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a b s t r a c t

In the context of Mobile Social Networks (MSNs), a type of wireless storage device called

throwbox has emerged as a promising way to improve the efficiency of data delivery. Re-

cent studies focus on the deployment of throwboxes to maximize data delivery opportunities.

However, as a storage device, the storage usage of throwboxes has seldom been addressed

by existing work. In this paper, the storage allocation of throwboxes is studied as two spe-

cific problems: (1) if throwboxes are fixed at particular places, how to allocate storage to the

throwboxes; and (2) if throwboxes are deployable, how to conduct storage allocation in com-

bination with throwbox deployment. Two optimization models are proposed to calculate the

optimal storage allocation with a knowledge of the contact history of users. Real trace based

simulations demonstrate that the proposed scheme is able to not only decrease data loss on

throwboxes but also improve the efficiency of data delivery.

© 2015 Published by Elsevier B.V.

1. Introduction1

Mobile Social Networks (MSNs) [1] are composed of2

mobile users that carry portable devices such as cellphones.3

As the links among users and the network topology are4

unstable, MSN can be regarded as a special type of Delay5

Tolerant Network (DTN) [2], which makes data delivery6

a challenging issue in MSN. Comparing with traditional7

path-building based routing approaches such as AODV [3]8

and DSR [4], Store-carry-and-forward strategy based schemes9

[5–8] are more efficient for data delivery. In these methods,10

mobile users can act as mobile relays and store data until the11

next hop is available. Such a strategy may partly overcome12

the intermittent links of MSN. However, these opportunistic13

encounter based schemes still have low delivery efficiency.14

∗ Corresponding author. Tel.: 86-28-61830520.

E-mail addresses: bofanuestc@gmail.com (B. Fan), spleng@uestc.edu.cn

(S. Leng), kunyang@essex.ac.uk (K. Yang), yanzhang@simula.no (Y. Zhang).

Many recent studies [9–12] focus on the utilization of 15

throwboxes [13] in data delivery. Throwboxes are a type 16

of storage devices equipped at particular places acting 17

as stationary relays. As shown in Fig. 1, with the aid of a 18

throwbox, data can be successfully delivered even if the two 19

users do not encounter each other. In [14], the authors apply 20

throwboxes in the Epidemic Routing protocol [15] and the 21

Two-hop Multicopy Routing protocol [16]. The delivery delay 22

and the resource consumption of the two protocols are both 23

decreased. 24

Throwboxes are widely studied in recent researches. 25

Some studies investigate throwbox deployment [13,17]. 26

In [17], the social graph among specific locations and 27

mobile users is explored to establish the placement of 28

throwboxes. The work in [13] studies the combination of 29

throwbox deployment and routing to achieve high through- 30

put. Several throwbox-based relay strategies are proposed 31

in [12]. In addition, the work in [18,19] propose an energy- 32

efficiency scheme of throwboxes, in which a hardware and 33

software architecture is proposed. However, as a storage 34
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Fig. 1. User S and user D pass a throwbox at different times. User S sends a data to the throwbox firstly. Then, user D can receive the data from the throwbox.

device, the storage usage of throwboxes has been seldom35

studied.36

In this paper, we study the optimal storage allocation of37

throwboxes. Since the deployment of throwboxes directly38

determines the usage efficiency of storage, the storage allo-39

cation problem can be discussed in the following two specific40

cases.41

(1) Throwboxes are fixed at particular places: In this case,42

storage allocation is conducted individually on the43

fixed throwboxes.44

(2) Throwboxes are deployable: Throwboxes are not de-45

ployed or can be redeployed. In this case, storage46

allocation can be conducted in combination with47

throwbox deployment.48

The potential places for deploying throwboxes and49

storage are called user Gathering Points (GPs) [10] where50

a large number of users usually gather. Contact history51

between users and GPs is explored as a priori knowledge52

for estimating the storage requirement of each GP, as well53

as the contact strength between users and GPs. In order to54

calculate the optimal storage allocation, we propose a Linear55

Programming (LP) model for the case with fixed throwboxes56
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Section 3, followed by the estimation of contact strength 80

between users and GPs in Section 4. Section 5 presents 81

the detail of storage allocation. Simulations of the pro- 82

posed scheme are presented in Section 6. Finally, Section 7 83

concludes the paper. 84

2. Related works 85

The concept of throwbox is first introduced in [13], which 86

defines a throwbox as a stationary relay with limited storage 87

and power. This work addresses throwbox deployment in 88

combination with routing designing. With different levels 89

of knowledge, three throwbox deployment schemes are 90

proposed. For each scheme, three different relay strategies 91

are designed to achieve high throughput. Another work 92

addressing throwbox deployment is [17], where the social 93

graph among specific locations and users is exploited to 94

determine the placement of throwboxes. Multiple metrics, 95

such as betweenness centrality and degree centrality, are 96

used to evaluate the importance of each potential place. 97

Based on different metrics, several deployment schemes 98

are presented. These two studies make excellent contri- 99

butions to throwbox deployment. Nevertheless, as they 100

e 101
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f 107

e 108
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. 110

- 111

e 112

- 113

114

e 115
and a joint optimization model for the case with deployabl

throwboxes.

