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a b s t r a c t

Multicore architectures were introduced to mitigate the issue of increase in power dissipation with clock
frequency. Introduction of deeper pipelines, speculative threading etc. for single core systems were not
able to bring much increase in performance as compared to their associated power overhead. However
for multicore architectures performance scaling with number of cores has always been a challenge.
The Amdahl’s law shows that the theoretical maximum speedup of a multicore architecture is not even
close to the multiple of number of cores. With less amount of code in parallel having more number of
cores for an application might just contribute in greater power dissipation instead of bringing some per-
formance advantage. Therefore there is a need of an adaptive multicore architecture that can be tailored
for the application in use for higher energy efficiency. In this paper a fuzzy logic based design space
exploration technique is presented that is targeted to optimize a multicore architecture according to
the workload requirements in order to achieve optimum balance between throughput and energy of
the system.

� 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Traditional design flows for architecture exploration rely heav-
ily either on earlier experiences or domain level expertise of the
system architect. This can often result in sub-optimal designs, con-
sequently resulting in sub-optimal performance. Since the scaling
of technology, and the advent of multicore architectures has
resulted in design spaces that are larger and too complex to be
handled by intuitive methods. Consequently, there arises a need
of automatic and intelligent schemes to systematically explore
the design parameters to find an optimum balance in terms of a
particular design goal (such as Energy and Throughput) for specific
applications [1]. This process is termed as Design Space
Exploration (DSE) [2]. A Design Space is composed of two main
parts, i.e. (1) Problem Space and (2) Solution Space. The Problem
Space is defined as the parameters that are not ultimate design
objectives but rather natural characteristics of the design space
effecting the performance metric, whereas the Solutions Space rep-
resents the primary objectives of the DSE process, e.g. throughput
and energy consumption.
77

78

79
Multicore architectures are rapidly emerging as an important
design paradigm for both high performance and embedded pro-
cessing. These architectures have often been investigated and
designed in order to achieve a greater throughput combined with
reduced energy consumption [3]. However several issues related
to resource sharing on the chip can have a negative impact on
the performance of an application and therefore may result in
decreased performance [4]. A large body of research now focuses
on reconfigurable multicore architectures in order to support DSE
algorithms to find optimal solutions for improved energy and
throughput balance [5–7]. As a result of on-going research several
online and offline DSE techniques and algorithm have been pro-
posed for hardware adaptation [8–10].

Generally, offline DSE techniques aim to optimize the system at
design time and therefore contain strategies that are not suitable
for runtime implementation for one or more of the following inter-
dependent reasons: (1) requirement of a large number of iterations
through simulations, (2) higher complexity, and (3) involvement of
large amount of calculations. This paper presents a novel fuzzy
logic based design space exploration scheme [11–13] suitable for
online application, targeted for Multiprocessor System on-Chips
(MPSoCs) to find an optimum balance between power and perfor-
mance. The main contributions of this work are as follows:
rocess.
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� A fuzzy logic-based robust DSE technique that can be imple-
mented at runtime for reconfigurable architectures.

� A proposed expert system based (i.e. using expert knowledge-
based) scheme for energy efficiency that is independent of
sophisticated analytical models.

� A proposed technique that does not require a large number of
iterations, and the solution converges in less than 5 iteration
for most of the cases shown.

Overall, this paper offers insights on the use of Fuzzy Logic for
MPSoC design space exploration to strike a balance on energy con-
sumption and throughput and validates its robustness through
analysis of results using multicore benchmarks. Advantages of
applying fuzzy control in DSE process are, that it is parameter
insensitive, provides fast convergence, accepts noisy and inaccu-
rate signals, and can produce overall good if not the optimal results
[14]. Given the importance of energy efficiency in current and
future multicore systems, these contributions provide an alterna-
tive and straightforward approach to address the issue.

The remainder of the paper is divided into four sections. The fol-
lowing section provides a comparison and review of related wok.
The Section 3 gives an overview of the proposed system architec-
ture including the target MPSoC, the Fuzzy Logic based Design
Space Exploration (DSE) Engine, benchmarks used and simulation
setup. The Section 4 discusses the results, and Section 5 concludes
the paper.
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2. Related work

In this section, research work related to the proposed design
space exploration methodology is discussed and compared.
Generally, the DSE techniques can be classified into three main cat-
egories according to the design space search criterion [2]: i.e. (1)
Exhaustive evaluation of every design point, (2) Random search,
and (3) Heuristic search mechanisms involving knowledge of the
design space. The result of the above mentioned search techniques,
i.e. the candidate configurations are then analyzed using simula-
tions or analytical models.

1. Exhaustive evaluation of every design point: This technique
involves evaluation of all possible combination of problem
space. This method is useful only in situations where the size
of design space is very small, for large designs this method is
prohibitive due to the latency involved in such unguided search
processes. The examples of exhaustive search based DSE are
discussed in [15–17].

2. Random search: Random search is highly desirable where
exhaustive search is not possible due to large design
space. Schemes based on Monte Carlo approximations [18],
Simulated Annealing [19,20], and Tabu Search [21,22] fall under
this category.

