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Abstract

This paper presents a new approach to the problem of gap bridg-
ing and junction detection. Perceptual groupings and evidence from
existing boundaries are combined to produce joins which are consis-
tent with the initial image structure. In particular, a new defini-
tion of co-curvilinearity, which distinguishes between true and false
co-curvilinearity, is given. Structural quantities are computed for all
potential joins. A local non-iterative algorithm selects the best joins
and/or junctions which satisfy specific structural conditions. No as-
sumption, domain restriction, or model is needed. The current imple-
mentation is fully presented together with the results obtained.

Keywords: Gap bridging, Perceptual grouping, Junction detec-
tion, Conneclivity.

1 Introduction

Since the earliest attempts at computer vision and pattern recognition, it wa
realised that reducing an image into a set of connected boundaries helps wit!

compressing visual data and eliminating noise, whilst retaining topological an:
geometric properties. Connected boundaries play fundamental roles in inferrin
shapes [9], recognising objects, and 3D interpretation of scenes [2].

When trying to extract boundary representations of images, the main probler
encountered is the large number of discontinuities (or gaps) between boundar
fragments of the same physical contour and near junction points. These gap
originate from noise distortion, weak contrast, and the intrinsic nature of conven
tional smoothing operators such as V2G, which blur details of image structur
near junction points.

Our goal is to reconstruct junctions and boundaries so that they are coheren
and in accord with the initial image structure. The method should be suitable fc
general purpose computer vision systems, i.e. it should be knowledge-free. Such
process should, of course, incorporate perceptual organisation capabilities akin t
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humans [13, 17, 8, 3, 10]. Many existing techniques for reconstructing junction
and bridging gaps already include these features. However, these techniques lac
the crucial stage of checking the plausibility of the new constructions with th
evidence locally present in the existing contours and in the raw image. It is ou
primary task to present a local algorithm, which combines perceptual groupin
factors and specific structural conditions to bridge gaps and reconstruct junctions

2 Related work

Many existing techniques are based on perceptual grouping, such as proximit;
continuity, connectivity and co-curvilinearity [17, 8, 3, 10]. It is agreed that suc
capabilities must also be present in machine vision systems if they are to hav
generality and function in real scenes.

Co-curvilinearity, in particular, was identified as one of five viewpoint-invariar
features which are necessary and sufficient for inferring shape and obtaining robus
curve descriptions [7, 11]. It accounts for most, if not for all, groupings done b
human visual system. In [6], angles are detected and grouped into junctions.

In [11], curves that terminate in a local neighbourhood are candidates fc
linking with each other by line segments. The neighbourhood is defined in term
of the acceptable distance d between the ends of the curves; d is taken as a fractio
of the curve length with a fixed minimum length. A local non-iterative proces
selects the most co-curvilinear (or least bent) joins among neighbouring curves.

Mohan & Nevatia extended the perceptual grouping factors to account fc
parallelism, symmetry, T-junctions, corners and U-structures [12]. Line segment
are gradually grouped into predefined shapes, termed collated features, that ar
thought to be omni-present in 1mages.

The major problem with these techniques is that they lack a crucial stag
which is to check whether the selected bridges are consistent with the evidenc
already present and the structure of the raw image, and thus may produce wron
junctions. Additional imperfections can also be identified:

¢ When using line-segments rather than bounday fragments the obtaine
boundaries lack smoothness.

e Predefined shapes used in [12] limit the sphere of applicability of such tecl
niques to man made objects.

e Thresholding on angles as in [6] has the undesirable effect of eliminatin
simple L-junctions, which are so common in everyday scenes.

¢ The measurements presented for the co-curvilinearity in [11, 6] do not di
tinguish between genuine and false co-linearity, as shown in Figure 1. Genuir
co-curvilinearity involves two disconnected boundary fragments (segments) of tt
same physical boundary of a narrow band. The very nature of conventional ope:
ators and tessellation effects result in the eventual displacement of sections of tk
boundary by a few pixels.

Another critical problem associated with previously outlined approaches is er
suring the right choice of size for the neighbourhood. Small windows lead f
wrong bridges, and large windows bring into consideration other segments th:
mav interfere with the correct bridees.
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Figure 1. (a) shows a genuine colinearity. (b) false colinearity. These two case
need to be distinguished.

