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Abstract 

 

Nucleosome positioning is an important process required for proper genome packing and its 

accessibility to execute the genetic program in a cell-specific, timely manner. In the recent years 

hundreds of papers have been devoted to the bioinformatics, physics and biology of 

nucleosome positioning. The purpose of this review is to cover a practical aspect of this field, 

namely to provide a guide to the multitude of nucleosome positioning resources available online. 

These include almost 300 experimental datasets of genome-wide nucleosome occupancy 

profiles determined in different cell types and more than 40 computational tools for the analysis 

of experimental nucleosome positioning data and prediction of intrinsic nucleosome formation 

probabilities from the DNA sequence. A manually curated, up to date list of these resources will 

be maintained at http://generegulation.info. 
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Introduction 

 

The nucleosome is the basic unit of chromatin compaction, composed of the histone octamer 

and 146-147 base pairs (bp) of DNA wrapped around it. Nucleosomes can form at any genomic 

locations, but some DNA sequences have higher affinity to the histone octamer, mostly due to 

the differential bending properties of the DNA double helix. In addition, nucleosome positioning 

is cell type-specific, in a sense that the cells of the same organism sharing the same genome 

can have different nucleosome locations depending on the cell type and state. Interested 

readers are directed to a number of recent publications reviewing the biological, physical and 

bioinformatics aspects of these phenomena, which will be outside of the scope of the current 

work [1-32]. Here we will omit fundamental scientific questions, and will focus on a very practical 

aspect of the field: which experimental nucleosome positioning datasets already exist, how to 

generate your own data, and how to compare these with other experimental datasets and 

bioinformatically predicted nucleosome positions in a given genome?  

 

 

1. Available experimental datasets 

 

Recent high-throughput genome-wide data with respect to nucleosome positioning come from a 

number of related techniques, which have in common an idea to cut DNA between 

nucleosomes and map protected DNA regions. The most frequently used method is MNase-seq 

(chromatin digestion by micrococcal nuclease followed by deep sequencing) [11, 33-35]. A 

number of complementary methods have been proposed using MNase alone or in combination 

with sonication [36] and/or histone H3 immunoprecipitation (ChIP-seq) or other enzymes such 

as DNase (DNase-seq) [37, 38], transposase (ATAC-seq) [39, 40] and CpG methyltransferase 

(NOME-seq) [41]. Another possibility is to use directed chemical cleavage, either by hydroxyl 

radicals targeted by artificially introduced histone modifications [42-44], or by small aromatic 

molecules such as methidiumpropyl-EDTA which preferentially intercalate in the DNA double 

helix between nucleosomes and cleave it in the presence of Fe(II) ions (MRE-seq) [45]. The 

method of tiling microarrays (ChIP-chip), which several years ago was the method of choice [46-

49], is currently mostly overridden by high throughout sequencing based methods. New 

methods continue to appear to address three major problems: (1) DNA sequence biases of the 

experimental setup; (2) targeted enrichment to achieve ultra-high sequencing coverage for a 
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subset of genomic regions of interest; (3) single-cell sequencing to overcome the problem of 

heterogeneity, which is present in any cell population.  

 

Unlike typical transcription factor (TF) or histone-modification ChIP-seq datasets, nucleosome 

positioning aims to be determined with a single-base pair resolution, which requires higher 

sequencing coverage. This distinction becomes particularly important for large genomes. 

Therefore, while Yeast nucleosome positioning datasets could be still stored even at individual 

web sites [10, 50-54], for higher eukaryotes the question of the storage and location of such 

datasets becomes outstanding. For example, the first investigation of genome-wide nucleosome 

redistribution in human cells was performed in 2008 [55]. The latter study reported nucleosome 

maps in activated versus resting CD4+ T cells, determined with 10 base pair resolution using 

MNase-seq. Several studies later used this method for human cell lines [41, 56-62] and primary 

human cells [63-68], each generating about 200-400 million DNA reads for a single condition. 

However, a direct comparison of nucleosome positions in primary cells from patients vs. healthy 

individuals still remains a challenge because a definitive resolution of nucleosome positions for 

the human genome requires up to the order of 1-4 billion reads [69]. (For comparison, a typical 

ChIP-seq dataset addressing TF binding or histone modifications contains just several tens 

millions reads). This increases the required storage space to the order of terabytes instead of 

gigabytes per dataset as was common for the “first wave” of Next Generation Sequencing 

(NGS) experiments. Typically, the Short Read Archive (SRA) is used for such data storage 

nowadays [70], while a detailed documentation and processed files are stored in the Gene 

Expression Omnibus (GEO) database [71]. The problem is that usually it is difficult to know 

which datasets already exist for nucleosome positioning in a given cell type, because 

“nucleosome positioning” is not a specific type of experiment, and searching e.g. for the word 

“MNase-seq” returns only part of MNase-seq-type datasets. For example, a surprisingly large 

number of 14 datasets from different laboratories already exist for nucleosome positioning in a 

single cell type, mouse embryonic stem cells (ESCs) [45, 67, 72-79]. One would not be aware of 

all of them without tracking the corresponding publications. This was one of the motivations to 

create a complete list of such datasets.  

 

Table 1 provides a summary of nucleosome positioning datasets which are currently available. 

