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Abstract

Objective:

This study was conducted to examine sensory and cognitive processing in adolescents, 

young adults and older adults, when exposed to 2nd (2G) and 3rd (3G) generation mobile 

phone signals. 

Methods:

Tests employed were the auditory oddball and the N-back.  Forty-one 13-15 year olds, 

forty-two 19-40 year olds and twenty 55-70 year olds were tested using a double-blind 

cross-over design, where each participant received Sham, 2G and 3G exposures, 

separated by at least 4 days. 

Results:

Accuracy was not affected by exposure overall, but an augmented N1 was found in the 

2G condition (independent of age group). The combined groups performed less 

accurately on the N-back during the 3G exposure (compared to Sham), with post hoc 

tests finding this effect in the adolescents only. No effect of 2G exposure on N-back was 

found either overall or in any group separately, and no effect of 2G or 3G exposure was 

found on reaction time. Neurophysiological underpinnings (event-related alpha; ERA) of 

the 3G behavioural effects were also affected, with more early ERA and slower late ERA 

in the 3G (compared to Sham). 

Conclusion/Significance: 

Employing tasks tailored to each individual’s ability level, this study provides support for 

an effect of acute 3G exposure on human cognitive function.



Key Words: GSM900, W-CDMA, Acute Exposure, EEG, Sensory Processing, Cognitive 

Processing, Adolescents, Elderly
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Introduction

Mobile phones (MPs) transmit and receive signals via electromagnetic fields (EMFs) that 

are partly absorbed by the MP user.  As MPs are commonly used in close proximity to 

the head, this feature has led to concerns about possible adverse effects on human health.  

However, principal independent reviews have concluded that there is presently no 

substantiated evidence of a negative impact on health (WHO, 2006; Challis, 2007; 

SCENIHR 2009).  These groups, though, also argued for the importance of addressing 

this issue in children (WHO, 2006; Challis, 2007). This is because there is limited 

research in this area, and there may be substantial differences between adults and 

children. For example, as the child and adolescent years are critical periods for brain and 

cognitive development (Yurgelun-Todd 2007), there is the possibility that this may make 

them more vulnerable to small stressors (Romeo and McEwen, 2006). There have also 

been some reports suggesting that children and adolescents may absorb more EMF than 

adults due to their different physical characteristics (de Salles et al., 2006). However,

current research suggests that differences between children and adults are likely to be 

slight compared to the variances observed within the study (Wiart et al., 2008).

Although there is presently no direct link between any adverse health consequences and

MP-related EMFs, the situation is quite different when it comes to effects that do not 

necessarily relate to health. For example, there are now relatively consistent reports of 

mobile phones affecting the human electroencephalogram (EEG), increasing spontaneous 

resting alpha (circa 8-13 Hz) power (e.g. Curcio et al., 2005; Croft et al., 2008).  

However, the functional significance of this is not easily discerned, as increased waking 
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alpha has been associated with mental idling and attenuation of mental effort 

(Niedermeyer and Lopes da Silva, 1987), but also with attentional and active inhibitory 

processes (Klimesch et al., 2000).  For instance, Cooper et al. (2003) demonstrated that 

once the direction of attention was controlled for, alpha power increased with task 

difficulty during both internally and externally directed attention.  Therefore, the alpha 

findings might be an indication of either a useful or a detrimental effect, and it is 

important to employ measures with less ambiguity in order to determine the functional 

significance of any MP-related changes to neural function.

Measures of auditory processing have clear face validity, and their relation with MP-

exposure has not been adequately determined. At perhaps the most basic level, auditory 

thresholds have not been consistently altered by MP exposure.  For example, Maier et al. 

(2004) reported performance decrements in an auditory threshold task after 50-minutes of 

MP-exposure, which was limited due to its small sample size (N=11), whereas Uloziene 

et al. (2005), Parazzini et al. (2007) and Cinel et al. (2007) all failed to identify any MP 

effects on measures of auditory threshold. In terms of EEG measures of neural processes 

relating to audition, there is again no consistency. For example, three studies reported

MP-related changes in event-related spectral power, but these were in different directions 

and frequencies (increase in 18.75Hz to 31.25Hz, Eulitz et al., 1998; decrease in 1-4Hz 

and increase in 8-12Hz, Croft et al., 2002; changes in 4-8Hz and 15Hz, Krause et al., 

2006). Similarly, although there was consistency in event-related potential (ERP)

research in that reduced N1 amplitude and latency was found by both Hamblin et al. 

(2004) and Maby et al. (2004), Hamblin et al. (2006) were not able to replicate those 
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results with a stronger research design that had the added benefit of double-blinding, and 

this lack of effect was replicated by Kleinlogel et al. (2008).  Further, a very recent study 

did not find any MP-effect on mismatch negativity (an ERP index of auditory pre-

attentive change detection) (Kwon et al., 2009). Given that these previous studies have 

reported inconsistent findings, it is important to further examine whether MP-related 

EMF affects auditory neural activity, especially in adolescents.  

Another measure with strong face validity and whose relation to MP-exposure has not 

been adequately determined is the N-back task.  To date, several studies have tested for

acute MP effects on cognition using the N-back task.  Koivisto et al. (2000) reported a 

MP-related decrease in reaction time only in the 3-back task (a very difficult version of 

the task), whereas Regel et al. (2007) reported a similar result but in the 1-back task and 

with increasing field intensity. However, the majority of MP studies did not report any 

effects on N-back performance (e.g. Krause et al., 2000a, 2007; Haarala et al., 2003, 

2004, 2007).  To date, only one group has used EEG measures to test whether there are

MP-effects on neural processes relating to subtle cognitive processing during N-back 

tasks, with no consistency of results.  Krause et al. (2000b) reported MP-related 

alterations in event-related responses within the alpha (8-12Hz) frequency band, whereas

they only reported changes in the 6-8Hz and 8-10Hz bands in a more recent study (2007). 

