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§1 Abstract

We provide an intensional semantics for certain elementary program transformations by describing
a translation from these transformations to the derivations of a simple theory of operations and types
and we show that this semantics is intensionally faithful. Our objective is to understand more
precisely the intensional structure of a class of semi-formal program derivations.
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§2 Introduction

This paper continues our study of the proof theory of certain elementary program derivations: those
obtained by the techniques of transformational programming (e.g. [BuD77] [Bird4] [Hen88]) from
functional programs. In our earlier work [Hen93] we concentrated exclusively on transformations
over the natural numbers. In this paper we wish to extend this work towards algebraic types in
general. These data-types are, in their full generality, significantly more problematic than the
almost pathologically simple special case of the natural numbers. In view of this we shall be
restricting ourselves, in this paper, to transformations from unary operations on binary trees. This
datatype appears to require us to s ntroduce all the difficulties necessary for dealing with the general
case: difficulties which were not at all apparent in [Hen93].

§2.1 General background
Transformational programming, like program derivation in a constructive type theory [Con86]

[Bacg9] (HaN87] [Hen89a] [Tho91], 1s a methodology in which programs are obtained by
reasoning from specifications. However, it is well known that the ‘calculus’ of transformations 1S
- unsound. Thus, strictly speaking, every transformation induces a correctness proof obligation.

Some attempts to characterise correct transformations have been undertaken, [Kot78] [Kot85] for
example, but these do not give much insight into the structure of transformations as putative proofs
of equivalence. What is less well known is that transformations can effect proof-theoretic
non-trivialities, for example, one can obtain programs whose termination proof requires I19%-
induction from programs whose termination proof requires only 2(1)- induction apparently by
equational manipulation! Furthermore, transformations are arguments couched in a language
conceptually very close to the programs themselves and are evidently logic-free. These
observations, combined in particular with similar examples of proof theoretic sleight of hand, go

‘some. way to explain why program transformation is such a success story of functional languages

and of software science in general.

~ " The overall objective of our research, of which this paper is one contribution, is to investigate the

proof theoretic structure of program transformations. The purpose is two-fold. Firstly, a proof

__theoretic semaniics provides a mechanism for guaranteeing the correctness of transformations and

such a mechanism _can be incorporated within a computer-aided program development
environment [San93]. Secondly, and much more importantly, such a semantics helps to uncover

the logical prongjqes—ggdeg_lying a regime of semi-formal reasoning. Understanding this, we hope,



will help us to bridge the formality gap between practical program development on the one hand
and distressingly complex formal proofs within some foundational theory on the other [Hen91].

§2.2 Organisation of the paper

The plan of the paper is as follows. In the next section we introduce a simple theory of operations
and types, EOB, into which we may €Xpress functional programs and transformations. §4 1s
devoted to the intensional semantics of transformations within £0B and the proof of the main
theorem which demonstrates that the computational content of the semantics of a transformation is
the computational content of the transformation itself, up to intensional equality. §5 provides a
simple but illustrative example of the translation. Finally, in §6, we make some concluding
remarks.

§3 Programs, transformations and the theory 0B
§3.1 The elementary theory of operations and trees

In [Hen93] we worked with EON of [Bee85], a theory of operations based on the logic of partial
terms.. In this context we shall require a modification of this. The theory £0B (Elementary theory
of Operations and Binary trees) can be obtained from EONsimply by replacing the introduction

rules and elimination rule for natural numbers with the following rules for binary trees”.

rl—IOEB I‘I——rleB

I'l-Leafe B 'l (Noderyt) € B
'} o(Leaf) T, 1y € B, rp€ B, ¢(1y), o(1r) - o(Node 1 1)
ILxe B} o)

There are other, minor, differences in our presentation: we Write x € B andfe B — B (etc.) whereas
B(x) and (Vx)(B(x) 2 B(f x)) would be more in the spirit of [Bee83]. Also, we present the logic as
a system of natural deduction in sequent form (whereas we have a Hilbert system in [Bee85]). We
also assume, as in [Bee85], that lambda abstraction is defined a la Curry. Finally, we let lower case
greek letters range Over :ndividual formulae and upper case greek letters over sequences of
formulae. Of special interest will be sequences composed of formulae each with exactly one free
variable. In this case ¥(z) will denote the sequence y(z1) ... Y ,(z,) etc.

The most important property of 0B in connection with the formalisation of functional programs
is the recursion theorem.

Theorem 3.1.1 There is a term R such that for any term f: RS LAVORfx=f(Rf)X). ®
We use & (suitably decorated with diacriticals) to range over Der(‘EOB), the derivations of EOB.

1 In partial term logic one writes ¢l for the atomic formula which asserts that the term ¢ denotes. Rules for
existential introduction and universal elimination are modified, by adding premises in an obvious way, 10O
ensure that the terms they exhibit actually denote (see [Bee85], for example, for more detail).

2 In fact one would more usefully add these to rules to EON and allow the trees to carry natural numbers at
the leaves. This we will assume in §5 but for the technical development it would simply complicate the
presentation without conceptual benefit.

3 These need not be closed derivations; so, for example, every sequent belongs to Der(‘EOB).



§3.2 Programs

Programs"’ are ensembles, f P =gef €, of recursion equarionss where fis an operation name, P is an
n x m-matrix of patterns with typical element p = P;; and typical row sequence p = P, when i € n,
j € m, whilst eis an m-ary sequence of terms with typical element e;. We let B range over ensembles
and P over recursion equations. We will write AB for conjunction of the equations comprising B.
Patterns are terms which are built up from Leaf, Node and variables by application. If x occurs 1n
a pattern, p, we may write p(x) (efc.). (e) denotes the set of variables occurring free in e (etc.). In
an equation f p = e we require ‘Ue) < Up).

An ensemble, B, is well-typed when there exists a derivation in the following type assignment
system with B wellformed as conclusion®. In what follows I is a context, a set of typings of the

form x E T (with each such x distinct) where T’ 1= B|T-T.
xET) el I‘I—elETg—-)Tl 'l eE Ty
(var) (leaf) (app)
F'xET '}-Leafe B ' (e1en)E T,
FI—-elET I‘I—ezET
—— (node) (eqn)
I'Node € B—»B—B ey =eET

FETo, ToFfPo~€ET) ---fETo. Tpa - fPp1=€n1ET]
|— fP =def € wellfarmed

(5ys)

We shall always assume that we are working with well-typed equations, consequently we shall
write ¢ E T to indicate that the expression (efc.) i assigned the type 7 in the appropriate well-typing.

We need to classify a particularly well behaved subset of the ensembles: those which exhaust their
domains of definitions without overlap. To do this we first require the following.

Let © € SUBST where 0 ::= {[x « el}*. Simultaneous substitution (with respect to all free
occurrences) is denoted 8 (erc.). We shall write eg Sg €; when e = €0 and ¢ < e; when ¢ <g €,
for some 0. We write 8p*0; for substitution concatenation.

Definition 3.2.1 Let f P =4qf € be an ensemble withfET > T.fP =ges € 15
(i) complete iff for every v € T there exists a j € m such that, for alli € n, v; SPij
(ii) non-overlapping iff for every v € T, if whenever there exist j, k € m such that,
forallien Vi SPij and V; ﬂpfk, thﬁl'lj = K.
(iii) a partition iff it 1s complete and non-overlapping.
We shall insist, from now on, that our ensembles are always partitions as this is a necessary (but
by no means sufficient) condition that they specify total operations of EOB.

4 Our notation is similar to that of Miranda (a trademark of Research Software Limited) [TuD85].

5 We use weak equality (that is 1 = 11 iff def tod v 114 D 19 =11) because we are allowing general recursion
here. In fact we will study termination preserving transformations from systems of equations known (O
specify total functions. Thus, we will shift to strong equality in the sequel when the context permits.

6 We have, unfortunately, three membership relations to contend with in this paper: € is the membership in
EOB, € is membership in the meta-language, and the relation, E, introduced here is (in due course) a

defined, partial membership in ‘EOB.



Proposition 3.2.2 For every ensemble B there is an EOB term w such that - AB[f « w] and
*
whenever B contains the equation f p =gef € We have w p — elf « wl.

Proof. This is a consequence of Theorem 3.1.1, standard techniques for translating recursion
equations 1nto combinatory algebra [TuD79] [Hen89b] [TuR91] and the fact that B 1is

non-overlapping. ®

Note that Proposition 3.2.2 is stated so that the witnessing term captures the intension of the
ensemble B. This is important as our results concern equalities preserved up to intension and it is
clear that EOB supports many Wwitnesses for the equations which comprise B which are,
themselves, not intensionally equal. We can also, when requiring the intension of the ensemble B,

atilise B itself as a system of rewrite rules and thus avoid having to deal explicitly with the precise
mechanism implicit in the proof above.

