
A Model for Automatic Extraction

of Slowdowns From Traffic Sensor Data

Silviu Paun, Udo Kruschwitz, and Massimo Poesio

School of Computer Science and Electronic Engineering

University of Essex

Colchester, UK

{spaun, udo, poesio}@essex.ac.uk

Abstract – The ability to identify slowdowns from a stream of

traffic sensor readings in an automatic fashion is a core building

block for any application which incorporates traffic behaviour

into its analysis process. The methods proposed in this paper

treat slowdowns as valley-shaped data sequences that are found

below a normal distribution interval. This paper proposes a

model for slowdown identification and partitioning across

multiple periods of time and it aims to serve as a first layer of

knowledge about the traffic environment. The model can be used

to extract the regularities from a set of events of interest with

recurring behaviour and to assert the consistency of the extracted

patterns. The proposed methods are evaluated using real data

collected from highway traffic sensors.

Keywords—slowdown detection; rush hour detection; traffic

sensors; activity monitoring; time series

I. INTRODUCTION

Intelligent Transportation Systems (ITS) make use of
sensor data embedded into the environment and into the objects
we interact with in order to enhance the transport sector and its
direct interaction with people, in a Smart Cities context. Sensor
data is more than often available in a real time streaming
context and under a continuous-type of model which imposes
challenges but in the same time allows the usage of a wide
range of knowledge extraction techniques which can benefit
from both the historical and the real time aspects of the data.
Sensor streams are also one of the sources that fuel the large
dimensions (3Vs – volume, velocity, veracity) of Big Data.

There is a large and heterogeneous collection of sensors
encompassed into the Internet of Things dataset. From that
collection, this work focuses on sensors that provide raw data
or information which has utility in the traffic analytics. The
sensor readings offer the speed values recorded at road
segment level - this type of data is known as aggregate data [1]
due to the fact that a sensor reading does not characterize an
individual object but rather a collection of objects; in this case
the sensor records the average speed of all passing vehicles in a
given time window which defines its sampling rate.

The main contribution of this work is the extraction of
slowdowns from the sensor streams associated with a
collection of road segments. The extracted slowdowns are
further clustered to identify their regularity in the traffic
behaviour. The slowdowns are treated by the proposed system

as valleys in the distribution of the data and the clustering
algorithm looks to group together the events which share a
similar duration and shape across the sensor streams. The data
model introduced in this paper encompasses as well a
methodology to slice the sensor stream into appropriate
temporal windows to favour pattern related operations such as
detection, verification or prediction and a system of metrics
which allows to closely control the way the data is grouped to
satisfy a variety of data environments. A pattern is detected at
temporal window level, it is verified by assessing the historical
data and then can be further used for predictions of future
events if its consistency score calculated at the verification
stage is satisfactory. An example of pattern with a high
probability of detection due to its regularity is represented by
rush hours, but the same methods could be applied to detect
whether there are any recurring accidents, road blocks or other
types of congestions which reduce the speed values.

The model proposed in this paper can be utilized in a
variety of contexts from multiple fields which require
monitoring the behaviour of a variable of interest over time. If
the variable of interest is vehicle speed, one can use this
approach to extract not valleys but peaks from a traffic sensor
stream by looking at the data that is situated above the normal
distribution interval. The same approach can be used when
analysing social media feeds, where the variable of interest
would be the number of posts – this would allow to identify the
topics of discussion that are popular or to run query expansion
algorithms based on timespan co-occurrence techniques [2] or
burst-based pseudo-relevance methods [3].

The remainder of this paper is organized as follows. Section
II details the proposed model, presenting the relevant
mathematical notations together with the algorithms used to
detect the slowdowns and group them as recurring events with
similar characteristics. In Section III the experimental results
are presented and discussed, while in Section IV the related
work is reviewed. The conclusions are offered in Section V.

II. PROPOSED METHODOLOGY

The data provided by the sensor readings is in most cases
accompanied by timestamps or by time windows. The
important observation here is that sensor data has a temporal
component – this observation introduces an area known as time
series analysis. The utility of time series analysis can be

This work has been funded by an EPSRC CASE award studentship with
BT plc, whose financial and technical support we gratefully acknowledge.