Chance, individual differences in performance and floor/ceiling effects might all relate to 

these mixed findings, and it is important to ensure that such factors are accounted for in 

subsequent research. 
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Corresponding to this, the present study was designed to examine MP bioeffects in 

adolescents (13-15 years), young adults (19-40 years), and in an older age group (55-70 

years; hereafter ‘elderly’). In particular: 1/ It employed an auditory oddball ERP task 

tailored to individual auditory discrimination thresholds (to reduce error variance due to 

differences in individuals’ difficulty levels). As well as reaction time and accuracy data, 

this task provides indices of early auditory processing (N1 component of the ERP), as 

well as later cognitive processing (P3b) and the brain’s response to novel ‘attention-

grabbing’ stimuli (P3a). 2/ It employed an N-back task tailored to each individual’s 

ability level to ensure that it was ‘difficult but achievable’ for each individual (again to 

reduce error variance and Type II error).  As well as reaction time and accuracy data, this 

task provides an index of event-related alpha power during the cognitive processing.  

Further to this, it should be noted that the majority of MP studies have only employed 

2nd generation (2G) MPs, with less research conducted on the effect of the newer 3rd

generation (3G) MPs on cognitive/sensory processing. It is thus important to examine MP 

bioeffects with 3G exposures, particularly given that different technologies utilise

different frequency ranges. Most 2G phones use the Global System for Mobile (GSM) 

communication standard, which pulses 890-960 MHz and 1710-1880 MHz (GSM900 and 

GSM1800 respectively) signals at 217 Hz, whereas most 3G phones use the Universal 

Mobile Telecommunication System (UMTS), W-CDMA air interface standard, which 

operates at a higher frequency range of 1900-2170 MHz and is without periodic pulsed 

modulation content. There is evidence that the frequency composition of the signal may 

be important for MP-related bioeffects. For example, in terms of sleep EEG, it has been
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reported that pulsed but not continuous radiofrequency (RF) increases aspects of the sleep 

EEG (e.g. Huber et al., 2002; Regel et al., 2007). This study will thus test for effects of 

2G and 3G exposures on cognitive processing separately, for adolescents, young adults 

and the elderly.

Materials and Methods

Participants

Forty-one adolescents (13-15 years, mean = 14.1, St. Dev. =0.87, 21 male), 42 young 

adults (19-40 years, mean = 24.5, St. Dev. = 4.51, 21 male) and 20 elderly (55-70 years, 

mean = 62.2, St. Dev. = 3.94, 10 male) healthy volunteers participated in this experiment.  

Participants were excluded if they were smokers or reported any of the following: hearing 

problems, current use of psychiatric medication, personal or familial history of 

psychiatric disorders, history of substance abuse, or history of head injury.  The study 

was approved by the Human Research Ethics Committee, Swinburne University of 

Technology, and written informed consent was obtained from all participants.

Procedure

A double-blind, partially counter-balanced (complete counterbalancing was lost due to 

participant attrition and data loss) cross-over design was employed.  Each participant was 

tested under three conditions on separate days; Sham (both 2G and 3G were off); 2G (2G 

on and 3G off), and 3G (3G on and 2G off), and each session was separated by at least 4-

days.  Order of exposure, and side of exposure (left/right hemisphere) were partially 

counterbalanced across both subjects and exposure conditions, and randomly assigned
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(note that side of exposure was consistent within-subject). To avoid acute effects of 

caffeine, participants were requested to abstain from caffeinated beverages and alcohol 

for 24 hours prior to testing. The timing of the testing sessions was constant across all 

participants and sessions.

Subject testing was conducted at the Brain Sciences Institute (BSI), Swinburne 

University of Technology, Melbourne, Australia. Upon arrival, participants completed a 

demographics questionnaire, were fitted with electrophysiological recording apparatus 

and seated in a comfortable chair in a sound and electromagnetically shielded recording 

room with their eyes approximately 60cm from the centre of a computer screen.  A cradle 

containing a 2G handset on one side and a 3G on the other side of the head was placed on 

the head with neither of the phones transmitting.  

At the first session, participants performed an auditory frequency discrimination

threshold task, to determine the smallest discernable frequency difference for each 

individual. Following this, participants performed an electrooculographic (EOG) 

calibration task, practiced the auditory oddball task and the N-back task, and rested for a 

period while background EEG data were collected, and the Thayer Activation-

Deactivation Adjective Check List (AD-ACL; commonly used to determine levels of 

psychological arousal; Thayer, 1967) was completed.  As the resting EEG and Thayer 

AD-ACL results are reported elsewhere and are beyond the scope of the present paper, 

they will not be discussed in detail here.
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Participants then rested for 2 minutes while the Sham 2G MP was replaced by another 2G 

MP (either Sham or Active) and the ‘Off’ 3G MP was set (to either ‘On’ or ‘Off’).  10 

minutes later, participants performed the first cognitive task, which contained either the 

7-minute auditory oddball task or the 15-minute N-back task (each task started with 1-

minute practice, and the order of the tasks was counter-balanced between subjects).  5 

minutes after the first cognitive test, participants performed the second cognitive task, 

which contained either the N-back or auditory oddball task (whichever one was not 

performed earlier in that session).  5 minutes after the second cognitive test, participants

completed a second AD-ACL.  Total MP-exposure time was approximately 55 minutes.

The participant then had a 1-minute break while the 2G MP was swapped for a Sham MP 

and the 3G was set to ‘off’ (regardless of whether these were already ‘on’ or ‘off’). Five

minutes later, a third AD-ACL was administered to the participants, and they were asked 

if they were aware of the phones’ status.  

