LJ’L--FLI..I CEARAAIAL WL S ATLRALIRARASA e e e o e T 7] ot P) i N T T R e LR N—— - TS S e S

Mapping Constraint Satisfaction Problems to Algorithms
and Heuristics

Edward Tsang
Alvin Kwan
Department of Computer Science
University of Essex
Colchester CO4 3SQ

tel: 0206 872774, 0206 872138
email: edward@essex.ac.uk, alvin@essex.ac.uk

Abstract

Constraint satisfaction has received great attention in recent years and a large number of algo-
rithms have been developed. Unfortunately, from the problem solvers’ point of view, il is very
difficult to see when and how to use these algorithms. This paper points out the need to map
constraint satisfaction problems to constraint satisfaction algorithms and heuristics, and pro-
poses that more research should be done on how to retrieve the most efficient and effective
algorithms and heuristics for a given problem. We claim that such algorithms/heuristics
retrieval systems should also be valuable to guide future research.

1 Introduction

Constraint satisfaction is a general problem which appears in many places, notably scheduling. Because of its
generality and importance, constraint satisfaction has received a great deal of attention in recent years. A (finite)
constraint satisfaction problem (CSP) is a problem which consists of a set of variables, each of which has a finite
domain from which it has to take a value, and a set of constraints restricting the values that the variables can take
simultaneously. We call the assignment of a value to a variable a /label and the simultaneous assignment of values
to a (possibly empty) set of variables a compound label. An assignment of a value to each of the variables satisfy-
ing all the constraints is called a solution tuple. In some problems, all solution tuples need to be found; in some
problems, finding any solution tuple would be good enough. In scheduling, some solution tuples are better than
others, and one may want to find the optimal solution or near-optimal solutions according (0 some optimization
functions.

This paper makes reference to a large number of CSP-solving algorithms and methods. Explaining each of them
in detail is beyond the scope of this paper. For properties of CSPs and algorithms for constraint satisfaction, read-
ers are referred to Tsang [1993].

Currently there is a mismaich between algorithm designers and the problem solvers: algorithm designers have
invented a large number of algorithms and heuristics. But when faced with a particular CSP, a problem solver
may not know which algorithm or heuristic is the most appropriate to use to tackle this problem. The fact that the
efficiency of an algorithm depends on the way in which a CSP is formulated makes the problem solver’s task
even more difficult. After a CSP has been formulated, knowing which algorithm and heuristic to use is quite dif-
ficult. For example, lookahead algorithms invest their effort to propagate constraints in order to reduce the
chance of backtracking. Intelligent backtracking algorithms invest their effort to backtrack to the culprit deci-
sions when backtracking is needed. Given a particular CSP, how should a problem solver choose between these
two groups of algorithms? Is combining the two strategies always better?

This paper advocates that in order to help the problem solvers to solve their problems, research has 1o be done 1n
systematically mapping CSPs to algorithms. Furthermore, we suggest that such a mapping can be done according
to the problem’s characteristics.

December 15, 1993 page 1 of 11

MAPPINg Lors 10U AIZULILHIES & IITULISLILS 3 Pl anty g e B e e B i s e Sl S e S

Space of Problems

(infinite in size)

4
o ~ . ‘.
(Step 1)

CSP formulation
other problem solving (what the variables, domains
techniques, e.g. OR, o o o | and constraints should be?)

financial management, ...
Space of CSP
formulations
(Step 2)
algorithm design
(what algoirthm to use?)
® 00
Space of CSP-
9 solving algorithms
> -

e

(Step 3)
algorithm
implementation
(what language?
what data structure? o0 0
etc.)

Space ol

implementations

Figure 1 — Choice points in problem solving

December 15, 1993 page 2 of 11

Mappig Lors 1o ALZUITLHIS & IITULISLLS i B el e R

2 The Problem Solver’s Task

Given a problem, the problem solver has to search in a vast space: firstly, he/she has to search in the space of
“tools” to solve it, and techniques in constraint satisfaction is only one of the many tools available. Having
decided to use a constraint satisfaction approach, he/she has to decide on how to formulate the problem as a Car,
i e. what the variables and their domains should be and how to choose among the many ways of specifying the
constraints. Then he/she would have to choose an algorithm for tackling the CSP formulated — some algorithms
are more efficient than others for his/her particular CSP. Finally, the algorithm has to be implemented. Figure 1
shows the space searched by the problem solver.