To the best of our knowledge, this is the first work t

address the optimal storage allocation on throwboxes in

combination with throwbox deployment. Comparing with

the existing work, the main contributions of this paper can

be summarized as follows.

(1) We propose a method to evaluate the contact strength

between a mobile user and a place, which fully utilize

the characters of the contacts between the user and

the place, including frequency, durations and intervals

(2) The optimal storage allocation is studied in combina

tion with throwbox deployment. When throwboxe

are deployable, both throwbox deployment and stor

age allocation can be solved using the proposed join
scheme.

(3) A balance between the number of throwboxes and the

size of storage is achieved, so that network operators

can prepare these two kinds of resources properly and

avoid resource wastage.

The remainder of this paper is organized as follows.

Section 2 provides a review of related researches on throw-

boxes. The system model of this paper is presented in

y 116

117

e 118

119

120
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both ignore storage allocation in the deployment, effectiv

storage allocation schemes can be hardly realized with

these deployment schemes, because the place selected

for throwbox deployment may be not proper for storag

allocation. Work [18,19] investigate an energy-efficienc

scheme of throwboxes, in which a hardware and softwar

architecture is proposed to improve the energy efficiency o

throwboxes. However, as a storage device, the storage usag

of throwboxes is usually ignored by existing studies.

Throwboxes are widely applied in data delivery methods

Ibrahim et al. [14] add throwboxes into two existing rout

ing protocols, the Epidemic Routing protocol [15] and th

Two-hop Multicopy Routing protocol [16] to study the en

hancement of performance by using throwboxes. Simulation

results show that the data delivery delay and the resourc

consumption of the two methods are both significantl

decreased. In [12], several routing schemes are designed

based on throwboxes. The authors classify nodes as sourc

node, destination node, mobile relays and throwboxes and

design five relay strategies. These strategies differ from
each other only in the restriction of data forwarding among 121

specific types of nodes. In the context of MSN, throwboxes 122

are mainly utilized as a relay at some locations with large 123

social popularity, such as GPs [9–11]. As these places usually 124

throwboxes in Mobile Social Networks, Computer Networks
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Table 1

Notation definition.

Notations and definitions Notations and definitions

m The number of GPs n The number of users

X Total size of storage Y Total number of throwboxes

x Storage allocation vector y Throwbox deployment vector

γ Number of real visits λ Contact strength

HRoSj Hard RoS of GP gj SRoSj Soft RoS of GP gj

RoSj RoS of GP gj α Weight of HRoSj in RoSj

have a large number of visiting users, a throwbox storing125

data there can significantly improve the performance of data126
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deployable (i.e., y is a variable) as shown in Fig. 2(b), storage 156

allocation can be conducted in combination with throwbox 157

deployment. In this case, the optimal throwbox deployment 158

y and storage allocation x can be calculated jointly. The case 159

with deployable throwboxes has been simply addressed as 160

a preliminary work in [20] with limited simulations and 161

discussion. This paper extends the work and fully addresses 162

the storage allocation problem by considering both cases. 163

Moreover, new real trace based simulations are conducted 164

to evaluate the performance of each case as well as the 165

comparison between them. 166

Comparing to the duration of a visit, the time cost in re- 167

ceiving data from a throwbox can be ignored. Most data are 168
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elivery. However, in the existing work, the authors simply

ssume each place to support a throwbox for data storing.

ow much storage should be allocated to each throwbox is

ever considered. In this case, we address this issue to fill

e research gap.

. System model

We consider a network that consists of n users U =
1, u2, . . . , un} and m GPs G = {g1, g2, . . . , gm}. Users com-

unicate with each other and with throwboxes using the

ort range radio of the devices, such as Wi-Fi direct and

luetooth. The total number of throwboxes and the to-

l size of storage are Y and X, respectively. Vector y =
1, y2, . . . , ym} indicates the number of throwboxes de-

loyed at each GP, and x = {x1, x2, . . . , xm} denotes the size

f storage allocated to the throwbox of each GP. Each GP can

quip at most one throwbox, so that yi ∈ {0, 1}. Data can be

ored at a throwbox for a constant time Tl, which is called

e storing lifecycle of data. The main notations used in this

aper are listed in Table 1.