Corollary 3.2.3 Let R be a collection of ensembles. The theory EOB + R.is conservative over
EOB.

Proof. Indeed, Proposition 3.2.2 assures that EOB + R is just a definitional extension of EOB.
If we take 1 E T & gof t4 D t € T (a formula of EOB) we have:

Proposition 3.2.4 The type assignment system is derivable in EOB.

Proof. An easy induction on the structure of the derivations of the type assignment system. ®

§3.3 Term assignment for EOB

We now introduce a term assignment version, EOB 'm, of ‘EOB. This is given as a system of
natural deduction in sequent form and it incorporates a notion of information loss [Hen90] for
Harrop formulae [Har56] (denoted @y). The judgements of the system have the form: Y |—¢: @ or
Y |} @y where Y, the assignment context, is a set of variable assignments. A variable assignment
is either a Harrop formula or has the form x : @ for some variable x and non-Harrop formula ¢.
Since Y is a set we do not need rules of exchange or contraction. We will write I'y for the ZOB
context formed from Y by removing the variable prefixes. Similarly, given an EOBcontext 1, we
write Yp for the assignment contexi consisting of the Harrop formulae in I’ and variable
assignments x : ¢ for each non Harrop ¢ in I (with each such x distinct). We shall use QL (suitably
decorated) to range Over Der(ﬁOme). There is a evidently a bijection (up to renaming of
variables) between closed derivations in Der(‘EOB) and Der(EOB'm) which we will denote like
this: & > Wg, 1 > 8. We will write 7 § when  is assigned to the root sequent of the derivation Hs.
When space prevents the convenient display of derivation fragments in full we will sometimes
write typing judgements in a context, for example x € B, as x, the variable alone.

We shall not display the system £0B ™ in full as, for the most part, it can be viewed as an explicit
proof of soundness for an abstract realizability interpretation similar to that given for EOAin
[Bee85]. However, since this interpretation incorporates a notion of information loss we will
provide the rules governing the existential quantifier, the treatment of Harrop antecedents and the
induction principle since these are central to our project. In these rules a formula of the form @ (that
is: not subscripted with H) is assumed to be non-Harrop.



Yo ogxen) Y Hnri Yt @)oY, eulxey] F2:M
Y1t @)ooy 5 e Tf-fz[)’(-—fﬂ:_ﬂ
Yt (VO)(@g2 V) Y | oylxe1,]
. YTHFn Ig_: w_[x<—r2] :
Y }-t;: o(Leaf) Y, s € B, 52€ B, ¢(s1), 9(s2) 12 ¢(Node 51 52)
Y,x€ B |- trec (?\.;1.11.)(2.5132. lvlvg.tgl) x : q;(x)

(B-elim)’

In this last rule the term trec satisfies the equations:
treczgleaf=z
trec z g (Node sy sp) =g 5152 (treczg sy) (frecz g 59)

and is constructed as in the proof of Proposition 3.2.2.

F0Bis a non-extensional theory; that is to say 1ts primitive equality is the intensional equality of
the underlying theory of operations. We shall need a defined notion of extensional equality.

Definition 3.3.1

(i) rl"IOEBfl iff rl—IOEBAf1EBAfU=Il

@ Trko=srpenn o T x,x e Tobo=r*1= %% =T, f X1) ®
We need to use this to define the notion of an extensional specification. In this paper we are only
concerned with unary operations.

Definition 3.3.2 Lety bea specification of the form: (Vx € B)@y € B)py(x, y).
v is an extensional specification iff whenever Y |=19: W and Y -2,: ythen T'y -1 =g->p11-®

§3.4 Transformations

For the sequel we shall take K to be some, fixed, collection of ensembles. Let Eg¢ denote that subset
of all expressions which are composed solely of variables, data-constructors and operation names
occurring in R and closed under application. We write L for the collection of equations, e; = €3,
where e, ep € Eg and whose universal closures are consequences of EOB+ R. Note in particular
that the universal closures of the equations in R are in L.

Central to transformational programming is the ability to perform certain substitutions upon
recursion equations. First we need: eleg < e1], the replacement of specified occurrences of e in e
by ey. Such replacements are well-formed only when M ET) < Weg E T). The notion of a
specified occurrence of an expression only serves to label it as such, thus we refrain from labouring
this issue any further.

Next we need the relation e S e (e is @ subexpression of ep) which is simply the reflexive
transitive closure of (i) eg S ey e when ey < e (i) ep < €1 €2 when ey < €3.

We are now in a position to introduce transformations which are to be certain tree structures over
the programming notation. The rules for building these trees are as follows.

7 We will refer to the variable x as the induction variable and the variables s1 and 57 as the eigen variables
of the instance of this rule.



Definition 3.4.1 (Prime Trans.;f-:::rmati{ms)B

(i) (f p(x) = e)[x « Leai] (f p(x) = e)[x < Node s 1] —
— R - ins
fPxEB)=e
where s( and s are fresh variables. A useful, horizontal notation for this is:
fp(x)=e = (fpx) =e)lx « Leaf], (f p(x) = e)[x « Node s s51]
or, more generally: 3 =1 B (when the rest of the data is understood).
(i) ep<e ey=ere L  eySge fp=eley <= e0]
- —- — : (law)
fp=e

Horizontally: fp = e =1 fp = eleg < €30] or generally: B, = B, (when the other data is
understood).

(iii) eps e gq=de L e0<0849 fp = eleg < dO]

; (unf)
p=e

Horizontally: fp = e =y fp = eleg < d] or generally: B; =y By (when the other data is
understood).

(iv) epg < e d=gqe L eg<gd fp=eley<= g q9]

(fld)
fp=e

We need to distinguish between two classes of fold. Firstly, the benign folds when g and f are
distinct operation names. Secondly, serious folds when g and f are the same operation name. Our
horizontal notation will be B; =g B, for benign folds and B; =>f B, for serious folds, when, as
usual, the other data is understood.

We will refer to the root equation in each of these prime transformations as the subject of the
transformation. ®

We note that (unf) and (fId) are, in fact just special cases of (law). In fact they correspond to
distinctive transformational steps and we have therefore distinguished between them. Moreover,
our semantics treats serious instances of (fId), in particular, in a very different way to (law).

A transformation, T, is a tree in the system of rules given in Definition 3.4.1 from a single equation
fx = e, where f must be a fresh name for a unary operation over B. We will write (B) to indicate
the terminal ensemble, B, of =, w(B) to distinguish one equation, B, among B, n(p —»x B) to
indicate an X-transformation out of the terminal equation [ of n(B), and (B)w to indicate the root
equation of 7. We will write PZp for the set of all transformations.

We now briefly elaborate some basic results regarding transformations. A more comprehensive
treatment of this material is contained in [Hen93].

8 Note that these are not proof rules and the statements above the line are not premises. Our trees simply
provide a useful mechanism for organising the relationship between the equations and auxiliary data which
constitute transformations.



Lemma 3.4.2 If B =>x B then |- p =B (where Xe{U,B,L1I})e
I emma 3.4.3 For every (Bo)n(B1), if BoET then By E iy

Next we impose an order structure upon the prime transformation subscripts: I<U=B=L<F

Definition 3.4.4
(i) A transformation T is in canonical form iff whenever Bg =>x, --- =X, B, is a path in T,
Xy ... X, is an ascending chain in the subscript order.

(ii) (Bg)mp(B1) and (Co)mq(Cy) are equivalent iff Bo = Cpand By = B
(iii) (fx=e)n(B) 1s correct ifffx=e=g_,pBe*

Proposition 3.4.5 Every transformation T can be put into an equivalent canonical form. ®

We will assume from now on that, unless otherwise indicated, our transformations are in canonical
form.

84 Intensional semantics for transformations

In this section we provide a translation: [ _1e PIg — Der(EOB) + (fail}. When we write [ T ],
there is an implicit assumption that [ _ ] is not fail at . Such assumptions will be taken as read in
the sequel to simplify the presentation. For similar reasons of simplicity it is useful to stipulate at
the outset that the translation has the following property: If the translation denotes fail at T then it
does so at any transformation Ty which extends 1. Our translation, when it denotes an element of

Der(EOB) on a transformation 7, will guarantee that © 1S correct”.

§4.1 Properties of the translation

We need some preliminary notions. For the rest of this section @[ _ ] will always mean the formula
Qye B)(y= __)10. We characterise certain special formulae and contexts which arise in the image
of the translation.

Definition 4.1.1
(i) (@ >DO0is¢
b @, y)o0is¥OWDQ)
(i) (@) F(ole() iff Vele(x)]) = {x}.
(b) F(Vze B)(¥() D olelx,2)]) iff F (¥(2)) A V(Vz e B)(¥(z) D ¢lex, 2)]) = {x].

