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by existing work. In this paper, the storage allocation of throwboxes is studied as two spe-
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Storage allocation simulations demonstrate that the proposed scheme is able to not only decrease data loss on

Data delivery

throwboxes but also improve the efficiency of data delivery.
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1. Introduction

Mobile Social Networks (MSNs) [1] are composed of
mobile users that carry portable devices such as cellphones.
As the links among users and the network topology are
unstable, MSN can be regarded as a special type of Delay
Tolerant Network (DTN) [2], which makes data delivery
a challenging issue in MSN. Comparing with traditional
path-building based routing approaches such as AODV [3]
and DSR [4], Store-carry-and-forward strategy based schemes
[5-8] are more efficient for data delivery. In these methods,
mobile users can act as mobile relays and store data until the
next hop is available. Such a strategy may partly overcome
the intermittent links of MSN. However, these opportunistic
encounter based schemes still have low delivery efficiency.

* Corresponding author. Tel.: 86-28-61830520.
E-mail addresses: bofanuestc@gmail.com (B. Fan), spleng@uestc.edu.cn
(S. Leng), kunyang@essex.ac.uk (K. Yang), yanzhang@simula.no (Y. Zhang).
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Many recent studies [9-12] focus on the utilization of
throwboxes [13] in data delivery. Throwboxes are a type
of storage devices equipped at particular places acting
as stationary relays. As shown in Fig. 1, with the aid of a
throwbox, data can be successfully delivered even if the two
users do not encounter each other. In [14], the authors apply
throwboxes in the Epidemic Routing protocol [15] and the
Two-hop Multicopy Routing protocol [16]. The delivery delay
and the resource consumption of the two protocols are both
decreased.

Throwboxes are widely studied in recent researches.
Some studies investigate throwbox deployment [13,17].
In [17], the social graph among specific locations and
mobile users is explored to establish the placement of
throwboxes. The work in [13] studies the combination of
throwbox deployment and routing to achieve high through-
put. Several throwbox-based relay strategies are proposed
in [12]. In addition, the work in [18,19] propose an energy-
efficiency scheme of throwboxes, in which a hardware and
software architecture is proposed. However, as a storage
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Fig. 1. User S and user D pass a throwbox at different times. User S sends a data to the throwbox firstly. Then, user D can receive the data from the throwbox.

device, the storage usage of throwboxes has been seldom
studied.

In this paper, we study the optimal storage allocation of
throwboxes. Since the deployment of throwboxes directly
determines the usage efficiency of storage, the storage allo-
cation problem can be discussed in the following two specific
cases.

(1) Throwboxes are fixed at particular places: In this case,
storage allocation is conducted individually on the
fixed throwboxes.

(2) Throwboxes are deployable: Throwboxes are not de-
ployed or can be redeployed. In this case, storage
allocation can be conducted in combination with
throwbox deployment.

The potential places for deploying throwboxes and
storage are called user Gathering Points (GPs) [10] where
a large number of users usually gather. Contact history
between users and GPs is explored as a priori knowledge
for estimating the storage requirement of each GP, as well
as the contact strength between users and GPs. In order to
calculate the optimal storage allocation, we propose a Linear
Programming (LP) model for the case with fixed throwboxes
and a joint optimization model for the case with deployable
throwboxes.

To the best of our knowledge, this is the first work to
address the optimal storage allocation on throwboxes in
combination with throwbox deployment. Comparing with
the existing work, the main contributions of this paper can
be summarized as follows.

(1) We propose a method to evaluate the contact strength
between a mobile user and a place, which fully utilizes
the characters of the contacts between the user and
the place, including frequency, durations and intervals.

(2) The optimal storage allocation is studied in combina-

tion with throwbox deployment. When throwboxes

are deployable, both throwbox deployment and stor-
age allocation can be solved using the proposed joint
scheme.

A balance between the number of throwboxes and the

size of storage is achieved, so that network operators

can prepare these two kinds of resources properly and
avoid resource wastage.

(3

—

The remainder of this paper is organized as follows.
Section 2 provides a review of related researches on throw-
boxes. The system model of this paper is presented in

Section 3, followed by the estimation of contact strength
between users and GPs in Section 4. Section 5 presents
the detail of storage allocation. Simulations of the pro-
posed scheme are presented in Section 6. Finally, Section 7
concludes the paper.