3. Heuristic search mechanisms involving knowledge of the
design space: These strategies involve guided exploration using
knowledge of characteristics of design space to improve conver-
gence towards final solution. Examples of such techniques
include, but are not limited to, Fuzzy Logic, Markov Decision
Process (MDP) [1,23], Genetic [24,25] and Evolutionary
Algorithms [26,27]. The fuzzy logic based DSE presented in this
paper can be classified into this category. However in order to
compare a wider range of techniques with the presented one
an overview of other classes of DSE are also discussed as
follows.

Exhaustive search mechanisms thoroughly investigate the
design space by exploring all the possible configurations.
Please cite this article in press as: M.Y. Qadri et al., Fuzzy logic based energy a
Microsyst. (2015), http://dx.doi.org/10.1016/j.micpro.2015.08.001
Baghdadi et al. [15] present a DSE technique based on high-level
simulation to evaluate the dynamic behaviors of system configura-
tions of a complex architecture. However, due to the higher level of
simulation, timing information is not accounted for. Hence addi-
tionally, a back-annotation approach based on the RTL (Register
Transfer Level) analysis of some implementations allows to extract
timing elements needed for performance estimation of all feasible
implementations.

Another example of exhaustive search is applied by Monchiero
[28] where a target architecture of a configurable number of cores,
L2 Cache size, and processor issue width, is analyzed on the basis of
power consumption, throughput, and thermal effects. Based on
this analysis, further evaluations were performed using various
chip floorplans to minimize and study chip temperature effects.

As mentioned above, the random search based schemes provide
a viable alternative to typical exhaustive search mechanisms for
large design spaces. Bruni et al. [18] present an unsupervised
Monte Carlo based design space exploration scheme. In general,
the main characteristic of Monte Carlo methods is the use of ran-
dom sampling techniques to come up with a solution of the target
problem. The random sampling technique has been shown to be
one of the best techniques to avoid falling into local minima [29].

Another Monte Carlo search based approach for DSE is the use
of Simulated Annealing [19,20]. In Simulated Annealing, a new
configuration is formed at each iteration by random displacement.
If the cost function of this new configuration is less than the previ-
ous one, the change is accepted unconditionally; if not, then it is
probabilistically analyzed for further exploration [29].

Kreutz et al. [21] present a Tabu search based DSE scheme. The
authors propose an optimization algorithm based on the analysis
of Network-on-Chip (NoC) topologies and router architectures to
find a trade-off between latency and energy constraints. The key
concept behind the Tabu search mechanism is a Tabu list that con-
tains moves that are not allowed or prohibitive, and typically
includes the recently visited configurations.

Design exploration based on random search techniques such as
Monte Carlo, Simulated Annealing and Tabu Search are robust and
the literature reviewed suggest their usefulness in general.
However, typically these techniques are applied as an off-line pro-
cess, and require to collect sufficient statistical information before
actually starting the design process.

In contrast to exhaustive search and random search schemes,
heuristic exploration based techniques involve knowledge of the
design space in the search process. One such example of work is
presented by Beltrame et al. [1] that employs Markov Decision
Processes (MDP). MDP is a reinforcement learning method in
which design states are explored in a decision tree probabilistically
according to values that have been learned over time. For initial
estimates this search typically produces sub-optimal results.
However, over a number of trials, the MDP can be trained to pro-
duce high-quality architectures [30]. Beltrame et al. [1] have
applied MDP to derive custom Very Long Instruction Width
(VLIW) processors for various image and video compression algo-
rithms. The authors have adopted a unique approach based on
automated guided search by estimating the impact of varying
architectural parameters probabilistically and performing simula-
tions only when the estimates are insufficient. Consequently, the
number of expensive simulations is reduced. However, this
approach requires the availability of an appropriate estimation
methodology, which is not generally present in case of arbitrary
Chip Multiprocessor (CMP) architectures [31].

Kang et al. [24] present a DSE framework called Magellan. The
proposed framework applies a machine-learning approach for the
design space optimization problem, by iterative benchmarks simu-
lations on available processor cores. Their work contain a compar-
ison of single objective algorithms such as (genetic algorithms, ant
nd throughput aware design space exploration for MPSoCs, Microprocess.
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Table 1
System parameters: the design space.

Parameter Value

Processor type Intel x86
Number of cores [1� � �16]
Operating frequencies [16, 20, 25, 33] MHz
Operating voltages [2.0, 2.2, 2.4, 2.7] V
Dynamic energy consumption per cycle [13.1, 15.4, 18.7, 22.9] nJ
Technology node 0.8 lm
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colony optimization, hill climbing, and random search) against an
exhaustive simulation. The search space is reduced by fixing many
parameters, but the work is not extended to multi-objective opti-
mization, and explores the design space as single objective prob-
lem [32].

Evolutionary Algorithms (EAs) are another alternative approach
of knowledge based design space search mechanisms. Erbas et al.
[26] present a multiobjective optimization process for maximum
processing time, power consumption, and cost of the architecture.
The proposed scheme provides the system designer with a set of
solutions, rather than a single optimal point. Evolutionary algo-
rithms, evolve over a population rather than a single solution.
The presented approach showed good performance over the
desired objective matrix. However multiobjective evolutionary
algorithms (MOEAs) have some limitations by nature: firstly,
MOEAs do not perform well in limited search spaces with a few
feasible solutions. Secondly, after convergence, MOEAs saturate
and the search process result in repetition of already known solu-
tions [33].

