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In this paper we consider a duality relation on matrix pencils and show
that it is a useful tool in the theory of linearizations of matrix polynomials.
Exploiting a result that completely characterizes the Kronecker form of dual
pencils, we study the behaviour under duality of the spectral structures,
including eigenvalues, eigenvectors, Wong chains, and minimal bases. We
also present several new applications of this concept, including: constraints
on the minimal indices of singular Hamiltonian and symplectic pencils, new
sufficient conditions under which pencils in L1, L2 linearization spaces are
strong linearizations, a new perspective on Fiedler pencils, a link between the
Möller-Stetter theorem and some linearizations of matrix polynomials.
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1 Introduction
Consider a pair of matrices of the same size L0, L1 ∈ Cm×n. In matrix theory, a degree-
1 polynomial L0 + xL1 ∈ C[x]m×n is known as a matrix pencil [16]. In this paper
we study a concept of duality among matrix pencils, defined as follows. Two pencils
L(x) := L1x+ L0 ∈ C[x]m×n and R(x) := R1x+R0 ∈ C[x]n×p are dual if the following
two conditions hold:

1. L1R0 = L0R1,

2. rank
[
L1 L0

]
+ rank

[
R1
R0

]
= 2n.
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In this case, we say that L(x) is a left dual of R(x), and, conversely, R(x) is a right dual
for L(x).
We emphasize that this paper is not the first study of duality. Dual pencils appear

in [22, Section 1.3], where they are given the name of consistent pencils and some of
their theoretical properties are stated. Moreover, one can recognize the use of duality
(of regular pencils only, which is a less interesting case) in the study of doubling and
inverse-free methods [2, 9, 27], as well as in the work [3], which gives an elegant algebraic
theory of operations on matrix pencils.
Yet, this technique seems to be underused with respect to its potential and we would

like to bring it to the attention of the matrix pencil community. We will argue that it is
an elegant tool for the theoretical study of matrix pencils, that allows us to obtain new
results and revisit old ones, greatly simplifying the treatment of singular cases.

The structure of the paper is the following: in Section 2, we recall some basic definitions
and classical results on matrix pencils and matrix polynomials. In Sections 3 and 4, we
state some theoretical results describing how Kronecker canonical form, eigenvectors and
minimal bases change under duality. We then show how duality can be used for several
tasks in different applications:

• describing the possible Kronecker forms of singular symplectic and Hamiltonian
pencils (Section 5);

• revisiting and simplifying proofs about the spectral properties of square (possibly
singular) Fiedler pencils (Section 7);

• developing a connection between duality and the vector spaces of linearizations L1
and L2 introduced in [25], obtaining new insight for the singular case (Section 8);

• illustrating a connection between the Möller-Stetter theorem and some specific
linearization of a matrix polynomial (Section 9).

We conclude the paper by describing two different methods that can be used to compute
duals, and showing how they can be combined with the theory presented here to derive
old and new linearizations (Section 10).
Most of the theory developed in this paper is applicable to any field F. If the field is

not closed, eigenvalues are sought in its algebraic closure. For simplicity, however, our
exposition is for F = C.

2 Preliminaries on matrix pencils and polynomials
In this section, we recall some classical definitions and results on matrix pencils and
polynomials. Throughout the paper, the ring of scalar polynomials with coefficients in
C is denoted by C[x], and the set of those with degree not larger than d by C[x]d. The
notation We denote by Rm×n the set of m × n matrices with coefficients in R. The
dimensions m and n are allowed to be zero [7, page 90].
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We denote by diag(M1,M2, . . . ,Mm) the block diagonal matrix formed by concate-
nating diagonally the (not necessarily square) blocks M1,M2, . . . ,Mm. We introduce the
notation

Kk,k+1(x) :=
[
0k×1 Ik

]
x−

[
Ik 0k×1

]
, Kk+1,k(x) := Kk,k+1(x)T ,

where k is allowed to be zero (giving 0× 1 and 1× 0 blocks, respectively). Moreover, let
J

(λ)
k denote a Jordan block with size k and eigenvalue λ.
The following result about matrix pencils is classical [16, Chapter 12], and reduces to

the Jordan canonical form of a matrix when one considers monic square pencils.

Theorem 2.1 (Kronecker canonical form). For every matrix pencil L(x) ∈ C[x]m×n1 ,
there exist nonsingular matrices U ∈ Cm×m, V ∈ Cn×n such that B(x) = UL(x)V has
the form B(x) = diag(B1(x), B2(x), . . . , Bt(x)), where each block Bi(x) is one among:

1. xI − J (λ)
ki

(Jordan block of size ki),

2. xJ (0)
ki
− I (Jordan block at infinity of size ki),

3. Kki,ki+1(x) (right singular block of size ki × (ki + 1)),

4. Kki+1,ki(x) (left singular block of size (ki + 1)× ki).

The pencil B(x) is unique up to a permutation of the diagonal blocks. Therefore, the
number of blocks of each kind, size and eigenvalue is an invariant of the pencil L(x).

