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Abstract – The ability to identify slowdowns from a stream of 

traffic sensor readings in an automatic fashion is a core building 

block for any application which incorporates traffic behaviour 

into its analysis process. The methods proposed in this paper 

treat slowdowns as valley-shaped data sequences that are found 

below a normal distribution interval. This paper proposes a 

model for slowdown identification and partitioning across 

multiple periods of time and it aims to serve as a first layer of 

knowledge about the traffic environment. The model can be used 

to extract the regularities from a set of events of interest with 

recurring behaviour and to assert the consistency of the extracted 

patterns. The proposed methods are evaluated using real data 

collected from highway traffic sensors. 

Keywords—slowdown detection; rush hour detection; traffic 
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I.  INTRODUCTION 

Intelligent Transportation Systems (ITS) make use of 
sensor data embedded into the environment and into the objects 
we interact with in order to enhance the transport sector and its 
direct interaction with people, in a Smart Cities context. Sensor 
data is more than often available in a real time streaming 
context and under a continuous-type of model which imposes 
challenges but in the same time allows the usage of a wide 
range of knowledge extraction techniques which can benefit 
from both the historical and the real time aspects of the data. 
Sensor streams are also one of the sources that fuel the large 
dimensions (3Vs – volume, velocity, veracity) of Big Data. 

There is a large and heterogeneous collection of sensors 
encompassed into the Internet of Things dataset. From that 
collection, this work focuses on sensors that provide raw data 
or information which has utility in the traffic analytics. The 
sensor readings offer the speed values recorded at road 
segment level - this type of data is known as aggregate data [1] 
due to the fact that a sensor reading does not characterize an 
individual object but rather a collection of objects; in this case 
the sensor records the average speed of all passing vehicles in a 
given time window which defines its sampling rate. 

The main contribution of this work is the extraction of 
slowdowns from the sensor streams associated with a 
collection of road segments. The extracted slowdowns are 
further clustered to identify their regularity in the traffic 
behaviour. The slowdowns are treated by the proposed system 

as valleys in the distribution of the data and the clustering 
algorithm looks to group together the events which share a 
similar duration and shape across the sensor streams. The data 
model introduced in this paper encompasses as well a 
methodology to slice the sensor stream into appropriate 
temporal windows to favour pattern related operations such as 
detection, verification or prediction and a system of metrics 
which allows to closely control the way the data is grouped to 
satisfy a variety of data environments. A pattern is detected at 
temporal window level, it is verified by assessing the historical 
data and then can be further used for predictions of future 
events if its consistency score calculated at the verification 
stage is satisfactory. An example of pattern with a high 
probability of detection due to its regularity is represented by 
rush hours, but the same methods could be applied to detect 
whether there are any recurring accidents, road blocks or other 
types of congestions which reduce the speed values. 

The model proposed in this paper can be utilized in a 
variety of contexts from multiple fields which require 
monitoring the behaviour of a variable of interest over time. If 
the variable of interest is vehicle speed, one can use this 
approach to extract not valleys but peaks from a traffic sensor 
stream by looking at the data that is situated above the normal 
distribution interval. The same approach can be used when 
analysing social media feeds, where the variable of interest 
would be the number of posts – this would allow to identify the 
topics of discussion that are popular or to run query expansion 
algorithms based on timespan co-occurrence techniques [2] or 
burst-based pseudo-relevance methods [3]. 

The remainder of this paper is organized as follows. Section 
II details the proposed model, presenting the relevant 
mathematical notations together with the algorithms used to 
detect the slowdowns and group them as recurring events with 
similar characteristics. In Section III the experimental results 
are presented and discussed, while in Section IV the related 
work is reviewed. The conclusions are offered in Section V. 

II. PROPOSED METHODOLOGY 

The data provided by the sensor readings is in most cases 
accompanied by timestamps or by time windows. The 
important observation here is that sensor data has a temporal 
component – this observation introduces an area known as time 
series analysis. The utility of time series analysis can be 
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observed when trying to understand the behaviour of certain 
variables of interest over time. The usual analysis involves 
univariate time series – that means having under observation 
only one variable. In the context of the work presented in this 
paper the variable of interest is speed and the goal is to identify 
slowdowns. 