As shown in Fig. 2(a), if the throwboxes are fixed at

articular places (i.e., y is established), the only task is to al-

cate storage to the throwboxes. This is a common demand

real-life situations, because the storage of throwboxes

sually needs to be reallocated to adapt the varying visiting

abits of users. For example, a library usually has much

ore visiting users at the end of a semester and needs more

orage than other time. In this case, the optimal storage allo-

tion x should be recalculated according to the current visit

attern of users. On the other hand, if the throwboxes are

Storage X

1g

...

Storage
allocation

GP equipped 
with throwbox

GP without 
throwbox

2g 3g mg

(a) Storage allocation on
fixed throwboxes

Fig. 2. Storage allocation under two cases: (a) storage allocation on
lease cite this article as: B. Fan et al., Optimal storage allocation on t

2015), http://dx.doi.org/10.1016/j.comnet.2015.08.015
ored on a throwbox at the beginning of the visits. Accord-

gly, we can simply assume that data storing happens only

nce during a visit (i.e., at the beginning of it).

. Contact strength

Contact strength denotes the strength of contact between

o nodes. In this paper, we evaluate the contact strength be-

een a user and a GP from the perspective of data receiving,

hich means how possible the user can receive data from the

P. Contact history of the user, which contains the detail of

e past visits to the GP, is exploited as a priori knowledge.

uch history is easy to be obtained via some information col-

ction techniques [21].

Some researchers have studied contact strength among

odes using contact characters such as frequency [17], dura-

ons [22] or intervals [23]. However, as they all employ only

ne of these characters, the evaluation of contact strength

ay be inaccurate. For example, as shown in Fig. 3, if only

equency is considered, user A and user B should have the

me contact strength with the GP. However, user A wins out

ecause of his larger visit durations. Due to the same reason,

ser A defeats user C, although they have the same average

terval time. User D has the same visit duration as user A.

owever, user A still wins out. This is because user A is able

receive the data stored during the intervals at the next

isit. While, user D can only receive the data stored during

e visits.

The above comparison indicates that no contact character

able to evaluate the contact strength between a user and a

P individually. Hence, we employ all the characters. Before

...

...

Y

Throwbox deployment

Storage allocation

Storage X

1g 2g 3g mg

(b) Storage allocation and
throwbox deployment

rowboxes, and (b) storage allocation and throwbox deployment.
hrowboxes in Mobile Social Networks, Computer Networks
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Fig. 3. Contact history of four users with the

Data storing time
Visit

1t 2t

dT

lT
(a) A real visit

Data storing time
Visit 1

1dT

lT

Visit 2
1dT

inT

(c) Two real visits with Tin < Tl

Fig. 4. Case study: (a) a real visit, (b) a virtual visit, (c

introducing the estimation of contact strength, we firs

define two terminologies.

Definition 1. (Real visit): Visits that really occur between

a user and a GP with a non-zero durations, as shown in

Fig. 4(a).
Definition 2. (Virtual visit): Fictitious and instantaneous vis-

its with zero duration, as shown in Fig. 4(b).

Unless otherwise specified, “visit” denotes real visit.

According to the contact history, a user may visit a GP

for several times with different durations and intervals. It

is difficult to exploit all these characters directly. Instead,

we first normalize these various-length visits by converting

them into virtual visits, according to the durations and in-

tervals of the visits. Then, we employ the frequency of the

virtual visits as the contact strength between the user and

the GP. The conversion from real visits to virtual visits should

keep the following principle: through the virtual visits, the

user should have the same chance to receive data from the GP

as through the original real visits. For each user-GP pair, we

illustrate the conversion via three cases using Fig. 4.

Please cite this article as: B. Fan et al., Optimal storage allocation on

(2015), http://dx.doi.org/10.1016/j.comnet.2015.08.015
(b) User B

(d) User D

: (a) user A, (b) user B, (c) user C and (d) user D.

Virtual visit

Data storing time

lT
(b) A virtual visit

Data storing time
Visit 1

1dT

lT

Visit 2
1dT

inT

(d) Two real visits with Tin > Tl

al visits with Tin < Tl and (d) two real visits with Tin > Tl .