2. Related works

The concept of throwbox is first introduced in [13], which
defines a throwbox as a stationary relay with limited storage
and power. This work addresses throwbox deployment in
combination with routing designing. With different levels
of knowledge, three throwbox deployment schemes are
proposed. For each scheme, three different relay strategies
are designed to achieve high throughput. Another work
addressing throwbox deployment is [17], where the social
graph among specific locations and users is exploited to
determine the placement of throwboxes. Multiple metrics,
such as betweenness centrality and degree centrality, are
used to evaluate the importance of each potential place.
Based on different metrics, several deployment schemes
are presented. These two studies make excellent contri-
butions to throwbox deployment. Nevertheless, as they
both ignore storage allocation in the deployment, effective
storage allocation schemes can be hardly realized with
these deployment schemes, because the place selected
for throwbox deployment may be not proper for storage
allocation. Work [18,19] investigate an energy-efficiency
scheme of throwboxes, in which a hardware and software
architecture is proposed to improve the energy efficiency of
throwboxes. However, as a storage device, the storage usage
of throwboxes is usually ignored by existing studies.

Throwboxes are widely applied in data delivery methods.
Ibrahim et al. [14] add throwboxes into two existing rout-
ing protocols, the Epidemic Routing protocol [15] and the
Two-hop Multicopy Routing protocol [16] to study the en-
hancement of performance by using throwboxes. Simulation
results show that the data delivery delay and the resource
consumption of the two methods are both significantly
decreased. In [12], several routing schemes are designed
based on throwboxes. The authors classify nodes as source
node, destination node, mobile relays and throwboxes and
design five relay strategies. These strategies differ from
each other only in the restriction of data forwarding among
specific types of nodes. In the context of MSN, throwboxes
are mainly utilized as a relay at some locations with large
social popularity, such as GPs [9-11]. As these places usually
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Table 1
Notation definition.

Notations and definitions Notations and definitions

m The number of GPs n The number of users

X Total size of storage Y Total number of throwboxes

X Storage allocation vector y Throwbox deployment vector
Number of real visits A Contact strength

HRoS; Hard RoS of GP g; SRoS; Soft RoS of GP g;

RoS;  RoSof GP g; a Weight of HRoS; in RoS;

have a large number of visiting users, a throwbox storing
data there can significantly improve the performance of data
delivery. However, in the existing work, the authors simply
assume each place to support a throwbox for data storing.
How much storage should be allocated to each throwbox is
never considered. In this case, we address this issue to fill
the research gap.

3. System model

We consider a network that consists of n users U =
{uq,uy, ..., up} and m GPs G = {g1, &5, ..., 8gm}. Users com-
municate with each other and with throwboxes using the
short range radio of the devices, such as Wi-Fi direct and
Bluetooth. The total number of throwboxes and the to-
tal size of storage are Y and X, respectively. Vector y =
{y1.¥2.....ym} indicates the number of throwboxes de-
ployed at each GP, and X = {x1, x5, ..., Xn} denotes the size
of storage allocated to the throwbox of each GP. Each GP can
equip at most one throwbox, so that y; € {0, 1}. Data can be
stored at a throwbox for a constant time T;, which is called
the storing lifecycle of data. The main notations used in this
paper are listed in Table 1.

As shown in Fig. 2(a), if the throwboxes are fixed at
particular places (i.e., y is established), the only task is to al-
locate storage to the throwboxes. This is a common demand
in real-life situations, because the storage of throwboxes
usually needs to be reallocated to adapt the varying visiting
habits of users. For example, a library usually has much
more visiting users at the end of a semester and needs more
storage than other time. In this case, the optimal storage allo-
cation x should be recalculated according to the current visit
pattern of users. On the other hand, if the throwboxes are

@ GP equipped O GP without
with throwbox throwbox

‘ Storage X H

Storage
allocation

C%) @

(a) Storage allocation on
fixed throwboxes

[/}

m

deployable (i.e., y is a variable) as shown in Fig. 2(b), storage
allocation can be conducted in combination with throwbox
deployment. In this case, the optimal throwbox deployment
y and storage allocation x can be calculated jointly. The case
with deployable throwboxes has been simply addressed as
a preliminary work in [20] with limited simulations and
discussion. This paper extends the work and fully addresses
the storage allocation problem by considering both cases.
Moreover, new real trace based simulations are conducted
to evaluate the performance of each case as well as the
comparison between them.

