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§1 Abstract

This paper is a companion to [Hen93] which explores in depth the relationship between
transformational programming and intuitionistic proofs in a theory of operations and types. Here
we concentrate on discussing the extension of the theoretical development to algebraic data types
and illustrating the techniques with an example.

82 Introduction and background

We are concerned primarily with the task of uncovering the precise mathematical proofs which
underlie certain semi-formal arguments. In the area of program development the program
transformations [BuD77] are an excellent example of semi-formality, since, as is well known, the
calculus of transformations is not, in general, sound!. and it is capable of effecting significant shifts
in logical complexity by, what superficially appears to be, equational manipulation. In [Hen93] we
provided an interpretation of certain transformations over N as derivations within a theory of
operations and types (the theory EON of [Bee85]). The main results can be summarised as follows:

Let 7 range over the transformations 7. The interpretation [ _ ] maps P7into Der( EON) + {fail}
where Der( EOA) is the set of proof derivations in the theory EON.

Theorem 2.1 For every n € P, if [ & ]is not fail then the computational content of [ T ] is equal
(up to the intensional equality of the underlying theory of operations) to the final system of
equations of T.

In [Hen93] this theorem is stated more precisely via the system EON™ which captures the notion
of the computational content of a derivation exactly. As a corollary of this theorem we obtain our
correctness conditions.

Theorem 2.2 Let &t € PT. If [ & ] € Der( EON) then T is correct.

In §3 we discuss the extension of the analysis summarised above to a more ambitious class of
inductive data types: the positive algebraic types (of which N is a simple member) and then in §4
we illustrate the techniques we describe via examples.

1 Atransfmmaﬁoniscorrectwhmthcfuncﬁoncommtﬁdbymeilﬁﬁalope;raﬁonisequalmmcfuncﬁnn
computed by the final operation. Unrestricted use of the folding transformation may not preserve
correctness.



§3 Transformations over arbitrary algebraic types as proofs
§3.1 Generalising EONto TK

The algebraic types are those constructed by the disjoint union of cartesian products of type
variables, constants and recursion. We give the general case and some examples, which we use

later in §4. We utilise a notation similar to Miranda ['I‘urSS]2

tree o= Leaf num | Node tree tree
list o Nil | Cons nwm list

num - Zero | Succ num

T = DCyTy!...IDC, T,

where each T; =Ty ... Tjy,; and where T and each T;; are type variables.

The first stage is the generalisation of the theory 'EOJ\CGf [Bee85]. This is simply accomplished by
replacing the rules for N by rules which capture the least fixpoints of positive type opcrations3.
I'} z e B(E(AX.B)) I'EB(T) T
(E—intro) (=-elim)
'l ze E(AX.B) r'FE2AXB)CT
Intuitively, Z(AX.B) is the smallest type closed under the operation B. We also need to add rules
for comprehension types:

'l ze (x| p(xe2)) I' - o(xe2)
I' o(xe2) I'ze {x]| p(xe2)}

Small adjustments are also required to the rules governing definedness of the underlying partial
logic but these are not central in this context and we omit the details. The new theory 1s, in fact, the

theory 7K of, for example, [Hen92].

The algebraic types now are special cases formed by careful choice of the operation B. Taking
BX) =40¢ {(DCp} X II(To[T—X]) + ... + (DC,} X II(T, [T« X1)* we obtain the expected rules for
T as special cases of =—intro and E‘.—ehm including, in particular:

X0 € To, q’o(yo) = W(DCO .rg) eee Xp € Tm ‘Pn(yn) - 1.|I(l.:)(-.:;‘,l xn)

xe T yx)
where each x; = Xjg ... Xjm, and where ¥(y;) = y(io), ---» YOk, with the y;; distinct variables
among the x; such that, 1fyIJF =Xpq then T =T and 1fT =T then Yij = Xpg for some Yij-

As in [Hen93] we require a term assignment version of 7K which we denote TJCH Of significance
is the rule corresponding to Z-elim which is:
TYHf:B(T) QT
Yhirecf:EAXB)CST
where irec satisfies the equation: irec f x = f x (B (irec f) x). Otherwise the theory TK A follows the

pattern set by EoNA

(T-elim)

2 Miranda is a Trademark of Research Software Limited.
3 These significantly extend the algebraic types but are syntactically much easier to manage.
4 T1 denotes iterated cartesian product.