For the sake of brevity, throughout the paper we will often use the acronym KCF.
It is straightforward to generalize the concept of a matrix pencil to polynomials of higher

degree. This leads to the definition of matrix polynomials [19], A(x) :=
∑d
i=0Aix

i ∈
C[x]m×n. A matrix polynomial is called regular if it is square and detA(x) is not the
zero polynomial, and singular otherwise.
Sometimes, in the theory of matrix polynomials it is convenient to allow for a zero

leading coefficient (see, e.g., [26]). For this reason, in our exposition we will not exclude
this possibility. When we write about a matrix polynomial A(x) =

∑d
i=0Aix

i, we agree
that the leading factor could be the zero matrix. The natural number d is therefore an
arbitrarily fixed grade, equal to or larger than the degree, which is attached artificially to
the polynomial [26]. However, in most applications the leading coefficient is nonzero: a
reader uncomfortable with the concept of grade may simply think of d as the degree.

A finite eigenvalue of a matrix polynomial A(x) is defined as a complex number λ such
that the rank of A(λ) as a matrix over the field C is lower than the rank of A(x) as a
matrix over the field of rational functions C(x). Infinite eigenvalues can be defined as
zero eigenvalues of revA(x), where the operator rev is defined by

rev
d∑
i=0

Aix
i :=

d∑
i=0

Ad−ix
i.
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Furthermore, the Jordan invariants can be extended to the polynomial case, resulting in
the concepts of elementary divisors and partial multiplicities; we refer the reader to the
classic books [16, 19] for their definitions, which are not needed in detail here.

If A(x) is an m× n matrix polynomial, then kerC(x)A(x) is a subspace of C(x)n, and
it always has a polynomial basis, i.e., a basis composed by vectors v(k) ∈ C[x]n. The
degree of a vector polynomial v(x) = [vi(x)] ∈ C[x]n is defined [15, Definition 1] as
maxni=1 deg vi(x). A minimal basis of A(x) [15, Definition 3] is a basis for the subspace
kerC(x)A(x) composed entirely of vector polynomials such that the sum of the degrees of
its column vectors, known as the order [15, Definition 2] of the basis, is minimal among
all possible polynomial bases. The degrees of the vectors that form a minimal basis,
known as (right) minimal indices, are uniquely defined independently of the choice of the
basis. It is known that minimal bases transform well under multiplication by invertible
constant matrices; we give a simple proof in the next Lemma.

Lemma 2.2. Let A(x) ∈ C[x]m×n, U ∈ GLm(C) and V ∈ GLn(C). If M(x) is a
minimal basis for UA(x)V , then VM(x) is a minimal basis for A(x), and has the same
minimal indices.

Proof. We recall that the high order coefficient matrix [15] of M(x) ∈ C[x]n×p is denoted
by [M ]h and is defined as the matrix whose jth column consists of the coefficient of
xdegMj in Mj , where Mj is the jth column of M(x).
Evidently, VM(x) is a basis of kerC(x)A(x), so it suffices to prove minimality and

preservation of minimal indices. By [15, Main Theorem], M(x) is minimal if and only if
(a) M(x) mod p(x) has full column rank for all irreducible p(x) ∈ C[x] and (b) [M ]h has
full column rank. Since M(x) is minimal, M(x) mod (x− x0) = M(x0) has full column
rank for all x0 ∈ C. Hence VM(x0) = VM(x) mod (x−x0) has full column rank as well.
Furthermore, denoting by Mj (resp., VMj) the jth column of M(x) (resp., VM(x)), the
two relations deg VMj = degMj and [VMj ]h = V [Mj ]h (hence [VM ]h = V [M ]h) can be
verified directly by expanding the polynomial vectors Mj and VMj in powers of x.

We conclude that VM(x) is minimal and has the same minimal indices of M(x).

A simple consequence of Lemma 2.2 is that one can determine the minimal basis of
a pencil from its KCF; indeed, it is easy to verify that a minimal basis for the pencil
B(x) described in Theorem 2.1 is M(x) = diag(M1(x),M2(x), . . . ,Mt(x)), where Mi(x)
is equal to [

xki xki−1 · · · x 1
]T

(1)

if the block Mi(x) if of the form Kki,ki+1(x), and the empty vector in Ck×0 otherwise.
Hence, VM(x) is a minimal basis for L(x) and its right minimal indices coincide with
the row sizes ki of the right singular blocks in its KCF.

Similarly, one can define left minimal indices as degrees of a minimal polynomial basis
for the left kernel of A(x), and for a pencil they coincide with the column sizes ki of the
Kki+1,ki(x) Kronecker blocks.
Let us define the block transpose AB of a matrix A partitioned in blocks Aij as the

block matrix whose blocks are Aji. Clearly, this definition depends on the choice of the
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block sizes, which should be clear from the context — in this paper, this means most
often m× n blocks. Moreover, given the matrix polynomial A(x) =

∑d
i=0Aix

i, we set

row(A) =
[
Ad Ad−1 · · · A0

]
; col(A) = (row(A))B =


Ad
Ad−1
...
A0

 .

If row(A) has full row rank (or, equivalently, there is no nonzero w ∈ Cm such that
wTA(x) = 0), we say that A(x) is row-minimal. If col(A) has full column rank (or,
equivalently, there is no nonzero v ∈ Cn such that A(x)v = 0), we say that A(x) is
column-minimal.
Finally, we define the special matrix

Jn :=
[

0 In
−In 0

]
.