Comparing to the duration of a visit, the time cost in re-
ceiving data from a throwbox can be ignored. Most data are
stored on a throwbox at the beginning of the visits. Accord-
ingly, we can simply assume that data storing happens only
once during a visit (i.e., at the beginning of it).

4. Contact strength

Contact strength denotes the strength of contact between
two nodes. In this paper, we evaluate the contact strength be-
tween a user and a GP from the perspective of data receiving,
which means how possible the user can receive data from the
GP. Contact history of the user, which contains the detail of
the past visits to the GP, is exploited as a priori knowledge.
Such history is easy to be obtained via some information col-
lection techniques [21].

Some researchers have studied contact strength among
nodes using contact characters such as frequency [17], dura-
tions [22] or intervals [23]. However, as they all employ only
one of these characters, the evaluation of contact strength
may be inaccurate. For example, as shown in Fig. 3, if only
frequency is considered, user A and user B should have the
same contact strength with the GP. However, user A wins out
because of his larger visit durations. Due to the same reason,
user A defeats user C, although they have the same average
interval time. User D has the same visit duration as user A.
However, user A still wins out. This is because user A is able
to receive the data stored during the intervals at the next
visit. While, user D can only receive the data stored during
the visits.

The above comparison indicates that no contact character
is able to evaluate the contact strength between a user and a
GP individually. Hence, we employ all the characters. Before

‘ Storage X H
ﬁStoragc allocation

T

\ J

Y
ﬂThrowbox deployment

S A A

(b) Storage allocation and
throwbox deployment

Fig. 2. Storage allocation under two cases: (a) storage allocation on fixed throwboxes, and (b) storage allocation and throwbox deployment.

(2015), http://dx.doi.org/10.1016/j.comnet.2015.08.015

Please cite this article as: B. Fan et al., Optimal storage allocation on throwboxes in Mobile Social Networks, Computer Networks

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

172

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197


http://dx.doi.org/10.1016/j.comnet.2015.08.015

198
199

200
201
202

203
204

205
206
207
208
209
210
21
212
213
2
215
216
217

—_

—
o~

—_

JID: COMPNW

[m3Gdc;September 3, 2015;15:30]

4 B. Fan et al. / Computer Networks xxx (2015) XXx—-XxX

visit interval

time

(a) User A
i e e
time

(¢) User C

I I R

time
(b) User B

time
(d) User D

Fig. 3. Contact history of four users with the same GP: (a) user A, (b) user B, (c) user C and (d) user D.

Ta
Visit

h Data storing |12 time
T

(a) A real visit

Ta T Tai
Visit 1 |« » Visit 2

L

time

Data storing
T
(¢) Two real visits with T3, < T;

ﬂVirtual visit

Data storing time

T
(b) A virtual visit

T T T
Visit 1 = » Visit 2

-

time

Data storing
T
(d) Two real visits with Ty, > T;

Fig. 4. Case study: (a) a real visit, (b) a virtual visit, (c) two real visits with T;, < T, and (d) two real visits with T;,, > Tj.

introducing the estimation of contact strength, we first
define two terminologies.

Definition 1. (Real visit): Visits that really occur between
a user and a GP with a non-zero durations, as shown in

Fig. 4(a).

Definition 2. (Virtual visit): Fictitious and instantaneous vis-
its with zero duration, as shown in Fig. 4(b).

Unless otherwise specified, “visit” denotes real visit.

According to the contact history, a user may visit a GP
for several times with different durations and intervals. It
is difficult to exploit all these characters directly. Instead,
we first normalize these various-length visits by converting
them into virtual visits, according to the durations and in-
tervals of the visits. Then, we employ the frequency of the
virtual visits as the contact strength between the user and
the GP. The conversion from real visits to virtual visits should
keep the following principle: through the virtual visits, the
user should have the same chance to receive data from the GP
as through the original real visits. For each user-GP pair, we
illustrate the conversion via three cases using Fig. 4.