In order to take advantage of guided search mechanisms and to
avoid the drawbacks of large number of simulations, this paper
presents a fuzzy logic based approach for design space exploration.
Fuzzy logic is an expert system based reasoning technique that
provides a framework to transform imprecise information into a
meaningful output [34]. The use of fuzzy logic for the proposed
design space exploration process brings the following advantages:
firstly, a detailed model of the system that can describe the behav-
ior of the system in various configurations is not present. The
implementation of fuzzy inference systems does not require ana-
lytical models. Secondly, the problem space covered in this work
is large enough so that a linear model may not be able to precisely
depict the behavior of the system. This is by the fact that, generally
a model’s complexity increases when the system parameters begin
to interact in a non-linear fashion [35]. Thirdly, Fuzzy Logic linguis-
tically explains the behavior of the system using if-then rules. The
fuzzy inference engine converts these rules to their mathematical
equivalents, and results in much more accurate representations
of the behavior of the system.

Furthermore, Fuzzy logic can handle problems with imprecise
and incomplete data sets, and it can model non-linear functions
of arbitrary complexity. Therefore the use of fuzzy logic in this
work provides a robust, adaptive, and flexible approach to imple-
ment complex search mechanisms for balanced energy consump-
tion and throughput of the system.
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3. System architecture and simulation setup

This section provides an overview of the proposed approach in
detail: initially the target platform (i.e. the problem space) of the
configurable multicore architecture is introduced. The Sections
3.3 and 3.4 overview the fuzzy logic based DSE, and the benchmark
applications used. Finally the simulation setup is explained in
Section 3.5.
Table 2
Default L1 and L2 cache description.

Parameters L1 cache L2 cache

Size (Kbytes) 8 128
Associativity 4 8
Number of blocks 64 1024
Block size (bytes) 128 128
Read/write penalty (cycles) 10 30
Access time (s) 6.11E�09 7.92E�09
Cycle time (s) 3.32E�09 4.38E�09
Total dynamic read energy (J) 1.27E�08 8.53E�08
Total dynamic write energy (J) 1.52E�09 7.17E�09
3.1. The problem space: a configurable MPSoC architecture

The proposed experimental MPSoC is comprised of a 16-core
symmetric chip multiprocessor platform based on the Intel x86
architecture, employing a shared memory architecture. The plat-
form incorporates L1 and L2 caches with configurable size and
associativity, shared with the Modified–Exclusive–Shared–Invalid
(MESI) coherence protocol. The number of active cores and the pro-
cessor frequency/voltage can be adjusted both for energy and
throughput regulation. The system configuration parameters are
described in Table 1, showing various operating points of the
Please cite this article in press as: M.Y. Qadri et al., Fuzzy logic based energy a
Microsyst. (2015), http://dx.doi.org/10.1016/j.micpro.2015.08.001
system in terms of voltage, frequency and energy consumption.
The energy consumption and voltage/frequency information was
obtained from the Intel 486 GX embedded processor datasheet
[36].

The selection of this particular architecture was mainly due to
two reasons: 1. a homogeneous and symmetric architecture was
required that is supported by cycle accurate simulators such as
MARSSx86 [37] in this case, also 2. using such type of architecture
reduces the rule base and membership functions of the proposed
Fuzzy Logic based Design Space Exploration (DSE) Engine.

Each core of the system is connected to a CMOS power switch,
similar to the one proposed by Kim et al. [38], so that when it is
turned off, the leakage energy of the core should not contribute
to the overall energy consumption of the system. The default size
and associativity for L1 and L2 caches are 8 KB, 4-way set associa-
tive; and 128 KB, 8-way set associative as per the original Intel 486
GX processor specifications [36]. Due to the possible variance in
timing by changing cache size and associativity, the L1 cache miss
penalty was assumed to be uniform at 10 cycles and that for L2
cache was set to 30 cycles. The L1 and L2 cache timing and energy
data was obtained from CACTI [39] (see Table 2). Although CACTI
provides thorough, near accurate memory access time and energy
estimates, but it is not a trace driven simulator, so energy con-
sumption resulting in a number of hits or misses is not accounted
for a particular application. Therefore detailed cache energy and
throughput models accounting for cache miss ratios were pre-
sented by Qadri et al. [40]. It should be noted that these models
are not part of the proposed fuzzy logic exploration engine.
However these models are required to estimate the impact of var-
ious cache configuration on energy consumption of the overall
system.

3.2. Mathematical models for energy estimation of MPSoC

If Eic; Edc , and El2c is the energy consumed by instruction, data
and level 2 (L2) cache operations, Emisc is the energy consumed
by the instructions which do not require data memory access,
and Eleak the leakage energy of the processor, then the total energy
consumption of the code Etotal in Joules [J] can be defined as

Etotal ¼ Eic þ Edc þ El2c þ Emisc: þ Eleak

where,
nd throughput aware design space exploration for MPSoCs, Microprocess.