3 Our approach

We shall present an approach to junction detection and gap bridging which o
fers solutions to the problems identified above. Our approach uses curves rathe
than line segments, we combine perceptual groupings with evidence from exist
ing boundaries and the initial raw image to connect boundary fragments. Cc
curvilinearity, proximity, contrast and continuity are used to predict potentic
joins between boundary fragments which terminate in the same neighbourhooc
A suitable band, based on the prediction stage, 1s then chosen for each potentia
join. Structural quantities are computed from intensities in this band to verif
the plausibility of the predicted joins with image structure. This approach ha
some similarities with Canny’s technique for edge detection [1]. Parts of the con
tour around the point of interest (i.e. evidence) are examined to decide on th
entire segment using hysterisis thresholding (i.e. verification). Finally, a loce
non-iterative process based on ordering and partitioning selects the plausible join
and junctions.

3.1 Input used

The 1nitial boundary fragments are extracted from Spacek’s first difference magn:
tude surface [15] (see Figure 2), which combines both edge strength and boundar
thinning. Spacek computes gradient components 8 f/0z and 8 f/8y by convolvin
the initial image f(z,y) with two linear filters defined by: abs(z).z/(z* + y*) an
abs(y).y/(z? + y?). Ridge points are obtained by checking for a local maximur
in the direction of the gradient vector. A non-maximum suppression technique i
applied to eliminate false points.

Figure 2. Left: first difference magnitude surface. Connected boundaries are en

coded along ridges (not shown here) using an 8-connected grid. Right: Spacek’
finitte difference temnlate for Of/Hr
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3.2 Potential joins

Each boundary fragment, and its end points, are used to build the adjacency graph,
in which co-terminations form the nodes and boundary fragments form the arcs

(dual links) between them.
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Figure 3. The nodes (dots) created at Ey and E4 captiure the connectivity.

A node captures the neighbouring co-terminations (see Figure 3 for illus-
tration). A single node is created at E;. This node atiracts neighbouring co-
terminations at a distance radius from it; radius is a global parameter (see results
section). The choice of E; is purely arbitrary.

The term join henceforth is used to refer to an abstract entity which denotes the
perceptual and structural characteristics of a link between two bounday fragments.

Potential joins are searched for in the adjacency graph between neighbouring
fragments. For every pair of neighbouring fragments, the following entities are
computed:

3.2.1 Perceptual coherence

e The difference in contrast dec of the two boundaries involved in the join.

e The co-curvilinearity ¢l of the section PP’ (defined later).

¢ End point proximity embodied in d = QQ'.

e The eventual boundary which the join would give rise to, and its total length [.
Let P and P’ be two points belonging respectively to B and B’ such that

TP@ = @Q'P’ = b, where b is a global control parameter. Since the vectors P_Q and

Q'P’ could be assimilated to the tangents to B and B’ at Q and Q’ respectively,

the co-curvilinearity is defined as follows (see Figure 4):

0if PQ[Q'P' = o0

(stﬂght join)

PQ QP if PQNP'Q' =1

cl(j) = (.ajmgled join)

0if PQ[1P'Q'=0and W < 2
(tessellation effect)

mif PQ(P'Q' =0 and W > 2
(wrong cn—curvilinearit.y) Figlll'ﬂ 4, C’ampuﬁng pﬂ?‘ﬂﬁpi!-iﬂf

characteristics of a join.

where I is the intersection point (when it exists) between lines PQ and Q'P’,

and W = d(PQ, P'Q’) the distance between the lines PQ and Q' P’ when parallel.
B ic the empty set Note that ¢l € [0 1 This definition distineuishes between
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false and true co-curvilinearity by construction. Joins with small values of cl are
preferred over joins with larger values. ¢/ = 7 indicates that there is no perceptual
evidence at all for the join.

3.2.2 Structural coherence

Figure 5. FEzplanative figure for computing the consistency of a join with image
structure.

The differences in image intensities at the location of a gap cannot be used
directly. Edge detectors would not fail at these locations 1n the first place, 1f these
differences were relevant. However, we still can measure the uniformity of the
intensities on each side of a potential join. This will give hints on whether the
gap i1s a genuine one or not. To do so, we compute 01,02 and 0,2 the standard
deviations in image intensity along and across a potential join (see Figure 5 (a)
& (b)).

The physical reason behind these measurements is that image intensities are
uniform on both sides of a genuine join, i.e., 0; and o3 are less than a certain
threshold and less than o12. In case of a 3-way junction though, only one side is
uniform and there is no uniformity of intensity across the potential join.