Auditory Tasks

Auditory stimuli were presented to participants using Stim2 software and hardware 

(Version 4.0), binaurally via two speakers (placed approximately 60cm behind the 

participant). Stimuli were 80dB SPL, 200ms (including 20ms rise/fall times) sine waves.

Frequency Discrimination Threshold Task - This consisted of blocks of stimuli, with each 

block containing 10 pairs of tones, and each pair of tones separated by a visual instruction 

on the screen.  The first tone in the pair was always 1000Hz, and the second in the pair 
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either the same or a higher (e.g. 1005Hz, 1160Hz, 1080Hz) frequency tone.  Stimulus 

onset asynchrony (SOA) ranged from 1400 to 1900ms (mean = 1650ms). Participants 

were instructed to press “Yes” when the tones were the same and “No” when they were 

different (on a button box). The frequency difference between the stimuli within each 

block was governed by the accuracy of the preceding block, such that the difference was 

halved (minimum decrease of 5Hz) if participants achieved at least 80% accuracy in the 

preceding block, and was increased (by a minimum of 5Hz, up to a maximum of 40Hz) if 

they were less accurate than 80%. The smallest possible difference between the two tones 

in the pair was 5 Hz, and the minimum frequency difference detected (with > 80%

accuracy) was used for that participant in the subsequent task.  This task concluded when 

participants obtained > 80% accuracy for a total of six blocks of stimuli.

Auditory Oddball Task - 320 stimuli were presented with a mean SOA of 1500 ms (range 

1000-2000 ms).  80 percent were standards (80dB SPL, 200ms, including 20ms rise/fall 

times, 1000Hz), 10 percent were targets (differing from standards only in terms of 

frequency, which was determined from the above frequency discrimination threshold 

task), and 10 percent were 200ms novel tones (designed specifically to be novel and very 

different to both standards and deviants (e.g. the sound of glass breaking).  Participants 

were instructed to press “Yes” to the high-frequency tones (i.e. oddball tones) and ignore 

the standard tones and the novel tones.  The total length of the task was 7 minutes.

N-back Tasks 
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For each of the three N-back tasks (1-back, 2-back, and 3-back tasks), there were 90 

stimuli (made up of 21 consonants, of which 30 were targets and 60 non-targets).  Each 

stimulus was approximately 2cm wide and 4cm high on the screen, and was presented for 

500 ms (SOA = 3000 ms) at the centre of a computer monitor, using Stim2 software and 

hardware (Version 4.0). Different instantiations of the tasks versions were used for each 

difficulty level and exposure condition. 

Participants were asked to press “Yes” as quickly and accurately as possible to each letter 

that was the same as the letter 1, 2 or 3 stimuli before (for the 1, 2 or 3-back task 

respectively), and otherwise to press “No”.  They were also instructed that they could

ignore the case of the letters (which was varied to ensure that the intention rather than 

instantiation of the letters was used for memory processes).

MP Exposure Set-Up

A Nokia 6110 (pulse modulated at 217 Hz, 894.6 MHz output) test phone was used for 

the 2G exposure. This was set via manufacturer software to continuously transmit at a 

mean power output of 250 mW (peak power of 2 W).  The speaker was removed and 

foam was placed over the speaker inside a phone case to ensure that there was no sound 

audible. Further to this, in all conditions, 50 dB background white noise was continuously 

generated to produce a consistent ambient noise level.  

3G exposure was achieved by a standard (or ‘dummy’) model of a mobile phone handset, 

which consisted of a metallic handset approximately the shape and size of a typical 
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mobile phone, which incorporated a monopole antenna externally fed by an RF signal 

source capable of simulating a W-CDMA signal.  This setup produced no detectable 

sound or temperature rise in the unit.  The 3G model handset was driven with a 1900 

MHz 3G modulated signal at 125 mW (average), the nominal maximum average transmit 

power of 3G mobile phone handsets.  

Measurements and computational modelling of specific absorption rate (SAR) were 

conducted to determine induced SAR.  Measurements to determine the maximum peak 

spatial SAR averaged over 10 g were conducted with a commercial DASY 4TM 

(DYMSCO, Gyounggi-do, Korea) robotic SAR measurement system using dielectric 

simulating liquids, phantoms and methods conforming with international SAR 

measurement standards (IEC 2005). The system employed an immersible miniature 

electric field probe providing 5 mm spatial resolution.  Computer simulations were also 

performed using commercially available software packages based on finite difference 

time domain (FDTD) and method of moments (MoM).  The FDTD analysis used a 

heterogeneous Visible Human head (1.5 mm cubic voxels), and the MoM using a 

homogeneous IEC 2005 compliant SAM phantom head (dielectric properties equivalent 

to FCC “average brain”1).  The handset was positioned in the IEC 2005 “tilt” and “touch” 

positions for both left and right ears.  Both software packages provided 10 g averaged 

SAR results using algorithms based on the methods of IEEE C95.3 (IEEE 2002).  

Simulation results for FDTD and MoM were similar to measurements for 10 g averaged 

results.  For 2G exposure at 900 MHz, the resulting maximum peak spatial SAR averaged 

over 10 g was determined to be 0.7 W/kg in the touch position.  For 3G exposure at 1900 
                                                
1 http://www.fcc.gov/fcc-bin/dielec.sh
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MHz, the maximum peak spatial SAR (10 g) was determined to be 1.7 W/kg in the touch 

position.

For all exposure conditions, two phones were placed in a cradle over the subjects’ EEG 

recording cap, either the 2G phone on the left and the 3G phone on the right temporal 

areas, or vice versa.  The positions of the phones are comparable to normal use (in 

“touch” position). 