To build an efficient constraint satisfaction system, the problem solver often has to search more than one branch
in the problem solving space. Among the steps shown in figure 1, anticipating which CSP can be solved more
easily is arguably the most difficult one (apart from special cases). So problem solvers quite often have to back-
track to step (1) in figure 1. For example, one frequently asked question is whether adding redundant constraints
(constraint which can be deduced from others) to a particular problem will help to solve it.

Much work in the past involved comparing algorithms against each other on randomly generated CSPs, e.g. Har-
alick & Elliott [1980], Nudel [1982] and Dechter & Pearl [1988]. General CSP-systems normally commit to one
particular algorithm and heuristic (see figure 2). For example CHIP, Charme and PECOS mainly use the forward
checking (FC) control strategy plus the fail-first principle (FFP) heuristic. This combination (call it FC+FFP) 1s
used to tackle all the CSPs given to it as this combination has been found to be effective for many CSPs. How-
ever, like any other combinations of algorithms and heuristics, the efficiency of FC+FFP is dependent on the way
in which the CSP is formulated. Therefore, users of these CSP-systems must learn how to formulate CSPs to suit
their underlying strategy. Unfortunately, searching in the space of problem formulation is difficult by nature; so 1t
is sometimes difficult to judge what is the best way to formulate the given problem as a or,

Space of CSP Space of CSP
formulations —— o formulations — o
8 = >
® 00
.

Space of Space of
CSP-solving CSP-solving

algorithms algorithms

(a) Using one algorithm for all CSPs (b) Mapping CSPs to different algorithms

(all other algorithms are ignored)

Figure 2 — Two different ways to map problems to algorithms (refer to Step (2) in figure 1)

Moreover, by looking at the search space in figure 1, it is quite reasonable 10 question whether committing to a
particular algorithm design (i.e. limiting the number of branches to one in step (2) in figure 1) could miss more
efficient ways of solving a CSP. Indeed, there are quite a large number of algorithms in the literature which gain
their efficiency by exploiting certain characteristics of CSPs. Users of the above mentioned CSP-systems are

likely to miss the opportunity of applying such alg{)rithms.l This will be elaborated later.

December 15, 1993 page 3 of 11

Table 1: Selected constraint satisfaction algorithms and heuristics that they might use

Sub-class

Algorithms

L Abbr.
.

—=

Cnmp-lete algorithms

m

Heuristics for Complete Search Algorithms

Chronological Backtracking BT
General Algorithms [terative Broadening IB
q Branch and Bound B&B
‘ Forward Checking FC
Directional Arc-consistency Lookahead DAC-L
Lookahead Algorithms (LA) Directional Path-}:ﬂnsismncy Lookahead DPC-L
Arc-consistency Lookahead | AC-L
Path-consistency Lookahead PC-L
r_Gﬂ[hEr Informa- r 3 BacklJ llmping 3 :-BJ : F
lslz;lr:li?r:lgemgﬂ- E:E:ifaecnl:ing Graph-based BackJumping ' GBJ .
rithms (GIWS) Algorithms Conflict-based Backjumping [Pros93] CBJ
(INB)
other GIWS FIJ::,arning Algorithms l Le
pa— | Backchecking, Backmarking BC, BM
| Freuder’s Solution Synthesis Algorithm Fr
Solution Synthesis (SS) Seidel’s Invasion Algorithm S1
Essex Algorithms ES
| Examples of Speciallized Algo- Tree Search Algorithm TS
e ey oo Chsiring ithod R
AnalyseLongestPaths, AnalyseShortestPaths ALP, ASP

Failed-first Principle | FEP

Variables Ordering Minimal Width Ordering | MWO
Minimal Bandwidth Ordering ' MBO |
Failed-first Principle FFP

Values Ordering

Stochastic Search Algorithms

Min-conflict Heuristic

—

Hill Climbing (e.g. Heuristic Repair, which uses the HC (e.g. HR)
Min-conflict Heuristic)
- Tabu Search [Glov89, 90] | B
Simulated Annealing [AarKor89][OttVan89] [sa
Genetic Algorithms [Gold89][Davi91 ._GA
| Connectionist Methods (e.g. GENET [WanTsa91] [TsaWan92]) CM

Mappmg CHFS 10 Algﬂnlnms A& RCUTISLICS 2y S AN ANNRNRIR S BB ATA T R ST

3 CSP Solving Algorithms and Heuristics, an Overview

A large number of algorithms and heuristics have been developed for CSP-solving. Table 1 lists a selection of
those which property are reasonably well understood. This list is by no means exhaustive. References for those
which have not been fully explained in Tsang [1993] are given in this paper. Following we shall briefly summa-
rize the algorithms and heuristics in table 1.

