[d]

[a]
[b]
[c]
(d]

[a]
[b]

d]

[a]
[b]
[c]
[d]

[a]
[b]
[c]
[d]

[a]
[b]
[c]
[d]

[a]
[b]

[d.

[a]
[b]
[c]
[d]

Starting-points

E=5-4, 1.9)
(=120, 100)
(20, -20)
(6.39, -0.221)

(R, D8, 0.6,
& TG PR TR TR L
tay =L U, L, 2)
(0.0625, 0.135,

g, 1.4

0.22, 0.5, 1.0)

(l.r 2; 3;#--; 10)

(13, =5]}*)

t1e: 1, 0, =X, =241°*)

(=10, =20, =30,..., =100)
(9.9, 0.9, §.385,,90.0)
LEXN, S5, U, <5, «10}]")

k2, AR A0y o 200
t{=~300, 75, «50., 35]°)

%5 %2 Feainal)

L 58,y =%, U 1, 41%)

EE R, W) w3)w)

LE=1.5, =328 ~1:3i s e=0.11%)
(=3 v 201"

([-120, 100]+)

kt3: =2 3y ~4,...,9, ~30)})%)
RV . W, csis 29)

B B Paeveas B

(i1, ~2, 3, -4, S}]*)

L=, &1*)

(I=30, =9, ~8,.., =1]*)
(t1, 2, 3,..., 10]*)

LE=R, L, O 2, 2)%)

{110, 0, <10})*)

kL2, =9, B: i veui =5¥)

(i3, 2 1, 0,=1,-2,=31]*)
(19,8, 3,38, 3.2, 2, +v:;~8)7)
SV B B vice B> le™h. i N)
Ay 30, 20...:; 10)

R 8 3 B 00 B vnine B0 21
o3y L. “0y Rrvrsy 5, 5)r)
i S s SR ¢ SR S % | L
({100, 10, -10, -100]*)

TABLE 6

Problem BFGS M2 F2 Al
Rosenbrock [a] 45 (35) ¢ 51(46) 54 (45) 22(37)
[b’ 544 (416) ¢ 610(482) 638(510) 559 (436)
[] 1611(127)% 195(151) 199(162) 176(148)
-3 13199) % 77 (€4) 87(72) 78 (68)
Chebyquad ‘al 30(18) ¢ 35(19) 31(19) 31(17)
[b] 157 (151) 129(91) ¢ 156(119) 146 (89)
[c] 131(107) 113 (66) 69 (52) % 111(76)
[d] 23123)% 38(25) 38(27) 34(23)
Penalty I [a] 86(74) 95 (77) 72(61) % 74 (65)
bl 145(118) 148 (131) 139(122) ¢ 141(119)
(¢] 133(107) 140(117) 148(119) 123(101) ¢
d] 22311278) 232(189) 246 (201) 216(169) %
Variably- [a’ 26(25) 21(20) 19(18) 18(16) ¢
Dimensioned [b] 62(61) 60(57) 39(38) % 42 (41)
[c] 97 (96) 91(87) 58(57) % 67 (65)
[d] 92(91) 90(88) 68(66) % 75(74)
VAR [a] 38(37) 35(34) 31(30) % 33(32)
[b] 66 (65) 59(58) 60(59) 56 (55) %
[c] 70(69) 65(64) 62(61) % 65 (64)
[d] 62(61) o4(S53)% S8(57) 54 (53)%
Extended [a] 47 (39) ¢ 53(48) 49 (44) 53 (45)
Rosenbrock [b] 207 (177) % 228(192) 220(193) 207 (183)
[c] 262 (252) 239 (225) eng(233) 205(193) %
(d] 118(105) ¢ 129(116) 142(125) 124 (112)
Toint [a] 333(332) 306(305) 178 (177) % 235(234)
Merged [b] 243 (242) 215(214) 141(139) ¢ 165(162)
Quadratic fc] 102(101) 90(89) T34{7T7T) 3 89 (87)
[d] 476 (473) 396 (395) 252(250) ¢ 331(321)
Discrete [a] 240(239) 201(200) 188(187) ¢ 193(192)
Boundary- [b’ 241 (226) 192(191) 163(162) ¢ 168(167)
Value £=8 254 (253) 229 (228) 212(211) 208 (207) ¢
[d] 273(272) 238(237) 179(178) % 221{220)
Discrete [a] 46 (45) 45 (44) 37(36) % 41 (40)
Integral [b’ 69 (68) 69 (68) 55(54) % 63(62)
Equation -3 96 (95) 88(87) T1(76)% 83(82)
[d] 149(148) 131(130) 108(107) % 118(117)
Quadratic [a] 120(119) 101(100) 85(94) % 99 (98)
[b] 62(61) 52(51) 56 (55) 49 (48) %
[c] 165(164) 137(136) 1123¢(312)3% 126(143)
[d] 131(130) 106(105) 100(99) % 100(99) ¢
TOTALS 5892 (5459) 5583(5080) 4968 (4504) 5026 (4540)
SCORES (%) 9 - 9

2

24