We shall call the subformula of the form @[e] the existential component.
(iii) (a) C(xe€ B).
(b) Clze B,¥Y(2)iff F(¥(@)).*
Fact 4.1.2 A context satisfying C may be written z € B, x € B, ¥(u) where u is empty when z 1§
empty and u is z, x otherwise. ®

Whenever we have need of Fact 4.1.2 we shall assume, without comment, the relationship between
the variable x and the sequences u and z, as described above.

We shall need to be able to measure the complexity of formulae which satisfy the predicate ¥.

——— — e —————— —= —

9 Hence, in particular, if we begin with equations which denote a total function the transformation will
preserve that property. We shall now assume that we undertake transformations only with such operations
and so we utilise strong equality in our analysis henceforth.

10 @(x) will, as usual, distinguish x among the free variables of .



Definition 4.1.3 We define a map rank from formulae to natural numbers as follows:

If F(Vz € B)(¥(z) D ¢le(x, 2)))) then rank((Vz € B)(¥(z) 5 ole(x, 2)) =

1+max{rank(yy(z;)) | i € n} where ¥(z) is the sequence of formulae yo(zg) --- V,1(zp-1)- ®

We note that rank(¢) = rank(90) for any substitution © and will make use of this fact without
further comment.

There is a constraint that we must impose upon the translation: it must satisfy the following lemma.
We shall. then, construct the translation and prove this lemma by simultaneous induction over the
structure of transformations.

Lemma 4.1.4 (Coordination Lemma)

Let 7(B) be a transformation. There exists a unique, one-one correspondence between the open
sequents, T' |- ¢legl, of [ ™ ] and the equations, fp =e, in B such that C(I'), Up) = V)
and e <g eq for some 6. F urthermore, if T is free of serious folds then O is the identity. ®

This can be extended to establish an injection, 1, from the equations in a transformation 7t into the
sequents of the derivation [ ]. We fix a canonical inverse for 1 by setting 11(s) = B where 1(B) =
spand s ... Sq ... Sy 1s the path in the derivation [ 7 ] from 5 to the root sequent s, and there is no
sequent 51, including s itself, such that s ... §1 ... 50 -.- Sy (51 # Sg) wWith §7 in the range of 1.

8§4.2 Translating transformations

Definition 4.2.1 (Intensional semantics)

We define a function [ _ ] € Plg — Der(EOB) + {fail} by induction over the structure of
transformations and we simultaneously prove Lemma 4.1.4. In the derivation fragments which
follow we shall often collapse several steps into one (iterated eliminations of implication or the
universal quantifier for example), we omit the occasional minor premise (in substitutions and
elimination of implication in particular) and we omit altogether certain trivial steps (such as certain
operations on the context like weakenings).

Base Case: The transformation T consists solely of the eureka equation fx = e,. We set [ T ] =gef
x € B | ¢le,]. It is immediate that the corresponding base case of Lemma 4.1.4 is established. In
particular note that the eureka equation is a transformation free of serious folds and the substitution
required to mediate between the equation and the sequent 1s indeed the identity.

For the remaining cases we can assume that T 1s no(B; =>x B) for some X and equation [3; (say
fp = e) which is the subject of the prime transformation X. Ex hypothesi (Lemma 4.1.4) we have
an unsupported sequent I' |- ¢[e;] (for some I" and @) in [ g ] corresponding to B; in my which
satisfies C(I), V(p) = V(I) and e <¢ e, for some substitution C.

Ad (unf): :
ep< e gq=de L e0<08 49 fp =eleyg < dO]
...... fp=
e o -
—def



- Vgg=d
I'bgg0=do [ b gleylleg & d6)
T - (p[e;] ......

-[no]__

(ex hypothesi)

Note that g g0 is e since eg <g & 4.

The corresponding case of Lemma 4.1.4 follows easily: there is a unique open sequent to place in
correspondence with the new equation in 7. The context of this sequent is the context of the open
sequent from which this derivation fragment extends so C(I') is immediate. Since p is not changed
we also have Wp) = NI immediately. Since the transformation is in canonical form and the
prime transformation we are considering is an unfold it follows that Ty is a transformation free of
serious folds. Hence we may conclude that { is the identity and e; = e. Hence @[eq][eg <= dB] =
plelleg < dO] = @leleg <= dB]] as required.

Cases (law, benign fld): Similarly.

Case (ins): Since the transformation is in canonical form and the prime transformation we are
considering is an instantiation it follows that g is free of serious folds and hence C is the identity
and e, = e. We may write the equation as f p(z, x) = e where x is the variable we are instantiating.
The the corresponding sequent has the form: z € B,x € B, ¥(u) |- ole(z, x)] ex hypothesi Lemma
4.1.4 and by Fact 4.1.2.

(f p(z, x) = e)[x « Leaf] (f p(z, x) = e)[x « Node ¢ 1]

...... folg.x)=¢ ......

=def
ze B, ¥Y(2) |- ¢le(z, Leal)] ze B, ty€ B, e B, ¥(2), x(t7), x(12) - o¢le(z, Node 1 17)]

- x(Leaf) t1€ B, th€ B, k(t}), K(tp) - x(Node 1, 1)

xe B} (Vze B)(¥(z) D ¢le(z, x)])
VY and O - elims, weakening)
...... ze B,xe B, ¥(u) - ¢le(z, x)]

(B-elim)

[ 7o ]

where k(x) is the formula (Vz € B)(Y(z) O ole(z, x)]).

We place the leftmost (rightmost) open sequent in correspondence with the leftmost (rightmost)
equation in the fragments above. This is clearly the only correspondence which satisfies the
variable condition. This correspondence requires no new substitutions on the component
expressions and since the substitution was, ex hypothesi, the identity it remains so in both cases
here. This is important because the extended transformation is free of serious folds. Finally, we



note that C(z € B, ¥(z))and C(z € B, t; € B, 1p€ B, ¥(2), K(t1), (1)) follow ex hypothesi Lemma
4.1.4 from C(z € B, x € B, ¥(u)). We have, then, verified Lemma 4.1.4 for this case.

Case (serious fld): Let { be the substitution ex hypothesi Lemma 4.1.4 such that e <¢ eywhere the
sequent I |- @[eq] is in correspondence with the equation f p = e on which the fold takes place.

eg < e d=gqe L eg<gd fp=-eley = g q9]

...... FOBE ...
T i
=def
‘ '} (vVze B)-(‘P(z) = 4;[62(2, x)])
MWy Tk ¥k o olexEo, 0] b olejfep=wll T,w=eobw=e
3 I I oleo) I, w=ep |- ole]
...... FI—::p[el]
(ex hypothesi)
[ 7o ]

where the assumption (Vz € B)(Y(z) © ¢[es(z, x)]) 1s chosen such that e 550 ) 5';51 e,“ and I~
s the context " with this assumption removed. This derivation is then completed, for each of the
formulae comprising ¥ (z&), as follows.

If (Vv € B)(®(¥) D @les(v, zEy)]) occurs in I'", then we have:

I | (Vv e B)Y(®() D gles(v, zE)))

Otherwise:

' I, ve B, ®v) | (Ywe B)E(W) D ¢leg(w, y)])
T~ ve B, ®») | Ew) ', ve B, &) | E(wl) D ¢le3(v, z&))]
I~ ve B, ®%) |- olez(v, z&)]
', ve B} ®() > ¢les(v, 2&)]
| (V v € B)(®(v) D ¢les(v, z5p)])

choosing the assumption (Vw € B)(E(w) D ¢les(w, y)]) so that e3 <t é4. Similarly, the context
(', ve B, ®(v)) is the context "'~ v e B, ®(v) with the assumption:

— — ————— o

11 Note that this forces Eg * &1 = 6 and that no assumption need exist with this property. In this case the
translation denotes fail.

10



(Vw € B)(E(w) D 9leg(w, y)]) removed. The process is still incomplete but the task at hand
(completing the derivation above each component formula of =Z(wl) is solved by the same strategy.

It remains to verify the corresponding case of Lemma 4.1.4. Naturally the single new equation
introduced in the passage from T to T 1S placed in correspondence with the single new sequent
introduced in the passage from [ g ] to [ 7 ]. The substitution we evidently require is:
C*[wegqol.®

Fact 4.2.2 For each T, the final sequent of [ & ] is extensional. ®

We must ensure that Definition 4.2.1 is well-defined, in particular that the iterative process

required in the last case terminates. We begin by characterising the non-trivial assumptions which
are created by instantiations.

Proposition 4.2.3 Recall the derivation fragment introduced by the translation in the case for
instantiations:

ze B, ¥Y() | ¢le(z, Leaf)] ze B, t€ B, e B, ¥(2), k(ty), x(1p) I @le(z, Node t, 1p)]

- x(Leaf) t, € B, ty€ B, (1), x(1p) |- x(Node 1, 13)

x € B} (Vze B)(¥(z) D ¢le(z, x)])
...... ze B, xe B, ¥(u) |- ¢le(z, x)]

[ o ]

(i) The sequence of formulae ¥(z), k(11), K(t») has length rank(x(x))+1.
(i) If Yo, V1 and Y, are any three formulae drawn from ¥ (z), K(t1), x(tp) with
rank(yq) = rank(yy) = rank(y2) then \y; = j, with i # ], for some i, j € 3.

