
Research Article
4kUHD H264 Wireless Live Video Streaming Using CUDA

A. O. Adeyemi-Ejeye and S. Walker

Access Networks Laboratory, School of Computer Science and Electronic Engineering, University of Essex,
Wivenhoe Park, Colchester, Essex CO4 3SQ, UK

Correspondence should be addressed to A. O. Adeyemi-Ejeye; aoteje@essex.ac.uk

Received 1 November 2013; Accepted 24 December 2013; Published 16 February 2014

Academic Editor: Martin Fleury

Copyright © 2014 A. O. Adeyemi-Ejeye and S. Walker. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Ultrahigh definition video streaminghas been explored in recent years.Most recently the possibility of 4kUHDvideo streaming over
wireless 802.11n was presented, using preencoded video. Live encoding for streaming using x264 has proven to be very slow.The use
of parallel encoding has been explored to speed up the process using CUDA. However there hasnot been a parallel implementation
for video streaming. We therefore present for the first time a novel implementation of 4kUHD live encoding for streaming over a
wireless network at low bitrate indoors, using CUDA for parallel H264 encoding. Our experimental results are used to verify our
claim.

1. Introduction

Video streaming inwireless networks has witnessed improve-
ments in recent years.The recent adoption of 4kUHD (3840×
2160) video resolution now makes it necessary to investigate
the possibilities of streaming such video resolution in a
wireless environment due to its popularity. Video display
at such resolutions can be done with the aid of SAGE [1,
2] (scalable adaptive graphics environment), tiled displays
(using more than one display output unit to produce the
required resolution), CAVE [3] (cave automatic virtual envi-
ronment) a one to many presentation systems, and more
recently commercial production of 4kUHD television sets.
Currently streaming at this resolution is normally done using
compressed formats [4–7], as the minimum requirement
for uncompressed UHD video starts at 2.39Gb/s for 8-
bit 4 : 2 : 0 subsampling at 24 frames per second. Streaming
uncompressed video at this resolution has been carried out
in both wired networks by [8, 9] and in wireless [10], using
four wireless 60-GHz parallel channels. However storage
and bandwidth limitations make it harder for deployment of
uncompressed video streaming applications. The analysis of
H.264 video transmission over 802.11b [11, 12], 802.11g [13, 14],
and 802.11n [15] has provided insight into how the H264
encoder can function in a lossy network such as wireless.
Previous studies done only show video resolutions no larger
than full-high definition (1080p) with the exception of our

previous work [7], which studied the use of preencoded video
for live streaming over 802.11n wireless network.We therefore
take this further by implementing a live streaming encoder
which can accept both uncompressed video and live capture
from a 4kUHD camera.

2. 4kUHD Wireless Video Streaming

Quality of experience is gettingmore attention at themoment
due to the rapid increase in high quality multimedia content
especially with the adoption of higher video resolution con-
tent (such as 4kUHD); on one hand end-users expectation
increases, while transmission requirements also present new
problems [16]. A major problem here is how best to utilize
encoding parameters for both compression efficiency and
intended transmission medium. Wireless networks commu-
nication is very unstable due to the environment factors and
can experience interference from other signals, especially
those operating in similar frequency range. Both major
factors influence the dynamic rate scaling in wireless net-
works.Therefore when designing a solution for wireless video
streaming services the fidelity of the network must be taken
into consideration.

Previous studies already show the possibilities of 4kUHD
video streaming over a wireless network both in uncom-
pressed and compressed formats. Uncompressed 4kUHD

Hindawi Publishing Corporation
Journal of Electrical and Computer Engineering
Volume 2014, Article ID 183716, 12 pages
http://dx.doi.org/10.1155/2014/183716

http://dx.doi.org/10.1155/2014/183716

2 Journal of Electrical and Computer Engineering

wireless video transmission and playback has already been
explored in [10]. This study has showed initial possibilities
of uncompressed 4kUHD playback and streaming over four
commercial off-the-shelf (COTS) wirelessHD [17] 60GHz
parallel channels using a high-end PC and GPU (graph-
ics processing unit) based on decoding using CUDA [18]
(Compute unified device architecture); however, this was
only done in a short range due to interference between
the channels. Another study conducted showed the use of
4kUHDH264 compressed video in a live stream over 802.11n
[7]. In this study, the Chroma subsampling was varied from
4 : 2 : 0 to 4 : 4 : 4 at a low bitrate of 20Mb/s using a group
of picture (GOP) length of 40. This approach did not take
into consideration other video sequences due to availability
and interroom transmission due to the bandwidth of 802.11n
between rooms; video quality used was measured using
structural similarity (SSIM) [19] and is considered to emulate
the human visual system (HVS). Furthermore the studies
shown in [20–22] have shown that the widely used peak
signal-to-noise ratio (PSNR) and mean squared error (MSE)
are flawed in differentiating structural contents of images
since different types of impairments can be applied and still
have the same MSE value, while PSNR is more sensitive
to noise. We therefore use SSIM, since increase in spatial
resolution of video enables improved satisfaction for theHVS
[23], and structural impairments will be easily noticed at
higher resolution which can diminish the end-user QoE.