A. Data Representation 

The representation of the data has a big impact on the 
overall quality of the proposed model and on its applicability in 
other areas. Although the representation is meant to be generic 
in order to be able to serve multiple activity-monitoring 
purposes, the discussion in this section lowers the boundaries 
of abstraction down to our specific problem of slowdown 
detection from traffic sensor streams. The description of the 
data representation is going to be made in a bottom-up manner, 
from the most fundamental element – a sensor reading – to the 
actual input that goes into the data collection point of the 
framework. 

A sensor reading is represented in the model as a pair of 
timestamp (t) and speed (s) – a speed point (SP): 

                    SP = (t, s) where SP.1 = t and SP.2 = s              (1) 

A sensor embedded into a road link sends multiple speed 
points to a data collection service. These speed points are then 
placed into appropriate collections based on temporal 
requirements (e.g.: temporal windows of 24 hours): 

                       RLD (Ts, Te) = {SP1, SP2, …, SPn}                    (2) 

where SP1.1 = Ts, SPn.1 = Te, SPi.1 < SPi+1.1 

Equation (2) shows a subset of the entire road link data 
(RLD) mined during a time window (Ts, Te) where the 
encompassed speed points are ordered by time. In our case, 
both the start time (Ts) and the end time (Te) elements 
correspond to the first (0:00) and the last hour (24:00) of a 
daily temporal window. The entire road link data is represented 
as a collection of such subsets: 

RLD = {RLD(T1, T2), RLD(T2, T3), …, RLD(Tn-1, Tn)}      (3) 

where T2-T1 = T3-T2 = … = Tn-Tn-1 = T 

Equation (3) illustrates how the data related to a road link is 
represented as a collection of speed points mined during 
equally sized time windows. The size of the time window (T) is 
selected based on the temporal requirements of the application 
(e.g.: days, weeks, months, etc.) – in this particular context T is 
equal to an entire day as we are trying to identify slowdowns 
which in most cases (e.g.: rush hours) manifest the same 
behaviour across daily windows (e.g.: it can be certain days of 
the week, it can be weekdays vs. weekends, etc.). 

Now that the data representation layer has been properly 
introduced it can be said that the framework proposed in this 
paper takes as input (I) a collection of road link data that comes 
from multiple road links of interest: 

                       I = {RLD1, RLD2, …, RLDn}                        (4) 

B. Slowdown Identification 

Slowdowns are areas situated below a normal distribution 
interval in a sensor stream. One can look at slowdowns as 
valleys in a time series data – based on that observation, 
slowdowns and valleys will be used in this document 
interchangeably. To simplify the explanations, this section will 
restrict all the discussions related to the extraction of valleys to 
a single road link and from a single RLD(Ts, Te). Based on (3) 
and (4) introduced in the previous section one can easily see 
how to extend the logic from a subset of the road link data to 
the entire data and from a single road link to multiple road 
links. 

The fundamental observation that dictates the way valleys 
are extracted from sensor data comes from the behaviour of the 
traffic itself: most of the time sensors emit speed points that fall 
into a normal distribution interval, but when a slowdown takes 
place lower speeds are recorded only until the event that caused 
the slowdown ends – after that the speed points go back up to 
the regular behaviour. Based on that observation the selection 
of the normal distribution interval becomes straightforward: 

                              [ x  – σ, x  + σ]                                     (5) 

where x  is the arithmetic mean and σ is the standard 
deviation calculated given the finite set of speed points and the 
just mentioned mean. 

Fig. 1 shows two plotted graphs, both illustrating the same 
collection of speed points captured over a period of 24 hours 
from a randomly selected road link. The important thing to 
notice here is the area between the green lines from the bottom 
graph representing the normal distribution interval – one can 
clearly see how the data points fit inside the interval and how a 
candidate valley looks like. 

 

Figure 1: The recorded speed values for a given road link during a 24-
hours period. 