3 Dual pencils and Kronecker forms
In this section, we derive some basic results concerning the Kronecker form of dual
pencils. Such results will be central in the rest of the paper. Most of these results appear
in the existing work on dual pencils by Kublanovskaya, Simonova and collaborators:
see [21, 22, 32] and the references therein. Nevertheless we have decided to include a
self-contained exposition of these results, which seem to have been almost forgotten in
the linear algebra community.
With the definitions stated in the previous section, the two conditions that define

duality can be rewritten as

1. row(L)Jn col(R) = 0,

2. rank row(L) + rank col(R) = 2n.

This formulation highlights the special role played by the two matrices col(R) and row(L).
The rows of the matrix row(L) span the left nullspace of Jn col(R). Thus, given a

pencil R(x), we can construct explicitly one of its left duals by taking a basis for the left
null space of Jn col(R) and using it as the rows of row(L). The dual constructed in this
way is row-minimal. Clearly, given any row-minimal left dual L(x), any other left dual of
R(x) can be constructed as ML(x), where M ∈ Ck×m has full column rank.
Similarly, we can construct a column-minimal right dual of a given pencil L(x) by

taking the right nullspace of row(L)Jn. Any other right dual of L(x) can be obtained as
R(x)N for a full-row-rank N .
We start from a lemma giving the duals of Kronecker blocks.

Lemma 3.1. 1. Let B(x) be any nonsingular Kronecker block (λ ∈ C or λ = ∞).
Then, B(x) is a left and right dual of itself.
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2. A right dual of Kk,k+1(x) is Kk+1,k+2(x). A left dual of Kk,k+1(x) is Kk−1,k(x) if
k > 0, and the empty matrix if k = 0.

3. A left dual of Kk+1,k(x) is Kk+2,k+1(x). A right dual of Kk+1,k(x) is Kk,k−1(x) if
k > 0, and the empty matrix if k = 0.

Proof. 1. It is easy to check that B1B0 = B0B1, where B(x) = B1x+B0, since one
of the coefficients B1 or B0 is ±I. For the same reason, row(B) and col(B) have
full rank, since they contain an identity block.

2. Note that it is enough to prove the condition on the right dual. We have[
0 Ik

] [
−Ik+1 0

]
=
[
0 −Ik 0

]
=
[
−Ik 0

] [
0 Ik+1

]
. (2)

Moreover, rank row(Kk,k+1(x)) = k and rank col(Kk+1,k+2(x)) = k + 2 are checked
easily, so the rank condition holds.

3. Transpose everything in (2).

The following results characterize completely the KCF of dual pencils; it had (implicitly)
appeared in [22, Section 1.3.2]: here we give a direct proof.
Theorem 3.2. Suppose that a pencil A(x) has Kronecker canonical form UAV = B(x) =
diag(B1(x), B2(x), . . . , Bt(x)). Then,

1. a row-minimal left dual of A(x) is Sl(x)U , where

Sl(x) = diag(L1(x), L2(x), . . . , Lt(x)),

and

Li(x) =


Bi(x) if Bi(x) is any nonsingular Kronecker block,
Kk−1,k(x) if Bi(x) = Kk,k+1(x) with k > 0,
Kk+2,k+1(x) if Bi(x) = Kk+1,k(x),
the 0× 0 empty matrix if Bi(x) = K0,1(x).

(3)

2. All left duals of A(x) have KCF diag(Sl(x),K1,0(x),K1,0(x), . . . ,K1,0(x)), where
we allow an arbitrary number of K1,0 blocks.

3. a column-minimal right dual of A(x) is R(x) = V Sr(x), where

Sr(x) = diag(R1(x), R2(x), . . . , Rt(x)),

and

Ri(x) =


Bi(x) if Bi(x) is any nonsingular Kronecker block,
Kk+1,k+2(x) if Bi(x) = Kk,k+1(x),
Kk,k−1(x) if Bi(x) = Kk+1,k(x) with k > 0,
the 0× 0 empty matrix if Bi(x) = K1,0(x).
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4. All right duals of A(x) have KCF diag(Sr(x),K0,1(x),K0,1(x), . . . ,K0,1(x)), where
we allow an arbitrary number of K0,1 blocks.

Proof. 1 We have Sl(x)B(x) = 0, since it is a product between two conformally
partitioned block diagonal matrices and the products between each pair of diagonal
blocks vanishes because of Lemma 3.1. Hence Sl(x)UA(x)V = 0, but since V is
invertible this implies Sl(x)UA(x) = 0.
It remains to verify the rank condition. Let mi × ni be the dimension of Li(x).
As argued above in the proof of Lemma 3.1, rank row(Li) = mi for the first three
kinds of blocks in (3), and the same obviously holds for the fourth as well. Again
by Lemma 3.1, rank col(Bi) = 2ni −mi (since it is in the definition of duality) in
the first three cases, and the same holds trivially for the fourth case. Now we have
n =

∑
i ni, rank row(Sl(x)U) = rank row(Sl(x)) =

∑
rank row(Li) =

∑
mi, and

rank col(B) =
∑

rank col(Bi) =
∑

(2ni −mi) = 2n−m.
The dual Sl(x)U is row-minimal since each row(Li) has full row rank, and hence so
does row(Sl).