The short one-line descriptions introduced here for each dataset do not substitute for more 

detailed GEO entries and have been used in this format specifically to help readers quickly 

navigate in the sea of nucleosomes. Historically, studies in Yeast have founded this type of 
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research, and these, together with other popular model organisms such as Arabidopsis and 

Drosophila still provide valuable systems to understand fundamental biological mechanisms, 

especially when genetic modifications need to be introduced quickly. However, current literature 

is becoming highly populated by studies in mouse and human, since the latter have direct links 

to cancer and other diseases. In practical terms, knowing which datasets already exist can be 

helpful either to integrate their analysis with other NGS datasets available for the same cell 

type/state, or at least to get some hints about new experiment design. Visitors of the web site 

generegulation.info, where this list was initiated in 2009, frequently asked the following question: 

Suppose, we have no experimentally measured nucleosome maps for the cell type of our 

interest. Can we take nucleosome positions from another cell type (of the same organism) and 

compare these with our RNA-seq, ChIP-seq, etc? In general, the answer is “no”, since 

nucleosome maps are cell-type specific. One has to determine nucleosome maps in a given cell 

type, which leads us to the next practical questions. 

 

Table 1. Experimental nucleosome positioning datasets sorted by cell type, newest first 

Description Accession # 

Human – about 50 datasets with different cell types/conditions: 

HuRef lymphoblastoid line, α-satellite arrays of centromeres [58]. ChIP-seq. GSE60951 

H1-OGN embryonic stem cells, H1-OGN induced pluripotent stem cells, and 
fibroblasts differentiated from H1-OGN ESCs [67]. MNase-seq. 

GSE59062 

HCT116 colon cancer cells and their genetic derivatives which lack DNA 
methyltransferases DNMT3B and DNMT1 activity [57]. NOME-seq. 

GSE58638 

Primary human endothelial cells stimulated with tumour necrosis factor alpha 
(TNFalpha) [63]. MNase-seq. 

GSE53343 

MCF-7 (breast cancer) with and without MBD3 knockdown [59]. MNase-seq. GSE51097 

Human embryonic stem cells (H1 and H9 hESCs). MNase-seq GSE49140 

Human sperm [66]; Limited regions retain nucleosomes in sperm. MNase-seq. GSE47843 

Human colo829 cell line. MNase-seq GSE47802 

Raji cells (lymphoblastoid-like) with and without α-amanitin [60]. MNase-seq. GSE38563 

7 lymphoblastoid cell lines from the HapMap project [69]. MNase-seq. GSE36979 

Lymphoblastoid GM12878 and K562 cell lines [56]. MNase-seq. GSE35586 

CD36+ cells with and without BRG1 knockdown [68]. MNase-seq, ChIP-seq. GSE26501 

Human embryonic carcinoma (NCCIT) cell line [61]. MNase-seq, ChIP-seq. GSE25882 

Primary CD4+ T-cells, CD8+ T-cells and granulocytes [65]. MNase-seq. GSE25133 

MCF7EcoR cells where P53 was either activated or not [62]. MNase-seq. GSE22783 

Nucleosome positioning and DNA methylation in IMR90 [41]. NOME-seq. GSE21823 

Resting and activated CD4+ T cells [55]. MNase-seq; H3, H2A.Z ChIP-seq. SRA000234 

Mouse – about 70 datasets with different cell types/conditions: 

Mouse ESCs [45]. MNase-seq, MPE-seq, MPE-ChIP-seq GSE69098 

Mouse ESCs, wild type (WT) and Dnmt1/3a/3b triple knockout [78]. MNase-seq GSE64910 

Mouse EScs, WT and remodeler BAF250a knockout [80]. MNase-seq.  GSE59082 
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Mouse ESCs, induced pluripotent stem cells (iPCs), somatic tail-tip fibroblasts 
(TTF) and liver [67]. MNase-seq. 

GSE59062 

Mouse ESCs and sperm [77]. Different size-selection of MNase-seq fragments. GSE58101 

Mouse ESCs, siRNA knockdown of EGFP, Smarca4 or MBD3 [79]. MNase-seq GSE57170 

Mouse ESCs, low MNase digestion; dinucleosome fraction [76]. MNase-seq. GSE56938 

Mouse ESCs and differentiated iMEFs. RED-seq; paper not published yet. GSE51821 

Mouse ESCs (J1) [72]. MNase-seq, ChIP-seq GSE51766 

Mouse ESCs, low MNase digestion [81]. MNase-seq. GSE50706 

Mouse ESCs (E14) and SMARCAD1-knock down cells. MNase-seq. GSE47802 

Mouse ESCs and induced pluripotent cells (iPSC) from different layers [82] GSE46716 

Mouse ESCs, neural progenitor cells (NPCs) and neurons with and without 
HMGN1 knockout. MNase-seq using high and low MNase digestion levels [73].  

GSE44175 

Mouse ESCs, NPCs and embryonic fibroblasts (MEFs) [75]. MNase-seq. GSE40951 

Mouse thymocytes, MNase-seq. GSE69474 

Mouse B-cell to macrophage lineage switching, several time points. MNase-seq. GSE53460 

Mouse liver, 3-mohth and 21-month old mice [83]. MNase-seq. GSE58005 

Mouse liver, 6 time points of the 24h light:dark cycle; WT and Bmal1-/- [84]. GSE47142 

Mouse liver [74]. MNase-seq and ChIP-seq. GSE26729 

Mouse bone marrow-derived macrophages (BMDMs) [85]. MNase-seq. GSE62151 

Hypothalamus from MeCP2 knockout mice and control mice [86]. MNase-seq. GSE66869 

Cultured germline stem cells with and without Scml2 knockout [87]. MNase-seq. GSE55060 

Primary CD4+ CD8+ DP thymocytes and Rag2 -/- thymocytes [88]. MNase-seq. GSE56395 

Fibroblasts from E13.5 embryos. WT, Snf5-/- and Brg1-/- [89]. MNase-seq. GSE38670 

Drosophila melanogaster, MNase-seq: 

S2 cell line. WT and stimulated by heat killed Salmonella typhimurium. GSE64507 

S2 cell line. WT; treated with RNAi against Beta-galactosidase or GAGA [90]. GSE58957 