ISBN: 978-1-902560-27-4 © 2014 PGNet

observed when trying to understand the behaviour of certain
variables of interest over time. The usual analysis involves
univariate time series – that means having under observation
only one variable. In the context of the work presented in this
paper the variable of interest is speed and the goal is to identify
slowdowns.

A. Data Representation

The representation of the data has a big impact on the
overall quality of the proposed model and on its applicability in
other areas. Although the representation is meant to be generic
in order to be able to serve multiple activity-monitoring
purposes, the discussion in this section lowers the boundaries
of abstraction down to our specific problem of slowdown
detection from traffic sensor streams. The description of the
data representation is going to be made in a bottom-up manner,
from the most fundamental element – a sensor reading – to the
actual input that goes into the data collection point of the
framework.

A sensor reading is represented in the model as a pair of
timestamp (t) and speed (s) – a speed point (SP):

 SP = (t, s) where SP.1 = t and SP.2 = s (1)

A sensor embedded into a road link sends multiple speed
points to a data collection service. These speed points are then
placed into appropriate collections based on temporal
requirements (e.g.: temporal windows of 24 hours):

 RLD (Ts, Te) = {SP1, SP2, …, SPn} (2)

where SP1.1 = Ts, SPn.1 = Te, SPi.1 < SPi+1.1

Equation (2) shows a subset of the entire road link data
(RLD) mined during a time window (Ts, Te) where the
encompassed speed points are ordered by time. In our case,
both the start time (Ts) and the end time (Te) elements
correspond to the first (0:00) and the last hour (24:00) of a
daily temporal window. The entire road link data is represented
as a collection of such subsets:

RLD = {RLD(T1, T2), RLD(T2, T3), …, RLD(Tn-1, Tn)} (3)

where T2-T1 = T3-T2 = … = Tn-Tn-1 = T

Equation (3) illustrates how the data related to a road link is
represented as a collection of speed points mined during
equally sized time windows. The size of the time window (T) is
selected based on the temporal requirements of the application
(e.g.: days, weeks, months, etc.) – in this particular context T is
equal to an entire day as we are trying to identify slowdowns
which in most cases (e.g.: rush hours) manifest the same
behaviour across daily windows (e.g.: it can be certain days of
the week, it can be weekdays vs. weekends, etc.).

Now that the data representation layer has been properly
introduced it can be said that the framework proposed in this
paper takes as input (I) a collection of road link data that comes
from multiple road links of interest:

 I = {RLD1, RLD2, …, RLDn} (4)

B. Slowdown Identification

Slowdowns are areas situated below a normal distribution
interval in a sensor stream. One can look at slowdowns as
valleys in a time series data – based on that observation,
slowdowns and valleys will be used in this document
interchangeably. To simplify the explanations, this section will
restrict all the discussions related to the extraction of valleys to
a single road link and from a single RLD(Ts, Te). Based on (3)
and (4) introduced in the previous section one can easily see
how to extend the logic from a subset of the road link data to
the entire data and from a single road link to multiple road
links.

The fundamental observation that dictates the way valleys
are extracted from sensor data comes from the behaviour of the
traffic itself: most of the time sensors emit speed points that fall
into a normal distribution interval, but when a slowdown takes
place lower speeds are recorded only until the event that caused
the slowdown ends – after that the speed points go back up to
the regular behaviour. Based on that observation the selection
of the normal distribution interval becomes straightforward:

 [x – σ, x + σ] (5)

where x is the arithmetic mean and σ is the standard
deviation calculated given the finite set of speed points and the
just mentioned mean.

Fig. 1 shows two plotted graphs, both illustrating the same
collection of speed points captured over a period of 24 hours
from a randomly selected road link. The important thing to
notice here is the area between the green lines from the bottom
graph representing the normal distribution interval – one can
clearly see how the data points fit inside the interval and how a
candidate valley looks like.