Based on the observations stated above we therefore
propose an implementation of 4kUHD live encoding for
live video streaming at low bitrates. We employ CUDA in
implementing this system as regular open source x264 [24] as
shown to provide low bitrates for 1080p videos and 4kUHD
videos.

3. Background on 802.11ac

802.11ac [25] provides high-throughput wireless local area
network (WLAN) on the 5GHz band. Its specification allows
for a multistation link of 1 Gb/s and a single link throughput
of 500Mb/s due to the increase in channel width of 80MHz.
Furthermore it supports multiuser multiple input multiple
output (MIMO).The standard also implements standardized
beamforming technology and feedback compatibility across
vendors, unlike the nonstandardization in its predecessor
standard 802.11n which made it difficult to implement beam-
forming effectively.

4. Parallel H264 Encoder

Previous studies, showing the parallelization of H.264 en-
coder applications for GPUs, involved the development of
different solutions for separate encoding processes such as
prediction, entropy encoding, and deblocking filter. More
recently there has been a study of porting these processes onto
a GPU using CUDA [26].

In [27] an efficient algorithm for block-size motion esti-
mation with fractional pixel refinement using CUDA GPU
is presented. The study shows the decomposition of H264

motion estimation algorithm into 5 steps allowing for highly
parallel computation with low memory transfer rates. In
[28] motion estimation and discrete cosine transform (DCT)
coefficient parallelization in CUDA is studied; however,
the relational dependencies between the transformation of
DCT and intraframe predictions were neglected. Intraframe
encoding algorithm was presented in [29] which is GPU-
based and does 4 × 4 block process reordering in a diagonal
order using openCL (a platform dependent GPU application
development environment), however, this is only one way
of reordering the block for parallelism. In [26], all encoding
processes are parallelized on a GPU using CUDA; however,
the parallel encoder is aimed at high definition video and also
for video storage as their implementation does not take into
consideration real-time encoding for live video streaming
due to the huge amount of memory transfer latency.

These related works show improvements in using CUDA
for parallel H264 encoding; however, none of these studies
take into consideration live video streaming as the memory
transfer latencies which occur during the pre- and pos-
tencoding process is not suitable for such an application.
For example in [30] the achieved speedup of the GPU
application was only double that of a single threaded CPU
application performance. Their implementation was found
to have architectural bottlenecks as a result of caching
latencies and limitations of registers. Their solution seemed
impossible using software approach due to their CUDA
compute capability. In [31] A CPU/GPU parallel model for
H.264 SVC encoder using CUDA was implemented to study
the data transfer between host (CPU) and device (GPU).The
authors used a raw frame as reference, though this increased
data granularity, the resulting image quality was poor; for
a resolution of 352 × 288 the performance achieved was
1.03 fps. In [26] the authors do a port of four major processes
of H264 encoding to CUDA. They use data localization to
organize data and threads to work efficiently on the GPU.
However this approach is constrained to available GPU
resources, as their approach eliminates the use of higher
than HD resolutions especially on GPUs with constrained
local memory. Furthermore their implementation allows for
a latency bottleneck for critical video applications such as live
streaming and real-time encoding/decoding processes as data
must be transferred from and to the CPU memory before
it can be accessed by other processes. We therefore extend
the work of [26] to support zero-copy memory and also
implement it as a directshow filter to enable it to accept a feed
from live capture. The modules in [26] are Interprediction,
intra prediction, entropy encoding, and deblocking filter. We
also work on the interprediction module where we imple-
ment dynamic parallelism for motion estimation and on the
intraprediction module where we reduce the predictions;
however, every other module within their implementation is
available to perform our experiments.

Our GPU architecture is different from previous imple-
mentations, as our GPU uses a newer streaming multi-
processor unit called SMX available through the Kepler
GK110 [32] architecture with CUDA compute capability 3.5.
This allows for dynamic parallelism; therefore, kernels can
spawn new threads without needing to get instructions from

Journal of Electrical and Computer Engineering 3

the CPU all over again. This is very useful in modules such
as interpredictionwhere themacroblocks are subdivided into
smaller units.TheCPUneed not issue instructions every time
a subdivision is to be executed.

5. Implementation Design

Our test bed consists of two computers connected using the
802.11ac [25] network at channel 36 using buffalo [33] air
station (wireless transmitter and receiver) as illustrated in
Figure 1(a). Open source VLC Media player [34] was used to
decode video. Our GPU platform is the NVidia Quadro 510;
streaming was done using the real-time streaming protocol
(RTSP) server filter provided by [35] and network statistics
were collected using wireshark.We do our tests in three parts:

(1) encoding,
(2) real-time encoding for live streaming,
(3) live capture with a point grey flea 3 [36] 4k camera

and encoding for live streaming.

In conducting the test numbers 2 and 3, we consider two
major scenarios which depict the usage of video streaming
indoors in a typical office space with lots of furniture.The two
scenarios considered are as follows:

(i) change in distance intraroom (10 and 20 meters),
(ii) the use of obstruction: interroom (one room and two

rooms apart) and interfloor (one floor above).