4.1. A single real visit

Firstly, we study how to convert a single real visit into vir

tual visits with Fig. 4(a), in which a block indicates a period

of time. For simplification, only one piece of data is consid

ered, which is stored at the GP for time Tl. The duration o

the single visit is Td. As shown in Fig. 4(a), if block “Visit” i

located between the two dashed blocks, namely if the use
reaches the GP between t1 and t2, block “Visit” can overlap 225

with block “Data storing” and the user can receive the data. 226

So, the feasible period for data receiving is t2 − t1 = Td + Tl . 227

On the other hand, as shown in Fig. 4(b), through a virtual 228

visit, the user can receive the data only if the virtual visit oc- 229

curs during Tl. Hence, the feasible period for data receiving 230

is Tl. In order to achieve a feasible period Td + Tl,
Td+Tl

Tl
vir- 231

tual visits are needed. Consequently, we have the following 232

corollary. 233

Corollary 1. A real visit with duration Td can be converted into 234
Td+Tl

Tl
virtual visits. 235

4.2. Two adjacent real visits 236

Secondly, we study how to convert two adjacent real visits 237

into virtual visits. Td1 and Td2 denote the duration of the two 238

throwboxes in Mobile Social Networks, Computer Networks

http://dx.doi.org/10.1016/j.comnet.2015.08.015


B. Fan et al. / Computer Networks xxx (2015) xxx–xxx 5

ARTICLE IN PRESS
JID: COMPNW [m3Gdc;September 3, 2015;15:30]

visits and Tin denotes the interval between them. If Tl > Tin,239

as shown in Fig. 4(c), even though the user is absent from the240

GP during Tin, he can still receive the data stored during Tin,241

just like that he has never left during Tin. In other words, the242

two visits and the interval can be regarded as a visit from the243

perspective of data receiving. Therefore, we have Corollary 2.244

Corollary 2. For two adjacent real visits with interval Tin and245

durations Td1 and Td2, if Tl > Tin, then the two visits and the246

interval can be regarded as a real visit with a duration Td =247

Td1 + Tin + Td2.248

Corollary 2 indicates that several close short visits can249

contribute the same as a long visit. Such a property is usu-250

ally neglected by existing studies.251

On the other hand, if Tl < Tin, as shown in Fig. 4(d),252

Corollary 2 is not valid. Instead, they can be converted into253
Td1+Td2+2Tl

Tl
virtual visits according to Corollary 1.254

4.3. Arbitrary number of real visits255

Finally, we consider an arbitrary number of real visits.256

Based on the above two cases, the conversion can be easily257

conducted. Through Corollary 2, all the adjacent real visits258

with Tin < Tl can be combined into real visits. Then, based259

on Corollary 1, each real visit can be converted into a specific260

number of virtual visits.261

Based on the above discussion, the contact strength of262

each user–GP pair can be estimates through the following263

steps.264

(1) Select two adjacent real visits with an interval Tin <265

Tl and combine them into a real visit according to266

Corollary 2.267

(2) Repeat Step (1) until all the adjacent visits have inter-268

vals Tin > Tl.269

(3) Convert each visit into virtual visits according to270

271

272

273

5274

275
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th278

5279
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th281
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it283

v284

o285

e286

m287
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w288

e289

average size of the data stored at gj. HRoS is the RoS under the 290

worst situation where the γ j visits occur during the same Tl 291

and cost storage simultaneously. The storage needed in such 292

a situation is the largest. Generally, visits may occur at differ- 293

ent time and storage can be recycled. 294

In the best situation where the visits are distributed uni- 295

formly in T, only
γ jTl

T visits happen during a Tl and the stor- 296

age need is the smallest. The RoS of a GP in such a situation is 297

called Soft Requirement of Storage (SRoS), which is given as 298

SRoSj = γ j · Dj · S j · Tl

T
. (2)

HRoS and SRoS are RoS under the worst situation and the 299

best situation, respectively. If we consider a general situation, 300

a tradeoff should be made between them. Hence, we define 301

the RoS of gj as 302

RoSj = αHRoSj + (1 − α)SRoS j,

α ∈ [0, 1]. (3)

α allows for adjusting the relative importance of RHoS 303

and SHoS. The variables in RoSj can be derived as follows: 304

γ j =
n∑
i

γi j (4)

where γi j is the number of real visits between ui and gj 305

within T, namely the number of times ui visits gj within 306

time T. 307

D j and S j can be calculated with the statistics collected 308

during building the contact history. D j can be calculated as 309

Dj =
∑γ j

k
Dk j

γ j

(5)

where Dkj indicates the number of data stored at gj during 310

th
∑γ j

311

S

w 312

5 313

314

ti 315

ti 316

d 317

ra 318

th 319

p 320

d 321

th 322

st 323

T 324

λ 325

u 326

P

P

(

Corollary 1.

(4) Define the frequency of virtual visits as the contact

strength λ of the user–GP pair.

. Optimal storage allocation

Storage allocation is basically a supply–demand problem.

this section, we first analyze the Requirement of Storage

oS) of each GP. Then, based on the analysis, we calculate

e optimal storage allocation.