EEG Data Acquisition

EEG data were recorded with Neuroscan 4.3.1 acquisition software and SynampsII 

amplifiers (Compumedics Ltd, Melbourne, Australia), from 61 scalp sites (using a 

Quickcap), and with 9mm diameter tin electrodes attached at the mastoids, and above and 

below the left eye and on the outer canthi of the eyes (for recording eye movement). 

Online, EEG data were recorded in direct-current (DC) mode, were referenced to a point 

midway between Cz and CPz, and grounded midway between Fz and FPz.  At the start of 

the recordings impedances were below 20k.  EEG data were amplified with a gain of 

2010 and low pass filter of 500Hz online, with a sampling rate of 2000Hz. 

Data Analysis

Auditory Oddball task

Behavioural data measures were defined as percentage correct responses to targets 100-

1900ms post stimulus (‘Accuracy’), and mean reaction time to correctly identified targets 
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(‘RT’). Participants who scored less than 50% accuracy in the Sham condition were 

excluded from further analyses.

EEG data were decimated to 250Hz, 30Hz low-pass filtered, re-referenced to the average 

of the two mastoid channels, and EOG corrected (‘CB’; Croft et al., 2005).  Data were

then segmented from 2000ms pre-stimulus to 2000ms post-stimulus, and baseline-

corrected (-200ms pre-stimulus to 0ms).  Epochs with EEG amplitude at any scalp site 

exceeding ±150µV in the range 200ms pre-stimulus to 800ms post-stimulus, were 

rejected.  Epochs corresponding to standard tones, oddball tones and novel tones were 

then averaged separately.

Grand Mean averages across the three exposure conditions were created for each age 

group separately.  From these averages, peak latencies for relevant ERP components were 

then obtained in each age group separately (within the 50-150 ms range for N1, 200-400 

ms range for P3a, and 300-500 ms range for P3b), and these were subsequently used to 

determine time-windows for automatically detecting peaks in the individuals’ averaged 

waveforms:  N1 components were detected from each individual’s averaged waveform to 

the standard tones at C3, Cz and C4 electrodes of each age group (with the detection 

time-windows set at the Grand Mean peak latency +/-30 ms).  P3b component was 

detected from the averaged waveforms to the oddball tones at P3, Pz, P4 electrodes of 

each age group (with the detection time-windows set at the Grand Mean peak latency +/-

150 ms).  P3a was detected from the averaged waveforms to the novel tones at F3, Fz, F4 

electrodes of each age group (with the detection time-windows set at the Grand Mean 
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peak latency +/-70 ms). The automatically detected peaks from each individual averaged 

waveform were then visually inspected and adjusted where maximum/minimum points 

rather than peaks had been detected. 

N-back task

Behavioural data measures were defined as percentage correct responses to targets 100-

2900ms post stimulus (‘Accuracy’), and mean reaction time to correctly identified targets 

(‘RT’).  For each participant, Accuracy in the Sham condition was used to determine the 

difficulty level to be used for that individual for the analysis (Optimum). This optimum 

level was defined as the most difficult n-back level that still resulted in at least 70% 

accuracy (the participant’s data was excluded if they could not achieve at least 50% 

accuracy in at least one of the n-back levels). This means that the EMF comparisons only 

involved one of the n-back levels (1, 2 or 3-back), and that the particular level was 

different for different participants (but consistent within individual across exposure 

conditions). 

EEG data from each participant’s ‘optimal’ task were decimated to 250Hz, 30Hz low-

pass filtered, re-referenced to common average, and EOG corrected (Croft et al., 2005).  

Data were then segmented from 2500ms pre-stimulus to 3000ms post-stimulus, and 

baseline-corrected (-1000ms pre-stimulus to 0ms).  Epochs with EEG amplitude at any 

scalp site exceeding ±200µV in the range 1000ms pre-stimulus to 1000ms post-stimulus,

were rejected. The event-related alpha (ERA: 8-13Hz) corresponding to non-target 
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stimuli were then averaged, using the Neuroscan Edit 4.3 ‘ERBP’ function (i.e. it 

combined both phase-locked and non-phase-locked components of the signal). 

Spatial singular value decomposition (SVD; equivalent to spatial principal component 

analysis without rotation of components) was employed to separate ERA components as 

there is not the degree of knowledge regarding these as there are for ERP components. 

SVD identified 2 components in the grand average ERA data (a negative peak at 100 ms 

and a positive peak at 550 ms, which together accounted for 95% of the data variance). 

Using these component loadings, waveforms were then recomposed for each condition 

and participant separately, and peak amplitudes and latencies of these components 

detected within the ranges 50-200 ms and 150-750 ms respectively.

Results

MP Status

As reported in Croft et al. (submitted), overall there was a tendency for each of the 

groups to report that the phone was more likely to be on than off, but this was 

independent of exposure status (Z[19-39]<1.55; p>0.121). The strongest of these non-

significant findings was for the elderly group, who incorrectly reported that the Sham was 

actually an active exposure (when compared with the 3G condition).

Auditory Oddball
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Two participants were excluded from the performance and P3b analyses due to poorer 

than 50% Accuracy in the Sham condition. Accuracy scores were transformed to improve 

normality using the square root function.

To determine whether there were any MP effects on participants’ performance, planned 

mixed design contrasts (ANOVA) were performed, comparing Sham to each of 2G and 

3G separately, as well as the interaction of these with Group, where 1/ ‘Accuracy’ and 2/ 

‘Reaction time’ were the dependent variables.