S2 cell line. WT and Beaf32-depleted [91]. GSE57166 

S2 cell line. WT and depletion of CTCF/P190 and ISWI [92]. GSE51599 

S2 cell line, WT [93]. GSE49526 

Staged Drosophila embryos [94]. GSE41686 

S2 cell line. WT, mock-treated, and NELF-depleted [95]. GSE22119 

Arabidopsis thaliana: 

Col-0 seeds; chr11-1 chr17-1, MNase-seq [96] GSE50242 

Col-0 seeds; WT and inhibition of Pol V-produced lncRNAs. MNase-seq [97] GSE38401 

Col-0 seeds, shoots; MNase-seq, ChIP-seq, Bisulfite sequencing [98] GSE21673 

Caenorhabditis elegans, MNase-seq: 

Mixed stage, wild-type (N2) C. elegans. SOLiD paired-end sequencing [99] SRX000426 

Chlamydomonas reinhardtii: 

Chlamydomonas strain CC 1609. MNase-seq [100] GSE62690 

Saccharomyces cerevisiae and related species, MNase-seq: 

S. cerevisiae hho1, ioc3isw1, and chd1 deletion mutants complemented with the 
corresponding copies from K. lactis [101]. 

GSE66979 

S. cerevisiae. Strain W303, stationary growth phase. Wild type (WT) and with 
introduced DNMT3b [102].  

GSE66907 

S. cerevisiae. Strains carrying the Sth1 degron allele and either pGal-UBR1 

(YBC3386) or ubr1 null (YBC3387) represent RSC null and RSC wild type 
correspondingly [103]. 

GSE65593 
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S. cerevisiae. WT and Snf2 K1493R, K1497R strains; unstressed/stressed [104] GSE61210 

S. cerevisiae. Strain W303. WT and modification affecting one of the following 

chromatin remodelers: ISW1, CHD1, FUN30, IOC3 [43]. 
GSE59523 

S. cerevisiae. Strain W303. Affected histone deacetylases Sir2 and Rpd3 [105]. GSE57618 

S. cerevisiae. Strain YK699, WT and changes addressing the following: Scc2-4; 

Sth1-3; a2/MCM1;  TATAC; TATA∆. Replicates at 25C and 37C [106]. 

GSE56994 

S. cerevisiae. Calorie restricted and non-restricted WT, ISW2DEL and 

ISW2K215R strains [107] 
GSE53718 

S. cerevisiae. Strain W303 (yFR212) [108]. MNase-seq and H2A.Z ChIP-seq GSE47073 
S. cerevisiae. Strain S288c (BY4741). “Young yeast”, “old yeast”, and “old yeast 

with histone over expression” [109]. 
GSE47023 

S. cerevisiae. Strain BY4741, WT and Hog1 mutant. Exposed/not exposed to 

osmostress [110]. 
GSE41494 

S. cerevisiae. Strain BY4742, WT, Ssn6 KO and Tup1 KO [111]. GSE37465 

S. cerevisiae. Strain S288C. WT, Nup170∆  and Sth1p depletion [112]. GSE36792 

S. cerevisiae. Strain BY4741. Study of response to H2O2 over time in the S288c 

derivative [113]. 
GSE30900 

S. cerevisiae. Strain YEF473A. WT and mutant with H3 shutoff to study histone 

H3 depletion [114]. 
GSE29292 

WT and mutant strains in S. cerevisiae, C. albicans, and S. pombe [115]. GSE28839 

S. cerevisiae at varying phosphate concentrations GSE26392 
S. cerevisiae. Strain XF218. H3 Chip-seq [116] GSE23778 

12 Ascomycete species: Saccharomyces mikatae, Saccharomyces bayanus, 
Saccharomyces castellii, Saccharomyces cerevisiae, Kluyveromyces waltii, 
Saccharomyces paradoxus, Candida glabrata, Candida albicans, 
Debaryomyces hansenii, Kluyveromyces lactis, Saccharomyces kluyveryii, 
Yarrowia lipolytica [117]. 

GSE22211 

Comparison of nucleosome positioning in S. cerevisiae, S. paradoxus and their 

hybrid for wild-type and deletion mutant strains [118]. 
GSE18939 

S. cerevisiae. Strains BY4741 and RPO21. MNase titration series from three 

different titration levels –  underdigested, typical digestion, and overdigested 
BY4741 cells. Time dependence series: MNase-seq at 0, 20, and 120 minutes 
after shifting RPO21 cells from 25 C to 37 C [34]. 

GSE18530 

S. cerevisiae. Chromatin remodelling by Isw2 [50]. Tiling microarrays. 

http://research.fhcrc.org/tsukiyama/en/genomics-
data/global_nucleosomemapping.html  

GSE8813, 
GSE8814, 
GSE8815 

The Penn State Genome Cartography Project. S. cerevisiae and D. 
melanogaster [10, 53, 54, 119]. Tiling microarrays. http://atlas.bx.psu.edu  

 

Saccharomyces pombe, MNase-seq: 

Strain Hu1867. WT and without Fun30 chromatin remodeler Fft3 [120]. GSE58012 

Strain FWP172. WT and spt6-1 at two different MNase concentrations [121]. 
Spt6 is a histone chaperone. 

