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1 Abstract

In this thesis, which is supervised by Dr. David Penman, we examine

random interval graphs. Recall that such a graph is defined by letting

X1, . . .Xn, Y1, . . . Yn be 2n independent random variables, with uniform dis-

tribution on [0, 1]. We then say that the ith of the n vertices is the interval

[Xi, Yi] if Xi < Yi and the interval [Yi, Xi] if Yi < Xi. We then say that two

vertices are adjacent if and only if the corresponding intervals intersect.

We recall from our MA902 essay that fact that in such a graph, each

edge arises with probability 2/3, and use this fact to obtain estimates of the

number of edges. Next, we turn to how these edges are spread out, seeing

that (for example) the range of degrees for the vertices is much larger than

classically, by use of an interesting geometrical lemma. We further investigate

the maximum degree, showing it is always very close to the maximum possible

value (n−1), and the striking result that it is equal to (n−1) with probability

exactly 2/3. We also recall a result on the minimum degree, and contrast

all these results with the much narrower range of values obtained in the

alternative ‘comparable’ model G(n, 2/3) (defined later).

We then study clique numbers, chromatic numbers and independence

numbers in the Random Interval Graphs, presenting (for example) a result

on independence numbers which is proved by considering the largest chain

in the associated interval order.

Last, we make some brief remarks about other ways to define random

interval graphs, and extensions of random interval graphs, including random

dot product graphs and other ways to define random interval graphs. We
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also discuss some areas these ideas should be usable in. We close with a

summary and some comments.
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3 Basic results

3.1 Definitions

We recall here the definitions of interval graph, and random interval graph,

from our essay [2].

Definition 3.1 Let a graph G have n vertices {1, 2, . . . n}. To create an

Interval Graph, to each vertex i we assign a finite interval Iiof the real line.

This transformation yields n intervals of the real line. We then say that two

different vertices of G are adjacent, in the initial graph, if the corresponding

intervals have non-empty intersection. That is, i ∼ j ↔ Ii ∩ Ij 6= ∅.

Definition 3.2 A Random Interval Graph is formed as follows. Suppose the

vertex set is {1, 2 . . . n}. Let 2n independent and identically distributed con-

tinuous random variables, X1, X2 . . .Xn and Y1, Y2 . . . Yn, from the uniform

distribution in [0, 1], be given. The interval Ii will be [Xi, Yi], if Xi < Yi or

[Yi, Xi], when Xi > Yi. (The case where any two random variables are equal

has probability 0, by properties of continuous distributions). We then say that

the random interval graph is the interval graph formed for these vertices from

the intervals Ii.

We use ∆n to denote the set of all possible random interval graphs on n

vertices.

The main aim of this essay will be to prove various basic properties of these

graphs, based on the two papers [9] by E. R. Scheinerman and [3]. We will

first show some equivalent formulations of the model, which will be useful in

proving theorems, and will then prove some results about various aspects of

the graphs.
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3.2 An Equivalent model

In [9] it is observed that we do not have to use the uniform random variables

Xi and Yi above. He observed that it is enough to suppose that the intervals

have as their endpoints the numbers 1,2. . . 2n in some random order, with all

the (2n)! possible orderings equally likely. The reason why this is equivalent

is that, as we observed when defining random interval graphs, the probabil-

ity that two of the Xi and Yj are equal is zero, so they can be any set of

unequal numbers. Also, because the Xi and Yi are all independent, all (2n)!

possible orderings of them have the same probability. (Independence implies

exchangeability - that is, the property that the probability that the Xis and

Yis take certain values is the same as the probability that the image of them

all under some permutation in S2n, the symmetric group on 2n letters, take

these values). This concludes a proof of the following result, which will be

used later in the proof that there is vertex of degree (n− 1) with probability

2/3.

Lemma 3.1 An equivalent definition of random interval graphs is to say

they have vertex set {1, 2 . . . n} and that the intervals attached to the vertices

have as their 2n endpoints the numbers 1, 2 . . . 2n in some order, the order

being chosen uniformly at random so that all (2n)! possible orders are equally

likely.

Proof. See above.
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3.3 Edges in interval graphs

The simplest question about a graph is how many edges it has. By Theorem

10 in [2], we know that the probability of any particular edge arising in a

random interval graph is 2/3. We first extend this result to obtain an estimate

of the total number of edges in a random interval graph, namely that it is

near to n2(1 + o(1))/3. This is the first main result in E. R. Scheinerman’s

paper [9].

It will be helpful to give an overview of the proof. It is easy to show

that the expected number of edges is exactly n(n−1)/3 using the fact about

the probability that an individual edge arises is 2/3. What we need to do

is to show that it is very likely to be very close to this value - the precise

sense of this will be made clear in the statement of the result. (The result

is a limit result: many interesting results in probability, e.g. the law of large

numbers and the Central Limit Theorem, are of this form). In order to show

that it is very likely to be very close to n(n − 1)/3, we shall look at the

variance of the number of edges and show that it is small compared with

n(n − 1)/3. The way this will be done is by writing the number of edges as

the sum of indicator variables, one for each edge. Evaluating the variance

then involves considering the various possible values of the expectation of

XijXkℓ for various possible i, j, k, ℓ. We shall see that in most cases they are

independent, so the total variance is really rather small.

Theorem 3.2 Almost all graphs in ∆n have n2/3 + o(n2) edges. More for-
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mally, letting X denote the number of edges in the graph,

lim
n→∞

P

(

X =
n2

3
(1 + o(1))

)

= 1.

Proof. For every pair (i, j) with 1 ≤ i, j ≤ n and i 6= j, let the indicator

random variable Xij be equal to 1 if i ∼ j and be equal to 0 otherwise. (In

other words, Xij takes the value of 1, if the intervals corresponding to the

vertices i and j intersect, so that the edge is present).

Now let X = Σ1≤i<j≤nXij. Then each edge which is present contributes 1

to this sum, and those absent contribute 0, thus X counts the total number

of edges in the graph.

As we previously saw, P (Xij = 1) = 2/3. Because Xij is an indicator

variable (i.e. takes only the values 1 and 0) we have

E(Xij) =
∞
∑

r=0

rP (Xij = r) = 0 + 1× P (Xij = 1) = P (Xij = 1)

Thus

E(X) = E(
∑

1≤i<j≤n

Xij)

=
∑

1≤i<j≤n

E(Xij)

=
∑

1≤i<j≤n

P (Xij = 1)

=
n(n− 1)

2

2

3

=
n(n− 1)

3

To estimate the number more precisely, we need also to have some grip on
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the variance of X, namely

Var(X) = E(X2)− (E(X))2

= E(
∑

1≤i<j≤n

Xij

∑

1≤k<ℓ≤n

Xkl)− (
n(n− 1)

3
)2

(the last term is because we just worked out E(X))! Now we consider various

cases for i, j, k and ℓ, counting - or at least estimating - carefully how many

such cases there are.

Case 1. i, j, k, ℓ are all distinct. As i < j and k < ℓ, there are
(

n
2

)(

(n−2)
2

)

/2

possibilities (as the first two are chosen from all n, the second two from the

remaining (n − 2). Thus we get n(n − 1)(n − 2)(n − 3)/4 cases. In each of

them, E(XijXkl) = E(Xij)E(Xkl) = 2/3 × 2/3 = 4/9. This is because the

two edges are independent, as they have no vertex in common.

Case 2. There is some overlap between set {i, j} and {k, ℓ}. There are

however only a small number of these. Indeed since at least two of i, j, k

and ℓ have to be equal, we are only choosing (at most) three numbers. Thus

there are at most
(

n
3

)

such cases. In each of these cases, the contribution to

the sum made by E(XijXkl) is at most 1, simply because Xij and Xkl are

≤ 1.