Figure 2 shows the floor plan of two floors of the office
environment used for the experiments. The notations Rx
(A, B, and C) show the position of receiver in other parts
of the building during the experiments. In the intraroom
scenario, the distance between the transmitter and receiver
was 10 and 20 meters, respectively. During each experiment
the following test clips were used: Sintel 4k [37], Coast,
Foreman, andNews [38].These video clipswere chosen based
on motion with sintel having the fastest and foreman the
slowest, each video clip had 500 frames. At the beginning
of each experiment, the data rate was measured using LAN
speed test [39] software to observe the bandwidth available.
For the sake of clarity we use arbitrary numbers to denote the
scenario in Table 1.

Based on the data rate observed at the beginning of each
scenario we can expect good quality results for peer-to-peer
video transmission. The video clips and live capture were
compressed using a GOP length of 40 (using I and P frames
only), with a bitrate of 20Mb/s ABR (average bitrate); the
designated packet size used was 1500 bytes.

5.1. Directshow Filter Implementation. Microsoft directshow
filter [40] implementation provides an architecture for high-
quality video capture, streaming, and playback. It supports
a wide variety of formats including Motion Picture Experts
Group (MPEG) and audio-video interleaved (AVI). Further-
more, it supports video capture from analogue and digital
devices supported by the windows driver model (WDM).

Table 1: List of scenarios and designated arbitrary numbers.

Scenario Arbitrary number
10 meters 1
20 meters 2
Interroom (Rx A) 3
Interroom (Rx B) 4
Interfloor (Rx C) 5

The main aim of using directshow is to simplify the
task of creating multimedia applications on windows plat-
form irrespective of hardware differences, data transport,
and synchronization of individual components of the entire
framework.

Filters are normally divided into three main categories,
namely, source, transform, and render. For this filter we
implement a transform filter, with the base class CTransform.
The filter itself implements the following functions in order
to achieve its core purpose.

5.1.1. Check Input Type. This function checks whether the
specified media type provided by the upstream filter is
acceptable to the encoder filter or not. In our case the major
type of the media should be video. The filter supports the
following media subtypes:

(a) WMMEDIASUBTYPE I420
(b) MEDIASUBTYPE IYUV
(c) MEDIASUBTYPE YV12
(d) MEDIASUBTYPE YUY2.

5.1.2. Get Media Type. This function provides the supported
media type of the output pin of the encoder filter to the
downstream filter during the connection negotiation process.
The major type of the output pin is video while the subtype it
supports is custom defined for the CUDAH264 encoder. It is
defined as a global unique identifier (GUID) in the following
manner.

5.1.3. DEFINE GUID (MEDIASUBTYPE H264CUDA,
0x55B845A5, 0x8169, 0x4BE7, 0xBA, 0x63, 0x6C, 0x4C,
0x2C, 0x01, 0x26, 0x6D). This function also makes sure that
the input pin of the encoder filter is connected before the
output pin attempts any connection with the downstream
filter. This is because most of the properties (width, height,
frame rate, etc.) between input and output do not change
and these must be known beforehand so that they can be
conveyed to the downstream filter.

5.1.4. Decide Buffer Size. This function negotiates memory
requirements between the output pin of the encoder filter and
the input pin of the downstream filter. This function asks for
memory that can hold the largest possible encoded frame.
The input pin of the encoder filter must be connected for this
function to succeed because it needs to estimate the size of
the output frame based on the properties of the raw incoming
video.

4 Journal of Electrical and Computer Engineering

Other video inputs:
uncompressed

Foreman, news, coast,

USB 3.0 cable
Gigabit ethernet

LAN

camera

PC with
Nvidia NVS

802.11ac
Tx

802.11ac
Rx

Gigabit ethernet
LAN

video files

and sintel 4k

Point grey 4K

4kUHD screen

510GPU

(a)

uncompressed
video

YUV colorspace
converter

CUDA H264
encoder

RTSP streaming
server

4K camera or

(b)

Figure 1: Implementation design for 4kUHD live video streaming: (a) shows an illustration of the hardware implementation while (b) shows
the directshow implementation.

Tx

Rx at

Intraroom
scenario

Rx in A

4th floor

5th floor

Rx in B

Rx in C

(Thick)

100m

10m

10m

2m
Rx at 20m

10m

Figure 2: Floor plan of the 2 areas used for experimental video streaming of 4kUHD video.

Journal of Electrical and Computer Engineering 5

5.1.5. Transform. This function receives raw YUV video
frame by frame from the input pin and passes it to the encoder
instance. During this process, the CPU pointer allocated
to the input buffer of the encoder allows the filling of this
buffer, when the buffer is full it is unlocked for the GPU to
access. If any output is available from the encoder, it sends
that output to the downstream filter. This function does not
return the encoded frame.The encoded frame is returned by a
call-back function that is registered with the encoder during
initialization. Since this becomes an asynchronous process,
a queue is needed to hold the encoded frames being output
by the encoder using the call-back function. Whenever the
“transform” function is called it checks the queue; if some
encoded frame is available, it sends it to the downstreamfilter.