http://dx.doi.org/10.1016/j.micpro.2015.08.001


310
311
313313

314
316316

317
319319

320
321
323323

324
326326

327
329329

330
332332

333
334
336336

337
339339

340
342342

343

345345346

347
349349
350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

4 M.Y. Qadri et al. /Microprocessors and Microsystems xxx (2015) xxx–xxx

MICPRO 2261 No. of Pages 11, Model 5G

17 August 2015
L1 Instruction Cache

Eic ¼ Eic�read þ Eic�mp

Eic�read ¼ Eic�rcycle � gic�read

Eic�mp ¼ Ecycle � Pic�rmiss � gic�rmiss

L1 Data Cache

Edc ¼ Edc�read þ Edc�write þ Edc�mp

Edc�read ¼ Edc�rcycle � gdc�read

Edc�write ¼ Edc�wcycle � gdc�write

Edc�mp ¼ Ecycle � ðPdc�rmiss � gdc�rmiss þ Pdc�wmiss � gdc�wmissÞ
L2 Cache

El2c ¼ El2c�read þ El2c�write þ Edc�mp þ El2c!m

El2c�read ¼ El2c�rcycle � ðgl2c�if þ gl2c�dreadÞ

El2c�write ¼ El2c�wcycle � gl2c�dwrite

El2c�mp ¼ Ecycle � ½Pl2c�rmiss � ðgl2c�if þ gl2c�dreadÞ þ Pl2c�wmiss � gl2c�dwrite�
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El2c!m ¼ El2c!ram þ El2c!rom

In the above equations, Ex�read; Ex�write, and Ex�mp denote the
read, write and miss penalty energy of the corresponding cache x
(i.e. instruction, data or L2 cache). The read and write cycle energy
per cache access is denoted by Ex�rcycle and Ex�wcycle. The number of
data read and write transactions of the cache (including all hits and
misses) is denoted by gx�read and gx�write. Furthermore gl2c�if ;

gl2c�dread; gl2c�dwrite denote the L2 cache’s instruction fetch, data
read and data write transactions respectively. The processor’s per
cycle energy consumption is denoted by Ecycle; Px�rmiss;

Px�wmiss; gx�rmiss and gðx�wmissÞ denote the read/write miss pen-
alty (in terms of number of cycles) and their corresponding miss
ratios. The energy consumed in the L2 cache to data and code
memory is denoted by El2c!ram and El2c!rom that could also be calcu-
lated by multiplying the number of memory accesses with their
read and write cycles energy.

3.3. The Fuzzy Logic based Design Space Exploration (DSEE) Engine

Fuzzy logic is considered to be one of the most suitable candi-
dates for bridging the gap between computer and human logic.
The ability of fuzzy inference systems to interpret linguistic rules
and to defuzzify the results to crisp numbers, without the use of
sophisticated mathematical models of the system, has made a case
for attaining the target of design space exploration of the proposed
MPSoC architecture through the application of fuzzy logic. The
Fig. 1. Closed loo

Please cite this article in press as: M.Y. Qadri et al., Fuzzy logic based energy a
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proposed MPSoC architecture takes advantage of fuzzy logic based
reconfiguration in a closed loop as shown in Fig. 1. It may be noted
that the proposed system is based on the principles of a typical
feedback control system, the advantage of using fuzzy logic here
is that one does not need to model the impact of input parameters
over the outputs precisely, as fuzzy systems have a natural ability
to handle vague information based on a rule base of linguistic
terms. The design and implementation of the proposed system
involved the following steps:

1. identification of the input variables,
2. partitioning of variables into fuzzy membership functions,
3. formation of rule base,
4. defuzzification, and
5. C language implementation.

3.3.1. Identification of the input variables and output parameters
A number of parameters were identified that can be modified

dynamically in a reconfigurable MPSoC and were classified as con-
trol parameters for the fuzzy logic based DSEE. These parameters
are: L1/L2 Cache Size and associativity, CPU Frequency, and
Number of active cores. Since the target architecture is symmetric
and homogeneous all the computed parameters through fuzzy
logic based DSEE were implemented on all the cores universally,
and outputs were observed on an aggregate basis. Based on the
input parameters certain quantities were identified that receive a
clear impact from these parameters, which include L1/L2 aggregate
Cache Miss Ratio, aggregate CPU Throughput, and Energy
Consumption.

The identification of output parameters of the system was
based on the fact that changing the cache size, and associativity
effects the cache miss ratio, CPU throughput and energy consump-
tion of the system [41,40]. Similarly, CPU operating frequency and
number of active cores effect overall throughput [42] and energy
consumption of the system [43].

3.3.2. Partitioning of variables into fuzzy membership functions
In order to fuzzify the input and output variables, each variable

was partitioned into three fuzzy subsets which were assigned to
their respective membership functions namely lA;lB, and lC; clas-
sifying lower, middle and upper bounds of the given variable. For
example in Table 3, for L1 and L2 the cache miss ratio varies from
0% to 100%, the membership function A is used to classify a low
miss ratio which is defined from 0% to 40%, B a moderate miss ratio
from 25% to 75%, and C a high miss ratio from 60% to 100%. A sim-
ilar approach is adopted for the remainder of the input and output
variables, and is detailed in Tables 3 and 4 respectively.