GSE49572 

Wild type and without CHD remodeler Hrp3 [122]. GSE40451 

Strain D18, log phase and stationary Phase [123]. 
http://www.acsu.buffalo.edu/~mjbuck/Fission_Yeast_chromatin.html  

GSE28071 

 

 

 

http://research.fhcrc.org/tsukiyama/en/genomics-data/global_nucleosomemapping.html
http://research.fhcrc.org/tsukiyama/en/genomics-data/global_nucleosomemapping.html
http://atlas.bx.psu.edu/
http://www.acsu.buffalo.edu/~mjbuck/Fission_Yeast_chromatin.html
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2. Computational tools to analyze nucleosome positioning data 

Many laboratories nowadays consider nucleosome positioning as an important additional piece 

of information to supplement new stories about a specific TF, pathway, or biological process 

happening in chromatin. If a general workflow of NGS analysis is already established in the lab, 

it is tempting to consider nucleosome positioning as just another dataset. Indeed, the first steps 

of analysis of nucleosome positioning experiments (e.g., MNase-seq, histone H3 ChIP-seq, 

NOME-seq), require standard NGS software for read mapping and quality control. However, 

next steps, which use as input mapped BED/BAM/SAM files, diverge from the analysis of typical 

ChIP-seq experiments. The major difference is that in the nucleosome positioning field we are 

dealing with millions of small, fuzzy enrichment peaks corresponding to individual nucleosomes 

defined with precision of one to several bp, in contrast to TF ChIP-seq where one deals with 

better defined sharp peaks, or histone-modifications ChIP-seq where one deals with broad 

peaks determined at a precision of hundreds bp. Therefore, generic peak calling programs 

usually used for ChIP-seq, such as MACs [124] or HOMER [125], are not optimal for 

nucleosome position calling. Yet, the basic idea behind nucleosome position calls from the 

experimental data is the same: one has to detect enriched peaks of size around 147 bp (e.g. 

TemplateFilter  [34], NPC  [126], nucleR [127], NOrMAL  [128], PING/PING2 [108, 129], MLM  

[46], NucDe  [130], NucleoFinder  [131], ChIPseqR  [132], NSeq  [133], NucHunter  [134], iNPS 

[135] and PuFFIN  [136]). Alternatively, one does not call nucleosome positions at all, and 

instead operates with the continuous nucleosome occupancy profile, defining regions of cell 

type/state specific differential occupancy (e.g. DANPOS/DANPOS2  [137], DiNuP  [138], 

NUCwave [139]). We have been also applying the latter idea when analysing nucleosome 

positioning in mouse and human [12, 26, 76] using custom made scripts (Vainshtein and Teif, 

unpublished). As a rule of thumb, calling nucleosome peaks is reasonable when these are well 

defined. This is typically the case in yeast but not in higher eukaryotes (unless a specific subset 

of well-positioned nucleosomes is considered). On the other hand, nucleosome landscapes in 

mouse and human are usually easier to interpret in terms of differential occupancy changes. An 

additional complication is that since typical MNase-seq experiments are being performed using 

10,000-1,000,000 cells, the averaged nucleosome profile characterising this cellular ensemble 

does not represent any particular individual cell. Therefore, another analysis approach is to 

reconstruct the most probable non-overlapping nucleosome positions in individual cells using 

Monte Carlo simulations (e.g. NucPosSimulator  [140]). In addition, a number of questions 

related to nucleosome positioning, such as e.g. enhancer identification, have been addressed in 

more specific tools [141]. Finally, biologically oriented users without solid knowledge of 
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programming can take advantage of a number of available programs which visually display 

nucleosome occupancy in their region of interest (e.g. Skyline Nucleosome browser [142] or 

earlier nucleosome repositories visualizing yeast nucleosome maps [10, 50-54]). In principle, it 

is also possible to use generic genomic visualization tools such the UCSC Genome Browser 

[143]. However, due to large sizes of typical nucleosome positioning datasets this is not optimal. 

Thus, at least 21 computational tools offering one of these five options of the primary analysis of 

nucleosome positioning data are currently available online, listed with the corresponding 

explanations in Table 2. Since the analysis of nucleosome positioning performed using one of 

these five workflows (or combinations of them) can lead to equally interesting biological results, 

it is beyond the aims of the current review to make recommendations about the choice of these 

programs. Concerning the subclass of nucleosome peak calling software, interested readers are 

referred to recent reviews where some of the performance characteristics of nucleosome peak 

calling algorithms have been compared [139]. An additional parameter to be considered is the 

popularity of the software. Here, popularity is defined as the number of literature references in 

Google Scholar to the original paper. Of course, popularity does not necessarily reflect scientific 

superiority or the ease of use. Furthermore, since input/output data and the purpose of the 

software are very different, the superiority cannot be defined. The popularity is also not a very 

robust indicator because some newer tools might have fewer citations due to publication time 

lapse, while older items might have more citations because the original paper also introduced 

new experimental data / analysis. In addition, one has to take into account that highly cited 

software for the analysis of nucleosome positioning from tiling microarrays [46, 47] is not 

applicable to the nowadays experiments using NGS sequencing. With this disclaimer in mind, 

currently most popular nucleosome peak callers for single- or paired-end MNase-type 

nucleosome positioning experiments are TemplateFilter  [34], NPC  [126], DANPOS/DANPOS2  

[137], nucleR [127], NOrMAL  [128] and PING/PING2 [108, 129]. Paired-end sequencing is a 

more recent version of the experimental setup, and not all programs support it. Last but not the 

least feature is whether the program is a command-line tool, whether it is compatible with R or 

MATLAB, and whether it has a graphical user interface (GUI). These features are specified in 

Table 2. 
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Table 2. Software to process NGS nucleosome experiments (sorted by popularity). 