Basically complete algorithms for CSP-solving can be classified into general search, lookahead, gather-informa-
tion-while-searching, solution synthesis and algorithms which specialize on CSPs with special characteristics.
Associated to each CSP is a constraint graph, which is a graph with each node representing a variable in the CSP
and each edge between two nodes representing the fact that, in some way, the two variables represented by those
nodes are involved in some common constraints. Many CSP-solving algorithms exploit the topology of the CSP’s
constraint graphs.

The most commonly used general algorithms is probably chronological backtracking (BT), which is an unin-
formed search. lterative broadening (IB) attempts to spread its search effort over different branches in order Lo
increase the chance of finding the first solution more quickly than BT. Branch and Bound (B&B) is a general
algorithm for finding optimal solutions.

Lookahead algorithms attempt to recognize the need for backtracking at an earlier stage by propagating con-
straints as soon as each label is committed to. Algorithms used for propagating constraints are described as prob-
lem reduction algorithms. Although problem reduction alone is normally insufficient for solving a CSP, it 1s
useful as a pre-processing (PP) step and/or in lookahead algorithms. Different lookahead algorithms use different
problem reduction algorithms, and some lookahead algorithms invest more effort in problem reduction than oth-
ers.

Gather-information-while-searching algorithms include intelligent-backtracking algorithms (INB) and algo-
rithms that learn. Better known intelligent backtracking algorithms include BackJumping, Graph-based Back-

Jumping and Conflict-based Backfwnping.z General learning algorithms often incorporate truth maintenance
systems (TMS) [SmiKel88] [DeKIZY].

Solution syntheses algorithms attempt to constructively compose solution tuples instead of searching for them.
This is normally done by considering compound labels for larger and larger sets of variables. To improve effi-
ciency, Freuder's solution synthesis algorithms propagate constraints, Seidel’s invasion algorithm exploit the
topology of the constraint graph, and the Essex algorithms are designed to make use of parallel machine architec-
ture.

Some algorithms attempt to exploit the topology of constraint graphs. By doing so, some of them may be able to
contain the combinatorial explosion problem in CSP-solving. For example, 1f the constraint graph of a CSP forms
a tree. then the tree search algorithm (TS) can be applied to solve it in polynomial time without any need of back-
tracking. If the constraint graph can be partitioned into disconnected sub-graphs, then the CSP can be divided into
sub-problems which can be solved independently, i.e. by applying the divide and conquer (D&C) strategy.

The above control strategies may be helped by heuristics. The most useful type of general heuristics for CSP-
solving are heuristics for ordering the variables and values in a search. Among the variable ordering heuristics,
the minimal width ordering (MWO) heuristic attempts to reduce the need for backtracking; the minimal band-
width ordering (MBO) heuristic attempts to reduce the distance of backtracking when backtracking is needed; the
fail-first principle (FFP) atempts to help the algorithms 1o recognize situations in which backtracking 1s neces-
sary so that backtracking can take place at an carlier state. Value ordering heuristics such as the FFP and the min-
conflict (MC) heuristics attempt to label variables with values which are most likely to succeed first so as to
reduce the chance of backtracking.

Because of the combinatorial explosion problem, many CSPs cannot be solved by complete algorithms. Stochas-
tic search methods sacrifice completeness for tractability. Stochastic search methods are search methods which
contain some elements of randomness, and the search steps available at one state depends on the outcome of pre-
vious steps. Being incomplete, the usefulness of a stochastic search method in CSP-solving is evaluated by its

1. Similar view is held by Minton [1993] although he took on a different research direction. He attempted to learn which heuns-
lics to use when faced with problems with similar characteristics are to be tackled repeatedly.
2. Recently Ginsberg [1993] presented a Dynamic Backtracking Algorithm, which properties are still under investigation.