3.3.3. Formation of rule base
To establish the relationship between the input variables and

output parameters of the SoC, fuzzy logic rules were defined.
There is no known standard criteria for the definition of member-
ship functions and/or fuzzy rule base, and any comprehensive
p operation.

nd throughput aware design space exploration for MPSoCs, Microprocess.
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Table 3
Fuzzy membership functions for input variables.

lA ¼ 0 if 40% 6 L1=L2 Miss ratio 6 0%
40�x
40 if 0% 6 L1=L2 Miss ratio 6 40%

�

lB ¼
0 if 75% 6 L1=L2 Miss ratio 6 0%
x�25
25 if 25% 6 L1=L2 Miss ratio 6 50%

75�x
25 if 50% 6 L1=L2 Miss ratio 6 75%

8<
:

lC ¼ 0 if 100% 6 if L1=L2 Miss ratio 6 60%
x�60
40 if 60% 6 L1=L2 Miss ratio 6 100%

�

L1 and L2 Miss ratio

lA ¼ 0 if 0:35 6 Throughput 6 0
0:35�x
0:35 if 0 6 Throughput 6 0:35

�

lB ¼
0 if 0:8 6 Throughput 6 0
x�0:2
0:3 if 0:2 6 Throughput 6 0:5

0:8�x
0:3 if 0:5 6 Throughput 6 0:8

8<
:

lC ¼ 0 if 1:0 6 Throughput 6 0:65
x�0:65
0:35 if 0:65 6 Throughput 6 1:0

�

Normalized Throughput

lA ¼ 0 if 0:35 6 Energy Consumption 6 0
0:35�x
0:35 if 0 6 Energy Consumption 6 0:35

�

lB ¼
0 if 0:8 6 Energy Consumption 6 0
x�0:2
0:3 if 0:2 6 Energy Consumption 6 0:5

0:8�x
0:3 if 0:5 6 Energy Consumption 6 0:8

8<
:

lC ¼ 0 if 1:0 6 Energy Consumption 6 0:65
x�0:65
0:35 if 0:65 6 Energy Consumption 6 1:0

�

Normalized Energy Consumption
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theory does not exists that explains the method to acquire knowl-
edge for the development of a rule base [44,45]. Also the quality of
rule base cannot be evaluated analytically [46]. However one of the
widely adopted method for knowledge acquisition is based on
human experts [47]. The rules defined by a human expert are con-
ditional statements i.e. if. . .then rules.

The rules for the proposed DSEE were formed in such a way that
a balanced throughput and energy consumption ratio can be
achieved. For primary or core level configuration the fuzzy logic
rules were devised so as to keep track of the average L1 miss ratio,
energy consumption and throughput for all the cores and to strive
to find an optimum cache size, associativity and operating fre-
quency. The cache size and associativity not only affect the miss
ratio but they also have an impact on the throughput and energy
consumption of the device. For example first rule states that if L1
miss ratio, energy consumption, and throughput are low, it means
the L1 cache size and associativity are fine since miss ratio is low,
but as throughput is low provided that energy consumption is also
low; then operating frequency of the cores can be increased in
order to improve throughput (see Table B.2).

Similarly for the secondary or system level configuration the
fuzzy logic DSEE strives to find an optimal number of cores, L2
cache size and associativity while taking into account the L2 miss
ratio and total throughput and energy consumption of the SoC.
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3.3.4. Defuzzification
The output of the inference system is a fuzzy value and is rep-

resented by a membership function. As the MPSoC reconfiguration
needs crisp values for the control parameters, the resultant fuzzy
values have to be defuzzified. There exist a number of defuzzifica-
tion methods such as Centroid, Mean of Maxima, and Threshold.
The proposed system applies the Centroid method that calculates
the centroid or center of gravity (COG) of the area under the mem-
bership function, thus the defuzzified value depends on both the
size and shape of the membership function, so is a more complete
Please cite this article in press as: M.Y. Qadri et al., Fuzzy logic based energy a
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representation of the inference. However due to averaging, the
control action is diluted and becomes less sensitive to minor vari-
ations. But conversely, this is a very robust process that generates
less oscillatory process response [48].
3.3.5. C language implementation
The fuzzy logic engine was implemented using the fuzzy logic

API presented in [49] conforming to IEC 61131-7 standard [50].
The Free Fuzzy Logic Library (FFLL) is an open-source fuzzy logic
class library which is optimized for faster response and a low pro-
cessing overhead. The control parameters were fed into the config-
urable SoC and its response such as L1/L2 cache miss ratios and
throughput were observed using MARSSx86 [37] instrumentation,
where the energy consumption was calculated using the energy
mathematical models presented in Section 3.1 [41,40].
3.4. Benchmark applications

As the proposed architecture is comprised of a multicore setup,
a set of SPLASH-2 benchmarks [51] is selected to perform the tar-
get evaluation. The benchmark applications used for this purpose
are described as follows:

� BARNES: The BARNES application simulates the interaction of a
system of bodies (galaxies or particles, for example) in three
dimensions over a number of time-steps, using the Barnes–
Hut hierarchical N-body method.

� LU: The LU kernel factors a dense matrix into the product of a
lower triangular and an upper triangular matrix. The dense
n � n matrix A is divided into an N � N array of B � B blocks
(n = N � B) to exploit temporal locality on submatrix elements.