Expressed in a formal manner, a valley is modelled as 
follows: 

                          V = {SP1, SP2, …, SPn}                            (6) 

where SPi.2 < x  – σ,  SPn.1 – SP1.1 > t 



Equation (6) says that a valley (V) is a sequence of speed 
points with speeds not bigger than a dynamic threshold and a 
total duration not smaller than a fixed time value. Based on this 
formal definition, Fig. 2 illustrates an elegant solution to 
extract valleys of any duration from a stream of speed points 
with linear complexity. The idea is to extract those sequences 
of points that are situated below the threshold line. The 
algorithm also adds the appropriate projection or intersection 
points at the left and right sides of a candidate valley to make 
sure the entire shape below the threshold line is captured. The 
way to achieve all that is to start adding subsequent under-the-
threshold-line points into a valley collection until you find a 
point that breaks the sequence (is situated above the line) – 
when that happens you simply add the discovered 
valley/sequence into the a discovered-valleys collection and 
create a new empty valley. Repeat the logic until the entire 
time series has been processed. 

V = empty valley 
Vs = empty collection of valleys 
Vthreshold = x  – σ 
for(SPi in RLD(Ts, Te)) { 
  if(SPi.2 < Vthreshold) { 
    if(V empty) { 
   if(SPi-1 exists)  //add intersection point 
     V U {new SP((Vthreshold-SPi-1.2)* 
      (SPi-1.1-SPi.1)/ 
      (SPi-1.2-SPi.2) + SPi-1.1, 
                   Vthreshold)} 
   else //add projection point 
  V U {new SP(SPi.1, Vthreshold)} 
 } 
 V U {SPi} 
 if(SPi.1 == Te) { 
   V U {new SP(SPi.1, Vthreshold)} //adding projection point 
   Vs U {V} 
 } 
  } 
  else { 
    if(V not empty) 
   if(SPi-1∈V) { //add intersection point 
     V U {new SP((Vthreshold-SPi-1.2)* 
      (SPi-1.1-SPi.1)/ 
      (SPi-1.2-SPi.2) + SPi-1.1,  
      Vthreshold)} 
          Vs U {V} 
     V = new empty valley 
   } 
  } 
} 
return Vs 

Figure 2: The slowdown extraction algorithm. 

C. Clustering Similar Valleys 

In the previous section it was shown how to extract valleys 
from the data of a given road link. In this section we are 
interested in building a model that groups together the 
extracted valleys which share similar characteristics in terms of 
location, duration and shape. The grouping required for this job 

is clustering with automatic k (the number of clusters) 
inference. 

In order to be able to cluster the valleys a similarity metric 
needs to be introduced. Valleys are stored in the system as 
polygon-shapes and their similarity should be assessed by the 
degree of overlapping across temporal windows. Based on that 
observation, a mathematically strict similarity metric for two 
valleys is formally presented as follows: 

        Stemp(Vi, Vj) = w*SD(Vi, Vj) + (1-w)*SS(Vi,Vj)            (7) 

Equation (7) says that the strict similarity between two 
valleys (Stemp) is the sum between the similarity in terms of 
duration (SD) and the similarity in terms of shape (SS). There is 
also a weighting factor (w) involved which allows the model to 
control how much the algorithms should rely on duration and 
shape when calculating the similarity score. The shape-based 
metric takes into consideration both the (X, Y) axis while the 
duration-based metric treats the slowdowns as one-dimensional 
lines. Shape similarity is important as it will prevent, if desired, 
valleys with small heights to be clustered together with valleys 
with large heights. In order to assess the degree of overlapping 
the valleys need to be translated beforehand into the same (Ts, 
Te) interval. SD is calculated by dividing the intersection of the 
lines created by the start and end points of the valleys to their 
union while SS is obtained by dividing the area of the polygon 
resulted by intersecting the valley shapes to the area of the 
polygon resulted by the union of those same shapes. In set 
theory, the operation of dividing the intersection of two sets to 
their union is known as the Jaccard index. The result of our 
similarity metric introduced above is a number between 0 and 1 
with 0 meaning there is no overlap between the shapes and 1 
meaning there is a perfect overlap. More than often the valleys 
under analysis will have poor overlapping score – this 
motivates the need to introduce a degree of relaxation into the 
metric: 