Proof. By induction on the structure of the transformation. We note that (ii) states that there are,
at most, two formulae at any rank 1n the sequence ¥ (z), k(t1), k(t,). Base case: If the sequences
z € B and W(u) are empty then we create a list of assumptions 7; € B, 1 € B, K(ty), ¥(p) where
both k(z1)and k(7o) have rank 1. Furthermore, ¥(#), ¥(#p) has length 2 as required for (i). (i)
follows immediately. Induction case: By Fact 4.1.2 the sequence u is z, x. Ad (i): We may assume
ex hypothesi that '¥'(z, x) has length n+1 where the maximum rank of a formula in ¥(z, x) is n. It 1s
then clear that ¥(z), x(#1), ¥(#2) has length n+2. Ad (ii): We may also assume ex hypothesi that
¥(z, x) satisfies condition (ii). But then so must ¥(z) which has fewer members. Since rank(x(x))
> for any Wy occurring in W(z) we may conclude that condition (i) holds for ¥(z), (1), K(zy) as
required. ®

Corollary 4.2.4 If (Vze B)(Y(z) © ¢le(z, x)]) has rank n then ¥(z) is a sequence of formulae of
length n-1 satisfying condition (ii) of Proposition 4.2.3.

Proof. Consider the list of assumptions in which this formula first appears. It must have the form
ze B,xe B,ye B,¥(2),(Vz € B)(¥(z) o ¢le(z, x)]), (Vz € B)(¥(z) o o¢le(z, y)]). By Proposition
4.2.3(i) the length of the sequence ¥(2), (Vz e B)(¥Y(z) © ole(z, x)]), (Vz € B)(¥(z) © o¢le(z, y)])
is n+1. Thus the length of ¥(z) must be n-1. Since (Vz € B)(¥(z) © ¢le(z, x)]) has rank n, the
formulae ¥(z) comprise not more than 2 formulae at any rank m < n by Proposition 4.2.3(ii). ®

We now extend the notion of rank to contexts.
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Definition 4.2.5

(i) rank() = 0
(ii) rank(ze B,I) = rank(I)
(ii) rank(x, 1) = grank(x) 4 rank(I") where F(x)

Proposition 4.2.6 Definition 4.2.1 is well-defined.

Proof. We note that rank, extended to contexts, is a map into the ordinals below ®. We may, then,
proceed by induction to ®. In the rest of the proof we will refer to the sequents occurring in the
derivation fragments for the case of serious folding given in Definition 4.2.1. It is sufficient to
demonstrate that the process outlined in that case reduces the rank of the context from which the
assumptions are drawn at each stage. The rank of the context I, from which our first assumption
(Vz € B)(¥(z) © ¢les(z, x)]) is drawn, is given by rank(') = 37 ank(xq) rank(I' ") where K is
(Vz e B)(¥(z) © ¢[er(z, x)]). On the other hand the rank of the context I' ~, v € B, ®(v), from
which the subsequent assumption (Vw € B)(Z(w) O ¢les(w, y)]) is drawn, is given by
rank(' ", v € S, ®(v)) = rank(I"") + rank(®(v)) so we must show that rank(®(v)) < 3" ank(x0) Wwe
know that rank(xy) < rank(xp) where K 1s (Vv € B)(®P(v) D ¢lez(v, y)]) because K € ¥(z&(), and
¥(z) occurs in K, hence 3rank(xy) < 3rank(X0)and similarly rank(x,) < rank(x) for each x; € D(v)
hence rank(®(v)) < 3" ank(x1) by Proposition 4.2.3, its corollary and the fact that:

31 523" 4 ...+ 30). Thus rank(®(w)) < 37¥"X0) a5 required.

In an initial equation of the form f x = e, we know that x (and no other variable) can occur free in

e,. Hence we will introduce no ambiguity if we write e,(e) for e [x < e].

Lemma 4.2.7 Suppose that (f x = e,)T is a transformation consisting solely of instantiations'?.

Each equation in T has the form f p(z) = e,(p(z)) for some pattern p(z).

Proof. By induction on the structure of . Base Case: T is the equation f x = e, and evidently
e, = e,[x « x] as required. Induction Case: T has the form mo(B; =1 Bio» Bi1)- Ex hypothesi B; has
the form £ p(z, n) = e,(p(z, n)). By the definition of the prime transformation of instantiation [3;o and
B;; have the forms f p(z, Leaf) = e,(p(z, Leaf)) and fp(z, Node 1y ;) = e, (p(z, Node ¢ t1))as
required. ®

Corollary 4.2.8 Suppose that (f x = e,)R is an i-transformation. Each sequent of [ ® ] which lies in
the range of \ has the form:z€ B,y € B, Y(u) - ole,(p(z, y))].

Proof. This follows immediately from Lemma 4.2.7, Lemma 4.1.4 and Fact4.1.2. ¢

Lemma 4.2.9 Consider a transformation (f x = e,)% and an arbitrary sequent of [ & ] in the range
of 1 (which by Fact 4.1.2, must have the form z € B,y e B,¥Y(u) |- ¢le(z, y)]).
Let y(u) be a member of ¥(u) and s be the conclusion sequent of the instance of B-elimin [t ] at
which \y(u) is discharged:.

(i) (u) has the form (Vv € B)(E(v) D ole,(p(v, u)l).

(ii) s has the form n € B |- (Yv € B)(E(v) D ¢le,(p(v, n))).

Proof. Inspection of Definition 4.2.1 is sufficient to demonstrate that these formulae are only
introduced via an instance of B-elim. The variable u must be one of the two eigen variables of the
instance of B-elim at which y(u) is discharged. Let rls) = B. Suppose, by Corollary 4.2.8, that the

12 We will refer to such transformations as i-transformations in the sequel.
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sequent 1(B) has the form: ve B, n € B. Z(v) |- ole,(p(v, n))]. Thus s has the form:

ne Bl (WVve B)(E(v) D ole,(p(v, n))]) as required for (ii). Both assumptions introduced by this
rule instance have the form: (Vv € B)(E(v) D ole,(p(v, n))]) withn=u in one case, verifying (i). ®
For convenience it is useful at this point to set some notation for the next few results. In what
follows (fx=e,)mis an i-transformation. By Corollary 4.2.8 each open sequent of [ ] has the form
ze B,ye B, ¥Y(u) - ole,(p(z, y))]. For each such open sequent let #(z, y, w) be a term such that:
ze B,ye B,w:¥Y(u) |- tz,y,w): ole,(p(z,y))] in EOB™. This uniquely determines an EOB™
derivation, py,) with conclusion sequent: X € B | fo x : ¢le,] for some term fo. ®

Definition 4.2.10 Given a contextz € B, u : ¥(2) occurring in Wiz, We define the sequence Sy
to be S\Pl(z Y Sy (z)) and each SW;(Z ) to be h; z; where h; is chosen such that the conclusion
sequent of that instance of B-elim in [ & ] at which y;(z;) is discharged corresponds in the EOB™
derivation Wn) to the sequent with assigned term h; n form some 7. Furthermore, we define the
substitution e(u:\}t(z)) =def [u « S‘P(z)]* ®

Fact 4.2.11 ue(u:\p(z)) = S\P(z). ®

Proposition 4.2.12 fq converts 1o the system of equations corresponding to the open sequents of
[ 7t ] with typical component f p(z,y) = 1z, Y, Sy corresponding to typical open sequent:
ze B,y e B, ¥(u) |- ¢le,(pz, y)l.

Proof. By induction on the structure of the i-transformation (f x = e,)T.