Accuracy did not differ between Sham and either 2G (F[1,96]=0.41, p=0.527) or 3G 

(F[1,96]=1.05, p=0.309), and these did not interact with Group (F[1,96]=1.56, p=0.216

and F[1,96]=2.77, p=0.068, respectively). To explore the trend-level interaction with the 

3G/Sham contrast, follow-up analyses were performed for each age group separately, 

where no effect of exposure was found in the adolescents or elderly (F[1,38]=0.64, 

p=0.430 and F[1,18]=0.14, p=0.708, respectively), but reduced accuracy was found in the 

young adults (F[1,40]=7.12, p=0.011; compared to a corrected alpha of 0.017). This 

suggests that there may be reduced accuracy in the young adults. RT did not differ 

between Sham and either 2G (F[1,96]=0.17, p=0.682) or 3G (F[1,96]=0.51, p=0.477), 

and these did not interact with Group (F[1,96]=0.13, p=0.881 and F[1,96]=0.75, p=0.475, 

respectively). (See Table 1a for descriptive statistics of the auditory behavioural data.) 

To determine whether there were any MP effects on participants’ ERP components, 

planned mixed design contrasts (ANOVA) were performed, comparing Sham to each of 
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2G and 3G, as well as the interaction of these with Laterality (ipsilateral - contralateral),

Group, and Laterality X Group, for each of: 1/ N1 peak amplitude; 2/ N1 peak latency; 3/ 

P3a peak amplitude; 4/ P3a peak latency; 5/ P3b peak amplitude; and 6/ P3b peak 

latency.

N1 amplitude was larger in the 2G than Sham condition (F[1,98]=4.39, p=0.039), and 

this did not interact with Group (F[2,98]=0.61, p=0.547), Laterality (F[1,98]=0.01, 

p=0.940), or Group X Laterality (F[2,98]=2.38, p=0.098). N1 did not differ between 

Sham and 3G (F[1,98]=0.43, p=0.516), nor did this interact with Group (F[2,98]=1.66, 

p=0.195), Laterality (F[1,98]=0.17, p=0.678) or Group X Laterality (F[2,98]=0.70, 

p=0.502). N1 latency did not differ between Sham and either the 2G (F[1,98]=0.20, 

p=0.655) or 3G condition (F[1,98]=0.50, p=0.483), and these did not interact with Group 

(F[2,98]=1.87, p=0.160, and F[2,98]=0.60, p=0.548, respectively), Laterality 

(F[1,98]=0.45, p=0.505 and F[1,98]=1.96, p=0.164, respectively), or Group X Laterality 

(F[2,98]=0.15, p=0.863 and F[1,98]=1.82, p=0.168, respectively).  (See Table 1b for 

descriptive statistics of the auditory N1 data.)

P3a amplitude did not differ between Sham and either the 2G (F[1,98]=0.19, p=0.664) or 

3G condition (F[1,98]=0.63, p=0.429), and these contrasts did not interact with Group 

(F[2,98]=0.75, p=0.475, and F[2,98]=0.48, p=0.619, respectively), Laterality 

(F[1,98]=0.03, p=0.861 and F[1,98]=0.45, p=0.504, respectively), or Group X Laterality 

(F[2,98]=0.73, p=0.484 and F[1,98]=1.59, p=0.209, respectively). P3a latency did not 

differ between Sham and either the 2G (F[1,98]=0.07, p=0.789) or 3G condition 
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(F[1,98]=2.50, p=0.117), and these contrasts did not interact with Group (F[2,98]=2.42, 

p=0.094, and F[2,98]=0.53, p=0.593, respectively), Laterality (F[1,98]=0.68, p=0.410 

and F[1,98]=0.07, p=0.793, respectively), or Group X Laterality (F[2,98]=0.21, p=0.809 

and F[1,98]=0.17, p=0.856, respectively).  (See Table 1c for descriptive statistics of the 

auditory P3a data.)

P3b amplitude did not differ between Sham and either the 2G (F[1,96]=1.00, p=0.321) or 

3G condition (F[1,96]=0.24, p=0.624), and these contrasts did not interact with Group 

(F[2,96]=0.43, p=0.655, and F[2,96]=0.47, p=0.627, respectively), Laterality 

(F[1,96]=0.13, p=0.717 and F[1,96]=3.33, p=0.071, respectively), or Group X Laterality 

(F[2,96]=0.37, p=0.691 and F[1,96]=0.69, p=0.505, respectively). P3b latency did not 

differ between Sham and either the 2G (F[1,96]=0.64, p=0.426) or 3G condition 

(F[1,96]=0.01, p=0.925), and these contrasts did not interact with Group (F[2,96]=0.58, 

p=0.565, and F[2,96]=0.61, p=0.547, respectively), Laterality (F[1,96]=0.70, p=0.406 

and F[1,96]=0.26, p=0.609, respectively), or Group X Laterality (F[2,96]=0.09, p=0.912 

and F[1,96]=0.09, p=0.918, respectively).  (See Table 1d for descriptive statistics of the 

auditory P3b data.)

N-back task

Two participants were excluded from subsequent analyses due to poorer than 50% 

Accuracy for each of the 3 difficulty levels in the Sham condition. Six participants’ ERA

data was excluded due to technical issues. ERA Late Component amplitudes were 

transformed to improve normality using natural log.
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To determine whether there were any MP effects on participants’ performance, planned 

mixed design contrasts (ANOVA) were performed, comparing Sham to each of 2G and 

3G separately, as well as the interaction of these with Group, where 1/ ‘Accuracy’ and 2/ 

‘Reaction time’ were the dependent variables.