3.3 Selected joins

Potential joins are ordered in a list with respect to the following criteria of com-
parison: let j be a join, ¢l;j, d;,l; and dc; respectively its co-curvilinearity, length,
total length of the eventual new boundary, and the difference in contrast between
the boundaries involved. The ordering is done by the following set of rules:

1) ledj—cljt| >eq &elj <cljp=>3 <3 2)|cdj=clji)|>eq &cljy <clj =>3' <3

d; _ _ d,r . . l, . :
a)a—i-{sdﬁg{;’ 4) L <eg=3' < 5)}-"-46:2#3'{3
g J  h
fj} " = f -f .
6) - <ep =>j <] 7) TRUE = j' =

J

These rules are applied in order (i.e. 1,2,3,4,5,6 and 7). The first one to have its
left hand side conditions satisfied decides on the ordering between j and j’. Rules
1 and 2 reflect the preference for joins that will result in the best co-curvilinearity
first If no decision can be taken on the basis of co-curvilinearitv. i.e. there is no
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strong evidence that one join is more co-curvilinear than the other, the proximity
factor is used to decide on the ordering. This is embodied in rules 3 and 4. A
very short join is much preferred over a long one. If still no decision can be taken
on the basis of the proximity factor, i.e. there is no strong evidence that a join is
much shorter than the other, preference is given to joins that will result in longer
boundaries. Rule 7, when reached, indicates that joins j and j' are not discernable
on the basis of the above grouping factors. This level of ambiguity hardly ever
occurs. The constants €7, €4 and &; are positive thresholds in [0..1].

However, a join j is genuine only when the following structural conditions hold:
01(3) < T1, 02(§) < T, T15 < 012(7) < T12, the bridge QQ’ does not cross any
other boundary, and the resulting boundary does not cross itself. Where 17, 15
and Ty, are local thresholds. The use of thresholds seems unavoidable in this
context.

Automatic thresholding techniques can be roughly classified into two cate-
gories: one based on statistical concepts, the other on preserving the geometric
structure of images [16]. We adopt the former strategy in computing local thresh-
olds: Let o4, 03, 0. and o4 be the standard deviations in intensity levels in the spec-
ified locations in Figure 5 (c¢). The sigmas represent evidence near strong edges
found by the edge detector. We define local thresholds: 77 = maz(oa(J), os(J)),
Ty = maz(0.(j), 04a(5)), T1a = min(oa.(4), 05a(3)), T12 = maz(0ac(J), obalJ))-

The last condition is equivalent to Canny’s hysterisis thresholding technique
[1]. Joins which do not satisfy these conditions are marked as candidates for a
3-way junction (see next section).

Similarly, a junction is genuine (see Figure 6), only if the following structural
conditions hold: 1(3) < 04(7), 02(3) < o8(j), 012(J) < 0ap(j), and the bridge
Q" J does not cross any other boundary.

The junction point J is the nearest point on PP’ to Q" (see Figure 6).
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Figure 6. FEzplanative figure for computing the structural coherence for 3-was
junctions.

3.4 Bridging strategy

The general idea lies in partitioning the ordered set of potential joins at a bound:
ary end-point into two sets. One set consists of simple joins between pairs o
boundaries. When fused, each will give rise to a single boundary. The other sef
comprises joins to be each combined with an additional boundary not involvec
in the first set in order to produce 3-way junctions. Joins of each set satisfy the
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structural conditions. Moreover, they are consistent! with each other and wi
joins of the other set. It is only after computing these sets that bridging ai
junction reconstruction are performed.

Fused boundaries are deleted from the global list, and the adjacency graj
i1s updated accordingly. Attributes of newly created boundaries, such as contra
and length, are also updated. Final boundaries are collected with the topologic
structure and junction points.

Line segment’s points and corner’s points are generated using an adaptation
midpoint line scan-conversion algorithm [5] to produce chain codes.

At this stage, we draw the attention to the following points:

e Contrary to previously described techniques, our approach offers a soluti
to the neighbourhood problem discussed earlier

e No assumption or domain limitation i1s needed

e The complexity of the approach is governed by the number of end-poir
2n (where n is the number of boundaries) and the local computations at ea
end-point. These local computations are proportional to the radius r, as will
empirically shown in the results section. It follows that the overall complexity

O(2nr).