2 Let D(x) be a left dual of A(x). All left duals can be written as D(x) = ML(x),
where L(x) is a row-minimal dual and M is a full-column-rank matrix. If we
complete M to a square invertible matrix as

[
M M ′

]
, then we have

D(x) =
[
M M ′

] [L(x)
0

]
.

Taking L(x) = Sl(x)U , which we know to be minimal, we have

D(x) =
[
M M ′

] [Sl(x)
0

]
U,

which is a Kronecker canonical form for D(x) with the required form.

3,4 are analogous to 1,2 and we omit the details.

In other words, when taking a left dual, the regular part is unchanged, the right
minimal indices decrease by 1, and the left minimal indices increase by 1; the converse
holds for right duals.

Corollary 3.3. (Simultaneous Kronecker canonical form) For any dual pair L(x), R(x),
there are nonsingular U, V,W such that UL(x)V and V −1R(x)W are both in Kronecker
canonical form.

In the theory of singular pencils, minimal bases and minimal indices play an important
role. Therefore, we wish now to investigate how minimal bases change under duality. We
note that a similar result is stated in [22, equation (1.3.4)].
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Theorem 3.4. Let R(x) = R1x+ R0 and L(x) = L1x+ L0 be dual. Suppose that the
columns of M(x) are a right minimal basis for R(x). For any (γ, δ) ∈ C2 \ {(0, 0)}, the
columns of γR1+δR0

γ−δx M(x) are a right minimal basis of L(x).

Proof. Notice first that it is sufficient to prove the result for L(x) and R(x) in KCF.
Indeed, for generic L(x), R(x), we can always reduce them to simultaneous KCF UL(x)V
and V −1R(x)W . Then, W−1M(x) is a minimal basis of V −1R(x)W ; if the result holds
for pencils in KCF, then V −1 γR1+δR0

γ−δx M(x) is a minimal basis for UL(x)V . Hence, the
same holds for γR1+δR0

γ−δx M(x) and L(x).
Let us now prove the result assuming that L(x), R(x) are in KCF. For each block Bi

of type Kki,ki+1, with polynomial kernel Mi(x) as in (1), we can verify directly that

M̃i(x) := γR1 + δR0
γ − δx

Mi(x) =
[
xki−1 xki−2 · · · x 1

]T
.

This vector is indeed a minimal basis for the kernel of the Kki−1,ki block which is the
left dual of Bi. For blocks Bi of types other than Ki,i+1, neither Bi nor its dual have a
polynomial kernel, so we defineMi and M̃i to be empty vectors of the suitable dimensions
(both ki × 0 if Bi is a regular block, or ki+1 × 0 and ki × 0 if Bi is of type Kki+1,ki).

Therefore, the minimal basis M(x) = diag(M1(x), . . . ,Mt(x)) is transformed via
γR1+δR0
γ−δx into M̃(x) = diag(M̃1(x), . . . , M̃t(x)), which we know to be a minimal basis for

the pencil in KCF L(x).

In a similar way, it can be shown how a left minimal basis of R(x) can be constructed
starting from a left minimal basis of L(x). We omit the details as they are analogous to
Theorem 3.4.

4 Dual pencils and Wong chains
In this section, we agree to the convention that 1

0 =: ∞, useful to analyze infinite
eigenvalues. Moreover, we will need the following lemma.

Lemma 4.1. Let L(x) and R(x) be a pair of dual pencils. Then the following identity
holds for all α, β, γ, δ ∈ C:

(αL1 + βL0)(γR1 + δR0) = (γL1 + δL0)(αR1 + βR0). (4)

Proof. If we expand the products, the identity reduces to (αδ−βγ)L1R0 = (αδ−βγ)L0R1,
which holds because L1R0 = L0R1.

If L(x) and R(x) are square regular pencils, and v is an eigenvector of R(x) with
eigenvalue x = α

β ∈ C ∪ {∞}, then for each γ, δ such that γ
δ 6=

α
β Lemma 4.1 implies

0 = (γL1 + δL0)(αR1 + βR0)v = (αL1 + βL0)(γR1 + δR0)v,

and thus w = (γR1 + δR0)v is an eigenvector of L(x) with the same eigenvalue α
β .
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It looks natural to try to generalize this relation to singular pencils. However, an
additional difficulty appears in defining the needed quantities. In the regular case,
eigenvectors corresponding to eigenvalues of geometric multiplicity 1 are uniquely defined
up to a scalar nonzero constant, but this is not the case if dim kerC(x)R(x) > 0. Indeed,
if R(λ)w = 0, then for any vector z(x) ∈ kerC(x)R(x) we also have R(λ)(w + z(λ)) = 0,
thus w + z(λ) is as good a choice as w for an eigenvector.
One could argue that there are similar problems also with the regular case and the

Jordan canonical form. For instance, the matrix
[
1 1
0 1

]
has a well-defined (up to scalar

multiples) eigenvector
[
1 0

]T
, but the second vector of the Jordan chain can be freely

chosen as
[
α 1

]T
for any α ∈ C, so it is not uniquely defined up to scalar multiples. In

presence of Kronecker blocks with dimensions larger than 1, further vectors appearing
in the Kronecker chains become also ill-defined, and it becomes more complicated to
quantify exactly how much freedom there is in these choices.