4.1. Asingle real visit

Firstly, we study how to convert a single real visit into vir-
tual visits with Fig. 4(a), in which a block indicates a period
of time. For simplification, only one piece of data is consid-
ered, which is stored at the GP for time T,. The duration of
the single visit is T;. As shown in Fig. 4(a), if block “Visit” is
located between the two dashed blocks, namely if the user
reaches the GP between t; and t,, block “Visit” can overlap
with block “Data storing” and the user can receive the data.
So, the feasible period for data receiving is t; — t; = Ty + T,.

On the other hand, as shown in Fig. 4(b), through a virtual
visit, the user can receive the data only if the virtual visit oc-
curs during T;. Hence, the feasible period for data receiving
is T;. In order to achieve a feasible period T; + Tj, TdTJI’T’ vir-
tual visits are needed. Consequently, we have the following
corollary.

Corollary 1. A real visit with duration Ty can be converted into

T+T . .
% virtual visits.

4.2. Two adjacent real visits

Secondly, we study how to convert two adjacent real visits
into virtual visits. T4; and Ty, denote the duration of the two

(2015), http://dx.doi.org/10.1016/j.comnet.2015.08.015
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visits and T;, denotes the interval between them. If T} > Tj,,
as shown in Fig. 4(c), even though the user is absent from the
GP during T;,, he can still receive the data stored during Tj,,
just like that he has never left during T;,. In other words, the
two visits and the interval can be regarded as a visit from the
perspective of data receiving. Therefore, we have Corollary 2.

Corollary 2. For two adjacent real visits with interval T;, and
durations Ty; and Ty, if T) > Ty, then the two visits and the
interval can be regarded as a real visit with a duration T; =
Ta1 + Tin + Taa-

Corollary 2 indicates that several close short visits can
contribute the same as a long visit. Such a property is usu-
ally neglected by existing studies.

On the other hand, if T; < T;,, as shown in Fig. 4(d),
Corollary 2 is not valid. Instead, they can be converted into
%{ﬁn’ virtual visits according to Corollary 1.

4.3. Arbitrary number of real visits

Finally, we consider an arbitrary number of real visits.
Based on the above two cases, the conversion can be easily
conducted. Through Corollary 2, all the adjacent real visits
with Tj, < T, can be combined into real visits. Then, based
on Corollary 1, each real visit can be converted into a specific
number of virtual visits.

Based on the above discussion, the contact strength of
each user-GP pair can be estimates through the following
steps.

(1) Select two adjacent real visits with an interval T;, <
T; and combine them into a real visit according to
Corollary 2.

(2) Repeat Step (1) until all the adjacent visits have inter-
vals Ty, > Tj.

(3) Convert each visit into virtual visits according to
Corollary 1.

(4) Define the frequency of virtual visits as the contact
strength A of the user-GP pair.

5. Optimal storage allocation

Storage allocation is basically a supply-demand problem.
In this section, we first analyze the Requirement of Storage
(RoS) of each GP. Then, based on the analysis, we calculate
the optimal storage allocation.

5.1. Demand analysis

The RoS of a GP is determined by the number of visits,
the average number of data stored during each visit and the
average size of stored data. It should be noted that the vis-
its considered in this section are the real visits rather than
virtual visits. This is because that data storing happens only
once during a real visit. The length of a visit makes no differ-
ence to data storing. For a GP gj, we define its Hard Require-
ment of Storage (HRoS) within a period of time T as

HRoS; = y;-D;-S; (1)

where y; is the number of visits to g; within T. Dﬁ is the av-
erage number of data stored at g; during a visit and § is the

average size of the data stored at g;. HRoS is the RoS under the
worst situation where the y; visits occur during the same T,
and cost storage simultaneously. The storage needed in such
a situation is the largest. Generally, visits may occur at differ-
ent time and storage can be recycled.