Base Case: The transformation is the eurcka equation f X = €,. The derivation [ & ] is, simply the
sequent x € B - ¢[e,]. Let ¢ be a term such thatxe B | tx: ¢[e,] In EO0B™. Since this single
open sequent is itself the conclusion sequent in [ 7 ] the uniquely determined term f is ¢. This,
being the single open sequent in [ 7 ], establishes the single equation fo x = 7 x (there being no
substitutions as the sequence W(#) is, in this case, empty) and the result follows immediately.
Induction Case: T has the form: mo(B; =>1 Bio, Pi1)- By Lemma 4.2.7, B; has the form f p(z, y) =
e,(p(z, y)) for some pattern p(z, y) and, by Definition 3.4.1 and Lemma 4.2.7, if the variable y is
instantiated in the final step the equations Bjo and B;; will have the form: f p(z, Leaf) =
e,(p(z, Leaf)) and f p(z, Node sq 51) = e,(p(z, Node sq 51)). The open sequent 1(B;) in [ mp ] has, by
Corollary 4.2.8, the form: z€ B,y € B, ¥(z, y) |- ¢lep(z, ¥))] and so, by Definition 4.2.1, the
open sequents u(B;p) and 1(B;;) will have the form ze B, ¥(z) I ole(p(z, Leaf))] and
z, 50, 51 € B, ¥(s0), k(s1), ¥ I olep(z, Node sy sp))] where x(u) is the formula:
(Vz € B)(¥(z) D ¢le,(p(z, u))]). Let us suppose that the terms assigned to the open sequents of [ 7t ]
include, in particular, terms 1 (z, wyand 1N(SQ, 515 25 v(,V1,W) such that:

ze B.w:¥@ | 1.(z, w) : 9le(p(z, Leal))] and:

z, 50, 51 € B, vp 1 X(sp), V1 * K(sq), w : ¥(z) - tN(SQ, 515 2, VO, V1 w) : ¢le(p(z, Node s 51))].

So in Yy ) the term, fo. assigned to the root sequent 1S uniquely determined and the term assigned
to the sequent 1(f;) is calculated by contemplating the appropriate derivation fragment given in
Definition 4.2.1:
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z,w: V(@) | 1 olep(z, L))
- Azw.r : x(Leaf) 5o, 51 € B, v : K(sg), vy : x(s1) - Azw.ty - X(Node s 51)

z, 50, 51, W : P(2), vg : K(50), v1 : K(51) - 1N : @le(p(z, N 59 51))]

y € B |- trec (\zwt) (Asgs1vgvizw-tN) ¥ : (V2)(¥(2) © ¢le,(p(z, ¥))]
...... z,y€ B,w:¥(u) |- trec (Azw.1;) (Asg slv(}vlz;.tN) yzw: e (p(z, y)] e

Hmp)
where w is the sequence of variables w with w, if w : y(y) occurs in Y(u), removed.

Ex hypothesi we may assume that f converts to that system of equations corresponding to the open
sequents of [ mp ] and were we have, in particular, that: fo p(z, y) converts to

trec (Azw.1) (Asg $1VoV12W-IN) Z Sy (). But this may be specialised by further conversions, writing
h for the term trec Ozw.1) (As s1vgv12w.IN), as follows: fo p(z, Leaf) = h Leaf z Sy =
(AZWJL) 20 S_ql(z) - IL(Z, S\p(z)) andfl p(z, Node SO Sl) =(h (Node SO 31) Z S\IJ(Z)) -

(Asg s1vov1ZW.-IN) S0 51 (A sg) (hsy) z Sw(z) = IN(S0: 515 2, (7 50), (hs1), Sw(z) =

INGSO, 51> 20 Sw(2), x(s0), x(s1y)) and these are precisely the two new equations required to
correspond to the two new open sequents which result in extending the derivation from [ g ] to

[m]. e

Our next result, links the intermediate, local, recursions (the operations like those of the form 4 in
the proof above) to the final, global, recursion f.

Corollary 4.2.13 Ifye B - hy: (V2)(¥(z) D ¢le(p(z, ¥))] is the conclusion sequent of an
instance of B-elim in |y 1 thenfop(z,y) =hyz Sy(z)

Proof. There are two cases to consider. When z is empty the conclusion sequent in question is:
x€ B |- fox: ¢le,(x)] and the result is immediate. When z is non-empty consider the derivation
fragment in Py corresponding to the instance of B-elim in question:

ye B hy: (V2)(¥(2) D 9le,(p(z, y))]
...... z,ye B,w: ¥z y) F hyzw: 9le,(p(, )]

King]

Consider the derivation pz,) With its open sequent z, y € B.w:¥z yF hyzw: olep(z, )]
By Proposition 4.2.12 we have the equation fy p(z, y) =h y 2 WO (30 \p(z.y)) and this is &y 2 WO 55p(2))
since y does not occur free in w. Hence, by Fact 4.2.11,fop(z, y) =hyz qu(z) as required. ®

Lemma 4.2.14 Suppose that (f x = e,)® is an i-transformation. Consider any instantiation in 7. If
the conclusion sequent of the instance of B-elim in [ x| which corresponds to this instantiation is

ye Bl hy: (V2)(¥(z) D ¢lep(z, )] then:
h Leaf = Azw.1 (z, w) =
h (Node sq 51) = Azw.iN(2, S0, 515 W, S"‘(Su)’ 3“(31))
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for terms 7; and #p such that:

fO P(Z, L) - IL(Z, S\P(z))
fop@ N 50 51) = INZ, 50, 515 Sy(z) Slc(so)' SK(Sl))
Proof. Consider the following fragment corresponding to an instantiation in My x J.

2w ¥ F 1 :ole,p@ L) z,50 51, w: ¥(2), vo: K(sp), v1 : K(S1) -t ole,(p(z, N 50 51))]
- Azw.1y : k(Leaf) : 50 sl-E_B,_N), vy k(s1) |- Azw.ty : k(Node s s1)

y e Bl hy: (VO)(¥(@) > 0lep(, y);]) -

...... z,)-we é,_w mhy;;:-(p[e;@(z,y))]

E——

Himg)

The equations then follow by inspection and the definition of trec. That the terms #_and 7y satisfy
their equations follows by Proposition 4.2.12.

Proposition 4.2.15 Let © be an arbitrary transformation. If the following derivation fragmeml J
occurs in a subderivation of Wiy} which corresponds to a serious fold in T then (r z& O r: Ay

= fo Pz, ¥).

- . r.r: &(_;, Whr:(vVze -B)(‘I‘(z) > ¢le,(p(z, )]
r- A Ff: W(E) r.r:A(y,y) | r:¥E) o ole,(p(zg, )]
r.r: Ay, y) | rz&f: ole,(p(zg, )]

Proof. We proceed by induction on the structure of such derivations.
Case z is empty. The the fragment has the simplified form:

r,r:A(y,y) - r:ole, ()]

and re(,,, - A(Y,Y)) = S(p[e r(y)] = fg Yy as I'&(pﬁl'ﬁd.
Induction Case: The fragment has the form:

' r.r:A(y,y) | r: (Vze B)(¥(z) D ¢lepz, y)))
r:AQ) Hf W) r.r: A,y rPE8) 2 9le(p@E, )]

r.r: A, y) | rz& f: ole,(p(zS, )]

We note that (r z& POer:amy) = (Sa(y) 28 )0 - A(y)) and 35@) is h y for some suitable & (see
Definition 4.2.10).Thus we have to show that zy z€ O . Ay =Jo p(z€, y). Now by Corollary

13 We have omitted the variable assignments for clarity.
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4.2.13 we know that h y Z Sy = fo p(z, y) so h y z& S\P(zg) = fo p(z&, y) since this is just a
substitution instance. It remains to show that fO(, . A(y)) = Sw(z¢)- This follows by induction on the
length of fif we can show that . Ay) = S\p(zE,) holds for an arbitrary fin fand the corresponding
W(zE) in ¥(zE). Note that Iy ;&) = h z& for some suitable Ay, SO it remains to show that O . A(y))
= hy zE. There are two cases to consider.

Case & is trivial on z. The derivation has the form:

& ﬁ(_v)- - r (Vv -e é)(&’(l’) :; (p[e,(p(i;, 2)D)

and rB(,._ AZ) = 7'9(,.--_3(2)) - 35(2) = hy z, as rcquircd.
Case otherwise. The derivation has the form:

= — ﬂ -

_ _ r.u: AQy), ®0) |- u: (Yw e B)EW) D 9le,(g(w, )
(r,u: AQy), () "+ g : EWY) : .r, u: Ay), @) - uw : Ewl) D 9le (p(v, 28))]
e rou: AG), (b(-v) |— 11 wlg_g-: q:-[e;(p(v, :::F,))]
-2 AG) | A wl g : B() D 9le p(, )]

r Ay) Fovuuwlg: (Vv e BY(®) D ole(p(v, 25)))
Ex hypothesi we may conclude that (u wC 8)0(A(y), ®(»)) = fop(v, z&) but then consider the fragment:

v.u: 00 | 1 ole(pv, L))] v, 50,51, %:P(¥),vp: K(sp), V1 : K(51) - 1 : @le,(p(v, N 50 51)))
- Avu.z : x(Leaf) 50, §1 € B, v : X(sg), v1 : K(51) - Avu.zy : x(Node sq 51)
ye BE by z: (V9)(@0) D 9leyp(v, D
v,y € B.u:®w) | hyzvu:olelp,2))]

Hinp)
where k(x) = (V»)(@(v) D ¢le(p(v, z))]). We proceed by cases on the substitution &.
Case & = [z « Leaf]: By Proposition 4.2.12 we know that fo p(v, z&) = 1.(v, Sa(y)) and thus
(u wC 8)0(aAy), @) = 1L Sa(y))- Hence vty = (vuu wi g)Bx(y) and the result follows by