Figure 1: The recorded speed values for a given road link during a 24-
hours period.

Expressed in a formal manner, a valley is modelled as
follows:

 V = {SP1, SP2, …, SPn} (6)

where SPi.2 < x – σ, SPn.1 – SP1.1 > t

Equation (6) says that a valley (V) is a sequence of speed
points with speeds not bigger than a dynamic threshold and a
total duration not smaller than a fixed time value. Based on this
formal definition, Fig. 2 illustrates an elegant solution to
extract valleys of any duration from a stream of speed points
with linear complexity. The idea is to extract those sequences
of points that are situated below the threshold line. The
algorithm also adds the appropriate projection or intersection
points at the left and right sides of a candidate valley to make
sure the entire shape below the threshold line is captured. The
way to achieve all that is to start adding subsequent under-the-
threshold-line points into a valley collection until you find a
point that breaks the sequence (is situated above the line) –
when that happens you simply add the discovered
valley/sequence into the a discovered-valleys collection and
create a new empty valley. Repeat the logic until the entire
time series has been processed.

V = empty valley
Vs = empty collection of valleys
Vthreshold = x – σ
for(SPi in RLD(Ts, Te)) {
 if(SPi.2 < Vthreshold) {
 if(V empty) {
 if(SPi-1 exists) //add intersection point
 V U {new SP((Vthreshold-SPi-1.2)*
 (SPi-1.1-SPi.1)/
 (SPi-1.2-SPi.2) + SPi-1.1,
 Vthreshold)}
 else //add projection point
 V U {new SP(SPi.1, Vthreshold)}
 }
 V U {SPi}
 if(SPi.1 == Te) {
 V U {new SP(SPi.1, Vthreshold)} //adding projection point
 Vs U {V}
 }
 }
 else {
 if(V not empty)
 if(SPi-1∈V) { //add intersection point
 V U {new SP((Vthreshold-SPi-1.2)*
 (SPi-1.1-SPi.1)/
 (SPi-1.2-SPi.2) + SPi-1.1,
 Vthreshold)}
 Vs U {V}
 V = new empty valley
 }
 }
}
return Vs

Figure 2: The slowdown extraction algorithm.

C. Clustering Similar Valleys

In the previous section it was shown how to extract valleys
from the data of a given road link. In this section we are
interested in building a model that groups together the
extracted valleys which share similar characteristics in terms of
location, duration and shape. The grouping required for this job

is clustering with automatic k (the number of clusters)
inference.

In order to be able to cluster the valleys a similarity metric
needs to be introduced. Valleys are stored in the system as
polygon-shapes and their similarity should be assessed by the
degree of overlapping across temporal windows. Based on that
observation, a mathematically strict similarity metric for two
valleys is formally presented as follows:

 Stemp(Vi, Vj) = w*SD(Vi, Vj) + (1-w)*SS(Vi,Vj) (7)

Equation (7) says that the strict similarity between two
valleys (Stemp) is the sum between the similarity in terms of
duration (SD) and the similarity in terms of shape (SS). There is
also a weighting factor (w) involved which allows the model to
control how much the algorithms should rely on duration and
shape when calculating the similarity score. The shape-based
metric takes into consideration both the (X, Y) axis while the
duration-based metric treats the slowdowns as one-dimensional
lines. Shape similarity is important as it will prevent, if desired,
valleys with small heights to be clustered together with valleys
with large heights. In order to assess the degree of overlapping
the valleys need to be translated beforehand into the same (Ts,
Te) interval. SD is calculated by dividing the intersection of the
lines created by the start and end points of the valleys to their
union while SS is obtained by dividing the area of the polygon
resulted by intersecting the valley shapes to the area of the
polygon resulted by the union of those same shapes. In set
theory, the operation of dividing the intersection of two sets to
their union is known as the Jaccard index. The result of our
similarity metric introduced above is a number between 0 and 1
with 0 meaning there is no overlap between the shapes and 1
meaning there is a perfect overlap. More than often the valleys
under analysis will have poor overlapping score – this
motivates the need to introduce a degree of relaxation into the
metric:

(8)

where Sw ∈ [0, 1]

Equation (8) adds a similarity weight (Sw) to the
overlapping score in order to allow valleys with strong and less
strong similarities to be clustered together. The new similarity
metric (S) has a big impact on the way the clusters are built and
it is of great importance for the flexibility of this model under
generic contexts. To clearly explain the properties of the
equation, a use case scenario example is introduced. Let’s say
we have two pairs of valleys with qualities Q1 and Q2
calculated using Stemp, where Q2>Q1. If Q1, Q2 > 1-Sw, then
Q1=Q2=1 and the clustering algorithm will treat the situation as
if the valleys had a perfect fit and they will end up in the same
cluster. Another very important aspect is represented by the
fact that if Q1, Q2 ≤ 1-Sw then the rate between Q2 and Q1 will
no longer be Q2/Q1 but (Q2+Sw)/(Q1+Sw) which produces a
significant impact on the output of a quality aggregator. To
illustrate that let’s say that Q1=0.1, Q2=0.4 and Sw=0.2. The
Q2/Q1 rate is 4 while the (Q2+Sw)/(Q1+Sw) rate is 2 – this

clearly shows that the two qualities are much closer to each
other after Sw is added which means the valleys they represent
are more likely to be clustered now, after the weight addition,
than before.

Having defined a similarity metric for valleys allows us to
introduce a metric to assess the quality of a cluster:

 (9)

where nv is the total number of valleys from all clusters

Equation (9) shows that the quality of a cluster (Qck) is the
average of the similarities of all the pairs of valleys from that
cluster weighted in such a way to favour the clusters with more
elements. If the weighting component would not exist, in a use
case scenario, given five valleys and two clusters C1, C2 with
Qc1=1, |C1|=2 and Qc2=1, |C2|=3, the system will treat both
clusters with equal importance. By taking the weighting
component into consideration, C1 would have Qc1=2/5 and C2
would have Qc2=3/5 and the system will recognize C2 as a
better cluster. This is important because the weight addition
aids the creation of clusters with multiple but similar
slowdowns and avoids outputs such as “best-fit” clusters of
two elements only.

Knowing how to calculate the quality of a single cluster
allows us to move even further and define a quality for the
entire set of clusters:

 (10)

where nc is the number of clusters in a given iteration and
Gw is a weight for the aggregation rate.

Equation (10) says that the quality for all clusters (QG)
should not be aggregated under a traditional average rate (1/nc)
but under a 1/(Gw+nc) rate. The average rate is not suitable
because it has a drastic impact on the way it increases as the
number of clusters decreases; therefore, it favours the system to
produce fewer clusters than desired and to treat the cluster
qualities between iterations with less importance. For example,
having three clusters would produce an average aggregation
rate of 1/3; having two clusters the average aggregation rate
will be 1/2 which will result in a global score at least 1.5 times
bigger regardless of the values of the clusters’ qualities.
Adding a large Gw into the equation will make sure the
aggregation manifests a smooth increasing rate as the number
of clusters decreases.

The reason why both the local and the global cluster
qualities were introduced is that they will be used by the
clustering algorithm to select a proper value for k. Fig. 3 shows
in a pseudocode style how the valleys are clustered together
based on similarity. The clustering algorithm proposed is
similar to a hierarchical/bottom-up clustering in the sense that
each valley starts as part of a separate cluster and with each
iteration a merger occurs. The algorithm decides each iteration
to merge those two clusters that produce the maximum QG. If

there is no possible merger during an iteration that produces a
bigger QG value then the algorithm stops and outputs the set of
clusters obtained until that step.

The set of clusters returned by the algorithm provides many
useful insights about the slowdowns. The quality measures can
be used to assess the consistency of a slowdown in the
historical data. On high quality clusters one can use a
frequency-based technique to extract the temporal regularities
of the slowdowns and create rules such as the hours in the day
and the days in the week when rush hours occur for each road
link.