December 15, 1993 page S of 11

Table 2: Relating CSP characteristics to algorithms and heuristics

Problem specification and character-

ISLICS

Complete algorithms

Heuristics

Algorithms and heuristics

Stochastc
search

[B
B&B

| -

Solution(s)
required

Time
available

Problem
Tightness

Characteris
tics of the
CSP’s pri-
mal graph
(PG)

Other
problem
characteris
tics

any solution required

most of these

BT | LA |INB | SS | FFP

'r

M
B
O

HC | GA |CM

Other

all solutions required

algorithms can

cope with these
problems, with
some exceptons
(see Lext)

M
W
O
v
v

v
vaErn
v

optimal solution
required

not critical

most of these algo-
rithms (except B&B)
have to find all solu-
tions, then compare

objective function

v all the above algo-
rithms are applicable

them according to the

=

variable ordering
heuristics can help
algorithms to find
all solutions; value
ordering is less use-
ful (see text)

v’ useful when
near-optimal
solutions are

acceplable

there 1s less
incentve Lo use
them

Limited ume

limited by the combi-
natorial explosion
probem

v/ good heuristics
may speed up com-
plete algorithms

a3
X most of these algo- | heuristics may help,
real time / near real rithms cannot solve but unlikely to
Lme useful problems of this | speed up complete
category algorithms dramati-
cally
very loosely con- application not different algo-
strained solely determined | rithms may suit
by the tightness of | different types
very ughtly constrained the problem of problems
the PG 1s unconnected D&C
the PG is a tree these character- ’;}S}
ISLICS may or (PP)
: may not be
degrees of nodes vary v Y
fiac it ity exploited by the
significe
- . { above stochas-
PG has small band- X tic methods

width

some variables and val-
ues are more con-
strained than others

v likely
10 be use-

ful

Keys: ¥ means the algorithm/heuristic should be considered; X means it should not (e.g. inapplicable or inef-
fective): blank means the problem specification or characteristic is not a deciding factor; PP = Pre-processing

Mapplﬂg'l;,ars LU AITEULILHLID OC LIVULISLIALD - T T

speed and its successful rate in finding solutions. Some of the best known stochastic search methods are hill
climbing (HC), tabu-search (TB), simulated annealing (SA), genetic algorithms (GA) and connectionist methods
(CM).

4 Relating CSP Characteristics to Algorithms and Heuristics

We believe that whether an algorithm or a heuristic is efficient or not depends on the characteristics of the given
CSP. Therefore, we believe that it is worth finding out the domain of each algorithm and heuristic; i.e. what char-
acteristics must a CSP have if a particular algorithm or heuristic is applicable to it or is efficient in solving it?
Table 2 relates characteristics of the CSPs to algorithms and heuristics. Table 2 suggests that some algorithms are
more useful in certain types of problems. By describing algorithms by their categories, table 2 inevitably over-

generalizes certain observations.> Detailed justifications behind each entry of this table would take up too much
space here. Many of the entries are based on analysis in the literature and analysis by the authors. Following we
shall justify some of the entries.

In general, BT and all LA and INB algorithms are useful for finding first or all solutions. When optimal solutions
are required, these algorithms have to find all solution tuples and compare them according to the objective func-

tion. IB is designed for finding the first solution, and B&B is designed for finding optimal solutions.* Solution
synthesis algorithms in general are only cost effective for finding all solutions.

Most variable ordering heuristics can be used by complete search methods. The motivation behind ordering the
values in a search is to increase the chance of finding a solution at an earlier attempt (by searching the branch
which is most likely to succeed first). When all solutions are required, value ordering heuristics are unlikely to be
useful (except for algorithms that learn). When optimal solutions are required and the objective function is rele-
vant to the number of constraints violated, then MC may help B&B to find tight bounds.

Stochastic search methods are incomplete in nature. Therefore, they are in general not suitable for finding all
solutions. These methods are used for optimization problems in general. When used for finding single solutions
in CSPs, they normally start with on¢ or more sets of compound labels (with one assignment for each variable in
the CSP), and then attempt to reduce the number of constraints being violated by them.

For many real life problems, one has no choice but to give up completeness for speed. This is where stochastc
search methods come in. HC, TB and SA have wide domains of application. Their success relies mainly on
appropriate representations and good hill climbing heuristics. The success of a tabu search also relies on the way
in which the tabu list is manipulated. Since there is no limit on how complicated such manipulation is, tabu
search has the potential to perform very well (though the same can be said about some other general methods
such as production systems). GAs normally require a substantial number of iterations, hence a nontrivial (but
tractable) amount of time to be effective. Therefore it is not suitable for real time or near real time applications. A
GA’s performance depends on the representation and operators that it uses as well as the setting of parameters
such as the population size and mutation rate. By taking advantage of parallel architectures, connectionist
approaches (such as GENET) could possibly provide a means to solve CSPs in real time or near real time, though
its potential is yet to be analysed. All these 1ssues could affect the choice of stochastic search methods under any
particular circumstances.