§3.2 Extending the translations

We now turn to the transformations and their interpretation within 7K. For the most part the
translation remains intact. There are two places where there are significant changes and we give
them here. They concern the transformation steps known as instantiation and serious fo!dings.

fp, px), g =e)lx « (DCyxp)] ... (fp,pkx),qg=e)lx « (DC,x,)] Gins)
— ~ — - — - - ins

fp,pxeT),qg=e
eg<e fx=deL eg<gd fp=eleg <= fx0]

(fld)
fp=e

The first rule is fairly simple. An instantiation generates a family of new equations, one for each
summand in the datatype T. We are letting p range over patterns and p (etc.) over sequences of
patterns. The second rule shows how the equation fp = e is converted to the equation
fp = eleg < f x0] where [ eg <= e ] indicates the replacement of a specified occurrence of ¢ by
e;. The auxiliary data shows that ey occurs as a subexpression of e, f x = d is the defining equation
for f and e is a substitution instance of d (via the substitution 0). Let B range over equations and
B over ensembles of equations, then we may write B =>; B for an instantiation and By =>g B, fora
fold when the rest of the data is understood. We can highlight the terminal ensemble of 7t by writing
n(B) and one equation among that ensemble by writing 7(p).

As before we must define a map [ _ ] € PT — Der(TX) + {fail} by recursion over the structure of
transformation trees. We will take f x = e, to be the eureka equation where f€ T — T. In what
follows @[ _ ] will always mean the formula Aye Dy = _)6. Then we can immediately set the
base case of the translation (when the transformation consists simply of the eureka definition) to
be: [fx =e,] =gt x € T | ¢le,]. For the main cases of interest let us suppose that we have a
transformation Tt = ny(B =>x B) where X is a prime transformation step.

Case X = I: Let z be the variables occuring in the patterns p, p and ¢ other than x. Let u be a
sequence of variables occuring in the sequence zx.

In the derivation fragment below ©g(ug) is the sequence ©(u) with a formula of the form C(x)
should it occur removed and if @ is a sequence of of formulae then @ = @ is given by: = Yis ¥
and @, ¢ = Yy is © = (¢ = V). Also, we say that a formula is standard if it has the form:
(Vz € T)(O(u) = ¢[e]) and where each formula in ©(u) if any are standard.

. (fp,pk), g=e)[x « (DC; x))]

rules.
6 @(x) will, as usual, distinguish x among the free variables of @.



Re yse i, 9o(uo), Yiy) <P[e[x<—DC- x;1)
e T; ‘P;(J',) - (Vz € T)(eo(uo) > ¢[8[x<—DC x;1])
xel I- (Vz € T)(eo(uo) = ¢le])

...... ze T,xe T,8w) | ole] ......

S [ 7o ]

We have, here, assumed that the open sequent corresponding to the equation being instantiated has
a particular form. This assumption is, of course, warranted but the proof must be omitted from this
short account. However, it is easy to see that if ©(u) is standard then ¥;(y;) will be too.

Case X =F:
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“Th I— (Vze T)B(u) = f-P[ell) : %
g }- O(u)&, ' 6(u)§0 = @leg] I I-_cp[ eg=w] I,w=eylw f o
1“ e tp[eo] Iw=eg - ¢le]

where the assumption (Vz € T)(8(u) = @[e;]) is chosen such that ey <¢, € <¢, €,” and '~ is the
context I" with the assumption (Vz e T)(8(u) = ¢[e;]) removed. The derivation above is then
completed, for each of the formulae comprising ©(u)&, as follows:

_l"_, ve S, D(w) |- (Vyge Sg)(dio(wg) => (P[;3])
T ves, (D(w)) - ®owe)8y T ve S, Ow)h ¢0(w0)90 — ¢lex00]
" Tve S, o) - ole]
rve Sk D(w) = ¢[e;]
I F (Y € S@W) = gles))

7 Note that this forces £p&1 = 6 and that no assumption need exist with this property. In this case the
translation denotes fail.