5.1.6. Start Streaming. This function is calledwhen the stream
is being executed. It initializes the encoder using the API
already provided by thework of [26]. After the default settings
are fetched, some changes are made to customize the encod-
ing process according to user requirements (e.g., bitrate, fps,
and so forth). A call to the following function returns the
encoder object that is used for the actual encoding. A call
to the following functions instantiates the object with the
memory buffer and a call-back function that is used to output
encoded bit stream by the encoder. The encoded bit stream
is then allocated a CPU pointer. At this point the encoded
bit stream is pushed to the RTSP server for packetization and
streaming.

5.1.7. Stop Streaming. This function is calledwhen the stream-
ing is stopped. This function frees any memory allocated for
the encoder and destroys the encoder object.

5.2. Zero-Copy Memory Mapping. Irregular memory access
patterns can be successfully captured by CPUs due to its
design that allows for reduction in memory latency access
through extensive caching. However, the same patterns may
prevent the efficient utilization of GPU memory bandwidth
because the restrictions on access patterns must be met
in order to achieve good memory performance, which are
stricter on GPUs than they are on CPU.

When running a typical CUDA application, memory is
allocated as pageable.Therefore, thememory is only allocated
whenneeded.Theuse of pageablememory allows for increase
in memory access latency as this memory will page out, and
therefore it will only be reallocated when there is a need for it.
The major disadvantage of this is that CPU↔GPU memory
transactions are slower due to the bandwidth of peripheral
component interconnect express expansion bus (PCIe) which
cannot be fully exploited. Since the paged memory can be
swapped or reallocated, the PCIe driver needs to access every
single page, copy it to a buffer, and pass on to direct memory
access (DMA) thus a synchronous page by page copy. This is
the only way PCIe transfers can occur.

Due to this there is the need for an independent host
controlled memory management allocation unit (MMU)
especially for applications such as live video streaming or
video conferencing which have strict latency requirements.

0

50

100

150

200

250

1 2 3 4 5

Ba
nd

w
id

th
 (M

b/
s)

Arbitrary numbers from table 1

Figure 3: Bandwidth available with each scenario.

At initialization, host mapping is enabled and the MMU
allocates CPU pinned memory for input data. It is assumed
that the maximum memory size for this application is 2GB;
this is based on experiments performed with x264 video
streaming. The CUDA kernel pointers are produced to allow
access to slash from the GPU. Finally the kernels were
allocated pointers to the host memory as if it were the GPU’s
global memory for the encoding process as the memory is
already mapped to CUDA unified virtual address space. This
technique of memory allocation allows for the overlap of
encoding and packetization for video transport, as data is
accessed directly via DMA (residing on the GPU) from the
CPU without any explicit data transfer to the GPU memory.
Figure 3 shows an illustration of this.

At runtime the CUDA kernels are normally asyn-
chronous to the CPU; therefore, each block also issued an
atomic counter for synchronization. Therefore all blocks
can be executed in a sequential manner with nondivergent
branching [41] and data can also be read from previous
threads. It should be noted that the CPU does wait until the
encoding process is complete before releasing the memory
buffers for packetization and buffer refill of unprocessed
frames.

5.3. Interprediction. Interprediction is the most demanding
process in x264 encoder [24]. Previous profiling in [26]
indicates that interprediction accounts for approximately
70% of the total encoding process time and is done with the
help of motion estimation.

To obtain accurate prediction values, H264 standard
makes it possible to partition variable size MB, which is a
16 × 16 macroblock (MB). Each macroblock for encoding
a frame is split into 4 × 4, 4 × 8, 8 × 4, 8 × 8, 16 × 8, 8 ×
16 submacroblocks, an illustration can be seen in Figure 4.
We therefore implement dynamic parallelism.Using dynamic
parallelism the 16 × 16 macroblock acting as a parent
kernel can spawn the thread blocks of the subblocks (which
act as child kernels) without needing any extra instructions
from the CPU; dynamic parallelism drastically reduces the
execution control from the CPU (Figures 5(b) and 6). In
deciding the final encoding mode, two steps are involved.

The first step involves the calculation of the best motion
vectors (MV) for each possible mode within the reference

6 Journal of Electrical and Computer Engineering

Shared memory

Registers Registers

Thread (0, 1)Thread (0, 0)

Local
memory

Local
memory

GPU memory

CPU memory

Block (0, 0)

(a) Typical procedure

Shared memory

Registers Registers

Thread (0, 1)Thread (0, 0)

Local
memory

Local
memory

CPU memory

Block (0, 0)

(b) Modified procedure

Figure 4: It shows an illustration of thememory access structure for
(a) a typical H264 CUDA encode and (b) using zero-copy.

image. Based on the matching criterion the sum of absolute
differences (SAD) is matched. The second step involves the
evaluation of ratedistortion of each mode; the final mode is
determined from the selection of the best mode.