Then, calculating, we get

Var(X) = E(
∑

1≤i<j≤n

Xij

∑

1≤k<ℓ≤n

Xkl)− (
n(n− 1)

3
)2

≤ n(n− 1)(n− 2)(n− 3)

4

4

9
from Case 1
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+

(

n

3

)

× 1 from Case 2

−(
n(n− 1)

3
)2

=
n(n− 1)(n− 2)(n− 3)

9
+

(

n

3

)

− n2(n− 1)2

9

=
n(n− 1)

9
[(n− 2)(n− 3) +

9(n− 2)

6
− n(n− 1)]

The above is, since the two terms in the square bracket involving n2 cancel

with each other, of the form

n(n− 1)

9
[Cn +D] for suitable constants C,D

≤ En3

for a suitable constant E.

Now we use Chebyshev’s inequality, which says that, for any random

variable X,

P (|X −E(X)| ≥ ǫ ≤ Var(X)

ǫ2
.

See [8]. Here we thus deduce that, for any ǫ = cn2, we have

P (|X − E(X)| ≥ cn2 ≤ Var(X)

(cn2)2

≤ En3

c2n4

which, for large n, tends to 0. Thus with probability tending to 1, we do

indeed get (1 + o(1))n2/3 edges. •

It is perhaps worth noting that it is natural to compare a random interval

graph with another well-known model of random graphs. This is the so-called
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Erdős-Rényi model G(n, p) where there are n vertices and each edge arises

with probability p independently of all other edges. This model is discussed

in great detail in [1]. Clearly the most reasonable such model to compare

random interval graphs with is G(n, 2/3) as we know that in random interval

graphs 2/3 is the probability of each edge arising. The above result does have

a simple analogue for Erdős-Rényi random graphs, namely that an Erdős-

Rényi random graph has about n2/3 edges. The proof in this case is much

simpler: Indeed the law of large numbers, [11] says that the number of edges,

divided by the total number of possible edges n(n − 1)/2, is close to the

expectation of any one of the indicators, namely 2/3. Thus the number of

edges is close to n(n − 1)/3. The reason why this case is so much easier is

that the edges in the Erdős-Rényi graph are independent, so that standard

results like the law of large numbers, [11] apply to them. (It will emerge later

that the edges are not independent, when we show that various things in a

random interval graph usually take very different values from their values in

G(n, 2/3).)
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4 Degrees in Random Interval Graphs

4.1 Introduction

We now turn our attention to the more detailed distribution of where the

edges are. We shall consider the degrees of vertices and show that degrees

are much more spread out that in the Erdős-Rényi model G(n, 2/3). Indeed

in the Erdős-Rényi model G(n, 2/3), we shall see that, for all ǫ > 0,

lim
n→∞

P

(

all vertices have degree between
2n(1− ǫ)

3
and

2n(1 + ǫ)

3

)

= 1.

That is, almost all degrees are about 2n/3. However in random interval

graphs, we shall see in various ways that degrees are much more ‘spread

out’. For example, the probability that there is a vertex of degree n− 1 (the

maximum possible degree) is 2/3.

4.2 Degrees of Graphs and some results

We recall first a definition from [2].

Definition 4.1 The degree of a node of a graph is the number of vertices

which are adjacent to this vertex. If v is a vertex, then the degree of v is

denoted by deg(v).

For a graph G, we define ∆(G) to be the maximum degree: that is,

∆(G) = max
1≤i≤n

d(vi).
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Similarly we define the minimum degree

δ(G) = min
1≤i≤n

d(vi).

We saw in the last section that a random interval graph has about n2/3

edges. Our next task is to show how these edges are spread out. We will see

a theorem from [9] about the degrees of random interval graphs.

Theorem 4.1 Let G ∈ ∆n and v ∈ V (G). For a known x ∈ [0, 1], we have

for x ≥ 1/2

lim
n→∞

P (d(v) ≤ xn) = 1− (1− x)
π

2

and for x < 1/2 we have

lim
n→∞

P (d(v) ≤ xn) = 1− (1− x)(π/2− 2 cos−1[1/
√
2− 2x])−

√
1− 2x

Note what the theorem means. It says that, for example, taking x to be

(say) 0.01, the probability that there is a vertex of degree ≤ 0.01n is, in the

limit as n → ∞, strictly positive. This is very different from what happens

in G(n, 2/3) where, as mentioned earlier, all the degrees are close to 2n/3.

Similarly it says that the probability that a vertex does not have degree

≤ 0.99n - that is, that its degree is at least 0.99n - is, in the limit, a non-zero

number. So the degrees are indeed much more spread out than in G(n, 2/3).

The proof will rely on the following geometrical lemma. We give a rather

detailed proof of the Lemma as no details are provided in Scheinerman’s

article [9]. Some of the details here were suggested to me by Dr. Penman

[6].

Lemma 4.2 For an interval I = [x, z] ⊂ [0, 1] let the radius of I, ρ(I) be
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√

a2 + (1− b)2, where a = min{x, z} and b = max{x, z}. Assume that x and

z are independent, and uniformly distributed on [0, 1]. Then, for y ≤ 1/2

P (ρ2(I) ≤ y) =
yπ

2
.

When y > 1/2, we have that

P (ρ2(I) ≤ y) = y(
π

2
− 2cos−1[

1√
2y

]) +
√

2y − 1.

Proof. The required probability is the probability that ρ(I) ≤ √
y, which

is the size of the set of points in the square [0, 1]2 which are within a distance

√
y from (at least) one of the points (0, 1) or (1, 0). Let us consider all the

possible cases for 0 ≤ y ≤ 1. The equation of the circle centered at (1, 0) is

(x− 12) + z2 = y. In the second circle, centered at point (0, 1) we have the

equation x2 + (z − 12) = y. So if they intersect at (x, z), then

(x− 1)2 + z2 = x2 + (z − 1)2 = y

⇒ x2 − 2x+ 1 + z2 = x2 + z2 − 2z + 1

⇒ −2z = −2x ⇒ z = x

Thus, these points satisfy:

(x− 1)2 + x2 = y

⇒ 2x2 − 2x+ 1 = y

⇒ x2 − x+
1− y

2
= 0
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For such points to exist, we need that the discriminant is greater than 0.

Thus,

⇒ (−1)2 − 4
(1− y)

2
≥ 0

⇒ 1− 2(1− y) ≥ 0

⇒ (2y − 1) ≥ 0

⇒ y ≥ 1

2

Now let consider the two cases for the value of the radius.

Case 1. Let y < 1
2
, then

√
y < 1/

√
2 is the radius of the two circles centered

at either the point (0, 1) or (1, 0). Because y < 1
2
, these two circles do not

intersect by the above analysis. Then the area we want is two quarters of

disjoint circles which have radius equal to
√
y. Having in mind that the area

of a circle with radius χ is equal to π×χ2, then the area of a quarter of circle

is 1
4
π×√

y2 = 1
4
π×y. So the required area is equal to 2π×y

4
= π×y

2
, as stated.

Case 2. y ≥ 1/2. In this case, the circles have intersection and by the

above we have for x = z, that:

x2 − x+
(1− y)

2
= 0 (1)

⇒ (x− 1

2
)2 +

(1− y)

2
− 1

4
= 0 (2)
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⇒ (x− 1

2
)2 +

(1− 2y)

4
= 0 (3)

⇒ (x− 1

2
)2 + (

1

4
− y

2
) = 0 (4)

⇒ x =
1

2
±
√

y

2
− 1

4
(5)

In this case, as previously noted, the two circles intersect in two points, A

and B say. We consider the triangle with vertices (0, 1), A and B and the

triangle with vertices (1, 0), A and B, also the arcs of the two circles between

A and B. Let θ be the angle formed at [0, 1] and [1, 0] by the two triangles

(by symmetry, the two angles are the same). The area of each sector of each

circle is equal to

π × y
θ

2π
=

θy

2
.

Also the area of the triangle is 1
2
×|CA|×|CB|× sin(θ), where C Is the point

(0, 1) and A,B are the intersection points, between the two circles.

Then the total area of intersection of the two sectors is:

2[
θ × y

2
− 1

2
|CA||CB| sin θ]

= θy − |CA||CB| sin θ

To obtain the angle θ, recall that the vertices are: C = (0, 1), B =

(1
2
+
√

y
2
− 1

4
, 1
2
+
√

y
2
− 1

4
) and A = (1

2
−
√

y
2
− 1

4
, 1
2
−
√

y
2
− 1

4
).