In the best situation where the visits are distributed uni-
formly in T, only VJTT’ visits happen during a T; and the stor-
age need is the smallest. The RoS of a GP in such a situation is
called Soft Requirement of Storage (SRoS), which is given as

Yi-Dj-S;i- T
T .
HRoS and SRoS are RoS under the worst situation and the
best situation, respectively. If we consider a general situation,
a tradeoff should be made between them. Hence, we define
the RoS of g; as

SRoS; = (2)

RoS; = aHRoS; + (1 — a)SRoS;,
a<[0,1]. (3)

o allows for adjusting the relative importance of RHoS
and SHoS. The variables in RoS; can be derived as follows:

vi= Z Vi (4)

where y;; is the number of real visits between u; and g;
within T, namely the number of times u; visits g; within
time T.

D; and S; can be calculated with the statistics collected

during building the contact history. Dﬁ can be calculated as

Vi
D= ij Dkf
J = y]

where Dy; indicates the number of data stored at g; during
.. Vi
the kth visit. Let N; = 3°,/ Dy;, then

(5)

N
S = leslj
J Nj

(6)

where Sj; is the size of the Ith data stored at g;.

5.2. Storage allocation on fixed throwboxes

If throwboxes are fixed at particular places, storage alloca-
tion on the throwboxes is conducted individually. The objec-
tive of storage allocation is to enhance the efficiency of data
delivery in the network, including improving data delivery
ratio, decreasing data delivery delay and so forth. Basically,
these goals can be achieved by maximizing the data delivery
probability at the GPs, which is determined by the number of
data stored there and the sum of contact strength between
the GP and all the users. With a given storage x;, a GP g; can
store at most x; /57- data, where § is the average size of a data.
The contact strength between g; and all the users is A;, where
Aj=Y1 oA and A is the contact strength between g; and
user u;. Hence, the data delivery probability P; at g; satisfies
pyoc MX (7)

5j
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D Zero allocation

] O
Unused
throwbox

(a) Y > [x]

. Non-zero allocation

Ideal allocation

Throwboxes

Fig. 5. Throwbox deployment and storage allocation under the greedy method:

In order to maximize the data delivery probability of the
whole network, we calculate the optimal storage allocation
as follows.

m
Maximize F(x) =) M
j=1 5j
m
subjectto: ) "x; =X, 0 <x; < RoS;. (8)

j=1

Here, x; is the size of storage allocated to GP g;. It has
a upper bound RoS; in order to avoid wastage of storage.
y; is the number of throwboxes deployed at GP g;. Since
={y1.¥2,....ym} is already established, formula (8) is a
Linear Programming (LP) problem [24], which can be easily
solved with small computation cost. Such a storage alloca-
tion scheme is optimal under the established throwbox de-
ployment scheme y. However, it is also constrained by the
deployment scheme y. If throwboxes are deployable, storage
allocation and throwbox deployment can be both conducted
to achieve a better scheme.

5.3. Joint storage allocation and throwbox deployment

If throwboxes are deployable, y = {y1.¥2,....ym} is a
variable. Similar as formula (8), the optimal storage alloca-
tion and throwbox deployment scheme can be given as

m

Zk]ﬁy]
j=1 Sj

Maximize F(X) =

m
subject to: ij =X, 0 <x; <RoS;,
=

D> yi=Y y;e{0,1}. 9)

j=1

Such a joint optimization problem is NP-Hard [13]. It is
too computationally expensive to solve it optimally. Conse-
quently, we develop a two-step greedy method to solve it.
Firstly, an ideal allocation result that ignores the restriction
in the number of throwboxes is calculated. Then, consider-
ing the specific number of throwboxes, the joint scheme is
established.

D D D . . . . Ideal allocation

Unused
storage Throwboxes

Y
(b) ¥ < [x]

(a)Y > [X|and (b)Y < [X].

5.3.1. Ideal allocation
Suppose that Y is large enough to satisfy all the GPs, so
that if x; > 0, then y; = 1. Formula (9) can be modified as

m
Maximize F(X) =

subject to: ij
=1

=X, 0 <x; <RoS;. (10)

The model becomes an LP problem. As the coeffi-
cients M/ST- are all positive, the optimal solution X =
{X1.%2, ..., Xm} can be easily achieved by successively match-
ing the RoS of each GP in the descending order of % ;/S;. In
other word, storage is first allocated to the GP with the largest
Aj /57- to match its RoS. Then, storage is allocated to the GP
with the second largest A ; /ST» and so forth, until no storage or
GP is left. As a consequence, all the non-zero elements X; in X
satisfy X;j = RoS;.