In other words, while the KCF K(x) of a pencil is unique, the transformation matrices
U and V are not, and therefore cannot be used to introduce uniquely defined quantities.

Wong chains are an underused tool that can be employed to avoid this problem. They
were introduced by K.-T. Wong [35] and recently brought back to the attention of the
linear algebra community by T. Berger, A. Ilchmann and S. Trenn [4, 5, 6].
We define here a generalized version of the original concept.

Definition 4.2. Let R(x) = R1x + R0 ∈ C[x]m×n1 be a pencil, and λ = α
β ∈ C ∪ {∞}.

Then for any (γ, δ) such that αδ 6= βγ, the Wong chain of R(x) attached to λ is the
sequence of vector subspaces (Wk)k ⊆ Cn defined by the following recurrence:

W
(λ)
0 = {0},

W
(λ)
k+1 = (αR1 + βR0)−1(γR1 + δR0)W (λ)

k .

In the last formula, we have used the following notations to denote how a matrix
M ∈ Cm×n acts on a vector subspace V : MV := {Mv ∈ Cm | v ∈ V } (image of V ⊆ Cn

via M), and M−1V := {w ∈ Cn |Mw ∈ V } (preimage of V ⊆ Cm). It is easy to prove
that the definition above does not depend on the particular choice of γ, δ.

We point out that our Definition 4.2 is different from the original one: it is a projective
generalization in which the chain for a projective point αβ can be constructed using another
point γ

δ 6=
α
β . In [35, 4, 5] only the special cases α

β =∞, γδ = 0 and α
β = 0, γδ =∞ appear,

while in [6, 31] the authors allow α
β ∈ C, γδ =∞. As far as we know, the observation that

it is possible to change the second base point γ
δ in the definition (without altering the

corresponding subspace chain) also appears here for the first time.
The following property is already known for the existing versions of Wong chains [35, 5],

but we reprove it using our extended definition.

Lemma 4.3. W (λ)
k ⊆W (λ)

k+1 for all k.
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Proof. The relation is obvious for k = 0. Suppose that w ∈W (λ)
k , and assume W (λ)

k−1 ⊆
W

(λ)
k . Then there exists w′ ∈W (λ)

k−1 such that (αR1 + βR0)w = (γR1 + δR0)w′; but since
w′ ∈W (λ)

k , w ∈W (λ)
k+1, which proves the lemma by induction.

It is also easy to see (and already known for the “standard” Wong chains) that if
W

(λ)
k0

= W
(λ)
k0−1 then

⋃
kW

(λ)
k = W

(λ)
k0

.
Notice that many well-defined quantities associated to a pencil can be expressed in

terms of Wong chains, thereby fixing the ill-definition problems that we pointed out in
the beginning of this section. We give some examples.

• As we argued before, eigenvectors of a singular pencil R(x) are ill-defined, since
given an eigenvector w it can be replaced with w+ z(λ) for any z(x) ∈ kerC(x)R(x).
Nevertheless, the subspace spanw + span{z(λ) | z(x) ∈ kerC(x)R(x)} is unique.
This space is W (λ)

1 ; so we see that it is a well-defined and meaningful generalization
of the concept of eigenvector to singular pencils.

• Consider a Jordan chain associated to an eigenvalue λ of a regular pencil R, i.e.,
a sequence of vectors such that (R1λ+R0)w1 = 0 and (R1λ+R0)wk+1 = wk for
k = 1, 2, . . . r. For k > 1, the vector wk can be replaced by any linear combination
of itself and other vectors wj with j < k. In other words, the only well-defined
quantities are the subspaces W (λ)

k = span(w1, w2, . . . , wk).

• The right minimal indices, which are well defined, can be determined from the fact
that, for any λ which is not an eigenvalue of R(x), dimW

(λ)
k+1 − dimW

(λ)
k is the

number of right Kronecker blocks of size k or greater [6].

One can define left Wong chains as the Wong chains of R(x)T , and, using them, reconstruct
left minimal indices and generalize left eigenvectors.

This description of Wong chains illustrates their key role in the theory of matrix pencils,
in particular when singular pencils are studied. Therefore, it is natural to investigate
how they change under duality.

Theorem 4.4. Let L(x) and R(x) be a pair of dual pencils. Let (V (λ)
k )k and (W (λ)

k )k
be the Wong chains of L(x) and R(x), respectively, attached to λ = α

β ∈ C ∪ {∞}. The
relation

Vk = (γR1 + δR0)Wk

holds for all k, γ, δ provided that αδ 6= βγ.