Cs = empty collection of clusters
Vs = collection of valleys
for(Vi:Vs)
 Cs U {new C(Vi)}

clusterFlag = true
Qmax = 0
betterCs = collection of empty clusters
while(clusterFlag) {
 clusterFlag = false
 for(i=0; i<|Cs|-1;i++) {
 for(j=1;j<|Cs|;j++) {
 tempCs = {new C(Ci, Cj)} U (Cs\{Ci,Cj})
 QG = calculateGlobalQuality(tempCs)
 if(QG > Qmax) {
 Qmax = QG
 betterCs = tempCs
 clusterFlag = true
 }
 }
 }
 if(clusterFlag)
 Cs = betterCs
}
return Cs

Figure 3: The slowdown clustering algorithm.

III. EVALUATION

The evaluation of the proposed methods consists in an
illustration of their behaviour in a real data environment. The
data used in the experiments was collected in real time from
traffic sensors installed on various UK highways over a period
of 10 days. The evaluation regards two aspects of our work
which are evaluated in separate phases: the slowdown detection
method and the clustering algorithm.

A. Evaluation of the Slowdown Detection Method

It was described in a previous section that slowdowns are
valley-shaped sequences of speed points which are situated
below a normal distribution interval [x – σ, x + σ]. The role
of this evaluation section is to illustrate why that specific
interval was chosen.

For this experiment the data from 117 road link sensors was
considered across a period of time of 10 days – more than
1,300,000 speed points were collected in that period using a
polling technique fired every minute. After a filtering layer the
data was reduced to a total of approximately 30,000 speed

points ready for analysis. The filtering stage had a drastic
impact due to the fact that all the points inside the sampling
rate interval (quite constant, in the 10 minutes range) were
discarded and that each daily road link data had to contain at
least 100 recordings in order to be qualified as valid. Fig. 4
illustrates the mean and the standard deviation for the daily
road link data as reported by the 117 sensors. One can clearly
see from the graphic by looking at the standard deviation
distribution that the assumption there is little variation in the
daily data was correct – the mean of the standard deviations
recorded is 2.87 while the standard deviation is 1.4; the small
variation in the standard deviation distribution is kept even if
the means of the recorded speed values vary from day to day
and from road link to road link. This observation confirms that
the [x – σ, x + σ] range is a good choice to represent the
normal distribution interval. Please note that the little variation
formulation is appropriate here in the traffic data environment
based on the value of the standard deviation but it might not be
appropriate in other more sensitive contexts. More than that, a
smaller variation of the standard deviation distribution could be
obtained if one would not consider the cases in which the road
link sensors record no speed at all due to the lack of traffic.

Figure 4: The mean and the standard deviation of a collection of daily
recorded speed values from multiple road links over a period of 10 days.

B. Evaluation of the Clustering Algorithm

In this section the output of the clustering algorithm is
examined in order to illustrate its ability to group the
slowdowns based on characteristics such as shape, duration and
location.

For this experiment the data from a single road link
recorded during a 10 days period was considered. More than
14,000 sensor recordings were filtered and reduced to
approximately 760 speed points based on the filtering process
described in the previous section. From that set of data points a
total of 11 valleys were extracted by the slowdown
identification process and taken as the input of the clustering
algorithm. The goal for this experiment was to identify the
regularities (e.g.: rush hours) in the slowdowns of a given road
link.

Fig. 5 illustrates in the top graph the valleys detected during
the 10 days period while in the bottom graph it shows how the
extracted valleys were clustered. Each rectangle represents the
average characteristics of the valleys from a cluster: position,

area and duration. The proposed system automatically builds
an R template with all the results for easy visualization. Since
the goal was to identify the consistency in the daily
slowdowns, the shape of the valleys was not considered (w=1).
The other weighting parameters used in the experiment were
Sw=0.2 and Gw=3*nv. The parameter selection is performed
based on the desired outcome. One can easily assess how to
control the grouping and similarity by running the algorithm
with different parameter settings. Fig. 5 illustrates only a 12
hour interval due to the fact that in the daily streams used in
this experiment no valleys were detected outside that range.