5.3.2. Joint scheme

Now we consider that the number of throwboxes is
constrained by Y. Let |X| denotes the number of non-zero
elements of X. As shown in Fig. 5(a), if Y > [X|, each GP that
has a non-zero storage allocation in X can be equipped
with a throwbox. In this case, for each GP gj, if X; > 0, then
yj=1and x; = 551 In other words, the ideal allocation can
be realized. On the contrary, if Y < |X| (Fig. 5(b)), only Y GPs
can be equipped with a throwbox. In order to maximize
Z;-”:l Aj-xj‘yj/Sij, the Y throwboxes are placed at the Y GPs

that have the largest A ]ij /57. Then, storage are allocated to
these throwboxes according to the ideal solution X. Namely,
for each of the y selected GPs, y; =1 and x; :)?j. While,
for other GPs, y; = 0 and x; = 0. After the allocation, some
storage remains unused. However, we need not to reallocate
it to the Y throwbox because their storage already matches
their RoS.

5.3.3. Discussion

When Y > |X|, the joint scheme is optimal because it real-
izes the ideal allocation which is optimal. However, as only
[X| throwboxes are needed, Y —|X| throwboxes remain un-
used. On the other hand, when Y < [X|, some storage is left
unused. The ideal allocation is not realized and the joint
scheme may not be optimal under some situations. For ex-
ample, a GP that has a small coefficient A ; /57 but very large
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Table 2
Simulation parameters.

Parameters Default value
Average size of data 1 MB

Data generation interval 5 min
Simulation duration 72h
Computation period, T 24h

Total lifecycle of data 8h

Storing lifecycle T, of data 2h
Threshold of visiting time, T 10 min

RoS may not have a throwbox equipped according to the
joint scheme. However, it is actually a better option to place
a throwbox, because it can use up the unused storage to
achieve a larger data delivery probability A ;-x; /57. Neverthe-
less, the joint scheme is still high in efficiency, since the Y se-
lected GPs own the largest }Lj‘)?j/sij under the ideal solution.
Throwboxes and storage are both network resources. The
unused throwboxes or storage means oversubscribing of re-
source, which brings unnecessary cost. In consequence, it is
necessary to find a balance between Y and X, so that these
two kinds of resources can be both used out. According to
Section 5.3.2, such a balance can be expressed as Y=[X|. It is a
step function allowing X to change within a particular range
and thus is robust. Based on such a balance, the network de-
signer can purchase throwboxes and storage with a proper
proportion and avoid resource wastage. Moreover, the joint
optimal scheme can be easily achieved under this balance.

6. Performance evaluation

OMNeT++ [25] based simulations are conducted to vali-
date the efficiency of the proposed schemes. The network
scenario is constructed based on the Dartmouth mobility
trace, which is obtained from a 5-year experiment [21]. In
the experiment, numerous Wi-Fi access points are deployed
at the main buildings of the Dartmouth campus. Once a user
connects/disconnects to/from an access point, this informa-
tion is recorded in a log file. Through this method, the visiting
history of each user is recorded. In our simulations, 64 users
are randomly selected from the log and set to move according
to their mobility traces. The buildings they frequently visit
are regarded as the GPs for throwbox deployment and stor-
age allocation. According to the selected trace, there are 9
GPs. A threshold of visiting time 7 is used to exclude short
passages. For data storing on throwboxes, the First-Come-
First-Serve (FCFS) scheme is adopted. When the buffer of a
throwbox is full, the DropOldest [26] strategy is applied for
data refreshing. According to DropOldest, when a piece of
data is sent to a throwbox whose buffer is full, the oldest
data on the throwbox will be removed to provide space for
the newly coming one, even if the data is still in its storing
lifecycle. The major parameters used in the simulations are
set as shown in Table 2. The total lifecycle of data indicates
the time that data can stay in the network. After the time,
the data will be destroyed.