� OCEAN: The OCEAN application studies large-scale ocean move-
ments based on eddy and boundary currents. It uses a red–black
Gauss–Seidel multigrid equation solver [52].
nd throughput aware design space exploration for MPSoCs, Microprocess.
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Table 4
Fuzzy membership functions for output variables.

lA ¼ 0 if 3:5 KB 6 L1 Cache size 6 1 KB
3:5�x
3:5 if 1 KB 6 L1 Cache size 6 3:5 KB

�

lB ¼
0 if L1 Cache size 6 2 KB or P 7 KB
x�2
2:5 if 2 KB 6 L1 Cache size 6 7 KB
7�x
2:5 if 4:5 KB 6 L1 Cache size 6 7 KB

8<
:

lC ¼ 0 if L1 Cache size 6 5:5 KB or P 8 KB
x�5:5
2:5 if 5:5 KB 6 L1 Cache size 6 8 KB

�

L1 Cache size

lA ¼ 0 if L2 Cache size 6 1 KB or P 50 KB
50�x
50 if 1 KB 6 L2 Cache size 6 50 KB

�

lB ¼
0 if L2 Cache size 6 20 KB or P 100 KB
x�20
40 if 20 KB 6 L2 Cache size 6 60 KB

100�x
40 if 60 KB 6 L2 Cache size 6 100 KB

8<
:

lC ¼ 0 if L2 Cache size 6 80 KB or P 128 KB
x�80
48 if 80 KB 6 L2 Cache size 6 128 KB

�

L2 Cache size

lA ¼ 0 if L1=L2 Cache Associativity 6 0 or P 2
1 if 0 6 L1=L2 Cache Associativity 6 2

�

lB ¼ 0 if L1=L2 Cache Associativity 6 1 or P 8
1 if 1 6 L1=L2 Cache Associativity 6 8

�

lC ¼ 0 if L1=L2 Cache Associativity 6 4 or P 16
1 if 4 6 L1=L2 Cache Associativity 6 16

�

L1/L2 Cache Associativity

lA ¼ 0 if Operating frequency 6 16 MHzor P 20 MHz
1 if 16 6 Operating frequency 6 20 MHz

�

lB ¼ 0 if Operating frequency 6 20 MHz or P 25 MHz
1 if 20 MHz 6 Operating frequency 6 25 MHz

�

lC ¼ 0 if Operating frequency 6 25MHz or P 33 MHz
1 if 25 MHz 6 Operating frequency 6 33 MHz

�

Operating frequency

lA ¼ 0 if Number of cores 6 1 or P 6
1 if 1 6 Number of cores 6 6

�

lB ¼ 0 if Number of cores 6 5 or P 12
1 if 5 6 Number of cores 6 12

�

lC ¼ 0 if Number of cores 6 10 or P 16
1 if 10 6 Number of cores 6 16

�

Number of cores
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� WATER: This application evaluates forces and potentials that
occur over time in a system of water molecules. It imposes a
uniform 3-D grid of cells on the problem domain, and uses an
O(n) algorithm. The movement of molecules into and out of
cells causes cell lists to be updated, resulting in communication.

� FMM: Like Barnes, the FMM application also simulates a system
of bodies over a number of time steps. However, it simulates
interactions in two dimensions using a different hierarchical
N-body method called the adaptive Fast Multipole Method [53].

3.5. Simulation setup

The proposed architecture was simulated on a cycle accurate
full system simulator, the Micro-ARchitectural and System
Simulator for x86-based Systems (MARSSx86) [37] which facili-
tates instruction level simulations and is capable of running
unmodified operating systems such as Linux, and Windows XP vir-
tually on the target platforms. The simulator is targeted to provide
a fairly accurate timing profile, but at present does not support
energy profiling of the target system. MARSSx86 provides a reason-
ably accurate cache profiling utility, making it well-suited for
memory system research. An x86 based 16-core system was
Please cite this article in press as: M.Y. Qadri et al., Fuzzy logic based energy a
Microsyst. (2015), http://dx.doi.org/10.1016/j.micpro.2015.08.001
defined with each core having private L1 cache and coupled with
a single shared L2 cache.

Ubuntu Linux with kernel version 2.6.31.4 was chosen as the
target OS due to the inherent multicore support provided in
Linux, and availability of its port in Marssx86 Simulator. Also
Advanced Configuration and Power Interface (ACPI) enabled oper-
ating systems such as Linux support hot-plugging (i.e. turning on/
off) of a CPU core on-the-go which is a vital feature for reconfig-
urable MPSoC scenarios such as the one presented here. The
instruction execution, and cache hit/miss information was instru-
mented through MARSSx86 [37]. Interconnect network energy
information was gathered by using Orion [54], cache energy and
timing information was gathered by using CACTI [39], and finally
MPSoC’s total energy was calculated as the sum of interconnect
energy, cache energy, and each processor core energy. The proces-
sor core energy information was obtained from the Intel 486 GX
embedded processor datasheet [36], whereas the cache energy
was calculated using the mathematical models presented in [40].
All the applications were sampled for the whole execution cycle
of the application and then reconfiguration was carried out based
on the decisions made by the fuzzy logic DSE engine. The applica-
tions were re-executed for each iteration, so as to observe a clear
nd throughput aware design space exploration for MPSoCs, Microprocess.
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Fig. 2. Fuzzy logic based DSEE results for (a) L1 cache associativity, (b) L2 cache associativity, (c) L1 cache size, (d) L2 cache size, (e) CPU frequency, and (f) number of cores for
various iterations.