Lemma 4.2.14.
Case & = [z « Node py pil: Again, by Proposition 4.2.12 we know that fop(v,z8) =

NP0 P1 ¥ S¥@, x(s0), x(s1y)) and thus & wE 88, o)) = NP P1o ¥ 3@, x(s0), x(s1))
Hence Avu.ty = (Avu.u w g)0a(y) and the result follows by Lemma 4.2.14. ¢

Definition 4.2.16 Let & € Der(EOB) where every open sequent has the form I - ole]. We
construct the derivation Close(d) € Der(EOB) from d by treating each of its open sequents as

follows:
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(mem—l)
el
(refl)
F'le=e
- (3-intro)
...... rolel ...
)

The ellipsis can be filled in by induction over the structure of e via:

(@ss) @ ———— -
'xeB 'Nodee BB B 'l Leafe B

FI—EOE Tg"*Tl Fl—ege To
'egere Ty F'—feT

Regarding (con): In EOB + R an operation name fis a constant of fixed type. ®

Fact 4.2.17 Let e Der(EOB). If T’ |- o[e] is among the open sequents of & then the corresponding
sequent of W cse(8) € Der( EOB™) is Yr |- e : ¢le]. Moreover, if u : y(z) occurs in Y then u is not
freeine.®

Theorem 4.2.18 For every n(B) € PIg(w), if t: Close(I & 1) then |-t =B.

Proof. We proceed by induction on the length of the transformation 7. We will, in each case, utilise
the same notation for the data as is used in the corresponding case of Definition 4.2.1.

Base Case: [  ]is the single open sequent x € B |- ole,]. The root sequent of the derivation
M crose([ 7 1) 155 DY Fact 4.2.17, x€ B |- e, : ¢le,] and this evidently yields the term Ax.e, which is
equal to f x = e, as required.

(con)

For the remaining cases we may assume that the transformation has the form: T = B)roB; =x B)
for some X and equation ;. We can do some preliminary work for several of these cases. Ex
hypothesi, we may assume that if 7 : Close([ mg(Bg) 1) then |- ¢ = Bg. Pictorially we have, in EOB,
the following situation:

and, corresponding to this, 1n EOB™

17



Bo:Hing]

Without loss of generality we may write 7 as tolx « e]. Now each of the following cases will extend
the sequent I' |- @[e] and then close the derivation so formed. As a result the term assigned to this
sequent in E£0B T2 will be some e and thus we will have:

tolx < ep] : Close([ro(B; =>x B))). If we suppose that I” |- = e then, since intensional equality 1s
a congruence, I' |- zolx « €] = fo[x «— gl which is just T |- Bg = folx « ¢gl. We require:

' |- B =[x « ¢g] and this will follow from I |- By = B. But these ensembles are identical up to
the one equation B; of By. If the transformation out of P; is an unfold, a benign fold, a law
application or an instantiation then we are done (by Lemma 3.4.2). So in each of those cases it
simply remains to demonstrate that I - e = ep.

Ad (unf): We must consider the derivation Close([ © ]) whose operative component is:

———

'+ Vigg=4d)
'l gq9=;iﬂ I' | oleq]lleg <= db]
e F - ole] ... ...
[ 7o ]
In E0B ™ we will have:
Yrk Vgg=4ad
Yrt g¢9=db Y |- ejleg &= dO] : ¢lelleg < do)]

...... Yr | eileg <= dO]: ole]l ... ...

Hmp ]
and we have by the previous analysis to show that ey = e;[eg < d6] but that is immediate from the
data.

Ad (law): Similarly.
Ad (benign fld): Similarly.
Ad (ins): We must consider the derivation Close([ & 1); pictorially:
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ze B,Y(u) I‘- €(L)=B(L) z€ B, e B, Ih€E€ B, ¥Y{u) , K(Il), l((fz) |— E(N 5] f2)= B(N 8] 1’2)

ze B,¥Y(u)" - (p[e(Le.af)] ze B, 1y E_B, the B, ¥(u), K(a), K(tr) = @le(Node 1 15 )]

- x(Leaf) 3] e- B, the B,-r:(:l), K(1H) - x(Node 1, 17)
xe B} (Vze B)(¥(u) D ¢le(x)])
...... ze B,xe B, ¥Y(u) |- ¢le(x)]

(%]

In E0B™ we have (omitting some variable assignments in contexts for layout reasons):

v: (@) | ez L) : ¢le(z, L)] v:¥(2), wy:K(t), wa:K(p) ez, N1 1) ¢ ole(z, N t1 1p)]
- Azv.e(z, L) : x(Leaf) o wy : K(27), wa ! I((t-z) - ?sz.e-(z, N t; 15) : x(Node 1, 1)
x € B |- trec (Azv.e(z, L)) (.?ulrgwlw;zv.e(z, N ;1 7)) x:(Vz e B)(‘-}‘(z) > @le(z, x)])

...... e 2 v P | trec Ozv.e( L) Qiyigwiwazv.e@ Nt ) x2v: @le@ 0] .. ...

[ T ]

Our prior analysis requires us to demonstrate that:

trec (\zv.e(z, Leaf)) (Atjrowywozv.e(z, Node 11 1)) xz v = e(x). Let us write f for the expression
trec (\zv.e(z, Leaf)) (Atytpwiwozv.e(z, Node 1, 17 )). Proceeding by cases, and noting that, by Fact
4.2.17, the variables v, wy and w, do not occur free in either e(z, Leaf) or e(z, Node 7 15 ):
flLeafz v =(Azv.e(z, Leaf)) z v =e(z, Leaf) and

£ (Node sq 57) z v = (Atyrpwywozv.e(z, Node 1y 1)) 51 52 (f 51) (f s7) z v = e(z, Node 57 57) as
required.

Ad (serious fld): We must consider the derivation Close([ ® ]) whose operative component is:

| Ik (Vze B)(¥(@ > ¢le(p ) *
I | ¥(zEo) [ | W(z&o) 2 ¢le(p(z8p, )] [} olefege=wll T,w=egl w=ep
I | ¢le(pz&p, ¥))] I, w=eg - ¢le]

In EOB™ we have (omitting the equality premise for layout reasons):
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' Yok v: (vze BYC¥() o ole/p@ M) _
Yr L f:W@Ey) Yrk viho:¥(ko) D olepEio )] Trieleo = w] : pleleg = Wl

Yr b v & f: ¢le(p(zSp. )] Y, w=eg |- e1leg = wl : 9le]
e Yrleleg=vzEoSfl:oled .-

SENY

The equation B in 7 such that (B) =1 I ¢le;] is f ¢ = e with e <t e, for some { by Lemma 4.1.4.
By the definition of serious folding, Definition 3.4.1(iv), the equation Bp such that (B) =
' oleileg < wll is f g = eleg < f x0]. By Proposition 4.2.15 we may conclude that v z&y f =
fop(zEp, y). By Definition 4.2.1 we know that &; is [x « p(z, y)] thus 9. which is &y * &;, is
[x « p(z&q, ¥)). Thus v z& f =fo x0 and thus the equation for f; corresponding to the sequent:

I' - o¢[e;] (Proposition 4.2.12) is fo g = eleg < fo x6]. Since all other equations for f in the
transformation and all other equations for f given by Proposition 4.2. 12 remain the same we can
conclude that fy = B as required. ®

Theorem 4.2.19 (Soundness )1 4
Let (B) be a transformation from the equationfx=e, If [ T ] € Der(EOB) then Tt is correct.

Proof. Assume that [Tt ] € Der(‘EOB). The conclusion of [ 7 ] is the sequent X € B |- o¢le,]. We
can verify immediately (in factitis the base case of Theorem 4.2.18) that (fx=¢,) : x € B - ole,].
By Theorem 4.2.18 we know that B : x € B | ole,]. But, by Fact4.2.2, f = B. Hence is &t correct. ®

§4.3 Completeness

There remains the question of completeness. Is it the case that every correct transformation 1S
translated into a derivation in Der(‘EOB) by our translation? In fact it is possible to construct (rather
pathological) counterexamples to completeness but this is perhaps not too surprising. After all,
systems like the calculus of rransformations, which are, in general, capable of unsound arguments,
are very underconstrained and thus, conversely, it is not unlikely that they permit some valid
arguments for what are, essentially, accidental reasons. There is, however, an interesting and
fruitful investigation of this topic which begins with certain observations which already exist in the
literature. There we see hints and suggestions for the modification of the straightforward
transformational tradition, motivated by the well-known problems of unrestricted folding, which
restrict the use of folding to circumstances 1n which well-orderings play an explicit role. The work
of Bird (for example [Bir84]) is particularly noteworthy and our own remarks in [Hen87] are in
this spirit too. The advice one obtains from these sources is that the calculus of transformations can
be restricted, without prejudicing its expressibility, so that folding is only allowed on immediate
predecessors in some well-ordering. So far as we can tell from the available literature this advice
has not been formalised to a point where a proof that this restriction ensures that transformations
are correct in general could be provided. In [Hen93] we proved completeness for such a calculus
of transformations over the natural numbers by examining a hierarchy of tran sformations classified

14 We take validity of a transformation to be given by the (extensional) notion of correciness. This explains
our use of the terminology.
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according to a complexity measure which was based upon the number of instantiations they
:nvolve. In the context of our current work we would be inclined to begin a similar investigation
with the following definition.