Proof. We give a proof by induction on k. For k = 0 the relation is obvious since
{0} = (γR1 + δR0){0}.
Suppose now that the thesis is true for Vk−1, Wk−1. Assume that w ∈ Wk, i.e.,
∃w′ ∈ Wk−1 such that (αR1 + βR0)w = (γR1 + δR0)w′. Then for v = (γR1 + δR0)w
Lemma 4.1 implies (αL1+βL0)v = (γL1+δL0)(αR1+βR0)w = (γL1+δL0)(γR1+δR0)w′,
and (γR1 + δR0)w′ ∈ Vk−1 by the inductive hypothesis: thus, v ∈ Vk and therefore
(γR1 + δR0)Wk ⊆ Vk.
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Conversely, let v ∈ Vk. Then, (αL1 + βL0)v = (γL1 + δL0)v′ for some v′ ∈ Vk−1. This
implies row(L)J

[
βv−δv′
γv′−αv

]
= 0. Therefore, by the definition of duality and the discussion

in the beginning of Section 3, there exists a vector w such that
[
βv−δv′
γv′−αv

]
= col(R)w, that

is, R1w = βv − δv′, R0w = γv′ − αv.
Observe that (αR1 + βR0)w = (βγ − αδ)v′ = (αδ − βγ)(γR1 + δR0)w′ for some

w′ ∈ Wk−1, by the inductive hypothesis. Thus, w ∈ Wk. Moreover, (γR1 + δR0)w =
(βγ − αδ)v. Therefore, Vk ⊆ (γR1 + δR0)Wk, which concludes the proof.

One may wonder if the hypothesis αδ 6= βγ is necessary; the following example shows
that it is indeed the case.

Example 4.5. Let R(x) =
[
x 1 0
0 0 x−1

]
, L(x) = [ 0 x−1 ], (α, β) = (1, 1).

The Wong chain for R(x) at (1, 1) isW0 = {0},W1 = ker(R1+R0), which is the column
space of the matrix

[ 0 1
0 −1
1 0

]
, and C3 = W2 = W3 = . . . . On the other side, the Wong chain

at (1, 1) for L(x) is V0 = {0}, C2 = V1 = V2 = . . . . Notice that (R1 +R0)W1 = {0} 6= V1.

5 Structured pencils
The theoretical tool that we have developed can be used to derive new results on
the minimal indices of structured pencils. We consider here the following structures.
A pencil S(x) = S1x + S0 ∈ C[x]2n×2n is called symplectic if it is row-minimal and
S0JnS

∗
0 = S1JnS

∗
1 . A pencil H(x) = H1x+H0 ∈ C[x]2n×2n is called Hamiltonian if it is

row-minimal and H0JnH
∗
1 +H1JnH

∗
0 = 0.

These definitions generalize those given in [24] for regular pencils; however, the row-
minimality condition is not present there, since it is automatically satisfied in the regular
case. We discuss in Section 5.4 why it has been added here.

5.1 Symplectic pencils
As a first step, we pick out a particular right dual of a symplectic pencil.

Proposition 5.1. Let S(x) = S1x+S0 be a symplectic pencil. Then T (x) = T1x+T0 :=
Jn rev[S(x)]∗ = JnS

∗
1 + xJnS

∗
0 is a column-minimal right dual of S(x).

Proof. Symplecticity implies that S1T0 = S0T1. Column-minimality of T (x) follows from
row-minimality of S(x), since

rank col(T ) = rank
[

0 Jn
Jn 0

]
(row(S))∗ = rank (row(S))∗ = 2n.

We can use this result to determine a relation between the left and right minimal bases
of S(x). We first need a definition: the columnwise reversal of a matrix polynomial A(x)
whose columns are [A1(x), . . . , An(x)] is cwRevA(x) := [revA1(x), . . . , revAn(x)].
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Proposition 5.2. Let S(x) be a symplectic pencil, and N(x) be a left minimal basis of
S(x). Then JnS∗0 cwRevN(x) is a right minimal basis for S(x).

Proof. If N(x) is a left minimal basis for S(x), it is a right minimal basis of S(x)∗.
Therefore, cwRevN(x) is a right minimal basis for rev[S(x)]∗ and, thus, for T (x) =
Jn rev[S(x)]∗. By Theorem 3.4, this implies that JS∗0 cwRevN(x) is a right minimal
basis for S(x).

A corresponding result on the minimal indices follows immediately.

Corollary 5.3. Let S(x) be a symplectic pencil, and let its minimal indices be ν1, ν2, . . . , νs.
Then its right minimal indices are ν1 − 1, ν2 − 1, . . . , νs − 1.

5.2 Hamiltonian
We proceed with the same strategy for the Hamiltonian case.

Proposition 5.4. Let H(x) = H1x+H0 be Hamiltonian. Then G(x) = G1x+G0 :=
Jn[H(−x)]∗ = −xJnH∗1 + JnH

∗
0 is a column-minimal right dual of H(x).

Proof. Hamiltonianity implies that H1G0 = H0G1, and

rank col(G) = rank
[
−J2n 0

0 J2n

]
(row(H))∗ = rank (row(H))∗ = 2n.

This implies analogous results on the minimal bases and indices of Hamiltonian pencils.

Proposition 5.5. Let H(x) = H1x+H0 be a Hamiltonian pencil. Suppose that N(x) is
a left minimal basis for H(x). Then, JnH∗1N(−x) is a right minimal basis for H(x).

Proof. Notice that N(−x) is a right minimal basis for [H(−x)]∗; therefore, N(x) is a
right minimal basis also for G(x) = Jn[H(−x)]∗. Invoking Theorem 3.4, we conclude
that JnH∗1N(−x) is a right minimal basis for H(x).

Corollary 5.6. Let H(x) be Hamiltonian. Suppose that its left minimal indices are
ν1, ν2, . . . , νs. Then its right minimal indices are ν1 − 1, ν2 − 1, . . . , νs − 1.