6.1. Schemes in comparison

Four storage allocation schemes are compared. Wherein,
two schemes are designed for the case with fixed throw-

boxes: the Established-Deployment-and-Optimal-Allocation
(EDOA) scheme and the Established-Deployment-and-
Uniform-Allocation (EDUA) scheme. The other two are
designed for the case with deployable throwboxes: the
Optimal-Deployment-and-Optimal-Allocation (ODOA) scheme
and the  Random-Deployment-and-Uniform-Allo-cation
(RDUA) scheme. EDOA is the optimal storage allocation
studied in Section 5.2, based on an established throwbox
deployment scheme. While, in EDUA, storage is uniformly
allocated to the fixed throwboxes. The deployment of throw-
boxes is established using the metric-based deployment
scheme [17]. According to [17], throwboxes are simply
deployed at the places with the largest value of particular
metrics, such as betweenness centrality [27], degree cen-
trality [28]. In the simulations, we adopt degree centrality as
the metric. ODOA is our joint optimization scheme studied
in Section 5.3. In RDUA, throwboxes are deployed randomly
and storage is allocated to each throwbox uniformly.

In the simulations, a data source periodically generates
data and sends them to a randomly chosen destination user.
Two data delivery approaches - Epidemic Routing (ER) [15]
and Homing Spread (HS) [9] - are employed for data deliv-
ery. ER is a flooding scheme in which every node can act as
a data relay that helps storing and forwarding data. There is
no restriction on the number of copies for each data. How-
ever, according to ER, data are not stored at throwboxes. We
modify it and let each data relay store a copy of data at the
throwboxes it passes. HS is a multi-copy scheme. The total
number of copies of each data is restricted with a constant
c. We set ¢ = 8, which is a proper value with respect to the
number of users and GPs [10].

6.2. Results and discussion

The weight « in RoS is a crucial factor that directly affects
storage allocation. In this section, we first study the optimal
setting of o and then study other performance metrics with
this setting.

6.2.1. Optimal setting of weight o

The values of « directly decide the value of RoS. A small
RoS may make a GP unable to get enough storage and some
data are removed during their storing lifecycle. We call such
a phenomenon “data loss”. On the other hand, with a large
RoS, a GP may obtain a storage larger than its actual demand
and lead to a waste of storage. This will also cause data loss
because some other GPs cannot get sufficient storage. There-
fore, a good setting of « is important for reducing data loss.

AsT=12T; (T =24 hand T; = 2 h as set), we have HRoS=
12SRoS and RoS=(11c+ 1)SRoS = kSRoS where k = (11 +
1) € [1,12]. In this case, we set k=1 to 12 and study the
optimal value of k. The results shown in Fig. 6 indicate that
both ER and HS suffer a terrible data loss when k is set to
be too small or too large. However, when k has a medium
value, such as 5 or 6, both the two approaches achieve a much
smaller data loss. Therefore, in the following simulations, we

set k=5, namely o = .

6.2.2. Data loss
The first performance metric we study is data loss, since
it directly reflects the efficiency of storage allocation. A well
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Fig. 6. Data loss under different values of k: (a) data delivery on ODOA scheme and (b) data delivery on EDOA scheme.
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Fig. 7. Data loss of Homing Spread and Epidemic Routing: (a)Y =5, (b)Y =10, (c)Y = 20,(d)Y = 5,(e) Y = 10 and (f) Y = 20.

designed storage allocation scheme can properly balance
the storage of each throwbox and minimize data loss. We
run ER and HS using the four schemes (ODOA, EDOA, EDUA
and RDUA), respectively, and compare their performances in
terms of data loss.

The results are shown in Fig. 7. Not surprisingly, both ER
and HS achieve the smallest data loss when using the ODOA
scheme. This is because that the GPs to place throwboxes in
ODOA are expressly selected for storage allocation. Therefore,
storage allocation can be well performed at these GPs. When
adopting EDOA, a larger data loss is suffered because EDOA
adopts an individual throwbox deployment scheme [17] to
deploy throwboxes. Storage allocation is not considered in
the deployment. Hence, the GPs selected to place throwboxes
may be not as excellent as those in ODOA for storage alloca-
tion. However, since we adopt degree centrality as the met-
ric for throwbox deployment [17], the selected GPs are the
most popular ones in the networks. Such a deployment is
close to one in ODOA scheme. Consequently, although not as
good, EDOA has a close performance to ODOA. When using
EDUA, an even larger data loss is experienced, because stor-
age is allocated uniformly on the fixed throwboxes. This may
lead that some unpopular GPs obtain too much storage, while
some popular GPs fail to get enough storage. RDUA scheme

performs the worst among the four schemes, as it has low ef-
ficiency in both throwbox deployment and storage allocation.