Definition 4.3.1
(i) PTg(n) = (% | ® contains not more than n occurrences of (ins)}

(ii) Plg(w) = nkéJNfPTB (n). ®

We can then, at least, establish the following quite easily.

Theorem 4.3.2 (Mini Completeness)

Let © € PIg(1) and subject to the extra requirement that folds may take place only on immediate
predecessors. If T is correct then [ & ] € Der(’ EOB).

Proof. Suppose for a contradiction that [ © ] = fail. Inspection of Definition 4.2.1 shows that this
is the result of an un-translatable fold step. From this it follows that the fold is not undertaken on
an immediate predecessor since an assumption for those values are present in the context. But this
is in contradiction with the assumption. ®

We should like to continue with this analysis which would require a thorough investigation of the
operation schemata which are utilised by the transformations of greater complexity (similar to our
work in [Hen93]) but, at this time, all the issues are not clear to us. The main problem would be to
determine precisely the well-orderings which are appropriate for each complexity class. In [Hen93]
we showed that the ordering @" was appropriate for the transformations in PZy(n) but the extra
complexity in the inductive assumptions we require in the translation of instantiations given in this
paper makes the task of generalising the approach of [Hen93] somewhat daunting and we must,
therefore, leave this for future research.

§5 An illustrative example

We shall finally illustrate the technical development with one, rather typical, example. This
example, which involves a double instantiation, does show quite graphically the hidden complexity
underlying what appears superficially to be a reasonably simple transformation. It illustrates, in
particular, the iterative process which is required in Definition 4.2.1 for the interpretation of serious
folding. The transformation yields a linear operation from a (worst case) quadratic one. The
function we deal with takes an arbitrary element of B! and yields another which has the same

fringe of leaves but 1s left-linear. That is, it satisfies the specification:

(Vsg€ B)(3s, € B)(left-linear(sy) A eq-fringe(sp, 51))
with the predicates given by:

left-linear(s) eq-fringe(sq, 51)

left-linear(Leaf n) left-linear(Node (Leaf n) s) fringe(sq) = fringe(sy)

where:

15 As we mentioned in §3.1 we utilise the more realistic definition of B which allows numerals to be carried
in the Leaf case.
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fringe s = frg s Nil

frg (Leafn)! = Consnl

fre (Node sgs)) ! = frgso(frg s l)
We begin with the initial operation:

rotate (Leaf n) = Leafn

rotate (Node sq 51) = join (rotate sq) (rotate s1)
where:

join (Leaf n) s = Node (Leatn) s

join (Node sq 51) 52 Node sq (join 51 52)

which may be derived in the term assignment system TK™ by induction over B given the function
join and the properties that join preserves linearity and the fringes of its arguments.

We adopt the very simple eureka definition: rote s = rotate s and the transformation then proceeds:

rotate (Leaf n) = rote (Leaf n) Instantiate
= Leafn. Unfold
rote (Node (Leaf n) s) — rotate (Node (Leaf n) s) Instantiate
= join (rotate (Leaf n)) (rotate s1) Unfold
= join (Leaf n) (rotate sy) Unfold
= Node (Leaf n) (rotate s,) Unfold
= Node (Leaf n) (rote sy). SFold
rote (Node (Node sq s1) sp) = rotate (Node (Node s 51) 52) Instantiate
= join (rotate (Node sg s1)) (rotate s1) Unfold

join (join (rotate sg) (rotate s1)) (rotate s1) Unfold
join (rotate sq) (join (rotate s1) (rotate s1)) Law

= join (rotate sg) (rotate (Node s 57)) BFold
— rotate (Node sg (Node 51 52)) BFold
= rote (Node so (Node 51 52)). SFold
yielding the final operation given by the system of equations:

rotaie § = roté s

rote (Leaf n) = Leafn

rote (Node (Leaf n) s) = Node (Leaf n) (rote s)

rote (Node (Node sg 1) sp) = Toie (Node so (Node s7 52))

If we call this transformation 7 then [ 7 ]is not fail and, indeed, [ m ] is reproduced as Figure 116

§6 General remarks and future research

We have been able to provide an interpretation for a class of program transformations as
derivations in a simple theory of operations and types which is faithful to the intension of the
transformations. Our objective was 1O extend the work described in [Hen93] to cover arbitrary
algebraic data types. In fact, as we remarked in §2, we have dealt with a typical example of such a
type and we have restricted ourselves to transformations from unary operations. The reason for our

16 Figure 1 is presented in natural deduction form rather than the less compact natural deduction in sequent
form which we have found most convenient to present the material in the main body of the paper.

22



approach here is simply one regarding clarity of presentation: the derivations and the analysis is,
even so, rather combinatorial and, as we sketch below, would be more so if we had attempted to
present the arbitrary case with arbitrary arity operations. Our justification for claiming to have dealt
with the general case here concerns the issues we have covered explicitly. There are significant
differences between the analysis here and the analysis of [Hen93]. This is because the data type N
is rather atypical as an abstract data type. Particularly relevant to our application is the fact that
re-instantiations of arguments of type N are trivial and reduce to a case analysis. This is not true
of B and not true in general for the algebraic types. Indeed, the example we displayed in §51s a
good example of a non-trivial re-instantiation. In this respect, then, B is a good representative of
the algebraic types and the redevelopment of the analysis in the more general setting simply
complicates the presentation without introducing any new conceptual difficulties or interest.
Similarly we covered quite thoroughly in [Hen93] the complications which accrue from allowing
transformations from arbitrary arity operations and we would have gained no new insight from
allowing them here. The above notwithstanding, we shall sketch some of the details which
establish the full generalisation in §6.1 in order to at least demonstrate what would be at stake. Then
in §6.2 we briefly mention some possible avenues for future investigation.

§6.1 The general case

We need to work in an underlying theory of operations and types which is rich enough to deal with
the full range of types. The algebraic types are those constructed by the disjoint union of cartesian
products of type variables, constants and positive recursion. We give the general case and some
examples utilising a notation similar to Miranda [TuD385]:

B = Leaf NI Node B B

L = Nil|Cons N L

N = Zero | Succ N

co DCOT0| IDCn Tn
where each T; =T} ... T, and where T and each T;; are type variables.
Our new theory should include rules which capture the least fixpoints of positive type 0pcrationsl7.

"'} ze B(E(AX.B)) I'-B(T) T
(E—intro) (Z-elim)
'l ze E(AX.B) Fr’FE(AX.B)CT

Intuitively, Z(AX.B) is the smallest type closed under the operation B. It is also convenient to add
rules for comprehension types:

F'kze {x| o(xe2)} I o(xe2z)

' o(xez) F'Fze {x| opxe2z)}
Small adjustments are also required to the rules governing definedness of the underlying partial
logic but these are not central in this context and we omit the details. The new theory is, in fact, the

theory 7K of, for example, [Hen89a].

17 These significantly extend the algebraic types but are syntactically much easier to manage.
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The algebraic types now are special cases formed by careful choice of the operation B. Taking
B(X) =g {DCq} x II(To[T X]) + ... + (DC,} X [I(T,[T« X])18 we obtain the expected rules
for T as special cases of E—intro and Z-elim including, in particular:

xo € To, ¥o(yo) F W(DCq x) ... Xp € Ty, ¥p(yp)  w(DC, x,)

xe TH vy
where each x; = Xjo ... Xjm; and where W(y;) = Vi) ---» YOik,) with the y;; distinct variables
among the x; such that, if y;; = x4 then T, = T and if Tp, =T then y;; = Xpg for some y;;.

(T-elim)

In the term assignment system ’I!K_Iﬂ we have, among others, the rule:
YHf:B(T) ST

Ylirecf:EAX.B)ST
where irec satisfies the equation: irec f x = f x (B (irec f) x). In other respects the theory TKA
follows the pattern of EOB.

With this much in place we can sketch part of the translation [ _ ] € PT— Der(‘TK) + {fail}. In the
main this is not different in any regard to §4. We give two cases for illustration. Let z be the
variables occurring in the patterns p, p and ¢ other than x. Let u be a sequence of variables
occurring in the sequence zx

T . (ppa).g=0x e DOCix)] ... |
...... fp,pxeT),q=e ......