.1. Demand analysis

The RoS of a GP is determined by the number of visits,

e average number of data stored during each visit and the

verage size of stored data. It should be noted that the vis-

s considered in this section are the real visits rather than

irtual visits. This is because that data storing happens only

nce during a real visit. The length of a visit makes no differ-

nce to data storing. For a GP gj, we define its Hard Require-

ent of Storage (HRoS) within a period of time T as

RoS j = γ j · Dj · S j (1)

here γ j is the number of visits to gj within T. D j is the av-

rage number of data stored at g during a visit and S is the
j j

lease cite this article as: B. Fan et al., Optimal storage allocation on t

2015), http://dx.doi.org/10.1016/j.comnet.2015.08.015
e kth visit. Let Nj =
k

Dk j, then

j =
∑Nj

l
Sl j

Nj

(6)

here Slj is the size of the lth data stored at gj.

.2. Storage allocation on fixed throwboxes

If throwboxes are fixed at particular places, storage alloca-

on on the throwboxes is conducted individually. The objec-

ve of storage allocation is to enhance the efficiency of data

elivery in the network, including improving data delivery

tio, decreasing data delivery delay and so forth. Basically,

ese goals can be achieved by maximizing the data delivery

robability at the GPs, which is determined by the number of

ata stored there and the sum of contact strength between

e GP and all the users. With a given storage xj, a GP gj can

ore at most x j/S j data, where S j is the average size of a data.

he contact strength between gj and all the users is λj, where

j = ∑n
i=0 λi j and λij is the contact strength between gj and

ser ui. Hence, the data delivery probability Pj at gj satisfies

j ∝ λ j · x j

S
. (7)
j

hrowboxes in Mobile Social Networks, Computer Networks
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Fig. 5. Throwbox deployment and storage alloc

In order to maximize the data delivery probability of th

whole network, we calculate the optimal storage allocation

as follows.

Maximize F(x) =
m∑

j=1

λ j · x j · yj

S j

subject to:

m∑
j=1

x j = X, 0 ≤ x j ≤ RoSj. (8

Here, xj is the size of storage allocated to GP gj. It ha

a upper bound RoSj in order to avoid wastage of storage

yj is the number of throwboxes deployed at GP gj. Sinc

y = {y1, y2, . . . , ym} is already established, formula (8) is

Linear Programming (LP) problem [24], which can be easil

solved with small computation cost. Such a storage alloca

tion scheme is optimal under the established throwbox de

ployment scheme y. However, it is also constrained by th

deployment scheme y. If throwboxes are deployable, storag

allocation and throwbox deployment can be both conducted

to achieve a better scheme.

5.3. Joint storage allocation and throwbox deployment

If throwboxes are deployable, y = {y1, y2, . . . , ym} is

variable. Similar as formula (8), the optimal storage alloca

tion and throwbox deployment scheme can be given as

Maximize F(x) =
m∑

j=1

λ j · x j · yj

S j

subject to:

m∑
j=1

x j = X, 0 ≤ x j ≤ RoSj,

m∑
j=1

yj = Y, yj ∈ {0, 1}. (9

Such a joint optimization problem is NP-Hard [13]. It i

too computationally expensive to solve it optimally. Conse

quently, we develop a two-step greedy method to solve it

Firstly, an ideal allocation result that ignores the restriction

in the number of throwboxes is calculated. Then, consider

ing the specific number of throwboxes, the joint scheme i

established.
Please cite this article as: B. Fan et al., Optimal storage allocation on
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ˆ| |x

der the greedy method: (a) Y ≥ |̂x| and (b) Y < |̂x|.

5.3.1. Ideal allocation

Suppose that Y is large enough to satisfy all the GPs, s

that if xj > 0, then y j = 1. Formula (9) can be modified as

Maximize F(x) =
m∑

j=1

λ j · x j

S j

subject to:

m∑
j=1

x j = X, 0 ≤ x j ≤ RoSj. (10

The model becomes an LP problem. As the coeffi

cients λ j/S j are all positive, the optimal solution x̂ =
{x̂1, x̂2, . . . , x̂m} can be easily achieved by successively match

ing the RoS of each GP in the descending order of λ j/S j . In

other word, storage is first allocated to the GP with the larges

λ j/S j to match its RoS. Then, storage is allocated to the G

with the second largest λ j/S j and so forth, until no storage o

GP is left. As a consequence, all the non-zero elements x̂ j in̂
satisfy x̂ j = RoS j .