Since a macroblock is divided into sixteen 4 × 4 blocks,
the SAD value is calculated for each 4 × 4 block in parallel
for all candidate motion vector positions within the reference
search range. Since 960 × 540 blocks exist in a 4kUHD frame,
1024 candidate positions (MVs) per block exist in a 32 × 32
search range. Each SAD candidate is computed by one thread
and 512 threads are executed in one thread block; we allocate

Default parallelism

16 × 16

4 × 4

(a)

Dynamic parallelism implementation

16 × 16

4 × 4

(b)

Figure 5: It shows the difference between the default parallelism and
dynamic parallelism used in motion estimation process.

more threads to increase processing granularity. For example,
since 16 threads can be executed in a 4 × 4 block, therefore
32 MBs can be processed per execution. Therefore the total
number of blocks is based on.

𝐵 (𝑚, 𝑛) =

𝐹𝑤

𝑚

×

𝐹ℎ

𝑛

× 𝑅
2
×

1

𝑁thread
, (1)

where 𝐵(𝑚, 𝑛) denotes the number of blocks per subblock,
with possible combinations of 𝑚 and 𝑛, (4 × 4, 4 × 8, 8 × 4,
8 × 8, 16 × 8, 8 × 16, 16 × 16), where𝑚 and 𝑛 are the subblock
dimensions. 𝐹𝑤 and 𝐹ℎ are the frame dimensions, and 𝑅
denotes the search range while𝑁thread denotes the number of
threads allocated per block. Based on this calculation every
1024 candidates of one 4 × 4 block are assigned to a thread
block, which is then allocated to the sharedmemory therefore
shared by all threads executed within a block.

Since the SADs of the variable block sizes 4 × 8, 8 × 4,
4 × 8, 8 × 8, 16 × 8, 8 × 16 and 16 × 16 are a consolidation of 4 ×
4 SADs, the 4×4 SADs aremerged to obtain the SADvalues of
all combinations possible. Each thread retrieves sixteen 4 × 4
SADs of onemacroblock obtained at a candidate position and

Journal of Electrical and Computer Engineering 7

16 × 16

8 × 8 8 × 8 8 × 8

8 × 4

4 × 8

4 × 4

8 × 8

16 × 8 16 × 8
8 × 16 8 × 16

Figure 6: An illustration of division of a 16 × 16 macroblock kernel
into smaller unit kernels using dynamic parallelism.

combines them in different ways to determine the SADs of all
these block sizes.

After all the SADs of the block sizes are generated, the
least of them is chosen as the best motion vector. Based on
our implementation the SADs are compared in one thread
block. During this process each thread pulls in 4 SADs from
the host memory allocated to the parent kernel to produce
the least SAD value. This value is then stored temporarily
in the shared memory alongside their indexes. The SADs
are then compared and the least value is stored back in
the memory. This process helps with reducing the system
memory access. Therefore the total number of thread blocks
equals the block number of a frame. When the smallest SAD
which is the Fractional Pixel motion pixel MV (FMV) of that
block is identified and indexed it is then stored in themapped
memory allocated to it.

5.4. Intraprediction. In intraprediction the reconstructed
pixels are needed as reference pixels. Strong dependen-
cies between neighbouring MBs, enable multiple prediction
modes.Thismakes it quite different from interprediction and
thus presenting a fundamentally low parallel execution. A
typical example is in 4 × 4 intraprediction scenario in which
the blocks will refer to the 4 × 4 blocks in both diagonally
and vertically (in form of a zig zag manner). This in itself
limits it from high performance in a parallel implementation
as the degree of parallel execution is limited to multiples of
2 subblocks within a 4 × 4 macroblock. For a 4kUHD image
resolution, the maximum degree of parallel execution for a
4 × 4 intraprediction mode is limited by 270 (using diagonal
processing for a wave front algorithm).

Other prediction modes which have been proposed rely
on the recommendations of [42, 43], where the number of
predictions is decreased for a better degree of parallelism.
However during the test experiments it was noticed that the
degree of parallel execution could be increased by reducing
the direction of predictions even further and not compro-
mising on video quality. Therefore horizontal approach for
parallel execution is proposed.

8

1

6

4

5
0

7

3

(a)

A B C D

E F G H

I J K L

M N O P

(b)

Figure 7: Typical 4 × 4 intramode predictions.

A B C D

E F G H

I J K L

M N O P

Figure 8: Horizontal mode for Intraprediction.

The numbers of predictions within the 4 × 4 block are
decreased by computing the prediction directions (Figure 7).
In doing this, the wave parallelism in the blocks is simplified
such that the blocks on the top and lower ends are dependent
on each other horizontally while the other blocks between
them are vertically independent; the illustration can be seen
in Figure 8.This simplification is aimed at reducing decoding
complexity after a transmission through a noisy channel such
as a wireless network.

6. Evaluation

As explained in implementation section we evaluate our
implementation in three stages. The metrics used for the two

8 Journal of Electrical and Computer Engineering

0
5

10
15
20
25
30
35

Sintel News Foreman Coast

Av
er

ag
e f

ra
m

e r
at

e (
fp

s)

Video clips

CPU encoding rate (x264) 1080p
CPU encoding rate (x264) 4kUHD

GPU encoding rate (CUDA)1080p
GPU encoding rate (CUDA) 4kUHD

(a)

0

1000

2000

3000

4000

5000

6000

7000

8000

Sintel News Foreman Coast

Av
er

ag
e e

xe
cu

tio
n

tim
e (

m
s)

4kUHD video clips

CUDA with memcpy (1080p)
CUDA with memcpy (4kUHD)

CUDA zero copy (1080p)
CUDA zero copy (4kUHD)

(b)

Figure 9: (a) Average frame rate comparison with x264 and (b)
average execution time comparison between CUDA memcpy and
CUDA zero copy.

other stages are structural similarity index metric (SSIM),
network delay, and packet loss. Since at all stages the experi-
ments were conducted ten times, an average of each metric
is used for each video clip and test. Since the encoder is
only running in parallel we have access to the same input
parameters as any other H264 encoder.