choosing the assumption (Vv € Sg)(@g(wg) = ¢[e3]) so that e <8y €3- As expected the context
(I~ ve S, ®(w)) "is the context I'", v € S, ®(w) with the assumption (Vvg € So)(Po(wp) =
@[e3]) removed. The process is stll incomplete but the task at hand (completing the derivation
above each component formula of ®y(wg)8y) is solved by the same strategy. This then calls into
question the termination of the entire process. In order to terminate we have to ensure that
eventually along each path of the process an assumption of the form (Vz € T)( ¢le,]) is selected.
We do this by showing, by transfinite induction, that the contexts from which the assumptions are
drawn become less complex. We begin by assigning a rank to standard formulae: if ©(u) is a
sequence of formulae {y(ip) ... £, (u,) then rank((Vz € T)(B(u) = ¢le])) = 1+max{rank(C(u;)) |
0 <i <v). Evidently rank is a map from such formulae into the ordinals below . We now extend
this to contexts: rank(z € T, I') = rank("), rank(x, ") = @ ank(x) rank(I") when x is a standard
formula. We now note that lim{rank(D) | T is a standard context} = ®® so induction up to @® will
suffice if we can be sure that the process reduces the rank at each stage. But this is straightforward:
the rank of the context I', from which our first assumption (Vz € T)(8(u) = ¢[e;]) is drawn, i1s
given by rank(l’) = @ ¥*(X0) 4 rank(I"") where g is (Vz € T)(8(u) = ¢[e;]). On the other hand
the rank of the context ', v € S, ®(w), from which the subsequent assumption (Vv € So)(Pg(w()
= @[e3]) is drawn, is given by rank(I" ", v € S, ©(w)) = rank(I" ") + rank(®(w)) so we must show
that rank(®(w)) <, o @ ¥*(X0) We know that rank(x) <, o rank(xp) where x; is (Vv e S)(D(w)
— o[e,]) because K € O(u)Eq, and B(u) occurs in Ky, hence @ ¥V < o 0 X0and similarly
rank(x,) <, rank(x;) for each x, € ®(w) hence rank(®(w)) <o & ***V and thus rank(®(w))
<,H® ‘"‘k(gﬁ) as required.

§3.3 Properties of the translation
With the extended translation in place we may prove analogous results to those announced in §2.

Theorem 3.3.1 If (B)r(B) € PT, and [ x ] € Der(TK) then ift: [ ] in TK then |- t = B.
Theorem 3.3.2 Let n € PT.If [ ® ] € Der(‘TX) then & is correct.

The proofs of these are not dissimilar to those given in [Hen93].

84 An illustrative example

We have chosen to illustrate the extended translation by taking an example transformation over a
data type of trees. Moreover, we have chosen the example because it involves a nested instantiation
which gives rise to standard formulae in the context which are not of the lowest rank. Thus in
translating the subsequent serious fold it is necessary to undertake a short® instance of the inductive
process described in §3.2. The transformation yields a linear operation from a (worst case)
quadratic one. The function we deal with with takes an arbitrary element of Tree and yields another
which has the same fringe of leaves but is left-linear. That is, it satisfies the specification:

(Vsq € tree)(3s € tree)(left-linear(sy) A eq-fringe(sq, 51))
with the predicates given by:

8 Very short - this example requires only one extra stage in the process which we have demonstrated may
require, in full generality, a finitely branching tree of stages in which each path in the tree is bounded by

induction to ©®!



left-linear(s) eq-fringe(so, 51)

left-linear(Leaf n) left-linear(Node (Leaf n) s) .}ringe(so) =;‘ringe(sl)
where:

fringe s = frgsNi

frg (Leatn) = Consnl

frge(Nodesgs)! = frgso(frg sy )
We begin with the initial operation:

rotate (Leaf n) = Leafn

rotate (Node sgs1) = join (rotate sg) (rotate s;)
where:

join (Leaf n) s = Node (Leafn) s

join (Node sg s1) s9 =  Node sg (join 51 52)

which may be derived in the term assignment system TK™ by induction over tree given the
function join and the properties that join preserves linearity and the fringes of its arguments.

We adopt the very simple eureka definition: rote s = rotate s and the transformation then proceeds:

rotate (Leaf n) = rote (Leaf n) Instantiate
Leaf n. Unfold
rote (Node (Leaf n) s) = rotate (Node (Leaf n) s) Instantiate
= join (rotate (Leaf n)) (rotate s) Unfold
= join (Leaf n) (rotate s1) Unfold
= join (Leaf n) (rote s1). Fold
rote (Node (Node sg s1) s9) = rotate (Node (Node sq s1) 52) Instantiate
= join (rotate (Node sg s1)) (rotate sy) Unfold

join (join (rotate sg) (rotate s1)) (rotate sy) Unfold
join (rotate sg) (join (rotate sy) (rotate s)) Law

= join (rotate sqg) (rotate (Node s; s57)) Fold
= rotate (Node sy (Node s1 57)) Fold
= rote (Node sg (Node s1 57)). Fold
yielding the final operation given by the system of equations:
rotate s = rote s
rote (Leaf n) = Leaf n
rote (Node (Leaf n) 5) = Node (Leaf n) (rote s)

rote (Node (Node sq 51) 59) rote (Node sy (Node s, 57))
If we call this transformation 7 then [ & ] is not fail and, indeed, [ & ] is reproduced as Figure 1.