One of the most important characteristics of a CSP is its tightness, which is only a relative measure. It can be
measured by the number of solutions over the grand product of the domain sizes (which is the total number of
combinations in assigning values to all variables). Although this ratio is normally unknown in reality, it iS possi-
ble to estimate it. When a problem is loosely constrained, it can be solved easily by many algorithms. When a
problem is extremely tightly constrained or over-constrained (i.e. no solution exists), many combinations of
assignments are illegal. This in fact may help LA algorithms to search efficiently (by pruning off large parts of
the search space). SS algorithms are also more suitable for tightly constrained problems because there would be
fewer legal compound labels to store.

Whether INB algorithms are effective or not depends more on the topology of the given CSP than its tightness.

3. In particular, the three “general algorithms™ are quite different in their application domains. A table which gives finer mapping
has been compiled by the authors, and will be reported in the near future.

4. The authors have experimented combining LA algorithms with B&B for CSPs for which optimal solutions are required and
the objective function is to find the assignments to the maximum number of variables without violating any constraints.

December 15, 1993 page 7 of 11

Mapping CSPs (o Algornthms & Heurisucs S Isdnivdl INVERNL VoIVt L J0

The same applies to heuristics for variables ordering. If some variables are constrained by only a small number of
other variables, then INB algorithms are more likely to be useful. If variables can be ordered so that all variables
which constrain each other are closely placed to each other, then effort spent on finding the culprit may not be
justifiable.

As mentioned in the previous section, when a CSP possesses certain characteristics, it could be solved efficiently
by specialized algorithms (such as D&C and TS). Characteristics such as the type of variables, domains and con-
straints, can also be exploited. For simplicity, this has not been elaborated in table 2.

5 The Way Forward

Table 2 defines the domain of individual algorithms and heuristics — where they are applicable or particularly
useful. It only gives an outline of the algorithms and heuristics which could be useful for a CSP with particular
characteristics. A ¢ suggests that the corresponding algorithm or heuristic is relevant 1o a CSP with a particular
characteristic: it does not, however, suggest that this algorithm or heuristic must the most efficient or effective
one for problems with such characteristics. (Whether an algorithm or heuristic 1s efficient or effective or not often
depends on more than one factor.) For example, table 2 does not suggest what we should do with a CSP which 1s
tightly constrained, with small bandwidth in the constraint graph in which the degrees of the nodes vary signifi-
cantly. Should we use FC or INB algorithms? Should we use the MBO or the MWO heuristic?

What we really would like to do is to identify a set of problem characteristics which can be used to index the
problem to relevant algorithms and heuristics. Ideally, one would like to be able to use them to retrieve the most
efficient algorithm(s) and effective heuristic(s) for that particular type of problems. Figure 3 shows an example
decision tree.

dense
tightly density of
constrained constraint
graph
tightness —
first or all _.,-E_'-;§-5;515;:_55';_;;;E;?g?;fgfgigigf-gi;?;E-Eiii:
srilstinas IDOSE!}T __INB
constrained
no. of
solutions
required
(near) real
: time
optimal
solution
limited
time time
available
not
critical

Figure 3 — Example of a crude decision tree (* whether HC is used depends on factors such

as the availability of suitable heuristics for HC; ** whether GA is used depends on the available

of suitable representation and appropriate GA operators for the particular problem:; for sim-
plicity in presentation, additional branches are not created in this decision tree)

December 15, 1993 page 8 of 11

Mapping CHFS 10 AIZOTILS & ACUTISUeS A WAEEEEAWEAR ANMNWLFIL & WS AFATA A NS

The decision tree shown in figure 3 is very simple and is only used to illustrate the form of an indexing system
that one could build. The tree itself represents a plausible but naive indexing strategy. Basically this decision tree
suggests that if the CSP requires the first solution or all solutions to be found, then we should look at its tightness.
If the CSP is relatively tightly constrained, then we should look at the number of edges in the constraint graph. If
the constraint graph is dense, then this decision tree suggests to use the forward checking algorithm plus the fail-
first principle (FC+FFP). A possible justification for this is that constraint propagation is more likely to have
some effect in reducing a CSP with such characteristics. If the number of edges in the constraint graph 1s small,
then it is worth spending some time to analyse the culprit when backtracking is needed, hence the indexing to a
hybrid forward checking and intelligent backtracking algorithm (FC + INB). If the CSP is loosely constrained,
then it is not worth spending time to propagate constraints when a label is committed to, but it is still worth trying
to identify the culprits when backtracking is needed. If an optimal solution is required for the CSP, then this