 

Description 
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Tiling array analysis [47]. A Matlab code, which is complemented 
by MLM and NucleR packages. 
http://bcb.dfci.harvard.edu/~gcyuan/software.html   

-/-/+/- + + - 942 

TemplateFilter: Perl source code and executable files for 

nucleosome positioning data processing [34]. Applicable to Solexa-
type high-throughput sequencing data. 
http://compbio.cs.huji.ac.il/NucPosition/TemplateFiltering/Home.html  

+/-/-/- - + - 181 

NPS: Nucleosome Positioning from Sequencing [126]. This is Python 

based nucleosome peak caller, which is recommended for the use 
together with software BINOCh from the same group. 

http://liulab.dfci.harvard.edu/NPS/  

+/-/-/- - + - 95 

DANPOS and DANPOS2: Dynamic Analysis of Nucleosome 

Positioning and Occupancy by Sequencing [137]. This is a Python 
package, which reports changes in location, fuzziness, or occupancy 
for a given nucleosome or any genomic region. It allows generating 
aggregate profile plots and heatmaps for subsets of genomic 
regions.  https://sites.google.com/site/danposdoc/ 

+/-/-/- - + + 32 

nucleR: Non-parametric nucleosome positioning. This is an R 

package included in the Bioconductor [127]. It allows treating both 
NGS and Tiling Arrays experiments. The software is integrated with 
standard genomics R packages and allows for in situ visualization as 

well as to export results to common genome browser formats. 
 http://mmb.pcb.ub.es/nucleR/  

-/+/-/- + + + 32 

NOrMAL: Accurate nucleosome positioning using a modified 
Gaussian mixture model.  C++ code and executables are provided 
for download [128]. It is a command line tool designed to resolve 
overlapping nucleosomes and extract extra information ("fuzziness", 
probability, etc.) of nucleosome placement. Newer software called 
PuFFIN developed by the same authors is claimed to outperform 
NOrMAL. http://www.cs.ucr.edu/~polishka/  

+/-/-/- - + + 17 

PING and PING 2.0: Probabilistic inference for nucleosome 
positioning with MNase-based or sonicated short-read data. An R 
package for nucleosome peak calling integrated in the Bioconductor 
[108, 129]. The authors say that PING compares favorably to NPS 
and TemplateFilter in scalability, accuracy and robustness. 

http://www.bioconductor.org/packages/release/bioc/html/PING.html  

-/+/-/- - + + 13 

BINOCh: Binding Inference from Nucleosome Occupancy Changes 

[141, 144]. This is a Python package, which allows identification of 
putative enhancers by comparing nucleosome occupancy in two cell 
conditions and analyzing DNA motifs near nucleosome centres and 

+/-/-/- - - + 12 

http://bcb.dfci.harvard.edu/~gcyuan/software.html
http://compbio.cs.huji.ac.il/NucPosition/TemplateFiltering/Home.html
http://liulab.dfci.harvard.edu/NPS/
https://sites.google.com/site/danposdoc/
http://mmb.pcb.ub.es/nucleR/
http://www.cs.ucr.edu/~polishka/
http://www.bioconductor.org/packages/release/bioc/html/PING.html
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edges. It requires as input sorted BED files and relies for peak 
calling on the software NPC developed by the same group. 
http://liulab.dfci.harvard.edu/BINOCh/   

MLM: A Multi-Layer Method to analyze microarray nucleosome 

positioning data. A Matlab code is available for download [46]. 
http://www.math.unipa.it/pinello/mlm/ 

-/-/+/- + + - 12 

NucPosSimulator:  Deriving non-overlapping nucleosome 

configurations from MNase-seq data [140]. It utilizes a Monte Carlo 
(MC) approach to determine the most probable nucleosome position 
in overlapping and ambiguous DNA reads from high through-put 
sequencing experiments. In contrast to peak-calling procedures 
NucPosSimulator probes many possible solutions, and can apply a 
Simulated Annealing scheme, a heuristic optimization method, which 
finds an optimal solution for complex positioning problems.  
http://bioinformatics.fh-stralsund.de/nucpos/  

-/+/-/+ - + + 10 

NucDe: Mapping nucleosome-linker boundaries [130]. This is an R 

package mapping nucleosome-linker boundaries from both MNase-
Chip and MNase-Seq data using a non-homogeneous hidden-state 
model based on first order differences of experimental data along 
genomic coordinates.  
http://www.stat.wisc.edu/~keles/Software/demo_Nucde.pdf  

-/+/-/- + + - 9 

NucleoFinder: A statistical approach for the detection of 

nucleosome positions [131]. An R package, which addresses both 
the positional heterogeneity across cells and experimental biases. 
https://sites.google.com/site/beckerjeremie/home/nucleofinder  

-/+/-/- - + + 8 

ChIPseqR: Analysis of ChIP-Seq experiments using "R"; included in 

the Bioconductor R package [132]. ChIPseqR takes as input mapped 
reads and outputs nucleosome centres and their scores. It allows 
producing basic statistical graphs using standard R functions. 
http://www.bioconductor.org/packages/release/bioc/html/ChIPseqR.h
tml  

-/+/-/- - + - 7 

DiNuP: A systematic approach to identify regions of differential 

nucleosome positioning [138]. DiNuP compares the nucleosome 
profiles generated by high-throughput sequencing between different 
conditions. It provides a statistical P-value for each identified 
differential regions and empirically estimates the False Discovery 
Rate (FDR) as a cutoff when two samples have different sequencing 
depths and differentiate differential regions from the background 
noise. http://www.tongji.edu.cn/~zhanglab/DiNuP/ 

+/-/-/- - - ? 7 

NSeq: a multithreaded Java application for finding positioned 

nucleosomes from sequencing data [133]. NSeq includes a user-
friendly graphical interface written in Java. It computes FDRs for 
candidate nucleosomes from Monte Carlo (MC) simulations, plots 
nucleosome coverage and centers, and exploits the availability of 
multiple processor cores by parallelizing its computations. NSeq 
analyzes alignment data in BAM, SAM, or BED format. It assumes 
that the data are single-end. https://github.com/songlab/NSeq  

-/-/-/+ - + - 7 

Skyline nucleosome browser: a web-based application for the 

identification of nucleosome peaks over the genome [142]. 
http://chromatin.unl.edu/cgi-bin/skyline.cgi  