Now |AB|2 = |AC|2+ |CB|2−2|AC||CB|cosθ by the cosine rule, [4]. The

vectors are

−→
AB = (2

√

y

2
− 1

4
, 2

√

y

2
− 1

4
)
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−−→
CB = (

√

y

2
− 1

4
+

1

2
,

√

y

2
− 1

4
− 1

2
)

−→
AC = (−

√

y

2
− 1

4
+

1

2
,−
√

y

2
− 1

4
− 1

2
)

⇒ AB2 = [2

√

y

2
− 1

4
]2 + [2

√

y

2
− 1

4
]2

= 8(
y

2
− 1

4
) = 4y − 2

Similarly,

|CB|2

= (

√

y

2
− 1

4
+

1

2
)2 + (

√

y

2
− 1

4
− 1

2
)2

= 2[
y

2
− 1

4
] +

1

2
= y

and then |CA|2 = y just by symmetry. Then the cosine rule, [4] becomes

(4y − 2) = y + y − 2
√
y
√
y cos θ

⇒ 4y − 2 = 2y − 2y cos θ

⇒ cos θ =
2y − 4y + 2

2y

⇒ θ = cos−1[−1 +
1

y
]

(Note that, as y ≥ 1/2, −1 + 1/y ≤ 1 as required). Then, the formula for

the area of the intersection of the two quarter-circles is (note that here we

use cos−1 to mean the inverse function to cos, what many people call arccos:
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in particular, cos−1(x) does not mean 1/ cos(x))

y cos−1[−1 +
1

y
]−√

y
√
y sin[cos−1(−1 +

1

y
)]

= y cos−1[−1 +
1

y
]− y

√

1− (−1 +
1

y
)2

= y cos−1[−1 +
1

y
]−

√

y2 − (−y + 1)2

= y cos−1[−1 +
1

y
]−

√

2y − 1

To explain the working in the last paragraph; We used cos2 θ + sin2 θ = 1,

[4] and also the fact that in our situation the angle θ is clearly between 0

and π/2 so that both cos and sin are positive, with the result that sin(x) =
√

1− cos2(x). Thus sin[cos−1(−1+ 1
y
)] is equal to

√

1− cos2(cos−1(−1 + 1
y
))

which is of course equal to
√

1− (−1 + 1
y
)2.

What we have just worked out is the formula for the area of the inter-

section of the two quarter-circles. Thus the shaded area in Scheinerman’s

picture is the areas of the two individual quarter circles minus the area of

their intersection, which of course is

πy

2
−
(

y cos−1[−1 +
1

y
]−

√

2y − 1

)

=
πy

2
− y cos−1[−1 +

1

y
] +

√

2y − 1

It only remains to confirm that this formula we have just derived is the same

as the one given in Scheinerman’s article, namely

y(
π

2
− 2cos−1[

1√
2y

]) +
√

2y − 1.
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For this in turn it suffices to show that

2 cos−1[
1√
2y

] = cos−1[−1 +
1

y
].

To see this, take cosines of both sides, and recalling the identity cos(2x) =

2 cos2(x)− 1, [4] we see the left-hand side is:

2 cos2(cos−1[
1√
2y

])− 1

= 2[
1√
2y

]2 − 1

= −1 +
1

y

as required. •

Proof of Scheinerman’s theorem. (see Theorem 4.2 in [9]: we provide

some more details). Let v corresponds to vertex 1: no generality is lost by

this, as no vertex is favored by the set-up. Let Ji be the interval assigned to

vertex i, for each i = 2 . . . n. Then let Ii = 1, if 1 is adjacent to i and be

equal to 0 otherwise. Thus X =
∑n

i=2 Ii is the degree of the vertex 1.

Suppose now that ρ(I1) = r is fixed. We claim that then:

p = P (Ii = 1|ρ(I1) = r) = 1− r2.

When we have proved this, it is then obvious that, conditional on ρ(I1) = r,

the expectation of X is (n − 1)p and its variance (again conditioned on the

value of ρ(I1)) is (n − 1)p(1 − p) since the Ii are independent of each other

given I1 and the radius. Indeed, if i 6= j, then the two random variables Xi
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and Yi giving the two endpoints of Ii are independent of Xj and Yj giving

the endpoints of Ij .

Thus we can use Chebyshev’s inequality again on the random variable X,

[8] and deduce that:

P (|X − (n− 1)p| ≥ n2/3) ≤ Var(X)

n4/3

≤ np(1− p)

n4/3
→ 0

Then, d(1) = np + o(n), under the hypothesis that ρ(I1) = r. Thus for any

ǫ > 0 we have:

P (d(1) ≤ xn) =















1− o(1) for r <
√
1− x− ǫ

o(1) for r >
√
1− x+ ǫ

using our formula for the value of p for a given value of r. So now we need to

remove the conditioning on the value of r, which we do in the usual manner:

P (d(1) ≤ xn) =
∫ 1

0
P (d(1) ≤ xn|p(I1) = r)dP (ρ(I1) ≤ r) by the law of total probability

But we have just worked out the distribution function for the probability

that ρ(I1) ≤
√
y in the Lemma. So this is:

[1− o(1)]P (ρ2(I1) ≤ 1− x) + ǫO(1) + o(1)

⇒ P (ρ2(I1) ≤ 1− x).

Now the result follows using the Lemma, with y replaced by 1− x.
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Thus the only thing that remains to be proved is that, if ρ(I1) = r,

then the probability that any other interval intersects is 1 − r2. To obtain

this, recall that in [9], the radius of an interval [x, y] ⊂ [0, 1] is equal to
√

a2 + (1− b)2 = r, where a = min{x, y} and b = max{x, y}. Also, we

should remind ourselves that the (2n) random points follow the uniform

distribution in (0, 1). Let I1 = [a, b]. We calculate the possibility of the

existence of i interval, denoted by Ii = [Xi, Yi], which does not intersect with

I1. To happen this, both Xi, Yi must be smaller than a or both must be

greater than b. The first possibility is: P (Xi, Yi ≤ a) = a−0
1−0

a−0
1−0

= a2, since

they are independent, uniformly distributed random variables in (0, 1). The

second possibility is equal to:

P (Xi, Yi ≥ b)

= P (Xi ≥ b)P (Yi ≥ b)

= (1− P (Xi ≤ b))(1− P (Yi ≤ b))

= (1− b− 0

1− 0
)(1− b− 0

1− 0
)

= (1− b)(1− b)

= (1− b)2.

Thus, the probability of I1∩Ii = ∅, for i = 2, 3 . . . n is equal to a2+(1−b)2 =

r2. Hence the complement probability (I1 and Ii have a non-null intersection)

is 1− r2. •
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4.3 Maximum degree

In the last section, we saw there is a non-zero probability that a vertex has

very high degree (e.g. at least 0.99n). In this section, we first sharpen this.

We then give a result from [3] which [9] attempted to prove, but did not

succeed. That result is, that with probability 2/3, there is a vertex in a

random interval graph whose degree is n − 1. This is of course the largest

possible degree any vertex in the graph can have.

The first result (which is Theorem 4.4. in Scheinerman) is easy.

Theorem 4.3 In a random interval graph, let ωn be any function which

tends to infinity with n. (One should think of it as doing so very slowly).

Then

lim
n→∞

P (a random interval graph has ∆ ≥ n− ω(n)) = 1.

Proof. Some details of that proof were suggested to me by Dr. Penman

[6], as Scheinerman’s proof for that Theorem is rather short. Let x = 1
2

√

ωn

n
.

Then

P (≥ n− ωn

2
+ o(ωn) intervals intersect [x, 1− x])

= 1− P (≥ n− ωn

2
+ o(ωn) intervals don’t intersect[x, 1− x])

= 1− P (interval I1 doesn’t intersect [x, 1− x])n

= 1− [(
1

2

√

ωn

n
+

1

2

√

ωn

n
)2]n

as the probability a random interval does not intersect [x, 1− x] is the prob-

ability that both ends are less than x (probability x × x = x2, using the
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independence of the ends) or that both ends are greater than 1 − x (proba-

bility [1− (1− x)]2 = x2). The above is

= 1− (
ωn

n
)n

→ 1 as n ≥ ωn when n → ∞

Thus at least n−ωn/2+o(ωn) intervals intersect [x, 1−x]. Our proof will now

be complete if we can show that, with probability tending to 1 as n → ∞,

there is at least one of the random intervals which contains [x, 1−x], as then

such an interval will be a vertex of degree ≥ n− ω(n).