(8) 

where Sw ∈ [0, 1] 

Equation (8) adds a similarity weight (Sw) to the 
overlapping score in order to allow valleys with strong and less 
strong similarities to be clustered together. The new similarity 
metric (S) has a big impact on the way the clusters are built and 
it is of great importance for the flexibility of this model under 
generic contexts. To clearly explain the properties of the 
equation, a use case scenario example is introduced. Let’s say 
we have two pairs of valleys with qualities Q1 and Q2 
calculated using Stemp, where Q2>Q1. If Q1, Q2 > 1-Sw, then 
Q1=Q2=1 and the clustering algorithm will treat the situation as 
if the valleys had a perfect fit and they will end up in the same 
cluster. Another very important aspect is represented by the 
fact that if Q1, Q2 ≤ 1-Sw then the rate between Q2 and Q1 will 
no longer be Q2/Q1 but (Q2+Sw)/(Q1+Sw) which produces a 
significant impact on the output of a quality aggregator. To 
illustrate that let’s say that Q1=0.1, Q2=0.4 and Sw=0.2. The 
Q2/Q1 rate is 4 while the (Q2+Sw)/(Q1+Sw) rate is 2 – this 



clearly shows that the two qualities are much closer to each 
other after Sw is added which means the valleys they represent 
are more likely to be clustered now, after the weight addition, 
than before. 

Having defined a similarity metric for valleys allows us to 
introduce a metric to assess the quality of a cluster: 

                                      (9) 

where nv is the total number of valleys from all clusters 

Equation (9) shows that the quality of a cluster (Qck) is the 
average of the similarities of all the pairs of valleys from that 
cluster weighted in such a way to favour the clusters with more 
elements. If the weighting component would not exist, in a use 
case scenario, given five valleys and two clusters C1, C2 with 
Qc1=1, |C1|=2 and Qc2=1, |C2|=3, the system will treat both 
clusters with equal importance. By taking the weighting 
component into consideration, C1 would have Qc1=2/5 and C2 
would have Qc2=3/5 and the system will recognize C2 as a 
better cluster. This is important because the weight addition 
aids the creation of clusters with multiple but similar 
slowdowns and avoids outputs such as “best-fit” clusters of 
two elements only. 

Knowing how to calculate the quality of a single cluster 
allows us to move even further and define a quality for the 
entire set of clusters: 

                                                              (10) 

where nc is the number of clusters in a given iteration and 
Gw is a weight for the aggregation rate. 

Equation (10) says that the quality for all clusters (QG) 
should not be aggregated under a traditional average rate (1/nc) 
but under a 1/(Gw+nc) rate. The average rate is not suitable 
because it has a drastic impact on the way it increases as the 
number of clusters decreases; therefore, it favours the system to 
produce fewer clusters than desired and to treat the cluster 
qualities between iterations with less importance. For example, 
having three clusters would produce an average aggregation 
rate of 1/3; having two clusters the average aggregation rate 
will be 1/2 which will result in a global score at least 1.5 times 
bigger regardless of the values of the clusters’ qualities. 
Adding a large Gw into the equation will make sure the 
aggregation manifests a smooth increasing rate as the number 
of clusters decreases. 

The reason why both the local and the global cluster 
qualities were introduced is that they will be used by the 
clustering algorithm to select a proper value for k. Fig. 3 shows 
in a pseudocode style how the valleys are clustered together 
based on similarity. The clustering algorithm proposed is 
similar to a hierarchical/bottom-up clustering in the sense that 
each valley starts as part of a separate cluster and with each 
iteration a merger occurs. The algorithm decides each iteration 
to merge those two clusters that produce the maximum QG. If 

there is no possible merger during an iteration that produces a 
bigger QG value then the algorithm stops and outputs the set of 
clusters obtained until that step. 

The set of clusters returned by the algorithm provides many 
useful insights about the slowdowns. The quality measures can 
be used to assess the consistency of a slowdown in the 
historical data. On high quality clusters one can use a 
frequency-based technique to extract the temporal regularities 
of the slowdowns and create rules such as the hours in the day 
and the days in the week when rush hours occur for each road 
link. 