Web - - + 6 

http://liulab.dfci.harvard.edu/BINOCh/
http://www.math.unipa.it/pinello/mlm/
http://bioinformatics.fh-stralsund.de/nucpos/
http://www.stat.wisc.edu/~keles/Software/demo_Nucde.pdf
https://sites.google.com/site/beckerjeremie/home/nucleofinder
http://www.bioconductor.org/packages/release/bioc/html/ChIPseqR.html
http://www.bioconductor.org/packages/release/bioc/html/ChIPseqR.html
http://www.tongji.edu.cn/~zhanglab/DiNuP/
https://github.com/songlab/NSeq
http://chromatin.unl.edu/cgi-bin/skyline.cgi
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NucHunter: Inferring nucleosome positions with their histone mark 

annotation from ChIP-seq data [134]. It uses data from histone ChIP-
seq experiments to infer positioned nucleosomes, and can predict 
positioned nucleosomes from one or multiple BAM files, e.g. taking 
into account a control experiment. 
http://epigen.molgen.mpg.de/nuchunter/  

-/-/-/+ - + + 5 

Perl scripts to analyze paired-end MNase-seq experiments [145]. 

The authors have listed the code in supplementary materials of their 
publication, which is useful for other developers. 
http://nar.oxfordjournals.org/content/suppl/2011/07/24/gkr643.DC1 
/Cole_Supp_Info.pdf  

+/-/-/- - + - 5 

iNPS: The authors developed an improved version of the NPC 

nucleosome peak calling algorithm, which they claim to outperform 
the latter [135]. http://www.picb.ac.cn/hanlab/iNPS.html 

+/-/-/- - + + 3 

NUCwave: Nucleosome occupancy maps from MNase-seq, ChIP-

seq and CC-seq  [139]. It is a Python package which generates 
nucleosome occupancy maps from MNase-seq, ChIP-seq and 
chemical cleavage (CC-seq), both for single-end and paired-end 
reads. It requires as input files in a Bowtie output format. 
http://nucleosome.usal.es/nucwave/  

+/-/-/- - - + 3 

PuFFIN: A parameter-free method to build genome-wide 

nucleosome maps from paired-end sequencing data [136]. PuFFIN 
is a command line tool for accurate placing of the nucleosomes 
based on the pair-end reads. It was designed to place non-
overlapping nucleosomes using extra length information present in 
pair-end data-sets. PuFFIN is written in Python, and released in 
2014. It outperforms NOrMAL previously released by the same 
authors, and is claimed by the authors to outperform also NSeq, 
NPS and Template Filtering. It returns nucleosome positions, the 

width of the peak, confidence score and fuzziness. 
http://www.cs.ucr.edu/~polishka/indexPuffin.html  

+/-/-/- - + + 2 

NucleoATAC: A Python package for calling nucleosomes using 

ATAC-Seq data [40]. Requires as input sorted aligned paired-end 
reads in BAM format, FASTA file with genome reference and sorted 
bed file with non-overlapping regions for which nucleosome analysis 
is to be performed. These regions will generally be broad open-
chromatin regions. Outputs nucleosome calls and occupancy. 
https://github.com/GreenleafLab/NucleoATAC  

+/-/-/- - + + - 

 

 

  

http://epigen.molgen.mpg.de/nuchunter/
http://www.picb.ac.cn/hanlab/iNPS.html
http://nucleosome.usal.es/nucwave/
http://www.cs.ucr.edu/~polishka/indexPuffin.html
https://github.com/GreenleafLab/NucleoATAC
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3. Computational tools to predict nucleosome positions from the DNA sequence. 

While nucleosome positioning is cell-type dependent, the DNA sequence still plays an important 

role in directing preferential histone octamer assembly. These methods are based on different 

ideas: either the physical considerations of DNA bendability, or bioinformatics analysis based on 

experimentally known nucleosome occupancies in specific cell types, or a combination of these 

approaches (Table 3). Correspondingly, existing web servers can be roughly split into four 

classes: The first class is based on purely bioinformatics considerations [49, 146-157], e.g. 

counting oscillatory dinucleotide distributions as pioneered in 1970s-80s [158], or moving the 

scanning window along the DNA and comparing the motif to the “ideal” nucleosome positioning 

motif [146-148], or introducing shorter nucleosome positioning nucleotide words, or a 

combination thereof. The second class is a hybrid of bioinformatics and biophysics [35, 52, 159-

162], based on the algorithms which use dynamic programming to calculate allowed 

configurations of non-overlapping nucleosomes and variations of the Percus equation to assign 

the nucleosome formation energies learned from experimental nucleosome occupancy profiles. 

More details about the application of dynamic programming and the Percus equation for 

nucleosome positioning can be found elsewhere [27, 159, 163-167]. The third class is using 

correlations between empirical DNA characteristics, such as A-philicity, base stacking, B-DNA 

twist, bendability, bending stiffness, DNA denaturation energy, Z-DNA potential, etc, without 

knowing the underlying molecular details [168]. The fourth class of web servers goes further to 

the physics and calculates DNA bendability (which determines its affinity for the histone 

octamer) from first principles, assigning energetic-based scores to the dinucleotides, repetitions 

of dinucleotides, and in some cases to longer nucleotide words [168-174]. The latter approach is 

less dependent on learning nucleosome positioning rules from high-throughput sequencing, and 

usually uses for the parameterization either available crystal structures or high-throughput 

computer simulations [170, 175, 176]. The advantage of this approach is the possibility to 

include in the consideration covalent modifications of DNA and histones and even nucleosomes 

with partially unwrapped DNA [177, 178]. It is beyond the scope of the current review to 

compare the efficiency of these methods. A description of the main features of each algorithm is 

included in Table 3. Most original articles introducing new software cited in Table 3 did perform 

benchmarking against several existing algorithms. However, it is worth to note that since 

nucleosome positioning is regulated by several mechanisms, there are probably several classes 