M.Y. Qadri et al. /Microprocessors and Microsystems xxx (2015) xxx–xxx 7

MICPRO 2261 No. of Pages 11, Model 5G

17 August 2015
impact of cache reconfiguration and CPU scaling on the energy
consumption and throughput of the MPSoC.
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4. Results

As the main emphasis of the proposed DSE process is to have a
balance between throughput and energy consumption of the SoC.
In order to achieve this, the DSE Engine based on data of unopti-
mized cores (iteration 0) starts modifying the configurable param-
eters, i.e. Number of Cores, Operating Frequency, L1 Cache Size and
Associativity (see Fig. 2). The DSE Engine completed the system
configuration in five iterations and results were found unvarying
Please cite this article in press as: M.Y. Qadri et al., Fuzzy logic based energy a
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for all the subsequent iterations. The impact of these iterative con-
figurations on individual parameters is discussed as follows.
4.1. L1 cache

The L1 cache size and associativity play an important role in
determining the throughput and energy consumption of an
MPSoC. Theoretically, an infinitely large cache with the highest
associativity is the best option to bring down the miss ratio, which
is the major cause of processor stalls, i.e. the main contributor
towards energy wastage and throughput loss. However increasing
the size and associativity of the cache not only increases the
latency but also the energy consumption.
nd throughput aware design space exploration for MPSoCs, Microprocess.
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Fig. 3. Impact of optimizations by fuzzy logic based DSEE on (a) L1 miss ratio, (b) L2 miss ratio, (c) normalized energy consumption, (d) normalized throughput, and (e)
energy delay product for MPSoC.
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For the default 16-core configuration, the energy consumption
and throughput were maximum, therefore in order to achieve
maximum energy savings the fuzzy logic DSE Engine reduced the
cache size and associativity to 2 KB and direct-mapped in first iter-
ation for all the benchmark applications, given lower L1 miss ratios
(Refer Figs. 2a,c and 3a, and Table 3.

These modifications resulted in a higher miss ratio for the next
iteration (i.e. Iteration-1) for OCEAN benchmark and for remainder
of the applications a moderately lower raise in miss ratio is
observed. Consequently, the L1 cache associativity was increased
to 8-way for OCEAN. Also for the LU benchmark, the energy con-
sumption was found to be the lowest thus giving the DSE Engine
a chance to gain throughput by increasing the cache associativity
to 8-way. For the remainder of the applications cache associativity
Please cite this article in press as: M.Y. Qadri et al., Fuzzy logic based energy a
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was increased to 4-way. The cache size for all the applications was
also increased to 4 KB. The impact of these change resulted in drop
of miss ratio for all the applications as compare to iteration 1 (see
Fig. 3a). Particularly for OCEAN the miss ratio dropped from 45% to
22%. For the next two iterations further optimization of cache asso-
ciativity was undertaken for the OCEAN application and it was set
to 4-way, keeping miss ratio, energy and throughput almost the
same as for the previous iterations.

It must be noted that the L1 miss ratio is calculated on an aggre-
gate basis for all the CPU cores in the MPSoC by averaging the indi-
vidual miss ratios for the purpose of simplification. Thus the same
average miss ratio for fewer number of cores can be greater if con-
sidered on an individual basis. However as the cache size is
reduced, the cache throughput is increased and energy
nd throughput aware design space exploration for MPSoCs, Microprocess.
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Table 5
Timing and energy consumption of various cache configurations.

Cache
size
(KB)

Associativity Blocks Access
time
(nsec)

Cycle
time
(nsec)

Read
energy (J)

Write
energy (J)

2 1 32 4.74 3.06 3.186e�09 6.57e�10
2 2 16 5.92 3.00 5.81e�09 9.5e�10
4 4 16 6.29 3.20 1.2e�08 1.57e�09
4 8 8 6.40 3.17 2.28e�08 2.64e�09
8 8 16 6.44 3.39 3.367e�08 3.04e�9

16 1 256 5.77 3.75 9.16e�09 2.19e�09
32 1 512 6.19 4.11 1.30e�08 3.31e�09
64 1 1024 6.72 3.7 1.54e�08 4.70e�09
64 4 256 8.61 4.25 4.18e�08 6.98e�09
64 8 128 8.70 4.25 7.57e�08 8.74e�09

128 1 2048 7.93 4.25 2.13e�08 6.30e�09
128 8 256 9.73 3.86 7.87e�08 1.21e�08
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consumption is significantly decreased. This phenomenon can be
observed from Table 5, which contains the different cache config-
urations used and their timing and energy consumption informa-
tion based on CACTI [39].
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4.2. L2 cache

The proposed MPSoC architecture includes a shared level 2 (L2)
uniform cache memory. For the L2 cache the Fuzzy logic based DSE
Engine reduced the L2 Cache associativity to direct-mapped for all
the applications, and the cache sizes for BARNES, FMM and LU were
set as 64 KB. For OCEAN, and LU the cache size was kept the same
as default 128 KB, as the default configuration has resulted in
higher miss ratio of around 55% and 57% respectively. For WATER
the default configuration resulted in a lower miss ratio of 15%,
therefore the cache size was reduced to 16 KB in the first iteration.
These changes in configuration resulted in significant reduction in
miss ratios for all the applications, except WATER, where the miss
ratio actually increased from 15% to 42%. It must also be noted that
for the first iteration, the number of cores was also reduced for all
the applications, therefore the reduction in cache size and associa-
tivity did not increase the miss ratio for most of the applications,
but have a negative impact (see Fig. 3b).