6.1. Encoding Performance. Figure 9(a) shows a comparison
of attained average frame rate between x264 and its parallel
implementation onCUDA for both 1080p videos and 4kUHD
videos. Across board the results show that there is a sig-
nificant speedup of the GPU implementation over the CPU
implementation. We cannot compare directly to previous
work as CUDA parallel processing cores differ between GPU
generations due to several important architectural changes
that exist between streaming multiprocessor designs. How-
ever, we only compare based on the approach used. In [26],
the authors usememory copy between the GPUmemory and
the host (CPU) memory. Figure 9(b) shows the amount of
latency avoided. On average a staggering 2000ms of latency

Table 2: Standard deviation and variance of the SSIM values at 10m
(intraroom).

Sintel News Foreman Coast
Variance 0.000426 0.000593 0.002145 8.67111𝐸 − 06
Standard
deviation 0.020642 0.02435 0.046318 0.002944675

is avoided due to the implementation of zero-copy in our
implementation.Therefore, we can assume that based on 500
frames the additional memory copy latency incurred during
the encoding process for each frame will, on average, be 4ms.
This might look negligible for a small number of frames;
however, for a longer sequence this will be more pronounced.

6.2. Real-Time Encoding for Live Streaming Performance.
Based on these observations we proceed to the live encoding
for streaming experiments. Figure 10 shows an illustration of
the interior of two floors within the networks building at the
University of Essex which is used for the experiments.

We show the variance and standard deviation of video
quality results at 10 meters.

Table 2 shows the standard deviation (SD) and variance
in values of the video quality for each video clip used at 10
meters. All SD values show slight deviation from the mean
SSIM value in each case with foreman having the largest
deviation and coast the smallest deviation.

Figures 11 and 12 show that across board for a peer-to-
peer transmission the 802.11ac network provides sufficient
bandwidth for a 20Mbps ABR stream. The least average
SSIM value 0.73 occurs in the interfloor scenario for sintel
4k; however, the video quality is still acceptable. The average
network delay spans between 59 and 92ms in all cases. The
packet loss is impressive as the maximum value for average
packet loss is only 0.72%.

6.3. Live Capture Stream. We experiment using a point grey
flea 3 4k camera (blue arrow) connected to a PC which is
connected to the 802.11ac WLAN transmitter (green arrow).
We use the buffalo air station receiver within the room in the
upper diagram of Figure 2 and use a netgear A6200 [44] usb
2.0 dongle in the room on the upper floor (lower diagram
in Figure 2). The Air station was connected to the 4kUHD
screen from [39] which still performs better compared to the
netgear USB dongle. This is typical of the hardware design as
we did not expect a very good quality video from the netgear.
However, when the air station was used in the same scenario
as the netgear, we had better quality video.

7. Conclusion and Future Work

In this paper, we have demonstrated a novel implementation
of 4kUHD live encoding for streaming over a wireless
network using CUDA parallel H264. We extended previous
research by implementing zero-copy to reduce memory
copy latencies between host memory and GPU memory; a

Journal of Electrical and Computer Engineering 9

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 20

Av
g

SS
IM

Distance (m)

Sintel
News

Foreman
Coast

(a)

0

10

20

30

40

50

60

70

10 20

Av
er

ag
e n

et
w

or
k

de
lay

 (m
s)

Distance (m)

Sintel
News

Foreman
Coast

(b)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10 20

Av
er

ag
e p

ac
ke

t l
os

s (
%

)

Distance (m)

Sintel
News

Foreman
Coast

(c)

Figure 10: Evaluation of (a) video quality, (b) network delay, and (c) packet loss for change in distance using 802.11acWLAN for a peer-to-peer
transmission.

dynamic parallel motion algorithm and a novel intrapre-
diction mode. Finally we demonstrate proof of concept by
streaming 4kUHD video content using uncompressed video
sequences and a live capture device in a peer-to-peer network,
making this is a significant improvement to the state of
the art. Having reached these results (Figures 8, 9, and
10), we can now conclude that 4kUHD real-time encoding
for live streaming at low bitrates is possible and can be
implemented in real-world applications particularly in one-
way video streaming applications where delay is not a major
issue.