Accuracy was better in Sham than 3G (F[1,98]=4.31, p=0.041), and this finding 

interacted with Group (F[2,98]=5.54, p=0.005). Post hoc analyses found that this effect 

was significant in the adolescents (F[1,40]=10.753, p=0.002; compared to the adjusted p-

value of 0.017) but not the young adults (F[1,39]=2.14, p=0.152) or elderly 

(F[1,19]=1.29, p=0.270). Accuracy did not differ between Sham and 2G (F[1,98]=1.05, 

p=0.309), nor did this contrast interact with Group (F[2,98]=0.15, p=0.857). RT did not 

differ between Sham and either 2G (F[1,98]=0.01, p=0.931) or 3G (F[1,98]=0.15, 

p=0.861), and these did not interact with Group (F[1,98]=0.26, p=0.615 and

F[1,98]=0.61, p=0.546, respectively). (See Table 2a for descriptive statistics of the N-

back behavioural data.)

To determine whether there were any MP effects on participants’ two ERA components, 

planned mixed design contrasts (ANOVA) were performed, comparing Sham to each of 

2G and 3G, as well as the interaction of each of these with Group, for each of: 1/ ERA 

Early Component peak amplitude; 2/ ERA Early Component peak latency; 3/ ERA Late 

Component peak amplitude; and 4/ ERA Late Component peak latency.
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The amplitude of the early component was larger for 3G than Sham (F[1,94]=5.18, 

p=0.025), but this effect did not interact with Group (F[2,94]=2.09, p=0.129). This 

amplitude did not differ between 2G and Sham (F[1,94]=0.13, p=0.716), and this did not 

interact with Group (F[2,95]=0.26, p=0.769). The latency of the early component did not 

differ between Sham and either 2G or 3G (F[1,94]<1.77, p>0.187), and the Sham/2G 

contrast did not interact with Group (F[2,94]=1.29, p=0.280). However, the Sham/3G 

contrast did interact with Group (F[2,95]=3.54, p=0.033), and the follow-up analyses 

found a trend to slower latencies in the Elderly in the 3G compared to Sham 

(F[1,18]=4.15, p=0.057; compared to the adjusted p-value of 0.017), but no differences in 

the Adolescent group or in the Young Adult group (F[1, 38]<2.07, p>0.158). 

The amplitude of the late Component did not differ between Sham and either 2G or 3G 

(F[1,93]<1.98, p>0.481), and these contrasts did not interact with Group (F[2,93]<0.75, 

p>0.477). The latency of the late component was slower in 3G than in sham

(F[1,94]=4.64, p=0.034), and this did not interact with Group (F[2,94]=0.17, p=0.843).  

The latency of the late component did not differ between Sham and 2G (F[1,94]=0.17, 

p=0.680), and this did not interact with Group (F[2,94]=0.27, p=0.766). (See Table 2a for 

descriptive statistics of the N-back ERA data.)

Discussion

The present study was designed to examine MP bioeffects in adolescents, young adults, 

and elderly, by employing an auditory oddball ERP task tailored to individual auditory 

discrimination thresholds, and an N-back task tailored to ensure that it was difficult but 
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achievable for each individual. This method thus overcomes floor and ceiling effects that 

can confound research and lead to Type II error (failing to identify real effects).

In terms of the auditory oddball task, participants (all ages combined) did not show any 

change on their accuracy or reaction time of their response to the target tones, when they 

were exposed to either 2G or 3G MP.  However, when considering the young adults 

alone, there was a reduction in accuracy of approximately 5% in the 3G condition. It may 

be argued that this finding is problematic in the sense that the group by exposure 

condition interaction was only significant at a trend-level, and so it needs to be clarified 

that this effect (it was significant at the p=0.05 level after controlling for the three post 

hoc comparisons) may or may not be significant depending on how the statistical 

analyses were planned. However, there was no significant effect on P3b, and as this index 

is normally thought to represent a more subtle antecedent to the behavioural response, 

this supports the view that the result in young adults may be due to chance.  Participants 

also did not show any significant 2G or 3G effect on P3a (the ERP response to the novel 

tones), which is consistent with the null 2G effect on P3a in a previous study (Kleinlogel 

et al. 2008).  Our result suggests that relatively automatic neural responses to novel 

stimuli were also not affected by either exposure.

The participants overall (combined ages) had a larger N1 in the 2G condition than in the 

Sham condition.  This augmented N1 effect is inconsistent with the reduced N1 (Hamblin 

et al., 2004; Maby et al., 2004) and the null effect (Kleinlogel et al., 2008; Hamblin et al.,

2006) during 2G exposure that has been previously reported, and so it is difficult to 
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interpret. One possibility is that the difference may be due to the different age groups 

sampled. However, although there were no significant differences between the age 

groups, as the largest magnitude of effect was in the same age group that was tested in the

above studies (young adults), this possibility does not appear likely. Another possibility is 

that the greater control of difficulty level in the present study have made the present study 

more sensitive to detecting an increase in N1 amplitude, but further research is required 

before it can be concluded that it represents more than just chance.

In terms of the N-back task, participants (as a combined group) performed on average 

2.5% less accurately in the 3G condition (compared to the sham condition), and post-hoc 

tests narrowed this reduced accuracy to the adolescent group only (independently, the 

young adults and the elderly were not significantly affected by the 3G exposure).  The 

adolescent group showed, on average, an 8.4% performance decrement in the 3G 

condition compared to the sham condition, suggesting that 3G MP exposure may interact 

with working memory performance and brain function in the adolescent brain. 

Underlying this performance decrement, for the combined age groups the amplitude of 

the early ERA component was significantly larger and the late ERA component was 

significantly later (on average 43 ms) in the 3G condition (relative to the sham 

condition), with a trend-level slowing of the early component in the elderly group (when 

analysed separately). Thus there was a dissociation between the performance and ERA 

changes in the adolescents that was not present in the young adults or elderly participants.