indexing strategy would look at the tme available.” GENET is built for real time or near real time applications.
GA is more applicable when it is given more time than a few seconds. Both GENET and GA could be replaced

by HC should useful hill climbing strategies or heuristics be available.®

One important fact that we would like to point out is that there is no need to find the optimal decision tree before
it can be used in practice. As long as the tree indexes correctly to efficient algorithms for CSPs characterised
ander each branch, it will help us to solve the problems more efficiently than applying a single algorithm for all
problems (which most existing constraint satisfaction systems do).

For a problem characteristic to qualify for the indexing purpose, it should satisfy the following criteria:

(1) it matters — whether a problem possesses such characteristic or not does matter in what algorithm are
likely to be able to solve this problem efficiently;

(2) it must be reasonably easy to recognize — the marginal gain in being able 10 apply a more efficient algo-
rithm because of the presence of this characteristic must out-weight the effort spent on recognizing it; that
means this characteristic must not be too difficult to recognize.

Based on point 2, any decision tree can be refined to allow more detailed classification of CSPs. However, the
gain in being able to index efficient algorithms must out-weight the cost of indexing. Whether the characteristics
in Table 2 meet these criteria is to be examined but outside the scope of this paper. Besides, the order in which the
characteristics are placed in the decision tree matters. Given a fixed set of characteristics 10 be considered, certain
orderings may lead 1o a tree which allows faster indexing.

A decision tree is also useful for guiding future research: it highlights CSPs for which no existing algorithm 1s
efficient; so new algorithms for CSPs with certain characteristics are worth developed. Besides, any new algo-
rithms or heuristics developed must find their positions in some leaf nodes in some useful decision trees if they
were to be claimed useful. Each leaf node in a decision tree depicts a type of CSPs. To evaluate the efficiency of
a new algorithm, we must compare it with algorithms which are useful for the same types of CSPs for which this
new algorithm is designed. Besides, comparison must be made on CSPs of the intended types only. So if algo-
rithm X is designed for tackling CSPs which have property P, one should only compare with other algorithms
which are designed for CSPs with property P. If we evaluate algorithm X on randomly generated CSPs, then we
must exclude those which do not have the property P.

Our discussion so far still leaves the question of how to formulate CSPs (Step (1) in figure 1) unanswered. Work
must be done to develop guidelines to formulate CSPs. But a decision tree can at least provide targets for CSP
formulation: given a decision tree, the problem solver can compare different formulations based on their charac-
teristics which appear in the decision tree: efficient algorithms may be available for some leaf nodes of the deci-
sion tree but not for others.

6 Conclusion

In this paper, we have pointed out the gap between CSP algorithm designers and CSP solvers. We have advocated
that research must be done 1o bridge this gap. We suggest that problem solvers may use decision trees for index-
ing algorithms for solving their individual problems and this mapping can be done according to the problems’

5. Of course there is no reason why one should not look at the “time available™ as well when the first or all solutions are required.
This is not included here because we would like to keep the tree simple for presentation purpose.
6. Again, there is no reason why simulated annealing and tabu search should not replace HC under certain circumstances.

December 15, 1993 page 9 of 11

‘.“.“rr---c T Wil il

Wl R T T T ol ol T T R e e 0000 . A et S e gy iy e ST i) S - ﬁrln-'—i--r——--i---.---h-—-..rr.--_ - TET T e T

characteristics. Such decision trees should also help algorithm designers to identify useful research areas and to
evaluate any algorithms or heuristics that they may design. We have laid the foundation of such work by (a) list-
ing and classifying some of the better documented algorithms; and (b) producing a crude mapping from CSP
characteristics to algorithms and heuristics. A lot more work needs to be done to refine the above mapping and to
develop useful decision trees.