The clustering algorithm produced a total of 5 clusters: one
with 5 valleys, two with 2 valleys, and two with 1 valley. The
results show a possible pattern based on the number of valleys
recorded in the first mentioned cluster, but the small number of
assessed days/valleys does not allow to draw such conclusions.
Another useful piece of knowledge is that in 4 out of the 10
days of monitoring no valleys were identified.

This type of information about the characteristics of the
slowdowns such as location, duration, shape and regularity in
the daily streams or even about the lack of slowdowns can be
easily exploited in a route-recommendation system as a priori
knowledge for multiple purposes: to speed up the algorithms
by properly skipping the congestion-links or to plan ahead the
route based on congestion regularities.

Figure 5: The input (top) and output (bottom) of the slowdown clustering
algorithm on a collection of 10 days of data mined from a road link sensor.

IV. RELATED WORK

In the field of traffic sensor analysis there is a lot of work
done in correlating different types of sensor information for
pattern extraction purposes [1] [4] [5] [6] [7]. There is also an
increased focus on trajectory analysis [8] [9] which is a core
topic for research efforts trying to enhance the existing
Intelligent Transportation Systems.

The problem of extracting slowdowns from a sensor stream
required a unique approach which does not fit the traditional
methods for valley detection. Both MatLab and R have useful
packages to identify the points in time series data which are
situated lower on the y-axis in comparison to their neighbour
regions – so the problem of valley detection in these cases is
reduced to the problem of identifying the local minimums. This
solution does not serve the purpose of this work from multiple
reasons. A traffic slowdown is an area which is situated below
the normal distribution interval of the data and which can have
more than one local minimum point due to the small variations
in the traffic speeds. More than that this work targeted to
capture the entire shape that represents a valley; so a single
point detection method is not suitable.

There is work in the literature related to the problem of
clustering the data in a hierarchical manner until a stopping
condition is met. In traditional hierarchical clustering you start
with each data point in a separate cluster and you try to climb
up the hierarchy by merging pairs of clusters that satisfy best a
similarity metric. This kind of approach is mostly found in
bottom up methods used to segment time series data based on
Piece-wise Linear Representation techniques [10] [11] [12]
[13] [14]. The similarity of this work with the bottom-up
clustering algorithms is only at conceptual level: this work uses
the bottom-up methods as a natural way of comparing the data,
but the actual novel grouping is performed by the proposed
quality metrics.

There is also work done in the area of detecting similar
shapes in time series data [10] [15], but the metric proposed in
this paper is more concerned with assessing the degree of shape
overlapping rather than capturing sensitive shape variations.

There is one research effort from the literature which
follows the idea of identifying frequent activities from a
historical dataset of sensed events [16], but their methods do
not deal with shapes as they treat the events as one-dimensional
lines and there is no need to identify the events in question
beforehand as they have them as a priori information.

Generic links can also be made between this work and
statistical outlier/anomaly detection methods (e.g.: confidence
intervals in Gaussian distributions). The proposed methodology
is modular making it connected with fields where a deviation
from a statistical normality is aimed to be discovered (e.g.:
network traffic analysis).

V. CONCLUSIONS

This paper presented in detail a model for the automatic
extraction and clustering of slowdowns from traffic sensor
streams. The importance and novelty of this work comes from
the two core aspects of the proposed framework: a data
representation which favours the slowdown extraction as
valley-shaped sequences of points that are found below a
normal distribution interval and a bottom-up clustering
algorithm with metrics which allow to closely control the way
the data is grouped in order to satisfy a variety of contexts and
data environments.

REFERENCES

[1] Tanvi Jindal, Prasanna Giridhar, Lu-An Tang, Jun Li, and Jiawei Han.
Spatiotemporal periodical pattern mining in traffic data. In Proceedings
of the 2Nd ACM SIGKDD International Workshop on Urban
Computing, UrbComp ’13, pages 11:1–11:8, New York, NY, USA,
2013. ACM.