5.3.2. Joint scheme

Now we consider that the number of throwboxes i

constrained by Y. Let |̂x| denotes the number of non-zer

elements of x̂. As shown in Fig. 5(a), if Y ≥|̂x|, each GP tha

has a non-zero storage allocation in x̂ can be equipped

with a throwbox. In this case, for each GP gj, if x̂ j > 0, then

y j = 1 and x j = x̂ j . In other words, the ideal allocation can

be realized. On the contrary, if Y < |̂x| (Fig. 5(b)), only Y GP

can be equipped with a throwbox. In order to maximiz∑m
j=1 λ j ·x j ·y j/S j, the Y throwboxes are placed at the Y GP

that have the largest λ j ·x̂ j/S j . Then, storage are allocated t

these throwboxes according to the ideal solution x̂. Namely

for each of the y selected GPs, y j = 1 and x j = x̂ j . While

for other GPs, y j = 0 and x j = 0. After the allocation, som

storage remains unused. However, we need not to reallocat

it to the Y throwbox because their storage already matche

their RoS.

5.3.3. Discussion

When Y ≥|̂x|, the joint scheme is optimal because it real

izes the ideal allocation which is optimal. However, as onl

|̂x| throwboxes are needed, Y −|̂x| throwboxes remain un

used. On the other hand, when Y < |̂x|, some storage is lef

unused. The ideal allocation is not realized and the join

scheme may not be optimal under some situations. For ex

ample, a GP that has a small coefficient λ j/S j but very larg
throwboxes in Mobile Social Networks, Computer Networks
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Table 2

Simulation parameters.

Parameters Default value

Average size of data 1 MB

Data generation interval 5 min

Simulation duration 72 h

Computation period, T 24 h

Total lifecycle of data 8 h

Storing lifecycle Tl of data 2 h

Threshold of visiting time, τ 10 min

RoS may not have a throwbox equipped according to the389

joint scheme. However, it is actually a better option to place390

a throwbox, because it can use up the unused storage to391

a392

le393

le394

395

u396

so397

n398

tw399

S400

st401
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p404

o405

6406
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tr410

th411
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ti414
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a416

to417

a418

a419

G420
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Fi422

th423

d424

d425

d426

th427
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se429

th430

th431

6432

433

tw434

boxes: the Established-Deployment-and-Optimal-Allocation 435

(EDOA) scheme and the Established-Deployment-and- 436

Uniform-Allocation (EDUA) scheme. The other two are 437

designed for the case with deployable throwboxes: the 438

Optimal-Deployment-and-Optimal-Allocation (ODOA) scheme 439

and the Random-Deployment-and-Uniform-Allo-cation 440

(RDUA) scheme. EDOA is the optimal storage allocation 441

studied in Section 5.2, based on an established throwbox 442

deployment scheme. While, in EDUA, storage is uniformly 443

allocated to the fixed throwboxes. The deployment of throw- 444

boxes is established using the metric-based deployment 445

scheme [17]. According to [17], throwboxes are simply 446

deployed at the places with the largest value of particular 447

metrics, such as betweenness centrality [27], degree cen- 448

tr 449

th 450

in 451

a 452

453

d 454

T 455

a 456

e 457

a 458

n 459

e 460

m 461

th 462

n 463

c. 464

n 465

6 466

467

st 468

se 469

th 470

6 471

472

R 473

d 474

a 475

R 476

a 477

b 478

fo 479

480

1 481

1 482

o 483

b 484

b 485

v 486

sm 487

se 488

6 489

P

(

chieve a larger data delivery probability λ j ·x j/S j . Neverthe-

ss, the joint scheme is still high in efficiency, since the Y se-

cted GPs own the largest λ j ·x̂ j/S j under the ideal solution.

Throwboxes and storage are both network resources. The

nused throwboxes or storage means oversubscribing of re-

urce, which brings unnecessary cost. In consequence, it is

ecessary to find a balance between Y and X, so that these

o kinds of resources can be both used out. According to

ection 5.3.2, such a balance can be expressed as Y=|̂x|. It is a

ep function allowing X to change within a particular range

nd thus is robust. Based on such a balance, the network de-

gner can purchase throwboxes and storage with a proper

roportion and avoid resource wastage. Moreover, the joint

ptimal scheme can be easily achieved under this balance.