5.3 Explicit constructions
One may wonder if there are further restrictions on the possible minimal indices of
symplectic and Hamiltonian pencils. We prove here that the answer is no: for any
sequence of positive integers ν1, ν2, . . . , νs, there exist a symplectic and an Hamiltonian
pencil with exactly the νi as left minimal indices (and hence, by Corollaries 5.3 and 5.6,
ν1 − 1, ν2 − 1, . . . , νs − 1 as right minimal indices). First of all, we need the following
basic building block.
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Let Sn be the n× n anticyclic up-shift matrix, i.e., the n× n matrix such that

(Sn)ij =


1 j − i = 1,
−1 i = n, j = 1,
0 otherwise.

For each n ≥ 1, the 2n × 2n pencil H(x) = diag(−Sn+1Kn+1,n(−x),Kn−1,n(x)) is
Hamiltonian and has a left minimal index n, a right minimal index n− 1 and no regular
part.

Example 5.7. The smallest such examples are[
x 0
−1 0

]
,

[
x 1 0 0
0 x 0 0
−1 0 0 0
0 0 −1 x

]
.

Then, one needs a method to build direct sums of Hamiltonian pencils.

Lemma 5.8. Let the pencils[
Ai(x) Bi(x)
Ci(x) Di(x)

]
, Ai, Bi, Ci, Di ∈ C[x]ni×ni

be Hamiltonian, for i = 1, 2, . . . ,m. Let A(x) = diag(A1(x), A2(x), . . . , Am(x)), and
define B(x), C(x), and D(x) analogously. Then,[

A(x) B(x)
C(x) D(x)

]

is Hamiltonian.

By taking direct sums of the blocks in Example ??, one can achieve all the possible
combinations of minimal indices allowed by Corollary 5.6.
As for symplectic pencils, one can show that, given a Hamiltonian example H(x) =

H1x+H0, the pencil S(x) = (H1 −H0)x+ (H1 +H0) is symplectic and has the same
minimal indices as H(x).

5.4 Further remarks on symplectic and Hamiltonian pencils
The assumption that symplectic and Hamiltonian pencils must be row-minimal is not
classical. The reason is that existing theory focuses on the regular case only [24], for
which it is automatically satisfied.

If this assumption is relaxed, some structure on the minimal indices can be lost. Indeed,
let us consider non-row-minimal pencils that satisfy S0JnS

∗
0 = S1JnS

∗
1 or H0JH

∗
1 +

H1JH
∗
0 = 0. It is still true that, for each left minimal index νj ≥ 1, there is a

corresponding right minimal index equal to νj − 1. However, there is no constraint
concerning the right minimal indices corresponding to zero left minimal indices. To
illustrate this, consider the following examples.
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Example 5.9. Let
L(x) =

[ 0 0 0 0
0 0 0 0
1 0 1 0
x 0 x 0

]
.

This pencil satisfies both the symplectic and Hamiltonian equations. By direct inspection,
we see that the left minimal indices of L(x) are 0, 0, 1; the right minimal indices are 0, 0,
0.

Example 5.10. Let
L(x) = [ 0 0

1 x ] ,
satisfying again both Hamiltonian and symplectic equations. The only left minimal index
is 0. On the other hand, the right minimal index is 1.

The recent work [29] presents a procedure to extract in a stable way a Hamiltonian pencil
from the so-called extended pencils appearing in many control theory applications; in that
setting, one always obtains row-minimal pencils, a condition that appears naturally in the
development. In view of these observations, we consider the row-minimality requirement
to be the most natural in the study of singular structured pencils.

In principle, one might extend symplectic and Hamiltonian structure to matrix polyno-
mials of higher grade. This can be done by imposing, respectively, the condition

P (x)J [P (x)]∗ = rev(P (x))J [rev(P (x))]∗

or the condition
P (x)J [P (x)]∗ = P (−x)J [P (−x)]∗.

Characterizing these structured matrix polynomials is an open problem that we leave for
future research.

As a final note, we point out that all the results stated in this section continue to hold
if we replace all the conjugate transposes with transposes.

6 Linearizations of matrix polynomials
In many applications, the study of spectral properties of matrix polynomials is a central
topic [8, 18, 19, 20, 28, 33]. A common technique to find the eigenvalues of a matrix
polynomial is converting to a linear problem using the following method. Given a matrix
polynomial A(x) ∈ C[x]m×nd , a pencil L(x) ∈ C[x](m+p)×(n+p) is called a linearization of
A(x) if there are E(x) ∈ C[x](m+p)×(m+p), F (x) ∈ C[x](n+p)×(n+p) such that

L(x) = E(x) diag(A(x), Ip)F (x), (5)

where p ≥ 0 and detE(x),detF (x) are nonzero constants. Whenm = n, the most natural
(and common) choice is p = n(d − 1). Linearizations have the same finite elementary
divisors (hence the same eigenvalues) as the starting matrix polynomial [19]. Not every
linearization preserves the partial multiplicities of the eigenvalue ∞ [17, 23], however.
Linearizations that do are called strong linearizations, and they satisfy the additional
property that revL(x) is a linearization for revA(x). The following result characterizes
the Kronecker form of all strong linearizations [11].
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Theorem 6.1. Let A(x) be a matrix polynomial. A pencil L(x) is a strong linearization
of A(x) if and only if:

1. The eigenvalues of L(x) and of A(x) coincide.

2. For each eigenvalue λ ∈ C ∪ {∞}, the sizes of the regular blocks of eigenvalue λ in
the KCF of L(x) coincide with the partial multiplicities associated to λ in A(x).