To this end, recall the fact that random intervals are independent, as

all the possible orderings of their endpoints are equally likely. Let Xi be

an indicator variable, denoting whether the interval Ii = [Ai, Bi] contains

[x, 1−x]. Then X =
∑n

i=1Xi is the number of our n random intervals which

contain [x, 1 − x] and our objective is to show that X > 0 with probability

tending to 1. To this end we use Chebyshev’s inequality, [8]

P (|X − E(X)| ≥ t) ≤ V ar(X)

t2

⇒ P (X = 0) ≤ P (|X − E(X)| ≥ E(X))

≤ V ar(X)

(E(X))2

Now Xi is a Bernoulli variable and the various Xi are independent of each

other, simply because the distinct intervals are independent of each other.

Thus X is binomial, with parameters n and the success probability a. We
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thus have, by standard results about Binomial random variables,

E(X) = na and Var(X) =
n
∑

i=1

V ar(Xi) = na(1− a)

and thus by Chebyshev, [8]

P (X = 0) ≤ V ar(X)

(E(X))2

=
na(1− a)

n2a2
=

(1− a)

na

Thus if we can show that P (X = 0) tends to zero, this will show that

P (X > 0) tend to 1.

We need to calculate a. Recall

a = P (Xi = 1) = P (a given random interval contains [x, 1 − x])

Letting the two (random) ends of the interval be A and B, we have that this

probability is

a = P ({A ≤ x and B ≥ 1− x)} ∪ {A ≥ 1− x and B ≤ x})

= P (A ≤ x and B ≥ 1− x)) + P (A ≥ 1− x and B ≤ x)

as the two events involved are mutually exclusive. This in turn gives

a = P (A ≤ x)P (B ≥ 1− x) + P (A ≥ 1− x)P (B ≤ x}) by independence
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= x(1 − x) + x(1− x) = 2x(1− x)

= 2
1

2

√

ωn

n
(1− 1

2

√

ωn

n
)

=

√

ωn

n
(1− 1

2

√

ωn

n
)

Hence, combining the above results,

P (X = 0) ≤ 1− a

na
≤ 1

na

=
1

n
√

ωn/n
(

1−
√

ωn/(2n)
)

=
1

n1/2
√
ωn(1−

√

ωn/(2n))

≤ 2

n1/2
√

ω(n)
for large enough n

using the fact that

1− 1

2

√

ωn

n
≥ 1

2

for large enough n. Thus

P (X = 0) ≤ 2

n1/2ω(n)
→ 0 as n → ∞

and thus with probability tending to 1, X > 0, that is there is some interval

containing [x, 1 − x] as required. •

The final result is the following striking fact. We emphasize that, unlike

most of the results in this chapter, this has nothing to do with a limit: it is

an exact result, not depending on the number of vertices. The proof comes

from [3]. Scheinerman made a lot of effort in his paper [9] to prove a result
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along these lines, but did not quite succeed.

Theorem 4.4 Let G be a random interval graph. Then

P (∆(G) = n− 1) =
2

3
.

Proof. Instead of calculating the moderately difficult expression

1− 4n(n− 1)
∫ 1

0

∫ 1−y

0
xy(1− x2 − y2 − 2xy)n−2 − 1dxdy

writers [3] used an efficient combinatorial proof, as we shall see. They take

random pairs of integers 1, 2, . . . , 2n. Once the intervals are selected by some

random pairing of the 2n numbers, they label the endpoints A(1), B(1), . . . , A(n−

2), B(n− 2) in the following way. Let the endpoints {1, . . . , n} be at the left

side and respectively the endpoints {n+1, . . . , 2n}, be at the right side. Let

also A(1) = n and B(1) is its mate. Suppose that we have assigned through

A(j), B(j). We label the next endpoints, by the following rules:

Case 1. If B(j) is on the left side, then let A(j + 1) be the leftmost point

on the right side that has not yet been labeled. Let B(j + 1) be its mate.

Case 2. If B(j) is on the right side, then let A(j + 1) be the rightmost

point on the left side that has not yet been labeled. Let B(j+1) be its mate.

Endpoints are being labeled from the center outwards. Then, if A(j) < B(j),

it is A(j + 1) < B(j)
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If A(j) > B(j), it is A(j + 1) > B(j)

Then, we will either have:

A(j) < A(j + 1)

or A(j) > A(j + 1)

Furthermore, if A(j) < B(j), then A(j + 1) < B(j + 1)

If A(j) > B(j), then A(j + 1) > B(j + 1)

With this way, starting from the center labeling the endpoints, we deduce

that either an equal number of points have been assigned in both sides, or

two more points have been assigned on the left than on the right side. Since

the last endpoints assigned are A(n−2) and B(n−2), from the total number

of points, which is equal to 2n, there are four remaining points unlabeled,

namely a < b < c < d. Having a specific ordering, it is considered all the

possible ways of pairing them to consist two random intervals. a can be

matched with b, c or d, with equal probabilities. Thus, we have 3 possible

cases. We easily observe that in two cases of pairing the remaining points,

the corresponding intervals intersect and in one case they are disjoint. Let

now a and b be on left and c and d on the right. If a is paired with c, then the

random interval [a, c] meets all the others. Also the same happens when a is

paired with d. This is because, we assumed the points {1, 2 . . . n} lie on left

and the remaining points {n+1 . . . 2n} lie on the right and by construction of

labeling them. On the other hand, if a is paired with b, then [a, b]∩ [c, d] = ∅.

Suppose that an interval [e, f ] intersects all the others. Also let A(j) = e and
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B(j) = f . In this case, where a and b are on the left, A(j) lies between b and

c. Thus, [e, f ] cannot intersect both [a, b] and [c, d]. Furthermore, consider

the case where only a is on left. Since [e, f ] meets [c, d] we have f > c, hence

f = B(j). Again, by construction if a is paired with b, then [a, b]∩ [c, d] = ∅.

On the other hand, in cases where a is paired with c or d the corresponding

intervals intersect. The probability of pairing a with c or d, in the specific

ordering of the four endpoints, which is a < b < c < d is 2/3. Finally, we see

that the probability in a family of n random intervals, the maximum degree

has value n − 1 (i.e the probability that an interval meets all the others) is

2/3. •

4.4 Minimum degree

The previous subsection makes it clear that the maximum degree in a ran-

dom interval graph is much bigger than 2n/3, which is roughly the expected

number of neighbors of each vertex. As we will see at the end of this chapter,

this is different from G(n, 2/3) where all degrees are about 2n/3. We now

say a little about minimum degrees, presenting a Theorem from [9]. We omit

the proof of this result, as it is moderately difficult.

Theorem 4.5 Let k be a fixed, non-negative real number and δ denotes the

minimum degree of the graph. We have,

lim
n→∞

P (δ < k
√
n) = 1− exp{−k2

2
}

Note that Theorem 4.1 implies the result below, which is noted in [9].

Corollary 4.6 For every ǫ > 0 sufficiently small, almost all interval graphs
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satisfy δ < ǫ · n and ∆ > (1− ǫ) · n.

This result is an immediate corollary of Theorem 4.1.

4.5 Degrees of vertices in G(n, 2/3)

In the previous subsections, we studied the minimum and maximum degrees

of Random Interval Graphs. We now give, for contrast, the result for the

Erdős-Rényi model, where the probability of an edge arising is constant,

equal to 2/3 and the edges are independent. Here it will turn out that all

the degrees are ‘about’ 2n/3.

Theorem 4.7 In G(n, 2
3
) and for ǫ > 0 sufficiently ‘small’, all vertices have

degree between about (2
3
− ǫ)n and (2

3
+ ǫ)n. More precisely,

lim
n→∞

P (all vertex degrees ∈ [(
2

3
− ǫ)n, (

2

3
+ ǫ)n]) = 1

Some details of this proof were suggested by [6]. Also, for the proof of this

Theorem, we use the ‘Large Deviations’ Lemma from Scheinerman, [9].