§5 Conclusion and future work

In this paper we have extended the translation of transformations given in [Hen93] to those which
utilise general algebraic types. This considerably complicates the translation, in particular the



treatment of instantiations and folding. To show that the translation is well defined we had to
undertake a transfinite induction to the ordinal ®® which was entirely absent in the original case.

The most urgent area for future work concerns the classes of operations which are available within
the fine structure of these transformations. To obtain this fine structure we would organise the
transformations according to the number of instantiations which they utilise. In the numerical case
[Hen93] we were able to make a link between the Péter Hierarchy of k-recursions [Pét57] [Ros84]
and the class of transformations requiring k instantiations and then, via Tiat’s theorem [Tai61], we
were able to place a bound on the class of ordinal recursions accessible by the full calculus of
numerical transformations at ®® . In the current context things look more complicated but the
example we gave in §4 demonstrates a 2-recursion (over free) from a transformation which utilises
two instantiations. However, unhkc the numeric case, this initial operation is unary suggesting that
one might find a bound at ®® even for the transformations out of unary tree operations. The
situation for general algebraic types is even less clear at present.
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Leaf ny = Leaf n;
ny € num
Leaf n; = Rotate (Leaf ny) FIGURE 1
ny € num
Leaf n; € tree
3y € tree.y = Rotate(Leaf n;)
dx € treex = Rotate v
Node (Leaf ny) wy = Node (Leaf np) w,
np € num
Leaf ny € tree
W, € tree
Node (Leaf ny) w, € tree
Jy € tree.y = Node éLaaf ny) wy
w; = Rotate v
Jy € tree.y = Node (Leaf ny) (Rotate v)
3y € tree.y = Node (Leaf ny)(Rotate v)
ny, € num
V € tree
Rotate v € tree
Jy € tree.y = Join (Leaf ny) (Rotate v)
n) € nidm
Jy € tree.y = Join (Rotate (Leaf ny)) (Rotate v)
n, € num
Leaf n, € tree
V € lree
Jy € tree.y = Rotate (Node(Leaf ny) v)
[3y € tree.y = Rotate v] = [3y € tree.y = Rotate (Node (Leaf ny) v)]
Vs € tree.[[3y € tree.y = Rotate 5] = [3y € tree.y = Rotate (Node (Leaf ny) 5)]]
Vx € tree.[[3y € tree.y = Rotate x] = [3y € tree.y = Rotate (Node x x)]]
Xy € lree
X3 € ree
Node x; x3 € tree
[3y € tree.y = Rotate (Node x; x3)] = [3y € tree.y = Rotate (Node x; (Node x; x3))]
Vx € tree.[[3y € tree.y = Rotate x] = [3y € tree.y = Rotate (Node x; x)]]
€ [ree
[nyg tree.y = Rotate x3] = [3y € tree.y = Rotate (Node x; x3)]
dy € tree.y = Rotate x3
Jy € tree.y = Rotate (Node x; x3)
Jy € tree.y = Rotate (Node x; (Node x; x3))
W2 =W
wq € tree
dy € tree.y =wy
Wo = Rotate (NOdﬂ X1 (Node X2 x3))
Jy € tree.y = Rotate (Node x| (Node x; x3))
Jy € tree.y = Rotate (Node x; (Node x; x3))
Jy € tree.y = Join (Rotate x;) (Rotate(Node x; x3))
Jy € tree.y = Join (Rotate xy) bain (Rotate x) (Rotate x3))
Xy € lree
Rotate x; € tree
Xy € tree
Rotate x, € tree
Xq € lree
Rotate x5 € tree
Jy € tree.y = Join (Join (Rotate xy) (Rotate x))(Rotate x3)
Xy € tree
X, € tree
Jy € tree.y = Join (Rotate (Node x| x3)) (Rotate x3)
X € tree
X € [ree
Node X1 X € lree
X3 € lree
Jy € tree.y = Rotate node x; x;) x3)
[3y € tree.y = Rotate x3] = E;y € tree.y = Rotate (Node (Node x; x,) x3)]
Vs € tree.[[3y € tree.y = Rotate 5] = [3y€E tree.y = Rotate (Node (Node xq xp) 5)]]
Vx e tree.[Vs € tree.[[3y € tree.y = Rotate s] = [3y € tree.y = Rotate (Node x 5)]]]

z| € tree
Vx »15 tree.[[3y € tree.y = Rotate x] = [Jy € tree.y = Rotate (Node z; x)]]

zyE tree
[3y € tree.y = Rotatez;] = [3y € tree.y = Rotate (Node z; 2;)]
Jdy € tree.y = Rotate z;
Jy € tree.y = Rotate (Node z; z;)
Vx € tree.[3y € tree.y = Rotate x]