. Performance evaluation

OMNeT++ [25] based simulations are conducted to vali-

ate the efficiency of the proposed schemes. The network

enario is constructed based on the Dartmouth mobility

ace, which is obtained from a 5-year experiment [21]. In

e experiment, numerous Wi-Fi access points are deployed

t the main buildings of the Dartmouth campus. Once a user

nnects/disconnects to/from an access point, this informa-

on is recorded in a log file. Through this method, the visiting

istory of each user is recorded. In our simulations, 64 users

re randomly selected from the log and set to move according

their mobility traces. The buildings they frequently visit

re regarded as the GPs for throwbox deployment and stor-

ge allocation. According to the selected trace, there are 9

Ps. A threshold of visiting time τ is used to exclude short

assages. For data storing on throwboxes, the First-Come-

rst-Serve (FCFS) scheme is adopted. When the buffer of a

rowbox is full, the DropOldest [26] strategy is applied for

ata refreshing. According to DropOldest, when a piece of

ata is sent to a throwbox whose buffer is full, the oldest

ata on the throwbox will be removed to provide space for

e newly coming one, even if the data is still in its storing

fecycle. The major parameters used in the simulations are

t as shown in Table 2. The total lifecycle of data indicates

e time that data can stay in the network. After the time,

e data will be destroyed.

.1. Schemes in comparison
Four storage allocation schemes are compared. Wherein,

o schemes are designed for the case with fixed throw-

490

it

lease cite this article as: B. Fan et al., Optimal storage allocation on t

2015), http://dx.doi.org/10.1016/j.comnet.2015.08.015
ality [28]. In the simulations, we adopt degree centrality as

e metric. ODOA is our joint optimization scheme studied

Section 5.3. In RDUA, throwboxes are deployed randomly

nd storage is allocated to each throwbox uniformly.

In the simulations, a data source periodically generates

ata and sends them to a randomly chosen destination user.

wo data delivery approaches – Epidemic Routing (ER) [15]

nd Homing Spread (HS) [9] – are employed for data deliv-

ry. ER is a flooding scheme in which every node can act as

data relay that helps storing and forwarding data. There is

o restriction on the number of copies for each data. How-

ver, according to ER, data are not stored at throwboxes. We

odify it and let each data relay store a copy of data at the

rowboxes it passes. HS is a multi-copy scheme. The total

umber of copies of each data is restricted with a constant

We set c = 8, which is a proper value with respect to the

umber of users and GPs [10].

.2. Results and discussion

The weight α in RoS is a crucial factor that directly affects

orage allocation. In this section, we first study the optimal

tting of α and then study other performance metrics with

is setting.

.2.1. Optimal setting of weight α
The values of α directly decide the value of RoS. A small

oS may make a GP unable to get enough storage and some

ata are removed during their storing lifecycle. We call such

phenomenon “data loss”. On the other hand, with a large

oS, a GP may obtain a storage larger than its actual demand

nd lead to a waste of storage. This will also cause data loss

ecause some other GPs cannot get sufficient storage. There-

re, a good setting of α is important for reducing data loss.

As T =12Tl (T = 24 h and Tl = 2 h as set), we have HRoS=
2SRoS and RoS=(11α+ 1)SRoS = kSRoS where k = (11α+
) ∈ [1, 12]. In this case, we set k = 1 to 12 and study the

ptimal value of k. The results shown in Fig. 6 indicate that

oth ER and HS suffer a terrible data loss when k is set to

e too small or too large. However, when k has a medium

alue, such as 5 or 6, both the two approaches achieve a much

aller data loss. Therefore, in the following simulations, we

t k = 5, namely α = 4
11 .

.2.2. Data loss

The first performance metric we study is data loss, since
directly reflects the efficiency of storage allocation. A well 491

hrowboxes in Mobile Social Networks, Computer Networks
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Fig. 7. Data loss of Homing Spread and Epidemic Routing:

designed storage allocation scheme can properly balanc

the storage of each throwbox and minimize data loss. W

run ER and HS using the four schemes (ODOA, EDOA, EDUA

and RDUA), respectively, and compare their performances in

terms of data loss.

The results are shown in Fig. 7. Not surprisingly, both ER

and HS achieve the smallest data loss when using the ODOA

scheme. This is because that the GPs to place throwboxes in

ODOA are expressly selected for storage allocation. Therefore

storage allocation can be well performed at these GPs. When

adopting EDOA, a larger data loss is suffered because EDOA

adopts an individual throwbox deployment scheme [17] t

deploy throwboxes. Storage allocation is not considered in

the deployment. Hence, the GPs selected to place throwboxe

may be not as excellent as those in ODOA for storage alloca

tion. However, since we adopt degree centrality as the met

ric for throwbox deployment [17], the selected GPs are th

most popular ones in the networks. Such a deployment i

close to one in ODOA scheme. Consequently, although not a

good, EDOA has a close performance to ODOA. When usin

EDUA, an even larger data loss is experienced, because stor

age is allocated uniformly on the fixed throwboxes. This ma

lead that some unpopular GPs obtain too much storage, whil

some popular GPs fail to get enough storage. RDUA schem
Please cite this article as: B. Fan et al., Optimal storage allocation on

(2015), http://dx.doi.org/10.1016/j.comnet.2015.08.015
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5, (b) Y = 10, (c) Y = 20, (d) Y = 5, (e) Y = 10 and (f) Y = 20.

performs the worst among the four schemes, as it has low ef

ficiency in both throwbox deployment and storage allocation

On the other hand, ER experiences a larger data loss than

HS even using the same storage allocation scheme. This is be

cause that ER does not restrict the number of data copies. In

this case, for each data, there may be more copies that need

to be stored at the throwboxes. Consequently, a larger dat

loss is suffered when the storage is exhausted.