Lemma 4.8 If p is constant and ǫ > 0, then

P (|X − np| ≥ ǫnp) ≤ aǫe
−bǫpn

√
np

Where aǫ, bǫ are positive constants, which depend only on ǫ: that is, not on

n or p.
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Proof of Theorem 4.7. Let the random variable X denotes the number of

vertices having degrees not in the interval

[(
2

3
− ǫ)n, (

2

3
+ ǫ)n].

X is the sum of n independent random variables Xi, i = 1, 2 . . . n where Xi

is 1 if vertex i has degree not in the stated range and is zero otherwise. We

again aim to show that X =
∑n

i=1Xi is 0 with probability tending to one as

n → ∞, and to prove this we will use the fact that

P (X > 0) =
∞
∑

i=1

P (X = i) ≤
∞
∑

i=1

iP (X = i) ≤ E(X).

So we aim to show E(X) → 0, for which in turn it suffices, as

E(X) = E(
n
∑

i=1

Xi) =
n
∑

i=1

E(Xi)

= nE(X1) as the Xi are identically distributed

= nP (X1 = 1)

to show that P (X1 = 1) is o(n).

But the degree of vertex i in G(n, 2
3
) has binomial distribution with pa-

rameters n− 1 and 2
3
. Thus, using the Large Deviations Result, [9]

P [degree of vertex i /∈ [(
2

3
− ǫ)n, (

2

3
+ ǫ)n]]

≤ aǫe
−bǫ

2

3
n

√

2n
3

⇒ E(Xi) = P (Xi = 1)× 1 + P (Xi = 0)× 0 = P (Xi = 1)
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E(Xi) = P (Xi = 1) ≤ aǫe
−bǫ

2

3
n

√

2n
3

⇒ E(X) =
n
∑

i=1

E(Xi) ≤ n
aǫe

−bǫ
2

3
n

√

2n
3

And this is indeed o(n) for large n, just because the exponential terms con-

verge more rapidly than polynomial. •

Remark. In fact the above argument can be sharpened quite substantially:

a random graph G(n, 2/3) has the property that there is an explicit constant

C such that

lim
n→∞

P
(

2n

3
− C

√

n log(n) ≤ δ(G) ≤ ∆(G) ≤ 2n

3
+ C

√

n log(n)
)

= 1.

The proof is in [1] (but is much harder than the above proof).
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5 Cliques, independent sets and chromatic num-

bers in Random Interval Graphs

5.1 Cliques

In this section we study the clique number ω(G) of a random interval graph

G. Recalling from [2], the clique number of a graph G, denoted as ω(G) is

the order of the largest complete subgraph of G. The basic result is from [9],

Theorem 4.7.

Theorem 5.1 The clique number of a random interval graph is usually about

n/2. More precisely,

lim
n→∞

P
(

ω(G) =
n

2
+ o(n)

)

= 1.

Proof. First note that a maximum clique consists of a family of intervals,

each pair of which intersect. In our essay, [2] we showed that such a family

of intervals has some point x say, which is in all the intervals. This result is

known as Helly’s Theorem.

It is intuitively obvious that the point with the best chance of being in

several intervals is x = 1/2: let us be more formal about this now, using the

argument from [3]. The probability that a random interval [X, Y ] does not

contain x is the probability that both X and Y are less than x, which has

probability x2, or the (exclusive) possibility that both are greater than x,

which is (1− x)2: thus the probability that it does contain x is 1− x2− (1−

x)2 = 2x− 2x2. This is maximized for x = 1/2, as the derivative of 2x− 2x2

is 2 − 4x which is zero exactly when x = 1/2, when the probability that an

33



interval contains x is 2 · 1/2 − 2 · (1/2)2 = 1/2. In a different sense, since

the endpoints of the n random intervals follow the the uniform distribution

in [0, 1], then with probability equal to 1 will be distinct. Moreover, the

mean number of a variable, which follows the uniform distribution is equal

to 0+1
2

= 1
2
. As a result, the expected number of intervals is indeed n/2.

The number of n random intervals containing 1/2 is binomial: Bin(n, 1/2).

That is because each random interval in (0, 1), either it will contain 1/2 with

probability p say, or it will not contain it, with probability 1 − p. We have

n independent Bernoulli trials so the number of intervals containing 1/2 is

indeed a Binomial random variable. This takes a value very close to n/2, as

we saw above: in particular, it is n/2 + o(n). This gives a lower bound on

the clique number.

We now need to show that it is not more than n/2. Consider intervals

of the form Ii = [i/n2, (i + 1)/n2]. We need the following technical result

(which Scheinerman calls the ‘medium deviations lemma’ for binomial ran-

dom variables):

Lemma 5.2 If X =
∑n

i=1Xi where Xi = 1 with probability p and is zero

otherwise, and the Xi are independent, then for

1 ≤ h < min

{

np(1− p)

10
,
(pn)2/3

2

}

then

P (|X − np| ≥ h) ≤
√

np(1− p)

h
exp(− h2

2np(1− p)
).
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The above lemma comes from [9].

How does this help us? Let us work out the probability that more than

n/2 + o(n) of the n random intervals intersect Ii. (We are aiming to show

that this does not happen). The probability that a random interval [X, Y ]

does not intersect Ii is the probability that both X and Y are less than i/n2

(which is i2/n4), or that both are bigger than (i+1)/n2 which has probabil-

ity (1 − i+1
n2 )

2. Thus the success probability (i.e the probability that it does

intersect Ii) is

1− i2

n4
−
(

1− i+ 1

n2

)2

= 1− i2

n4
− (1− 2(i+ 1)

n2
+

(i+ 1)2

n4
)

=
2(i+ 1)

n2
− i2

n4
− (i+ 1)2

n4

Hence the number X of the n random intervals which intersect Ii is binomial

with n trials and success probability

2(i+ 1)

n2
− i2

n4
− (i+ 1)2

n4
.

We need to work out which value of i maximizes this expression. Let us treat

the more general problem of which (continuous) value of x maximizes

f(x) =
2(x+ 1)

n2
− x2

n4
− (x+ 1)2

n4
.
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Differentiating, we get

f ′(x) =
2

n2
− 2x

n4
− 2(x+ 1)

n4

=
(

2

n2
− 2

n4

)

− 4x

n4

so the turning point is at f ′(x) = 0,

x =
n4

4

(

2

n2
− 2

n4

)

=
n2 − 1

2
.

Since f”(x) < 0, this turning point is a maximum. Note that at it we have

f(x) =
n2 + 1

n2
− (n2 − 1)2

4n4
− (n2 + 1)2

4n4

= 1 +
1

n2
− 1

4
+

1

2n2
− 1

4n4
− 1

4
− 1

2n2
− 1

4n4

=
1

2
+

1

n2
− 1

2n4

=
1

2
+

2n2 − 1

2n4

The point about this number is that it is very close to 1/2.

We now (rather arbitrarily) consider 0.6. Note that n0.6 < (np)2/3/2 and

n0.6 < np(1 − p)/10 for large enough values of n. The same holds with

0.6 replaced by 0.61. (This is checked so that we can apply the medium

deviations lemma in a minute). We have

P (X ≥ n/2 + n0.6)

≤ P (Bin(n, 1/2 + (2n2 − 1)/n4) ≥ n/2 + n0.6)
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since the success probability for the latter binomial is the largest possible

value of the success probability under the constraints.

This we now apply the medium deviations result to, taking h = n0.6 and

t = h/
√

np(1− p) where p = 1/2 + (2n2 − 1)/n4. Note that given ǫ > 0,

p < 1/2 + ǫ for all large enough n. Thus p(1 − p) is ≥ (1/2 + ǫ)(1/2 − ǫ) =

1/4 − ǫ2, and on the other hand is ≤ 1/4. Thus t is between
√

1/4− ǫ2n0.1

and 1/2n0.1. Thus

≤ P (Bin(n, 1/2) ≥ n/2 + n0.6) ≤ 1

t
exp(

−t2

2
)

and this is, by the above estimates for t,

≤ 1
√

1/4− ǫ2n0.1
e−(1/4−ǫ2)n0.2/2 → 0 as n → ∞

and this completes the proof. •

The following simple consequence is also contained in Theorem 4.7 of [9].