Cs = empty collection of clusters 
Vs = collection of valleys 
for(Vi:Vs)  
  Cs U {new C(Vi)} 

clusterFlag = true 
Qmax = 0 
betterCs = collection of empty clusters 
while(clusterFlag) { 
    clusterFlag = false 
    for(i=0; i<|Cs|-1;i++) { 
      for(j=1;j<|Cs|;j++) { 
   tempCs = {new C(Ci, Cj)} U (Cs\{Ci,Cj}) 
   QG = calculateGlobalQuality(tempCs) 
   if(QG > Qmax) { 
     Qmax = QG 
     betterCs = tempCs 
     clusterFlag = true 
   } 
 } 
    } 
    if(clusterFlag) 
      Cs = betterCs 
} 
return Cs 

Figure 3: The slowdown clustering algorithm. 

III. EVALUATION 

The evaluation of the proposed methods consists in an 
illustration of their behaviour in a real data environment. The 
data used in the experiments was collected in real time from 
traffic sensors installed on various UK highways over a period 
of 10 days. The evaluation regards two aspects of our work 
which are evaluated in separate phases: the slowdown detection 
method and the clustering algorithm. 

A. Evaluation of the Slowdown Detection Method 

It was described in a previous section that slowdowns are 
valley-shaped sequences of speed points which are situated 
below a normal distribution interval [ x  – σ, x  + σ]. The role 
of this evaluation section is to illustrate why that specific 
interval was chosen. 

For this experiment the data from 117 road link sensors was 
considered across a period of time of 10 days – more than 
1,300,000 speed points were collected in that period using a 
polling technique fired every minute.  After a filtering layer the 
data was reduced to a total of approximately 30,000 speed 



points ready for analysis. The filtering stage had a drastic 
impact due to the fact that all the points inside the sampling 
rate interval (quite constant, in the 10 minutes range) were 
discarded and that each daily road link data had to contain at 
least 100 recordings in order to be qualified as valid. Fig. 4 
illustrates the mean and the standard deviation for the daily 
road link data as reported by the 117 sensors. One can clearly 
see from the graphic by looking at the standard deviation 
distribution that the assumption there is little variation in the 
daily data was correct – the mean of the standard deviations 
recorded is 2.87 while the standard deviation is 1.4; the small 
variation in the standard deviation distribution is kept even if 
the means of the recorded speed values vary from day to day 
and from road link to road link. This observation confirms that 
the [ x  – σ, x  + σ] range is a good choice to represent the 
normal distribution interval. Please note that the little variation 
formulation is appropriate here in the traffic data environment 
based on the value of the standard deviation but it might not be 
appropriate in other more sensitive contexts. More than that, a 
smaller variation of the standard deviation distribution could be 
obtained if one would not consider the cases in which the road 
link sensors record no speed at all due to the lack of traffic. 

 

Figure 4: The mean and the standard deviation of a collection of daily 
recorded speed values from multiple road links over a period of 10 days. 

B. Evaluation of the Clustering Algorithm 

In this section the output of the clustering algorithm is 
examined in order to illustrate its ability to group the 
slowdowns based on characteristics such as shape, duration and 
location. 

For this experiment the data from a single road link 
recorded during a 10 days period was considered. More than 
14,000 sensor recordings were filtered and reduced to 
approximately 760 speed points based on the filtering process 
described in the previous section. From that set of data points a 
total of 11 valleys were extracted by the slowdown 
identification process and taken as the input of the clustering 
algorithm. The goal for this experiment was to identify the 
regularities (e.g.: rush hours) in the slowdowns of a given road 
link. 

Fig. 5 illustrates in the top graph the valleys detected during 
the 10 days period while in the bottom graph it shows how the 
extracted valleys were clustered. Each rectangle represents the 
average characteristics of the valleys from a cluster: position, 

area and duration. The proposed system automatically builds 
an R template with all the results for easy visualization. Since 
the goal was to identify the consistency in the daily 
slowdowns, the shape of the valleys was not considered (w=1). 
The other weighting parameters used in the experiment were 
Sw=0.2 and Gw=3*nv. The parameter selection is performed 
based on the desired outcome. One can easily assess how to 
control the grouping and similarity by running the algorithm 
with different parameter settings. Fig. 5 illustrates only a 12 
hour interval due to the fact that in the daily streams used in 
this experiment no valleys were detected outside that range. 