6.2.3. Delivery ratio

The second performance metric we study is deliver

ratio– the ratio of data successfully reaching the destination

This is a common but important performance metric for dat

delivery. Hence, we adopt this metric to study the capabilit

of these schemes in enhancing the performance of dat

delivery.

The results in Fig. 8 indicate that the delivery ratio o

both HS and ER is improved when more throwboxes and

storage are provided, since more data are able to be stored

When using the ODOA scheme, both ER and HS achieve th

best delivery ratio. This is because ODOA not only balance

storage allocation according to the demand of each GP, bu

also preferentially allocates storage to the GPs with larg

contact strength. In this case, even if data loss is unavoidable
throwboxes in Mobile Social Networks, Computer Networks
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Fig. 8. Delivery ratio of Homing Spread and Epidemic Routing: (a) Y = 5, (b) Y = 10, (c) Y = 20, (d) Y = 5, (e) Y = 10 and (f) Y = 20.
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ost data loss happens at the GPs that have the smallest

ntact strength. As a consequence, the loss of data delivery

ance is minimized. Based on EDOA, an approximate per-

rmance in delivery ratio is achieved. This is because EDOA

as a similar data loss as ODOA. Moreover, the GPs to deploy

rowboxes in EDOA are also popular GPs with large contact

rength. Hence, data loss also usually happens at unpopular

Ps. EDUA performs badly because even throwboxes are

laced at the most popular GPs, the terrible data loss caused

y the uniformly storage allocation will also decrease data

elivery efficiency. Finally, RDUA still performs the worst

ecause of its random deployment and uniform allocation

rategy.

The comparison between ER and HS indicates that, al-

ough suffering a worse data loss, ER still achieves a larger

elivery ratio than HS. This is because ER generates more data
pies than HS and can achieve more data delivery chances.

lease cite this article as: B. Fan et al., Optimal storage allocation on t
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5, (b) Y = 10, (c) Y = 20, (d) Y = 5, (e) Y = 10 and (f) Y = 20.

other words, the unlimited data copies bring both a larger

elivery ratio and a worse data loss to ER.

.2.4. Delivery delay

Delivery delay is another critical performance metric

r data delivery, especially for networks with intermittent

nks among nodes, such as DTN and MSN. In throwbox-

ided networks, in addition to the design of data delivery

pproaches, delivery delay is also decided by the efficiency

f the storage allocation scheme, because a large delivery

elay is usually caused when data are removed before the

estination user arrives. Indeed, comparing Figs. 7 and 9,

is easy to discover that delivery delay changes nearly in

ne with data loss under the same scenario. Among the four

hemes, not surprisingly, ODOA performs the best. EDOA,

DUA and RDUA successively have a worse performance in

elivery delay, in line with their performance in data loss.
hrowboxes in Mobile Social Networks, Computer Networks
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7. Conclusion572

The intermittent links of nodes in Mobile Social Networks573

(MSNs) significantly challenge the design of data delivery ap-574

proaches. Recently, several researches study the utilizing of575

a type of storage devices called throwboxes in data deliv-576

ery. With a throwbox storing data at a particular place, the577

efficiency of data delivery can be enhanced, as data can be578

successfully forwarded as long as two nodes pass a throw-579

box within a particular time interval. Many proposals have580

studied throwboxes in the context of throwbox deployment,581

routing designing and energy usage. However, as a storage582

device, the efficient storage usage of throwboxes is seldom583

considered by existing work. In order to fill the research gap,584

this paper addresses storage allocation on throwboxes.585

We subdivide the storage allocation problem into two586

more specific problems, namely (1) when throwboxes are587

fixed at particular places, how to allocate storage on the588

throwboxes; and (2) if throwboxes are deployable, how to589

conduct storage allocation in combination with throwbox de-590

ployment. Contact strength among users and GPs as well as591

the requirement of storage of each GP are derived with the592

contact history of users. Then, two optimization models are593

proposed to solve the two storage allocation problems. Sim-594

ulation results indicate that the proposed storage allocation595

schemes perform well in both decreasing data loss of throw-596

boxes and enhancing the efficiency of data delivery.597
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