The findings of this research show the possibilities of
reduced bitrate for 4320p (8KUHD) video at reduced bitrates.
Moreover, since GPU generational changes will bring about
changes in parallelization, therefore improved interpredic-
tion algorithms will be investigated as soon as those changes

happen. Furthermore, H.264 is currently limited to 4kUHD;
the major focus of future research will be on the new high
efficiency video codec (HEVC). Currently HEVC shows a
huge potential for video streaming since it can provide up
to 50% the bandwidth needed compared to its predecessor.
However, the issue which we have come across is the time
taken to encode video files, as it takes longer to encode due
to its threading issues. We will therefore be working towards
the implementation of the CUDA parallel encoder for HEVC
thereby enabling and improving the quality of experience for
UHD raw videos being encoded and streamed in realtime.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication year.

10 Journal of Electrical and Computer Engineering

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Interroom Inter 2 rooms Interfloor

Av
g

SS
IM

Scenarios

Sintel
News

Foreman
Coast

(a)

0

10

20

30

40

50

60

70

80

90

100

 Interroom Inter 2 rooms Interfloor

Av
g

ne
tw

or
k

de
lay

 (m
s)

Scenarios

Sintel
News

Foreman
Coast

(b)

Sintel
News

Foreman
Coast

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 Interroom Inter 2 rooms Interfloor

Av
er

ag
e p

ac
ke

t l
os

s (
%

)

Scenarios

(c)

Figure 11: Evaluation of (a) video quality, (b) network delay, and (c) packet loss for other scenarios using 802.11ac WLAN for a peer-to-peer
transmission.

(a) (b)

Figure 12: Live capture experiment (a) shows the 4kUHD web camera while (b) shows the 4kUHD screen used.

Journal of Electrical and Computer Engineering 11

References

[1] A. R. L. Renambot, R. Singh, B. Jeong et al., “SAGE: the scalable
adaptive graphics environment,” inProceedings ofWorld Confer-
ence on Cooperative & Work-Integrated Education (WACE ’04),
2004.

[2] K. Ponto, K. Doerr, and F. Kuester, “Giga-stack: a method
for visualizing giga-pixel layered imagery on massively tiled
displays,” Future Generation Computer Systems, vol. 26, no. 5,
pp. 693–700, 2010.

[3] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti, “Surround-
screen projection-based virtual reality: the design and imple-
mentation of the CAVE,” in Proceedings of the ACM Conference
on Computer Graphics (SIGGRAPH ’93), pp. 135–142, August
1993.

[4] K. Jarrett, “Beyond broadcast yourselfŮ: the future of YouTube,”
Media International Australia, no. 126, pp. 132–144, 2008.

[5] N. Electronics, http://www.ntt-electronics.com/.
[6] IntoPIX, http://www.intopix.com/.
[7] A. O. Adeyemi-Ejeye and S. D. Walker, “Ultra-high definition

Wireless Video transmission usingH. 264 over 802. 11nWLAN:
challenges and performance evaluation,” in Proceedings of the
12th International Conference on Telecommunications (ConTEL
’13), pp. 109–114, 2013.

[8] M. K. J. Halák, S. Ubik, P. Žejdl, and F. Nevřela, “Real-time
long-distance transfer of uncompressed 4K video for remote
collaboration,” in Future Generation Computer Systems
27(2011) 886–892, 2011, http://www.elsevier.com/wps/find/
journaldescription.cws home/505611/description#description.

[9] D. Shirai, T. Kawano, T. Fujii et al., “Real time switching and
streaming transmission of uncompressed 4K motion pictures,”
Future Generation Computer Systems, vol. 25, no. 2, pp. 192–197,
2009.

[10] A. O. Ejeye and S. D.Walker, “Uncompressed quad-1080p wire-
less video streaming,” in Proceedings of the 4th Computer Science
and Electronic Engineering Conference (CEEC ’12), pp. 13–16,
2012.

[11] C. T. Calafate, M. P. Malumbres, and P. Manzoni, “Perfor-
mance of H.264 compressed video streams over 802.11b based
MANETs,” in Proceedings of the 24th International Conference
on Distributed Computing Systems Workshops, pp. 776–781,
March 2004.

[12] S. P. A. J. V. K. Soroushian, “H. 264 parameter optimizations for
internet based distribution of high quality video,” in Proceeding
of the SMPTE Annual Technical Conference, October 2008.

[13] K. Gatimu, T. Johnson, M. Sinky, Z. Jing, L. Ben, K. Myungchul
et al., “Evaluation of wireless high definition video transmission
using H. 264 over WLANs,” in Proceedings of the IEEE Con-
sumer Communications andNetworking Conference (CCNC ’12),
pp. 204–208, 2012.

[14] D. Li and J. Pan, “Performance evaluation of video streaming
over multi-hop wireless local area networks,” IEEE Transactions
on Wireless Communications, vol. 9, no. 1, pp. 338–347, 2010.

[15] R. Stapenhurst, D. Agrafiotis, J. Chung-How, and J. Pledge,
“Adaptive HRD parameter selection for fixed delay live wireless
video streaming,” in Proceedings of the 18th International Packet
Video Workshop (PV ’10), pp. 142–149, Hong Kong, December
2010.

[16] V. Menkovski, G. Exarchakos, A. Liotta, and A. C. Sánchez,
“Quality of experience models for multimedia streaming,”
International Journal of Mobile Computing and Multimedia
Communications, vol. 2, no. 4, pp. 1–20, 2010.