Corollary 5.3 The chromatic number of a random interval graph satisfies

lim
n→∞

P
(

χ(G) =
n

2
+ o(n)

)

= 1.

Informally: it is usually approximately n/2.

Proof. Interval graphs are perfect, and all perfect graphs have ω(G) =

χ(G), as we saw in our essay [2]. The result now follows from the previous

theorem. •

37



Here is a comparison of the result with what happens for G(n, 2/3), though

we do not give the proof. It turns out that the clique number of G(n, 2/3) is

(with probability tending to 1 as n → ∞) about 2 log3/2(n), which of course

is far smaller than for the random interval graphs. Also, in Erdős-Rényi,

the chromatic number is (again, with probability tending to 1 as n → ∞)

about n/(2 log3(n)), which is of course much larger than the clique number.

In particular, the Erdős-Rényi graph is very far from being a perfect graph,

since the chromatic number is (for large n) so much larger than the clique

number. Note that in both the case of the clique number and the case of

hte chromatic number, we get noticeably larger answers for random inter-

val graphs than we do for Erdős-Rényi graphs. We refer to [1] for detailed

statements of these two results.

Here we present a reformulation from [3] of the result we have just proved

about the clique number.

Theorem 5.4 Let the random variable An denotes the size of the largest set

of pairwise intersecting intervals in a family of n random intervals. There

exists a function f(n) such that:

lim
n→∞

f(n)

n
= 0

and lim
n→∞

P (
n

2
− f(n) ≤ An ≤ n

2
+ f(n)) = 1

5.2 Independent sets in random interval graphs

Recall from [2] that an independent set in a random interval graph is the same

as a chain in the random interval order associated with it. We thus investigate
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the length of the longest chain in the partial order, so as to obtain a result on

the size of the largest independent set. Let a graph with n vertices where the

set of edges is equal to the emptyset, then the corresponding random interval

graph consists of n disjoint intervals. Thus, the size of the maximum chain is

equal to n. The ordered intervals form a chain, in the sense that they have a

null intersection. On the other hand, in a complete graph where all the edges

are existent, the chain is equal to the null set, as all the intervals intersect.

Again, this material is based on [3] sharpening results in [9]. Recalling from

[2] a partially ordered set is a non-empty set, which has the mathematical

property of order. Taking randomly two elements, say x and y, then if we

have x < y or y < x we define these elements as being comparable forming a

chain. In other case, we define them as incomparable, forming an antichain.

In the case of a random interval order, where for two intervals [a, b] and [c, d],

we say [a, b] ≺ [c, d] if b < c. Thus an independent set in the random interval

graph corresponds to a set of non-intersecting intervals.

Theorem 5.5 Let Yn denote the maximum number of pairwise disjoint in-

tervals in a family of n random intervals. Then,

lim
n→∞

Yn√
n
=

2√
π

in probability.

The proof of this Theorem comes from [3].

Proof. We generate a Poisson process with intensity 1 in the upper right

quadrant. Thus, since the probability function for a discrete Random Vari-
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able X, which follows the Poisson distribution is e−λλx

x!
, where λ is the ex-

pected value of X, the probability that, for any positive number s, the region

{(x, y) : 0 ≤ x, y ≤ s} does not contain any point of the process is equal to

e−s2 .

We are going to choose an infinite chain of points of the process. Let C =

{(ℓ1, u1), (ℓ2, u2), . . .}, the points being chosen as follows. Let (ℓ1, u1) be the

point that minimizes max{ℓ1, u1} and thereafter (ℓk, uk) is the point above

(ℓk−1, uk−1) that minimizes max{ℓk, uk}. Thus the points of the chain are

chosen subject to the restrictions that they are monotonically increasing and

the difference between every two ‘neighboring ’points of the chain minimum.

Thinking of each point in the chain as defining an interval, it is easy to see

that thus this chain is built up from the bottom by always choosing the next

interval to be the one with least possible upper endpoint. It is not hard

to check by induction the intuitively reasonable claim that, in any finite

collection of intervals, this chain will have the maximum possible length.

Then, if S is a variable, whose value is max(x1, y1) the mass density

function of S is given by:

f(s) =
d

ds
(1− e−s2) = 2se−s2 .

This is because we have

P (max(x1, y1) ≤ s) = 1− P (x1 ≥ s and y1 ≥ s)

= 1− P (the square (0, 0), (0, s), (s, 0) and (s, s) contains no point of the process)

= 1− e−s2 as observed above, using that the intensity is 1
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Thus F (s) = P (S ≤ s) = 1− e−s2 . Thus its density f(s) is the derivative of

this with respect to s, which is indeed as stated.

Therefore, we have

E(S) =
∫ ∞

0
2se−s2s.ds

=
∫ ∞

0
t
1

2 e−tdt

= Γ(3/2) =

√
π

2

We now claim the differences

X1 = max(ℓ1, u1)−0, X2 = max(ℓ2, u2)−max(ℓ1, u1), X3 = max(ℓ3, u3)−max(ℓ2, u2), . . .

are independent and identically distributed with mean
√
π
2

. To see this, we

have just proved this for the first difference. Now we, so to speak, move

the origin to (ℓ1, u1) and use the homogeneity of the Poisson process to get

that the variables are identically distributed. Independence follows from the

independence properties of the Poisson process.

Therefore, by the Law of Large Numbers, [11] for any ǫ > 0 sufficiently

small,

lim
n→∞

P

(

(1− ǫ)

√
π

2
<

X1 + . . .Xn

n
< (1 + ǫ)

√
π

2

)

= 1

⇒ lim
n→∞

P

(

(1− ǫ)

√
π

2
<

max(xm, ym)

m
< (1 + ǫ)

√
π

2

)

= 1

just by simplifying the telescoping sum in the definition of the Xi.
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Let r(n) denotes the minimum r, such the area [0, r]2 contains exactly

n points of the Poisson Process. Then these points determine n random

intervals. (Conditional on the number of points of a Poisson process in a

certain area being given, the points themselves are uniformly distributed

over that area).

Recall that we are studying Yn, the size of the largest independent set in a

random interval graph with n intervals, that is the longest chain of intervals

in the corresponding interval order. Thus the above remarks show that we

can identify Yn with the largest m such (ℓm, um) lies in the area [0, r(n)]2.

Now, because the Poisson process has density 1, we have

lim
n→∞

P
(

(1− ǫ)
√
n < ℓ(n) < (1 + ǫ)

√
n
)

= 1

using the Law of Large Numbers [11]. Thus, if now we let

m1 = [(1− ǫ)(
2√
π
)
√
n] and

m2 = [(1 + ǫ)(
2√
π
)
√
n]

we see by the previous results that, for n sufficiently large, the point (ℓm1, um1)

will lie inside the square [0, r(n)]2 and the point (ℓm2, um2) will lie outside of

this area, with probability tending to 1. Thus we indeed get

lim
n→∞

P

(

(1− ǫ)
2√
π
<

Yn√
n
< (1 + ǫ)

2√
π

)

= 1

which completes the proof. •
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We again compare this with the result for G(n, 2/3). Here it turns out that

the independence number is, with probability tending to 1 as n → ∞, about

2 log3(n). Again we refer to [1] for a proof of this fact. Note again that this

number is much smaller in the G(n, 2/3) than in the random interval graph.

5.3 Comparison of different models

Here we discuss the differences, which arise in two different models of ran-

dom graphs, namely the Erdős-Rényi model and the random interval graphs.