4 The results

The parameters that govern our bridging process are [,,,;, and radius for the glok
control, €., €4 and ¢; for local perceptual grouping, and a, b for computing t
standard deviations and co-curvilinearity. Most of these parameters were fixed f
all experiments. Typically, l,,in = 3, (€c1,€4,€1) = (0.175,0.50,0.175), a = 3 pixe
and b = 5 pixels.

Figure 7. From top to bottom: A 250x 100 image of step edges at various contrasi
boundary fragments detected and boundaries obtained using our bridging algoriths

Panel intensities are 64,190,96,158,112,142,120,1384,124 and 130. FEdge finde
responses are rounded to the nearest pizel position, hence the zigzags.

The performance has been tested on a variety of synthetic and real image

1Two joins are said consistent if they do not have a boundary in common and do not crc
each other. A binarv imaece is used locallyv to compute intersections.
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The first synthetic image is a reproduction of the data used by Fleck [4] to test
the output of various edge detectors. This image represents step edges at various
contrasts (Figure 7). The panels were first smoothed with a Gaussian of standard
deviation 1 cell and then corrupted with Gaussian noise of standard deviation 1
intensity unit to simulate real imaging conditions.

It is apparent that the structural conditions for detecting gaps work well, even
in cases of very low contrast. In this experiment only one gap out of 26 was not
bridged. This miss is actually due to the fact that the co-curvilinearity of this join
is 7, and thus is not eligible for bridging on the basis of perceptual grouping.

The second synthetic experiment involves noisy step edges. The panels were
first smoothed with Gaussian of standard deviation 1 cell and then corrupted with
Gaussian noise of increasing standard deviation (Figure 8).

}
a & A & 8 a 8

Figure 8. From top to bottom:A 400 x 100 image of noisy siep edges, bound-
ary fragments detected, and boundaries obtained using our bridging algorithm.
Panel intensities are 27 and 227, and the boundaries occur between two cells.
Odd-numbered panels are corrupted with Gaussian noise of standard deviation
8.0,16.0,32.0 and 64.0 units. Even-numbered panel boundaries are not corrupted.

The first real image shows a pair of scissors on a mouse pad (Figure 9).
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Figure 9. Left: boundaries extracted from 1*' difference magnitude surface of a

pair of scissors. Right: final boundaries obtained (r = 40). Junctions are marked
ansdh Ante
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The table below shows the performance obtained with a SPARC station FL
when processing Figure 9.

r(pixels) | time(s) | % reduction
20 5.6 69
25 6.7 70
30 8.0 70
39 8.4 70
40 10.0 70
45 10.6 70
20 110 70
55 12.9 70
60 14.3 70
695 15.7 70

Table 1: Recorded measurements from processing the scissors.

The reduction factor (Table 1, 3"¢ column) is: f = 1 — JLinalboundaries p, i,

recorded are for the bridging process to run, including the construction of the tw
graphs and I/O operations. For this particular image, r,p; = 25 is the optimu
radius. Radii r > r,p¢, produce the same boundaries as r = Topt: Topt depenc
strictly on the quality of the input. The graph (r,time) confirms our claim th:
the complexity of the approach is O(2nr).

For the above values of r, on average 83% of the joins were selected on t}
basis of a strong co-curvilinearity, 14% on the basis of proximity and 3% on tl
basis of the total length. The order in which co-curvilinearity and proximity we:
applied was not important.

The second experiment is a (768 x 576) picture of various objects (see Fig
ure 10). Final boundaries for this image (see Figure 10) were obtained usir
the radius r = 11. Out of 160, only 44 boundaries were retained, which gives
reduction factor of 72%. All 3-way junctions were successfully solved. 38% of tl
joins were based on co-curvilinearity, 10% on proximity, 51% on the total lengt
of the newly produced boundary, and only 1 join was ambiguous.
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Figure 10. Left: Input to our system: boundaries extracted from first differenc
magnitude surface of an image of a few objects. Right: final boundaries obtaine
(r = 11). Detected 1unctions and end-voints are marked with sauares
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Conclusion

We have presented an approach to gap bridging which constructs coherent bound-
aries in images using both perceptual groupings and image structure criteria. The
underlying characteristic of the approach is consistency with the initial image,
which makes it suitable for general-purpose computer vision systems. The authors
successfully used these boundaries for correspondence computation [14].
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