References

[AarKor89]

' Davi91]

DecPea88al

[DeK189]

[Gins93]

[Glov8&9]

[Glov90]

[Gold89]

[HarE180]

[Mint93]

[Nude82]

[OttVang9]

[SmiKel88]

[Pros93]

[Tsan93]
[TsaWan92 |

[WanTsa91 |

December 15, 1993

Aarts, E. & Korst, J., Simulated Annealing and Boltzmann Machines, John Wiley & Sons,
1989

Davis, L. (eds.), Handbook of genetic algorithms, Van Nostrand Reinhold, 1991

Dechter, R. & Pearl, J., Network-based heuristics for constraint-satisfaction problems, Arti-
ficial Intelligence, Vol.34, 1988, 1-38 (A slightly revised version appears in Kanal, L. &
Kumar, V. (eds.), Search and Artificial Intelligence, Springer-Verlag, 1988, 370-425)

de Kleer, J., A comparison of ATMS and CSP techniques, Proceedings International Joint
Conference on Al, 1989, 290-296

Ginsberg, M., Dynamic Backtracking, Journal of Artificial Intelligence Research, Vol.l,
1993, 25-46

Glover, F., Tabu search Part I, Operations Research Society of America (ORSA) Journal on
Computing, Vol.1, 1989, 109-206

Glover, F., Tabu search Part 11, Operations Research Society of America (ORSA) Journal
on Computing 2, 1990, 4-32

Goldberg, D.E., Genetic algorithms in search, optimization, and machine learning, Addi-
son-Wesley, 1989

Haralick, R. M. & Elliou, G.L., Increasing tree search efficiency for constraint satisfaction
problems, Artificial Intelligence, Vol.14, 1980, 263-313

Minton, S., An analytic learning system for specializing heuristics, Proc., 13th International
Joint Conference on Al, 1993, 922-928

Nudel, B.A. Consistent-labeling problems and their algorithms, Proceedings National Con-
ference on Artificial Intelligence (AAAI), 1982, 128-132

Otten, R.H.J.M. & van Ginneken, L.P.PP., The annealing algorithm, Kluwer Academic,
1989

Smith, B. & Kelleher, G. (ed), Reason maintenance systems and their applications, EllsS
Horwood, 1988

Prosser, P., Hvbrid algorithms for the constraint satisfaction problem, Computational Intel-
ligence, Vol.9, No.3, 1993, 268-299

Tsang, E.P.K., Foundations of constraint satisfaction, Academic Press, 1993

Tsang, E.P.K. & Wang, C.J., A generic neural network approach for constraint satisfaction
problems, in Taylor, J.G. (ed.), Neural network applications, Springer-Verlag, 1992, 12-22

Wang, CJ. & Tsang, E.PK., Solving constraint satisfaction problems using neural-net-
works, Proceedings, IEE Second International Conference on Artificial Neural Networks,
1991, 295-299

page 10 of 11

l\"lﬂpplllg oS L HIEUIILHIIIH O T1GWLASLILDS 2 LWAAINIINAL INVATLL A diVA™ L SO

Appendix A: Abbreviations used in this paper

AC-L Arc-consistency Lookahead

ALP AnalyselLongestPaths Algorithm
ASP AnalyseShortestPaths Algorithm
B&B Branch and Bound

BC Backchecking

BJ BackJumping

BM Backmarking

BT Chronological Backtracking

CBlJ Conflict-based Backjumping

CM Connectionist Methods

D&C Divide and Conquer

DAC-L Directional Arc-consistency Lookahead
DPC-L Directional Path-consistency LLookahead
ES Essex Solution Synthesis Algorithm
FC Forward Checking

FFP Failed-first principle

Fr Freuder’s Solution Synthesis Algorithm
GA Genetic Algorithms

GBJ Graph-based BackJumping

GIWS Gather-information-while-searching Algorithms
HC Hill Climbing

HR Heuristic Repair Method

IB [terative Broadening

INB Intelligent Backtracking

LA [Lookahead Algorithms

Le Learning Algorithm

| B Local Search

MBO Minimal Bandwidth Ordering

MC Min-conflict Heuristic

MWO Minimal Width Ordering

PC-L Path-consistency lookahead

Py Pre-processing

PR Problem Reduction

PG Primal Graph

SA Simulated Annealing

SI Seidel’s Invasion Algorithm

SS Solution Synthesis

TB Tabu Search

§ ;& Tree Clustering Method

TMS Truth Maintenance Systems

TS Tree Search Algorithm

December 15, 1993 page 11 of 11