On the other hand, ER experiences a larger data loss than
HS even using the same storage allocation scheme. This is be-
cause that ER does not restrict the number of data copies. In
this case, for each data, there may be more copies that need
to be stored at the throwboxes. Consequently, a larger data
loss is suffered when the storage is exhausted.

6.2.3. Delivery ratio

The second performance metric we study is delivery
ratio- the ratio of data successfully reaching the destination.
This is a common but important performance metric for data
delivery. Hence, we adopt this metric to study the capability
of these schemes in enhancing the performance of data
delivery.

The results in Fig. 8 indicate that the delivery ratio of
both HS and ER is improved when more throwboxes and
storage are provided, since more data are able to be stored.
When using the ODOA scheme, both ER and HS achieve the
best delivery ratio. This is because ODOA not only balances
storage allocation according to the demand of each GP, but
also preferentially allocates storage to the GPs with large
contact strength. In this case, even if data loss is unavoidable,
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Fig. 9. Delivery delay of Homing Spread and Epidemic Routing: (a)Y =5, (b)Y =10, (c)Y =20,(d)Y =5,(e)Y = 10 and (f) Y = 20.

most data loss happens at the GPs that have the smallest
contact strength. As a consequence, the loss of data delivery
chance is minimized. Based on EDOA, an approximate per-
formance in delivery ratio is achieved. This is because EDOA
has a similar data loss as ODOA. Moreover, the GPs to deploy
throwboxes in EDOA are also popular GPs with large contact
strength. Hence, data loss also usually happens at unpopular
GPs. EDUA performs badly because even throwboxes are
placed at the most popular GPs, the terrible data loss caused
by the uniformly storage allocation will also decrease data
delivery efficiency. Finally, RDUA still performs the worst
because of its random deployment and uniform allocation
strategy.

The comparison between ER and HS indicates that, al-
though suffering a worse data loss, ER still achieves a larger
delivery ratio than HS. This is because ER generates more data
copies than HS and can achieve more data delivery chances.

In other words, the unlimited data copies bring both a larger
delivery ratio and a worse data loss to ER.

6.2.4. Delivery delay

Delivery delay is another critical performance metric
for data delivery, especially for networks with intermittent
links among nodes, such as DTN and MSN. In throwbox-
aided networks, in addition to the design of data delivery
approaches, delivery delay is also decided by the efficiency
of the storage allocation scheme, because a large delivery
delay is usually caused when data are removed before the
destination user arrives. Indeed, comparing Figs. 7 and 9,
it is easy to discover that delivery delay changes nearly in
line with data loss under the same scenario. Among the four
schemes, not surprisingly, ODOA performs the best. EDOA,
EDUA and RDUA successively have a worse performance in
delivery delay, in line with their performance in data loss.
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7. Conclusion

The intermittent links of nodes in Mobile Social Networks
(MSNss) significantly challenge the design of data delivery ap-
proaches. Recently, several researches study the utilizing of
a type of storage devices called throwboxes in data deliv-
ery. With a throwbox storing data at a particular place, the
efficiency of data delivery can be enhanced, as data can be
successfully forwarded as long as two nodes pass a throw-
box within a particular time interval. Many proposals have
studied throwboxes in the context of throwbox deployment,
routing designing and energy usage. However, as a storage
device, the efficient storage usage of throwboxes is seldom
considered by existing work. In order to fill the research gap,
this paper addresses storage allocation on throwboxes.

We subdivide the storage allocation problem into two
more specific problems, namely (1) when throwboxes are
fixed at particular places, how to allocate storage on the
throwboxes; and (2) if throwboxes are deployable, how to
conduct storage allocation in combination with throwbox de-
ployment. Contact strength among users and GPs as well as
the requirement of storage of each GP are derived with the
contact history of users. Then, two optimization models are
proposed to solve the two storage allocation problems. Sim-
ulation results indicate that the proposed storage allocation
schemes perform well in both decreasing data loss of throw-
boxes and enhancing the efficiency of data delivery.
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