In the first model, the possibility of an edge arising is a constant equal to

2/3, independent from the number of edges. Moreover from [9] we present

other features of random interval graphs, as the value of minimum, maxi-

mum degree for the two models, chromatic and independence numbers. As

we previously saw, for the Erdős-Rényi model the minimum and maximum

degrees are 2
3
n − o(n) and 2

3
n + o(n) respectively and all the degrees are

roughly close to 2n/3. On the other hand, from [9] we have that the min-

imum degree is equal to O(
√
n) and the maximum degree is about n − 1

for the ordinary model. Moreover chromatic and independence numbers are

O( n
logn

) and logarithmic, O(logn) for Erdős-Rényi model, see [9]. Also, the

clique number is equal to independence number. Furthermore, in this model

random graphs are not perfect, as the chromatic number is not equal with the

clique number. In random interval graphs chromatic number and clique num-

ber is about to n
2
, as we saw in above sections. Finally, from [9] independence

number is equal to O(
√
n). This comparison between these models clearly

shows the differences arising in their characteristic values, which determine

their properties.
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6 Variants

6.1 Introduction

In this rather miscellaneous section, we discuss an alternative way to de-

fine random interval graphs, a recent generalization by Scheinerman of these

graphs and some applications of them.

6.2 Scheinerman’s generalization

Scheinerman has recently introduced a common generalization of both ran-

dom interval graphs and the Erdős-Rényi graphs, namely random dot product

graphs. Also from [10] he gives various definitions of interval graphs.

To understand Scheinerman’s idea, we first introduce Intersection Graphs.

Suppose we have a finite set of n vertices, Vn. At each vertex v ∈ Vn, we

have a subset Sv ⊆ R (here, as usual, R is the set of the real numbers). We

now say that two vertices are adjacent if and only if the corresponding sets

have a non-null intersection. In mathematical notation

v ∼ w ⇐⇒ Sv ∩ Sw 6= ∅.

So an interval graph is a special kind of intersection graph, with the set Sv

for each vertex v being an interval of the real line.

Moreover, in [10] random intersection graphs are introduced, by assigning

randomly sets Sv to the vertices, and then we again say that two vertices

are adjacent if their corresponding sets intersect. The usual way to assign

these sets is to say that each Sv is a subset of {1, 2, . . . k} with, for each v,
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P (i ∈ Sv) = p say, independently for 1 ≤ i ≤ k and each vertex choosing its

subset independently. However there are other possibilities.

A further model studied in [10] are Threshold Graphs. Here, For every

vertex v , we assign a number xv. Then, two vertices intersect if and only

if the sum of the corresponding numbers is ≥ 1. Again, in mathematical

notation, v ∼ w ⇔ xv + xw ≥ 1. Again we can have random threshold

graphs by generating the xv in some random way.

The main business of [10] is to give a new definition of a model of random

graphs which combines all these definitions, by using dot products. Here,

vertex v is assigned a d-dimensional vector of real numbers Xv. Then, two

vertices are adjacent, if the corresponding inner product of the vectors is ≥ 1.

Mathematically,

v ∼ w ⇐⇒ Xv •Xw ≥ 1

where • denotes inner (dot) product:

(x1, x2, . . . xd) • (y1, y2, . . . yd) =
d
∑

i=1

xiyi.

The idea behind the definition of random dot products is that various

ways of defining random interval graphs can be replaced by the random

dot product. Indeed, we have that each vertex i is randomly assigned a

d-dimensional vector Xi. Here d ∈ N is fixed. The vectors themselves

can be generated from some d-dimensional distribution: this could be each

component chosen independently, but there are other possibilities as well. We

now say that i ∼ j with probability f(Xi •Xj) for some fixed, and carefully

chosen, function f .
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This is a general definition, which generalizes several of the definitions

above:

Erdős-Rényi graphs: generalized because if we take, for every vertex v,

Xv = x = (x, x, . . . x) where x • x = p, and f(x) = x, a moment’s thought

will show that we recover the G(n, p) model.

Random intersection graphs with each Sv ⊆ {1, 2, . . . k}: because, if we

take Xi to be the vector whose jth component is 1 if j ∈ Sv, and whose

jth component is 0 otherwise, then the property that two vertices v and w

are adjacent if and only if Sv ∩ Sw 6= ∅ can be written as the property that

v ∼ w with probability f(Xv•Xw), where f(t) is 0 if t = 0 and is 1 otherwise.

(Note: Observant readers will have observed that this is only a general-

ization, in the strict sense, of the random intersection graphs in the case

when each Sv ⊆ {1, 2 . . . k}, whereas of course to get intersection graphs to

generalize interval graphs we have to have the Sv being infinite sets, namely

certain intervals of the real line. However it is certainly a generalization in

spirit of the idea).

An attractive feature of this very general definition is that we can com-

bine random and non-random ideas in giving the definitions of the vectors,

according to the situation we are working in.

Scheinerman [10] starts by giving some results for the case when d = 1

and the ‘vectors’ (really, in this case, scalars, so we will denote them by the

lower case letter) xi are uniformly distributed on [0, 1]. He takes f(t) = tr
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for some fixed r: these assumptions will remain in force throughout this

paragraph. Now we have

P [i ∼ j] = f(xi • xj) =
∫ 1

0

∫ 1

0
(xixj)

rdxidxj =
1

(1 + r)2

since this is the average, over all possible values of xi and xj , of f(xixj). This

is, just by simple integrations,

∫ 1

xi=0
xr
idxi

∫ 1

xj=0
xr
jdxj

= [
xr+1
i

r + 1
]1xi=0[

xr+1
i

r + 1
]1xj=0

=
(

1

r + 1
− 0

)(

1

r + 1
− 0

)

=
1

(1 + r)2

Thus, the expected number of edges is n(n−1)
2

(1 + r)−2, since it is the ex-

pectation of a sum of n(n − 1)/2 indicator variables of whether each edge

is present, each indicator having expectation 1/(1 + r)2. He also presents a

short calculation, the details of which we omit, showing that if a ∼ b and

b ∼ c, then conditional on this information P (a ∼ c) is larger than it would

be unconditionally: that is, there is a ‘clustering’effect. He believes, but

cannot at present prove, that the degrees in the graph follow a ‘power law’:

that is, letting N(d) denote the number of vertices of degree d, a plot of

log(Nd) against log(d) should be a roughly straight line with negative gra-

dient. Scheinerman observes that various large networks arising in real life

have been observed to have this property (at least roughly). He further ob-
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tains that the expected number of isolated vertices is Crn
(r−1)/r for a suitable

constant Cr > 0. In particular, these graphs are not connected: however,

they do have a very large component and a few isolated vertices. Further

they have diameter at most 6. (The diameter of a graph is the worst case of

the distance between two points in it).

Moreover, Scheinerman [10] introduces the ‘inverse problem’. Given a

graph on a specific set of vertices, which vectors are more suitable to model

his graph? An obvious approach is to say that the best choice of Xs are

those which maximize the likelihood function. This is doable in dimension

1, though in higher dimensions it becomes very unpleasant fairly rapidly.

He thus suggests an alternative approach based on matrix theory, the Gram

Matrix Approach. In detail: given G1, G2 . . . Gm let A = 1
m

∑m
j=1A(Gj)

ai,j ≈ P [i ∼ j] = xixj(i 6= j)

X = [x1, x2 . . . , xn]

A = X tX

6.3 Prisner’s definition

In [7], E. Prisner proposes the following question:

‘What other reasonable models, apart from Scheinerman’s, are there for ran-

dom interval graphs? For example, suppose we choose n unit intervals (i.e.

intervals of length 1) which are chosen from the interval [0, m] and are chosen
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uniformly and at random?’

We are not aware of any substantial work on this model.

6.4 Applications of Random Interval Graphs

The obvious applicability of random interval graphs is to scheduling and

assignment problems. For example, suppose each of n people in an office has

an interval each day when he is free for a meeting. The exact size of this

interval, and its position in the period of the working day (late, or early, or

whatever) will vary from day to day, so can be modeled as random. Then,

if we have a random interval graph whose vertices are the n individuals and

where two vertices (individuals) are adjacent if and only if their random

intervals intersect, then we are saying that these two individuals will have

a chance to meet on that day: and, for example, the largest clique in the

random interval graph will be the largest number of people who can all

meet. Similarly, the largest independent set will be the largest set of people,

no two of whom can meet. Of course, the assumption that the intervals are

uniformly distributed over the working day is probably not very realistic:

for example, most people will be unavailable for some time over lunch, and

in practice they will have several time intervals at which they are available,

rather than just one. (‘I am available between 9.00 and 10.00, and between

2.00 and 3.00’). However it is a reasonable first model.