It is not clear why the neurophysiological underpinnings (ERA) were altered in the 3G 

condition in all groups whereas the cognitive/behavioural measurements were only 
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affected in the adolescent group. It may be speculated, however, that as the adolescent 

brain is still heavily undergoing maturational processes (Segalowitz and Davies, 2004; 

Brem et al., 2006), that the adolescents were less able to compensate for the 

neurophysiological alterations produced by the 3G exposure. Another possibility is that 

there were other subtle neurophysiological effects relevant to the task that were not 

detected with the present methodology, but that may have been more affected by the 3G 

exposure in the adolescents than the other groups. 

This effect of acute 3G exposure is similar to the previous 2G findings reported by 

Koivisto et al. (2000) and Regel et al. (2007).  However, contrary to those findings, we 

did not find any effects on the n-back task due to the 2G exposure. There are a number of 

possible reasons for this discrepancy that cannot be clarified with the present data set. For 

example, the present 2G exposure SAR profile is considerably different to that of Regel 

et al. (see Loughran et al. 2008 for a discussion of this), and the present paper used 

component analysis to focus the statistics on the main components of the ERA whereas 

the other two did not. Further research is thus required to clarify this.  A difficulty with 

determining why the present results do not neatly reproduce earlier reports is that the 

mechanism for such bioeffects is not known. For example, while there are currently non-

thermal (e.g. excitation of molecular kinetics, altered membrane potentials, altered 

protein conformation or binding to ligands, and demodulation of ELF components; Adair,

2003; Challis, 2005) and thermal (e.g. micro hot spots, and TRP channels that work as 

thermoreceptors; Talavera et al., 2008) theories, there are difficulties with each of these 
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and no consensus on the matter. The present study does not shed further light on this 

important topic.

Science is not currently in a position to conclude as to the functional significance of the 

early ERA, nor the change to it seen in the 3G condition. The ERA itself is thought to 

represent event-related changes to thalamo-cortical networks of the brain, and as such the 

3G effect might be loosely categorised as representing an alteration to the dynamics of 

cortical activation (Pfurtscheller, 2001), but as discussed in the introduction, there is no 

clear functional meaning that we can attach to this alpha activity. However, what is most 

important in these results is that an augmented early and delayed later ERA was 

observed. That the consequent performance was impaired in only the adolescents is also 

important as it means that individual differences need to be accounted for in mobile 

phone research. This is because age is only one variable that can differentiate participants 

in such research, and this raises the possibility that there are other differences that may 

result in heterogeneous outcomes that may cloud results and increase Type II error. 

Future research may thus benefit from considering other variables that may interact with 

potential mobile phone-related bioeffects.
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Legends of Figures:

Figure 1:
The N1, P3a and P3b of the Auditory oddball task during the Sham, 2nd and 3rd

generation exposures, for the three age groups separately.

Figure 2:
The Early Component and the Late Component of the ERA of the N-back task during the 
Sham, 2nd and 3rd generation exposures, for the three age groups separately.
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Tables

Table 1a. Auditory oddball task – behavioural data - descriptive statistics

SHAM 2G 3G
GROUP Mean SD Mean SD Mean SD

Reaction 
Time

Adolescents 689.37 101.17 692.06 123.38 694.97 133.57

Young 
Adults

565.93 93.04 560.30 77.80 555.65 94.20

Elderly 560.12 97.40 549.64 89.61 585.18 97.30

Accuracy Adolescent 84.01 14.70 85.95 15.75 84.38 18.06

Young 
Adults

91.30 12.42 87.96 18.02 85.44 18.22

Elderly 92.61 8.54 94.09 8.70 90.66 14.37

The means and standard deviations (SD) of the reaction time and the accuracy are given 
for the Auditory oddball task during the Sham, 2nd and 3rd generation exposures, for the 
three age groups separately.

All tables
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Table 1b. Auditory oddball task – ERP data - N1 descriptive statistics

  SHAM 2G 3G
GROUP Laterality Mean SD Mean SD Mean SD

A
m

pl
it

ud
e

Adole-
scents

Contra -2.48 1.26 -2.46 1.39 -2.32 1.40
Cz -2.41 1.45 -2.40 1.33 -2.30 1.46
Ipsi -2.32 1.59 -2.61 1.59 -2.25 1.34

Young 
Adults

Contra -2.98 1.31 -3.32 1.66 -3.25 1.63
Cz -3.16 1.30 -3.36 1.49 -3.43 1.76
Ipsi -2.85 1.25 -3.09 1.21 -3.14 1.61

Elderly Contra -3.76 1.48 -4.25 1.58 -3.98 1.04
Cz -4.27 1.60 -4.32 1.49 -4.15 1.20
Ipsi -3.85 1.60 -4.15 1.51 -3.83 1.29

L
at

en
cy

Adole-
scents

Contra 88.10 19.13 87.10 15.91 88.10 17.45
Cz 84.39 18.52 82.00 15.32 82.15 15.34
Ipsi 88.88 17.17 86.30 16.80 89.85 19.66

Young 
Adults

Contra 68.76 11.73 68.67 12.74 66.29 15.48
Cz 66.67 10.37 65.71 11.32 68.29 17.48
Ipsi 67.14 9.74 67.05 11.27 70.95 15.20

Elderly Contra 72.21 12.89 77.47 12.52 76.21 10.71
Cz 71.58 12.14 77.68 11.42 74.74 11.85
Ipsi 74.74 12.22 78.53 10.09 78.95 13.19

The means and standard deviations (SD) of the amplitude and latency (in units of µV and 
milliseconds respectively) are presented for the N1 during the Sham, 2nd and 3rd

generation exposures, for the three age groups separately, as a function of laterality.
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Table 1c. Auditory oddball task - ERP data - P3a descriptive statistics