[2] Donald Metzler, Congxing Cai, and Eduard Hovy. Structured event
retrieval over microblog archives. In Proceedings of the 2012
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 646–
655. Association for Computational Linguistics, 2012.

[3] Chen Lin, Chun Lin, Jingxuan Li, Dingding Wang, Yang Chen, and Tao
Li. Generating event storylines from microblogs. In Proceedings of the
21st ACM International Conference on Information and Knowledge
Management, CIKM ’12, pages 175–184, New York, NY, USA, 2012.
ACM.

[4] Farnoush Banaei-Kashani, Cyrus Shahabi, and Bei Pan. Discovering
patterns in traffic sensor data. In Proceedings of the 2Nd ACM
SIGSPATIAL International Workshop on GeoStreaming, IWGS ’11,
pages 10–16, New York, NY, USA, 2011. ACM.

[5] Eric Bouillet, Bei Chen, Chris Cooper, Dominik Dahlem, and Olivier
Verscheure. Fusing traffic sensor data for real-time road conditions. In
Proceedings of First International Workshop on Sensing and Big Data
Mining, SENSEMINE’13, pages 8:1–8:6, New York, NY, USA, 2013.
ACM.

[6] Anthony Harrington and Vinny Cahill. Route profiling: Putting context
to work. In Proceedings of the 2004 ACM Symposium on Applied
Computing, SAC ’04, pages 1567–1573, New York, NY, USA, 2004.
ACM.

[7] Wei Liu, Yu Zheng, Sanjay Chawla, Jing Yuan, and Xie Xing.
Discovering spatio-temporal causal interactions in traffic data streams.
In Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’11, pages 1010–1018,
New York, NY, USA, 2011. ACM.

[8] Jing Yuan, Yu Zheng, Chengyang Zhang, Wenlei Xie, Xing Xie,
Guangzhong Sun, and Yan Huang. T-drive: Driving directions based on
taxi trajectories. In Proceedings of the 18th SIGSPATIAL International
Conference on Advances in Geographic Information Systems, GIS ’10,
pages 99–108, New York, NY, USA, 2010. ACM.

[9] Kai Zheng, Yu Zheng, Xing Xie, and Xiaofang Zhou. Reducing
uncertainty of low-sampling-rate trajectories. In Data Engineering
(ICDE), 2012 IEEE 28th International Conference on, pages 1144–1155,
April 2012.

[10] E. Keogh. Fast similarity search in the presence of longitudinal scaling
in time series databases. In Tools with Artificial Intelligence, 1997.
Proceedings., Ninth IEEE International Conference on, pages 578–584,
Nov 1997.

[11] E. Keogh, S. Chu, D. Hart, and M. Pazzani. An online algorithm for
segmenting time series. In Data Mining, 2001. ICDM 2001, Proceedings
IEEE International Conference on, pages 289–296, 2001.

[12] Eamonn J Keogh and Michael J Pazzani. An enhanced representation of
time series which allows fast and accurate classification, clustering and
relevance feedback. In KDD, volume 98, pages 239 – 243, 1998.

[13] Eamonn J Keogh and Padhraic Smyth. A probabilistic approach to fast
pattern matching in time series databases. In KDD, volume 1997, pages
24–30, 1997.

[14] Stephan Spiegel, Julia Gaebler, Andreas Lommatzsch, Ernesto De Luca,
and Sahin Albayrak. Pattern recognition and classification for
multivariate time series. In Proceedings of the Fifth International
Workshop on Knowledge Discovery from Sensor Data, SensorKDD ’11,
pages 34–42, New York, NY, USA, 2011. ACM.

[15] Donald J Berndt and James Clifford. Using dynamic time warping to
find patterns in time series. In KDD workshop, volume 10, pages 359–
370. Seattle, WA, 1994.

[16] Dimitrios Lymberopoulos, Athanasios Bamis, and Andreas Savvides. A
methodology for extracting temporal properties from sensor network
data streams. In Proceedings of the 7th International Conference on
Mobile Systems, Applications, and Services, MobiSys ’09, pages 193–
206, New York, NY, USA, 2009. ACM.