The clustering algorithm produced a total of 5 clusters: one 
with 5 valleys, two with 2 valleys, and two with 1 valley. The 
results show a possible pattern based on the number of valleys 
recorded in the first mentioned cluster, but the small number of 
assessed days/valleys does not allow to draw such conclusions. 
Another useful piece of knowledge is that in 4 out of the 10 
days of monitoring no valleys were identified. 

This type of information about the characteristics of the 
slowdowns such as location, duration, shape and regularity in 
the daily streams or even about the lack of slowdowns can be 
easily exploited in a route-recommendation system as a priori 
knowledge for multiple purposes: to speed up the algorithms 
by properly skipping the congestion-links or to plan ahead the 
route based on congestion regularities. 

 

Figure 5: The input (top) and output (bottom) of the slowdown clustering 
algorithm on a collection of 10 days of data mined from a road link sensor. 

IV. RELATED WORK 

In the field of traffic sensor analysis there is a lot of work 
done in correlating different types of sensor information for 
pattern extraction purposes [1] [4] [5] [6] [7]. There is also an 
increased focus on trajectory analysis [8] [9] which is a core 
topic for research efforts trying to enhance the existing 
Intelligent Transportation Systems. 



The problem of extracting slowdowns from a sensor stream 
required a unique approach which does not fit the traditional 
methods for valley detection. Both MatLab and R have useful 
packages to identify the points in time series data which are 
situated lower on the y-axis in comparison to their neighbour 
regions – so the problem of valley detection in these cases is 
reduced to the problem of identifying the local minimums. This 
solution does not serve the purpose of this work from multiple 
reasons. A traffic slowdown is an area which is situated below 
the normal distribution interval of the data and which can have 
more than one local minimum point due to the small variations 
in the traffic speeds. More than that this work targeted to 
capture the entire shape that represents a valley; so a single 
point detection method is not suitable. 

There is work in the literature related to the problem of 
clustering the data in a hierarchical manner until a stopping 
condition is met. In traditional hierarchical clustering you start 
with each data point in a separate cluster and you try to climb 
up the hierarchy by merging pairs of clusters that satisfy best a 
similarity metric. This kind of approach is mostly found in 
bottom up methods used to segment time series data based on 
Piece-wise Linear Representation techniques [10] [11] [12] 
[13] [14]. The similarity of this work with the bottom-up 
clustering algorithms is only at conceptual level: this work uses 
the bottom-up methods as a natural way of comparing the data, 
but the actual novel grouping is performed by the proposed 
quality metrics. 

There is also work done in the area of detecting similar 
shapes in time series data [10] [15], but the metric proposed in 
this paper is more concerned with assessing the degree of shape 
overlapping rather than capturing sensitive shape variations. 

There is one research effort from the literature which 
follows the idea of identifying frequent activities from a 
historical dataset of sensed events [16], but their methods do 
not deal with shapes as they treat the events as one-dimensional 
lines and there is no need to identify the events in question 
beforehand as they have them as a priori information. 

Generic links can also be made between this work and 
statistical outlier/anomaly detection methods (e.g.: confidence 
intervals in Gaussian distributions). The proposed methodology 
is modular making it connected with fields where a deviation 
from a statistical normality is aimed to be discovered (e.g.: 
network traffic analysis). 

V. CONCLUSIONS 

This paper presented in detail a model for the automatic 
extraction and clustering of slowdowns from traffic sensor 
streams. The importance and novelty of this work comes from 
the two core aspects of the proposed framework: a data 
representation which favours the slowdown extraction as 
valley-shaped sequences of points that are found below a 
normal distribution interval and a bottom-up clustering 
algorithm with metrics which allow to closely control the way 
the data is grouped in order to satisfy a variety of contexts and 
data environments. 
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