Similarly, if we have a series of jobs to carry out in a factory. Suppose for

example we are making a car or similar. Various tasks - say, n of them - have

to be carried out during the production process (for example: painting the
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outside, installing the radio, checking the braking system, etc.), and usually

we cannot be doing more than one of these things at once. There will be

time intervals during a working day in which the people qualified to carry

out the various tasks (brake testing, painting etc.) are available: again, these

will be hard to predict in advance, so can be modeled as random. Again, we

will then want to have a large independent set in the graph, as that means

we have the corresponding time intervals are disjoint, so there are no clashes.

That is, by doing one of the jobs in its time interval, we are not reducing our

chance of getting one of the other jobs done that day. (If the painter and the

radio installer are available in disjoint time intervals, then we know that we

can just get on with doing the painting and this will not reduce our chances

of getting the radio installed that day as well).

Moreover, from my essay, [2] interval graphs are widely used in resource

allocation problems. That is, we want to allocate a fixed amount of assets

in production activity, in order to maximize profit. This is a problem in the

field of combinatorial optimization. Another application of interval graphs is

their usefulness in many problems of this field of discrete Mathematics. An

example is the traveling salesman’s problem. A salesman leaves his home

and he is willing to visit n towns. He then has to consider n! alternative

feasible tours. We want to find the optimal tour, so as to visit each town

only once and to minimize the relevant cost of traveling. Obviously, this is a

challenging problem, as the set of feasible tours is too vast. (For example, if

he has to visit 4 towns, the number of feasible tours is 24. If he has to visit

say 6 towns, then we have to consider 6!=720 different tours!). Consider, to

each town we assign a vertex. Then, two vertices are adjacent if the salesman
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leaves the town and goes to the other. Then, to each vertex let’s assign an

interval. Clearly, if two intervals intersect, there is an edge arising. But, it

is a cost associated to the salesman tour. So, we aim to find the tour having

minimum cost, so all the n towns will be visited. Also interval graphs have

many other applications, as we shall see.

The textbook by McKee and McMorris [5] in Chapter 3 contains refer-

ences to various applications of interval graphs in Biology, Psychology and

Computing. In Biology, for example, from [5] a prominent application of In-

terval Graphs is the physical mapping of DNA. From a DNA sequence, some

fragments, which are called clones are obtained and the goal is to reconstruct

the placement of the clones: that is, where they are on the DNA string. Thus

a clone is an interval of a line of DNA.

To turn this into a problem about random interval graphs, we assign to

each clone a vertex. Two different clones are adjacent if and only if their

corresponding intervals intersect. This clearly gives an interval graph.

Also, interval graphs are used in social sciences. For example, in Psychol-

ogy, [5] they are widely used as tools, measuring notions, which determine

different psychological theories. (Most theory of measurement is based on

physical science: however, in the social sciences, different theories may be

more appropriate).

An example from [5] is that a person has a set A of alternatives solutions

to choose. For simplicity, suppose that elements of A are different makes

of cars. Our person has preferences among the the different makes of cars:

for example, he might prefer stylish cars or cars having low cost of service,

etc). Then, a real-valued function f on the set A, such that for a, b ∈ A,
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he prefers alternative a than b when f(a) > f(b) + δ, where δ is a positive

constant representing a threshold - a ‘just noticeable’ difference between the

two kinds of cars. Then, we define a binary relation R on A to be an interval

order on the set A of alternatives, if it satisfies the two following axioms.

(We are thinking here of aRb as meaning that a is preferable to b).

Axiom 1: For all a ∈ A, not aRa

Axiom 2: For all a, b, c, d ∈ A, if aRb and cRd, then either aRd or cRb

The motivation is that a car is not preferable to itself (clearly), which gives

Axiom 1. Similarly, if a is preferable to b and c preferable to d, it seems

reasonable that at least one of a is preferable to d and c is preferable to c

should hold.

Furthermore, interval graphs are used in Computing. They are used in

scheduling problems. From [5] we have an interesting application of this

class of problems. Suppose that we want to find an arrangement, in order to

construct a timetable for different courses in a University. We have a fixed

number of rooms available for teaching purposes and we know the number

of teachers. We aim to construct an efficient timetable, so to be no over-

lap between teaching hours for every lesson. We assign various courses to

vertices. Then, two vertices are adjacent, when the corresponding intervals

intersect. When this is the case, we have two different courses at the same

hour. Thus, we want to find the minimum number of rooms needed, in or-

der all the courses to be taught. In "graph language" we want to find the

chromatic number. That is the minimum number of colors needed, so two
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connected vertices have different colors, [5]. Moreover, in problems related

to information retrieval, we use interval graphs. Suppose that Φ denotes set

of files, which contain information and Q is the set of queries for retrieving

information. Then, Φ and Q satisfy the consecutive retrieval property if the

files relevant to each query can be stored consecutively in a linear form, so not

to be overlap, [5]. We easily deduce from the above the extensive use of inter-

val graphs in various, different sciences, from areas of applied Mathematics

to social sciences, as Psychology.
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7 Conclusions: areas for further work

In this project, we examined Random Interval Graphs, emphasizing Schein-

erman’s definition. We presented some results on the number of edges and

then considered the degrees of vertices in the graphs, observing that these

are much more spread out that in the alternative Erdős-Rényi model of ran-

dom graphs: for example, the maximum degree of a random interval graph

is very likely to be close to n − 1, and indeed is equal to n − 1 with prob-

ability 2/3. We then considered cliques, independent sets and chromatic

numbers of random interval graphs, obtaining asymptotic estimates of each

of the quantities involved and comparing their values with the values in the

Erdős-Rényi model. Finally, we wrote about other ways of defining Random

Interval Graphs, such as Scheinerman’s random dot product graphs, empha-

sizing the 1-dimensional case of Scheinerman’s theory. Finally we outlined

some areas of application.

There are some questions left unanswered by our work. For example, it

would be desirable to investigate measures of connectivity (such as vertex-

connectivity or edge-connectivity) in random interval graphs. Also: what is

the diameter of a random interval graph? The obvious guess would be that

it is 2, since if we have two vertices v and w, one would hope that one of

the many vertices of high degree (close to n− 1) will be adjacent to both of

them. Certainly the probability that the diameter is 2 is at least 2/3, since if

there is a vertex of degree n− 1 is till be adjacent to both v and w (if either

v or w is a vertex of degree n − 1, then it is clearly adjacent to the other).

The result that the probability is at least 2/3 is now just a consequence of
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the fact that with probability 2/3 there is a vertex of degree n− 1. However

the guess that the diameter of a random interval graph is 2 with probability

tending to 1 does not seem to follow immediately from what we have proven,

because it is not quite clear that we can avoid the situation where there are

two vertices v and w of low degree and all the vertices of high degree fail to

be adjacent to at least one of v and w.

Another topic is the existence of Hamilton cycles in a random interval

graph. Scheinerman ([9]) shows, by a rather long and difficult argument,

that with probability tending to 1, a random interval graph is Hamiltonian:

that is, it has a cycle which passes through every vertex of the graph. A

G(n, 2/3) is also Hamiltonian: indeed G(n, 2/3) has the stronger property

that it has (with probability tending to 1) ⌊δ(G)/2⌋ edge-disjoint Hamilton

cycles: we refer to [1] for a proof of this fact. (Two cycles are edge-disjoint if

and only if there is no edge which is in both cycles). Note that ⌊δ(G)/2⌋ is

the largest number of edge disjoint Hamilton cycles we could have in a graph

G, because each Hamilton cycle will use up two edges in passing through a

vertex v of degree δ(G). Is it true that a random interval graph has ⌊δ(G)/2⌋

edge-disjoint Hamilton cycles? Again this does not seem to be obvious.

We hope that we have given a reasonable material of random interval

graphs, some interesting results on them, and some ideas of how they might

be useful.
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