of nucleosomes, each characterised by its preferred DNA pattern. Therefore, different 

algorithms predicting nucleosome positioning might be complementary rather than mutually 

exclusive. For example, we recently showed that while the algorithm of Segal and co-authors 
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[35, 52, 159] predicts a single nucleosome enrichment peak at binding sites of a transcription 

factor CTCF, the algorithm of Trifonov and colleagues [32, 155, 179] intriguingly finds another 

class of “strong nucleosomes” regularly positioned around CTCF sites [26, 180] (in both cases 

calculations were performed in the absence of CTCF, not taking into account CTCF/nucleosome 

competition, which is yet another story [26]). Thus, there are many interesting biological 

processes determining nucleosome positioning which we still do not understand completely, and 

new algorithms are destined to appear. Nevertheless, readers interested to compare the 

performance of some of these methods are referred to recent reviews, e.g. [181]. 

 
 

Table 3. Computational tools to predict nucleosome positioning (sorted alphabetically). 

Description 
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FineStr: Single-base-resolution nucleosome mapping server [146-148]. The 

analysis is performed using the probe based on the 117-bp DNA bendability 
matrix derived from C. elegans. The authors suggested the universality of this 
pattern for other species. http://www.cs.bgu.ac.il/~nucleom/  

+/- +/+/+/- 

ICM Web: ICM Web allows users to assess nucleosome stability and fold any 

sequence of DNA into a 3D model of chromatin [169, 182]. The model is 
displayed in the visual browser JSmol or can be downloaded. ICM takes a 
DNA sequence and generates (i) a nucleosome energy level diagram, (ii) 
coarse-grained representations of free DNA and chromatin and (iii) plots of the 
helical parameters (Tilt, Roll, Twist, Shift, Slide and Rise) as a function of 
position.  
http://dna.engr.latech.edu/icm-du  

+/- -/-/-/+ 

iNuc-PhysChem: Identifying nucleosomal or linker sequences from 

physicochemical properties [168]. The algorithm identifies nucleosomal 
sequences by incorporating twelve physicochemical properties defined 
elsewhere, such as A-philicity, base stacking, B-DNA twist, bendability, 
bending stiffness, DNA denaturation energy, Z-DNA potential. The model was 
trained on data from H. sapiens, C. elegans and D. melanogaster. 
http://lin.uestc.edu.cn/server/iNuc-PhysChem  

+/+ +/-/+/+ 

iNuc-PseKNC: A sequence-based predictor for nucleosome positioning in 

genomes with pseudo k-tuple nucleotide composition [151]. This is another 
software package from the developers of iNuc-PhysChem. Here, the samples 

of DNA sequences were formulated using six basic DNA local structural 
properties trained on datasets from H. sapiens, C. elegans and         D. 
melanogaster. http://lin.uestc.edu.cn/server/iNuc-PseKNC  

+/- +/-/+/+ 

Mapping_CC: Displays the nucleosome predictions based on the DNA 

dinucleotide correlation pattern. This algorithm was initially associated with 
one of the first high-throughput genome-wide nucleosome maps in Yeast [49]. 

-/+ +/+/-/- 

http://www.cs.bgu.ac.il/~nucleom/
http://dna.engr.latech.edu/icm-du
http://lin.uestc.edu.cn/server/iNuc-PhysChem
http://lin.uestc.edu.cn/server/iNuc-PseKNC
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An updated version is available at http://nuclbrowser.ucoz.com/load/  

MOSAICS: Methodologies for Optimization and Sampling in Computational 

Studies  [170]. Perl scripts and a precompiled package to perform training-free 
atomistic prediction of nucleosome occupancy based on all-atom force field 
calculations. The effect of DNA methylation can be taken into account. 
http://www.cs.ox.ac.uk/mosaics/nucleosome/nucleosome.html  

-/+ +/-/-/+ 

NucEnerGen: Nucleosome energetics predictions based on high throughput 

sequencing [160]. It utilizes dynamic programming to calculate allowed 
nucleosome configurations and the Percus equation to infer sequence-
dependent energies from the experimental occupancy profiles.  
http://nucleosome.rutgers.edu/nucenergen/  

-/+ +/+/+/- 

nuMap: A web application implementing the YR and W/S schemes to predict 

nucleosome positioning [171-173]. The methodology is based on the 
sequence-dependent anisotropic bending, which dictates how DNA is 
wrapped around a histone octamer. This application allows users to specify a 
number of options such as schemes and parameters for threading calculation 
and provides multiple layout formats. http://numap.rit.edu/app/dna/index.xhtml   

+/- +/+/-/+ 

NuPoP: Nucleosome Positioning Prediction Engine [161, 162]. NuPoP is built 

upon a duration hidden Markov model, in which the linker DNA length is 
explicitly modeled. NuPoP outputs the Viterbi prediction, nucleosome 
occupancy score (from backward and forward algorithms) and nucleosome 
affinity score. NuPoP has three formats including a web server prediction 
engine, a stand-alone Fortran program, and an R package. The latter two can 
predict nucleosome positioning for a DNA sequence of any length. 
http://nucleosome.stats.northwestern.edu  

+/+ 

 

+/+/-/- 

Nu-OSCAR: Nucleosome-Occupancy Study for Cis-elements Accurate 

Recognition. It is devoted to identifying binding sites of known transcription 
factors, which further incorporates nucleosome occupancy around sites on 
promoter regions. The derivation of the algorithm is based on a biophysical 
view of interactions between protein factors and nucleosome DNA. 
http://bioinfo.au.tsinghua.edu.cn/nu_oscar/oscar.html  

+/- +/+/-/- 

nuScore: A nucleosome-positioning score calculator based on the DNA 

curvature properties [174]. This software allows an important type of analysis, 
where a user enters many sequences to calculate the average nucleosome 
energy profile. http://compbio.med.harvard.edu/nuScore 