[17] L. WirelessHD, “WirelessHD Specification Version 1. 0
Overview,” 2010, http://www.wirelesshd.org/pdfs/WirelessHD
Full Overview 071009.pdf.

[18] Nvidia, “Nvision 08: the world of Visual Computing,” 2011,
http://www.nvidia.com/content/cudazone/download/Getting
Started w CUDA Training NVISION08.pdf.

[19] Z.Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,”
IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–
612, 2004.

[20] A. Horé and D. Ziou, “Image quality metrics: PSNR vs. SSIM,”
in Proceedings of the 20th International Conference on Pattern
Recognition (ICPR ’10), pp. 2366–2369, Istanbul, Turkey, August
2010.

[21] Z.Wang and A. C. Bovik, “Mean squared error: lot it or leave it?
A new look at signal fidelity measures,” IEEE Signal Processing
Magazine, vol. 26, no. 1, pp. 98–117, 2009.

[22] S. Winkler, “Video quality and beyond,” in Proceedings of the
European Signal Processing Conference, pp. 3–7, 2007.

[23] T. Murakami, “The development and standardization of ultra
high definition video technology,” inHigh-Quality Visual Expe-
rience, pp. 81–135, Springer, 2010.

[24] Reference software X264-060805, http://www.videolan.org/
developers/x264.html.

[25] I. w. group, “OFFICIAL IEEE 802. 11 WORKING GROUP
PROJECT TIMELINES—2013-09-21,” 2013, http://grouper.ieee
.org/groups/802/11/Reports/802.11 Timelines.htm.

[26] N. Wu, M. Wen, H. Su, J. Ren, and C. Zhang, “A parallel H.
264 encoder with CUDA: mapping and evaluation,” in Pro-
ceedings of the IEEE 18th International Conference on Parallel
and Distributed Systems (ICPADS ’12), pp. 276–283, 2012.

[27] W.-N. Chen and H.-M. Hang, “H.264/AVC motion estima-
tion implmentation on compute unified device architecture
(CUDA),” inProceedings of the IEEE International Conference on
Multimedia and Expo (ICME ’08), pp. 697–700, Hanover, Ger-
many, June 2008.

[28] G. Zhiyong, W. Shuang, S. Zhenyu, and L. Haihua, “Design and
implementation of H. 264/AVC video encoding based on cuda,”
Journal of South-Central University for Nationalities, vol. 28, pp.
67–72, 2009.

[29] M. C. Kung, O. Au, P.Wong, and C. H. Liu, “Intra frame encod-
ing using programmable graphics hardware,” in Proceedings of
the Advances in Multimedia Information Processing (PCM ’07),
pp. 609–618, Springer, 2007.

[30] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk,
and W.-M. W. Hwu, “Optimization principles and application
performance evaluation of a multithreaded GPU using CUDA,”
in Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP ’08), pp.
73–82, February 2008.

[31] Y.-L. Huang, Y.-C. Shen, and J.-L. Wu, “Scalable computation
for spatially scalable video coding using NVIDIA CUDA and
multi-core CPU,” in Proceedings of the 17th ACM International
Conference on Multimedia (MM ’09), pp. 361–370, October
2009.

[32] Nvidia, “Nvidia Kepler GK110 Next-Generation CUDA Com-
pute Architecture,” 2012.

[33] Buffalo, “Networking at Gigabit Speeds,” 2012, http://www.buf-
falotech.com/resource center/wireless technologies.

[34] V. Lan, “Video Lan,” 2012, http://www.videolan.org/.

12 Journal of Electrical and Computer Engineering

[35] nanocosmos, “Nanocosmos,” 2012, http://www.nanocosmos
.de/v4/documentation/live video encoder - playback.

[36] P. G. F. camera, “Flea 3 USB camera,” 2012, http://ww2.ptgrey
.com/USB3/Flea3.

[37] Sintel, “Sintel 4K,” 2011, http://www.sintel.org/news/sintel-4k-
version-available/.

[38] Elemental, “4K Test sequences,” 2013, http://www.elemental-
technologies.com/resources/4k-test-sequences.

[39] Totusoft, “LAN Speed Test,” 2012, http://www.totusoft.com/
lanspeed.html.

[40] Microsoft, “Directshow,” 2012, http://msdn.microsoft.com/en-
us/library/windows/desktop/dd375454(v=vs.85).aspx.

[41] M. Harris, “Optimizing parallel reduction in CUDA,” NVIDIA
Developer Technology, vol. 2, 2007.

[42] W. Lee, S. Lee, and J. Kim, “Pipelined intra prediction using
shuffled encoding order for H.264/AVC,” in Proceedings of the
IEEE Region 10 Conference (TENCON ’06), pp. 1–4, Hong Kong,
November 2006.

[43] G. Jin and H.-J. Lee, “A parallel and pipelined execution of
H.264/AVC intra prediction,” in Proceedings of the 6th IEEE
International Conference on Computer and Information Technol-
ogy (CIT ’06), Seoul, South Korea, September 2006.

[44] NETGEAR, “A6200 802. 11ac Wifi USB Adapter,” 2013.

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mechanical
Engineering

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Antennas and
Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