A o :
—def
xje T;,ze T, Oy(up), ¥i(y) I ¢le[xDC; x;11)
x;e T;, Y(y:) - (Vz e T)(Og(ug) > ole[x<DC; x;11)
x e T} (Vz e T)(Op(up) > ¢lel)

... zeT.xeT.Omlole] .....

[ 7o ]

where ©((u) is the sequence ©(u) with a formula of the form L (x) should it occur removed. As 1n
the development of §4 the formulae ©(u) must satisfy (a suitable generalisation of) our predicate
¥ . Things become more complicated when we examine in detail the case of serious folding. The
definition in this case has the form:

18 IT denotes iterated cartesian product.
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epSe [fx=e¢€L eo <g &, fp=eley < (fx)0] .

..... FPRg ... oii
T ’
=def"
‘ - (Vze TX©W) S ole))
L ewt T+ Ok olegl Fhkolege=wl T.w=eybw=ep
T Tieiel : " TLw=el olel
: ST e ; T
[ o ] |

where the assumption (Vz € T)(©(u) = ¢le;]) is chosen such that eg <, €] 5@1 e, and '~ is the
context I” with the assumption (Vz € T)(©(u) = ¢le;]) removed. The derivation above is then
completed, for each of the formulae comprising O(u)&y, as follows:

' -1"', Vv t; . S (D(I;’) - (VVO e SO).(‘I’Q(WO) - (9[63])
T~ ve S, ®(w)) "} Py(wpby = ve S, dw) F Dy(wp)8p > 9lesdo)

I ve S, ®w) - oley)

' ve S ®w) > o¢le]

' (Vv e S)(@(w) D gler))

choosing the assumption (Vg € So)(@o(wp) D Ple3)) so that e; <g, €3. As expected the context
(', ve S, ®(w)) "is the context ', v € §, ®(w) with the assumption:

(Vvg € So)(@o(wp) D Ples)) removed. As before the ellipsis is filled in by iterating the process as
necessary. The termination of this is now more complex since, in general, the selection of a formula
of rank k may result in contexts with an unbounded number of formulae of rank k-1. This is a
consequence of the general definition of algebraic types which (in the definition of type T) might
contain a summand of the form: DC T ... T), withm € ® of which any n (n € m) of the T; may be
T The rank of formulae satisfying the predicate ¥ is given by: rank((Vz € T)(®O(u) D ¢le])) =
1+max{rank(C;(u;)) | i € n} where ©®(u) is a sequence of formulae Co(u) --. Cp-1(up-1)- We then
extend this to contexts: rank(ze T, 1) = rank(), rank(x, 1) = @/ ank(x) 4 rank(I") when F(x) and
we note that lim{rank() | T is a standard context} = o® so the analogy to Proposition 4.2.6
follows by transfinite induction to ®»®. From this point on all the analogous results (Lemma 4.2.7
through Theorem 4.2.19) go throu gh, with differences only resulting from the considerably greater
combinatorial complexity which results from the general definition of types.
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§6.2 Future work

Possible extensions to the approach which would require substantial new analysis might include
the generalisation to transformations which require type simulations. This approach has its
intellectual roots in the work of Wand [Wan80] and was worked out in [Hen88]. The difficulty here
resides in the need to generalise substantially the notion of canonical sequent. Similarly one would
require a major generalisation of these sequents to handle a calculus of program development based
upon pre/post condition specifications rather than simple equations. This, however, would be a
particularly interesting line of work.

§7 Acknowledgements

I would like to thank the members of the Constructive set theory in programming group at the
University of Essex, in particular Ray Turner and Mike Sanderson. I also benefited from the
discussions with the audiences at seminars at the University of Kent and the Applied Logic
Colloquium, University of London, where an early formulation of this material was first presented.

§8 References

[Bac89] Backhouse, R. C. et al, Do-it-yourself type theory, Formal Aspects of Computing, 1, pp 19-84, 1989.
[Bee85] Beeson, M., Foundations of Constructive Mathematics, Springer Verlag, 1985.

[Bir84] Bird, R., The promotion and accumulation strategies in transformational programming, ACM. Trans.
Programming Languages and Systems, 6, pp 487-504, 1984.

[BuD77] Burstall, R. & Darlington, J., A transformation system for developing recursive programs, J. ACM, 24, pp
44-67, 1977.

[Con86] Constable, R. et al, Implementing mathematics wi
1986.

[HaN87] Hayashi, S. & Nakano, H., The PX system — A computational logic, Publications of the Research Institute for
Mathematical Sciences, Kyoto University, Tokyo, 1987.

[Har56] Harrop, R., On disjunctions and existential statements in intuitionistic systems of logic, Math. Ann. 132, pp
347-361, 1956.

[Hen87] Henson, M. C., Elements of functional languages, Blackwell Scientific Publications, 1987.

[Hen88) Henson, M. C., Higher order accumulation and type simulations, Computer Journal, 31(6), pp5 17-524, 1988.
[Hen89a] Henson, M. C., Program development in the programming logic TK, Formal Aspects of Computing, 1,
pp173-192, 1989.

[Hen89b] Henson, M. C., Realizability models for program construction, Proc. Conf. on Mathematics of Program
Construction, Groningen, LNCS 375, pp 256-272, Springer, 1989.

[Hen90] Henson, M. C., Information loss in the programming logic TK, Programming concepts and methods, (ed:
Broy, M. and Jones, C.), pp 509-545, Elsevier, 1990.

[Hen91] Henson, M. C., Bridging the formality gap: proofgramming, Proc. 12th Computer Conf., pp 145-156,
Dunedin, New Zealand, August, 1991.

[Hen93] Henson, M. C., An intensional semantics for elementary program transformation, submitted, J. Logic and
Computation, 1993.

[Kot78] Kott, L., About transformations system: a theoretical study, in: Program transformations, (ed: Robinet, B.),
pp 232-247, Dunod, 1978.

[Kot85] Kott, L., Unfoldifold program transformations, in: Algebraic methods in semantics, (eds: Nivat. M. &
Reynolds, J. C.), pp 411-434, Cambridge University Press, 1985.

[San93] Sanderson, M. T., Private communication, 1993.

[Tho91] Thompson, S., Type theory and functional programming, Addison Wesley, 1991.

(TuD79] Turmner, D. A., A new implementation technique for applicative languages, Software Practice and Experience,
9, pp 31-49, 1979.

[TuD85] Turner, D. A., Miranda - A non-strict functional language with polymorphic types, in: Proc. IFIP Int. Conf.
on functional programming languages and computer architecture, Nancy, LNCS 201, Springer Verlag, pp 445-472,
1985.

[TuR91] Turner, R., Constructive foundations for functional programming, McGraw-Hill, 1991.

[Wan80] Wand, M., Continuation based transformation strategies, J. ACM, 27(1), pp 164-180, 1980.

th the NuPRL proof development system, Prentice-Hall,

26



Zp € N
Leafzpe B
Leaf zp| close
Leaf zy = Leaf z
Z() € N
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Jx € B.x = Leaf Z(] unf
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Elx € B_x = Rotate zl ‘ 3 ‘
Leaf zpe B
we B
Node(Leafzp) we B
Node(Leaf zg) wil 2284
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ZO E N
Leafzpe B
Z1 € B

dxe Bx = Ratate(Node(Leaf zo) zZ1) ins

PR e
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dx € Bx = Rotate zl) S3x € Bx = Rotate(Node(Leaf 2’0) Z1)
Vx e B.(3x e Bx=Rotatex) Ddx € Bx = Rotate(Node(Leaf zp) x))
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Vx e B;((Elx e Bx = Rotate x)Ddxe Bx= RotEde(NOdé Z9 X))
Z3 e B
Z4 € B

Node Z3 Z4 € B

(Ax € Bx = Rotate(Node z3 z4)) D3xe€ Bx = Rotate(Node z,(Node z3 z4))

Vxe B(3xe Bx=Rotatex) D dx € Bx = Rotate(Node z3 x))
Z4 € B

(3x € Bx = Rotate z4) © 3x € B.x = Rotate(Node z3 z4)

dx € Bx = Rotate z,4

Jx € Bx = Rotate(Node z3 z,)
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Vx; € B.(Gx € Bx =Rotate x)) > 3x € Bx = Rotate(Node(Node 5 z3) X)) ...

I Vxpe BVx; € B.(3xe Bx= Rotate x;) > 3x € Bx = Rotate(Node xo x,))

.............. ZOEB
Vxe B.(3x e Bx=Rotatex) Ddxe€ Bx= Rotate(Node z x))
z1€ B
(3x € Bx = Rotate z;) © 3x € Bx = Rotate(Node z( z1)
dx € B.x = Rotate Z1
dx € B.x = Rotate(Node z, z))

'Vxe Blye By = Rotatex : Seand
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