SHAM 2G 3G
GROUP Laterality Mean SD Mean SD Mean SD

A
m

pl
it

ud
e

Adole-
scents

Contra 10.01 6.51 10.08 6.98 8.90 6.64
Fz 15.30 8.55 16.40 8.94 14.56 8.17
Ipsi 9.75 5.48 10.31 6.28 8.72 6.36

Young 
Adults

Contra 8.48 4.44 8.61 6.02 7.36 6.38
Fz 13.25 7.19 12.26 7.82 12.20 7.39
Ipsi 7.49 5.70 8.54 7.29 7.13 6.06

Elderly Contra 11.04 5.68 10.50 5.93 12.29 6.17
Fz 16.01 7.37 14.31 7.13 16.87 8.18
Ipsi 12.41 6.58 10.78 7.19 11.62 6.33

L
at

en
cy

Adole-
scents

Contra 276.49 67.08 269.50 64.02 282.05 57.19
Fz 266.73 58.31 259.00 56.60 272.29 54.28
Ipsi 275.51 63.56 267.90 62.67 278.73 55.97

Young 
Adults

Contra 254.19 55.10 267.81 46.14 268.67 52.71
Fz 248.38 50.22 257.71 45.97 259.14 48.22
Ipsi 257.24 55.25 266.19 49.59 274.48 48.28

Elderly Contra 257.68 34.44 261.89 37.93 262.53 34.70
Fz 259.16 30.74 265.26 36.22 265.89 35.39
Ipsi 256.42 31.04 257.89 34.78 263.16 34.42

The means and standard deviations (SD) of the amplitude and latency (in units of µV and 
milliseconds respectively) are presented for the P3a during the Sham, 2nd and 3rd

generation exposures, for the three age groups separately, as a function of laterality.
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Table 1d. Auditory oddball task - ERP data - P3b descriptive statistics

SHAM 2G 3G
GROUP Laterality Mean SD Mean SD Mean SD

A
m

pl
it

u
d

e

Adole-
scents

Contra 8.50 6.15 9.05 7.67 7.89 9.80
Pz 10.91 7.92 11.83 8.95 10.92 9.07
Ipsi 7.61 7.82 7.13 6.97 8.75 8.99

Young 
Adults

Contra 7.51 4.85 7.72 5.86 7.73 4.89
Pz 10.98 6.14 10.37 5.74 11.03 6.02
Ipsi 7.79 5.17 8.27 4.94 8.27 5.04

Elderly Contra 6.39 6.77 8.16 8.21 3.16 13.42
Pz 8.51 6.51 9.91 6.07 7.60 8.65
Ipsi 6.20 5.65 7.86 5.75 5.71 4.93

L
at

en
cy

Adole-
scents

Contra 514.10 75.73 502.46 79.97 506.20 82.88
Pz 528.40 78.71 514.36 84.20 516.20 73.32
Ipsi 500.70 79.68 499.18 76.14 501.90 68.34

Young 
Adults

Contra 450.34 63.52 448.78 60.05 442.54 66.75
Pz 445.76 63.09 452.59 69.11 439.61 59.48
Ipsi 439.90 62.20 448.00 67.69 434.05 61.50

Elderly Contra 476.84 82.98 460.42 76.17 490.53 63.21
Pz 476.84 81.90 458.53 75.49 490.32 63.18
Ipsi 474.11 80.56 458.95 73.75 490.11 61.73

The means and standard deviations (SD) of the amplitude and latency (in units of µV and 
milliseconds respectively) are presented for the P3b during the Sham, 2nd and 3rd

generation exposures, for the three age groups separately, as a function of laterality.
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Table 2a. N-back task – behavioural data - descriptive statistics

  SHAM 2G 3G
GROUP Mean SD Mean SD Mean SD

Reaction 
Time

Adolescents 697.16 205.31 686.01 195.95 681.52 184.03

Young 
Adults

644.09 174.32 645.38 180.29 652.60 196.42

Elderly 740.61 212.43 755.29 222.43 774.55 183.48

Accuracy Adolescents 80.33 9.74 79.35 14.27 73.58 14.23

Young 
Adults

81.56 9.46 79.17 14.19 83.93 12.76

Elderly 81.00 8.46 80.17 10.11 77.24 16.72

The means and standard deviations (SD) of the reaction time and the accuracy are given 
for the N-back task during the Sham, 2nd and 3rd generation exposures, for the three age 
groups separately.
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Table 2b. N-back ERA components descriptive statistics

SHAM 2G 3G
GROUP Mean SD Mean SD Mean SD

E
ar

ly
 

C
om

po
ne

n
t

A
m

p Adolescents -7.35 129.31 -11.01 161.48 -3.86 142.49
Young Adults 71.56 155.00 51.12 162.14 37.76 152.45
Elderly -53.31 243.58 -46.24 282.60 -142.45 323.64

L
at

Adolescents 96.41 44.40 92.62 34.72 87.59 35.04
Young Adults 84.00 38.87 95.49 49.38 88.51 40.56
Elderly 82.53 37.74 94.95 44.94 100.00 50.72

L
at

e 
C

om
po

ne
n

t

A
m

p Adolescents 340.91 153.50 342.95 160.46 324.11 126.96
Young Adults 449.84 194.69 520.66 330.67 408.69 188.03
Elderly 850.34 1546.94 1060.71 2208.96 774.45 811.95

L
at

Adolescents 490.67 125.47 516.92 144.45 546.26 146.64
Young Adults 525.54 173.27 523.59 175.99 560.62 173.60
Elderly 567.79 169.87 567.79 167.56 600.21 152.62

The means and standard deviations (SD) of the amplitude (Amp) and the latency (Lat) are 
given for N-back ERA components during the Sham, 2nd and 3rd generation exposures, 
for the three age groups separately.
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