+/- +/+/-/+ 

N-score: MATLAB and Python codes using a wavelet analysis based model 

for predicting nucleosome positions from DNA sequence [149]. 
http://bcb.dfci.harvard.edu/~gcyuan/software.html  

-/+ +/+/-/- 

NXSensor: Prediction of nucleosome-excluding sequences based on DNA 

bending properties [150]. It takes as input DNA sequences in FASTA format, 
and outputs nucleosome-excluding or nucleosome favouring segments. 
http://www.sfu.ca/~ibajic/NXSensor/  

+/- +/+/-/+ 

Online nucleosomes position prediction by genomic sequence (Segal 
Lab) [35, 52, 159]. Although it has no specific name, this is one of the most 

popular tools in this class, realized as a web server (allows analyzing a limited 
number of DNA sequences), and a stand-alone application which can be 
installed on a local cluster. It allows calculating nucleosome occupancy or 
nucleosome start site probability profiles of non-overlapping nucleosomes; 
alternatively, it is possible to calculate the net nucleosome formation energy 
profile. It uses machine learning for energy assignment based on the training 

+/+ +/+/+/- 

http://nuclbrowser.ucoz.com/load/
http://www.cs.ox.ac.uk/mosaics/nucleosome/nucleosome.html
http://nucleosome.rutgers.edu/nucenergen/
http://numap.rit.edu/app/dna/index.xhtml
http://nucleosome.stats.northwestern.edu/
http://bioinfo.au.tsinghua.edu.cn/nu_oscar/oscar.html
http://compbio.med.harvard.edu/nuScore/
http://bcb.dfci.harvard.edu/~gcyuan/software.html
http://www.sfu.ca/~ibajic/NXSensor/
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datasets and dynamic programming to sample nucleosome configurations 
(similar to NucEnerGen, NuPoP and the algorithm of van Noort and co-
authors). http://genie.weizmann.ac.il/software/nucleo_prediction.html  

Online nucleosome position prediction (van Noort and co-authors) [163]. 

This algorithm is based on dinucleotide distributions, but unlike other methods 
based on dinucleotide distributions it does not use machine learning and 
accounts only for the dinucleotide periodicity. In addition, this method uses 
dynamic programming to account for size exclusion and the Percus equation 
to assign nucleosome affinities (similar to NucEnerGen, NuPoP and the 
algorithm of Segal and co-authors mentioned above). 
http://bio.physics.leidenuniv.nl/~noort/cgi-bin/nup3_st.py  

+/- +/+/-/- 

Phase: A web server for prediction of the nucleosome formation probability 

based on (i) the 10-11 bp periodicities of dinucleotides and (ii) the typical 
pattern “linker - nucleosome - linker” defined by the authors [156]. 
http://wwwmgs.bionet.nsc.ru/mgs/programs/phase/  

+/- +/+/-/- 

RECON: A web server for prediction of the nucleosome formation potential 

learned from dinucleotide frequencies distribution for nucleosome positioning 
sequences [153, 154]. http://wwwmgs.bionet.nsc.ru/mgs/programs/recon/  

+/- +/+/-/- 

SymCurv: A program for nucleosome positioning prediction [152]. It 

calculates the curvature of the DNA sequence and uses a greedy algorithm to 
parse the sequence in nucleosome-bound and nucleosome-free segments. 
http://genome.crg.es/SymCurv/documentation.html  

-/+ -/-/-/+ 

Strong nucleosomes: Based on a recent discovery of strong nucleosome 

positioning sequences which are visually seen as regular arrays in genomic 
sequence [32, 155, 179], the program from Trifonov’s lab is finding a specific 
class of strongly positioned nucleosomes of the RR/YY and TA periodic types 
[155]. http://strn-nuc.haifa.ac.il:8080/mapping/home.jsf  

+/- +/+/-/- 

 

 

Conclusions 

The hunting for nucleosomes in their natural genomic environment has been opened for years 

and is far from being completed. Experienced nucleosome hunters are aware of the typical 

habits of nucleosomes: their preference for certain DNA sequences, and the ability to hide 

themselves using many natural obstacles (e.g. being masked by non-histone proteins [183], 

bound by transcription factors [184] or being able to unwrap and re-wrap their DNA dynamically 

[178, 185]), as well as artificial complications such as sequencing biases and the effect of the 

chromatin digestion level [186-188]. Furthermore, some of the sequence preferences for 

nucleosome cleavage are not artificial, but can be also associated with natural processes such 

as apoptosis [189]. As mentioned in the introduction, this review was not intended to discuss 

fundamental questions of the field, neither it was possible to highlight many excellent works 

which did not aim to develop online tools or resources. We have just performed a systematic 

excurse to the nucleosome positioning resources and tools which are available online. This 

http://genie.weizmann.ac.il/software/nucleo_prediction.html
http://bio.physics.leidenuniv.nl/~noort/cgi-bin/nup3_st.py
http://wwwmgs.bionet.nsc.ru/mgs/programs/phase/
http://wwwmgs.bionet.nsc.ru/mgs/programs/recon/
http://genome.crg.es/SymCurv/documentation.html
http://strn-nuc.haifa.ac.il:8080/mapping/home.jsf
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growing list has to be taken seriously and studied systematically while developing new 

nucleosome positioning tools or designing new high-throughput experiments. Since new tools 

and datasets are appearing at high rate, an updated version of this list will be maintained online. 
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Key points: 

 

 >50 genome-wide nucleosome-positioning datasets already exist for human, >70 

datasets for mouse, and >150 datasets for lower eukaryotes. 

 

 At least 40 computational tools for the analysis of experimental nucleosome positioning 

data and theoretical prediction of nucleosome positioning from DNA sequence are 

already available online. 