For iteration-2, the size and associativity of L2 cache for WATER
was increased to 64 KB and 4-way. The reduction in miss ratios
from 55% to 28% for OCEAN, and 57% to 13% for LU application gave
a chance to the DSE Engine to reduce L2 size to 64 KB, and to com-
pensate any further increase in miss ratio, L2 associativity was
raised to 8-way. For BARNES application L2 associativity was also
increased to 8-way while maintaining its size, this is due to the fact
that BARNES showed a smaller decrease in L2 miss ratio i.e. from
33% to 22%.

Taking the same approach and keeping track of energy con-
sumption and throughput of the overall system, the DSE Engine
maintained the cache sizes for the next two iterations for all the
applications and changed the associativity to achieve an optimal
value of Energy-Delay Product (EDP). It must be noted that lower-
ing the miss ratio is not the main purpose of the proposed DSE
Engine, but a lower EDP for an application is the desired outcome
here. Therefore for the OCEAN application, a slight increase of miss
ratio from 55% to 58%, and 57% to 59% for LU is observed while
comparing the initial and final configuration, but for the remainder
of the applications a decrease in miss ratio can be observed.
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4.3. CPU frequency and number of cores

The MPSoC’s operating frequency not only influences the
throughput but also its energy consumption, i.e. the higher the
Please cite this article in press as: M.Y. Qadri et al., Fuzzy logic based energy a
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frequency, the greater the energy consumption. Therefore the pro-
posed Fuzzy logic based DSE Engine addresses the energy and
throughput of the system holistically, both at the same time. To
obtain a clearer picture on interdependence of energy and
throughput Energy-Delay Product (EDP) is chosen as a metric to
analyze the performance of the DSE Engine (see Fig. 3e). The
Fuzzy logic based DSE Engine configures the CPU operating fre-
quency to 16 MHz and the Number of Cores to 3 for all benchmarks
as compared to the default 33MHZ, 16-Core design (see Fig. 2e and
f). These changes resulted in an overall decrease in both energy and
throughput for all applications. However if the EDP is analyzed,
BARNES, OCEAN, and WATER show an increase in EDP. Therefore
in order to bring down the EDP, the DSE Engine increases the
Operating Frequency to 25 MHz for FMM and LU; and 33 MHz
for remainder of the applications. The number of cores were kept
the same for iteration-2. These changes resulted in a decrease in
EDP for all applications. It was observed that the OCEAN bench-
mark showed a nominal decrease in EDP as compared to the
default configuration, i.e. 61–59%. therefore the DSE Engine kept
the Operating frequency for OCEAN at 33 MHz and for others it
was set to 25 MHz. The Number of Cores for BARNES, and
WATER were changed to 8 and 4 respectively and for the remain-
der it was kept constant. When analyzed on the basis of Energy and
Throughput for Iteration-3, the BARNES application shows an
increase in Normalized Energy Consumption from 0.25 to 0.49,
and a decrease in Normalized Throughput i.e. from 0.8 to 0.63.
Therefore for the final iteration (i.e. Iteration-4) the DSE Engine
increases the CPU Frequency for BARNES to 33 MHz and the
Number of Cores were decreased to 4. The impact of the final iter-
ation was an overall decrease of EDP for all applications.

In summary, the application of the proposed Fuzzy Logic based
DSE Engine demonstrated the following characteristics:

1. An overall decrease in EDP for all the applications is observed.
However, it must be noted that for some benchmarks, the
resulting decrease is quite small, if not insignificant.

2. The Energy and Throughput of the system was given a higher
priority over the miss ratio while defining the Fuzzy rule base.
Therefore after attaining a certain saturation point (i.e. upon
achieving lower EDP) Miss Ratio was considered to be the can-
didate for optimization.

3. The over all reduced priority to miss ratio resulted in its
increase for some cases.

Therefore it can be concluded that the proposed Fuzzy Logic
based DSE Engine can produce an overall good performance where
no detailed mathematical model is present. It should be noted that
inherently the fuzzy logic does not necessarily produce optimal
solutions but is applied where an overall good performance is
required.
5. Conclusion

In this paper a novel Fuzzy Logic based Design Space
Exploration (DSE) Engine was presented. The proposed DSE
Engine was used to find an overall good balance between the
energy consumption and performance of the system. To evaluate
the proposed scheme, an Intel x86 based multicore SoC with 16
processor cores and a shared memory architecture was simulated
using the MARSSx86 full system simulator. A detailed analysis of
core, cache, and interconnect power consumption was conducted
and an overall decrease in Energy-Delay Product (EDP) was
observed. However, as the EDP was given a higher priority while
defining the fuzzy rule base, in some cases, an increase in cache
miss ratio could be observed.
nd throughput aware design space exploration for MPSoCs, Microprocess.
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The system in general showcased the capability and usefulness
of the proposed Fuzzy Logic based DSE Engine; therefore this tech-
nique can be adapted for a variety of architectures to search for a
good compromise for throughput and energy under user defined
constraints. The proposed MPSoC architecture and simulation
setup can be tailored for use in variety of applications such as
NoC research, dynamic thread scheduling, operating system devel-
opment and high performance computing.
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Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.micpro.2015.08.
001.These data include MOL files and InChiKeys of the most impor-
tant compounds described in this article.
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