3. The numbers of left and right singular blocks in the KCF of L(x) are equal to
dim kerC(x)A(x) and dim kerC(x)A(x)∗, respectively.

Note that there is no constraint on the minimal indices, i.e., the sizes of the singular
left and right blocks of L(x). Those may indeed vary for different linearizations.

Several different methods to construct linearizations have been studied in the literature;
we recall some of the most common ones.

Companion forms [19, Chapter 1] The well-known companion matrix of a scalar poly-
nomial generalizes easily to matrix polynomials. The pencil C(x) = C1x + C0,
where

C1 = diag(Ad,−I(d−1)n), C0 =


Ad−1 Ad−2 · · · A0
I 0 · · · 0
... . . . . . . ...
0 · · · I 0

 (6)

is known as first companion form1, while its block transpose CB(x) = C1x+ CB0 is
known as second companion form.

Vector spaces of linearizations [25] A large family of linearizations for a matrix polyno-
mial A(x) ∈ C[x]n×nd is found inside the vector space L1 of pencils L1x+ L0 that
satisfy

L1
[
Idn 0dn×n

]
+ L0

[
0dn×n Idn

]
= (v ⊗ In) row(A) (7)

for some v ∈ Cd, where ⊗ denotes the Kronecker product. The operation on the
left-hand side is called column-shifted sum in [25]. A second vector space L2 is
defined as the set of the block transposes of all pencils L(x) ∈ L1, or, equivalently,
those which satisfy a similar relation, given by block-transposing everything in (7).
Note that the first companion form C(x) is in L1 and the second companion form
CB(x) is in L2.
The pencils in the intersection DL := L1 ∩ L2 have many interesting properties; for
any regular matrix polynomial, almost all of them are strong linearizations.

Fiedler pencils [1] Define the matrices F0 := diag(I(d−1)n, A0), Fi := diag(I(d−i−1)n, Gi, In(i−1)),
for i = 1, 2, . . . , d− 1, where

Gi :=
[
Ai In
In 0n×n

]
,

1There is no agreement in the literature on the signs in several special pencils, including 6. Our choice is
not standard, but minimizes the number of minus signs that we have to keep track of along the paper.
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and Fd := C1.
For each permutation σ of (0, 1, . . . , d−1), the pencil Fdx+

∏d−1
i=0 Fσ(i) is a lineariza-

tion; in particular, the two permutations (d− 1, d− 2, . . . , 0) and (0, 1, 2, . . . , d− 1)
yield the two companion forms. Another interesting special case is the block pen-
tadiagonal pencil which corresponds to the permutation (0, 2, . . . , 1, 3, . . . ). It is
remarkable that, after expanding the products, the constant terms of all Fiedler
linearizations can be written explicitly by using only 0, I and A0, A1, . . . Ad−1 as
blocks. Several additional generalizations of Fiedler pencils exist [1, 34].

7 Fiedler linearizations as duals
In this section, we use the theory developed above to revisit some of the known results
for Fiedler pencils. We first need some results on the first companion form, whose proof
is readily obtained by direct inspection (see also [11, Lemma 5.1]).

Lemma 7.1. 1. The first companion form C(x) is a strong linearization for any
(regular or singular) A(x).

2. If A(x) is regular and v is an eigenvector of A(x) with eigenvalue λ = α
β , then[

αd−1I αd−2β1I · · · αβd−2I βd−1I
]B
v (8)

is an eigenvector of C(x) with eigenvalue λ. If λ 6= ∞, we can use the slightly
simpler formula [

λd−1I λd−2I · · · λI I
]B
v. (9)

3. If M(x) is a minimal basis for A(x), then[
xd−1I xd−2I · · · xI I

]B
M(x)

is a minimal basis for C(x). In particular, the minimal indices of C(x) are obtained
increasing by d− 1 the minimal indices of A(x).

First of all, we give a new proof of the fact that all square Fiedler pencils are lineariza-
tions. Our argument follows closely the original proof of [1] for regular pencils, apart
from some minor differences in notation. Indeed, [1, Lemma 2.2] is a very special case of
our Theorem 3.2, but the argument there works only for regular pencils. The fact that
Fiedler pencils are linearizations even in the singular case was first proved in [12], six
years after the regular case and with a completely different technique based on keeping
track of a large number of unimodular transformations. Duality allows us to reuse almost
verbatim the proof for the regular case, instead2.

2Note that we do not cover here the more involved rectangular case, treated in [13].

16



Theorem 7.2. For a (possibly singular) matrix polynomial A(x) ∈ C[x]n×n, all Fiedler
pencils are strong linearizations.

Proof. For any j > i, we set Fj:i = Fj−1Fj−2 · · ·Fi for short. Since Fi and Fj commute
for any i, j with |i− j| > 1, we can always rearrange the product

∏d−1
i=0 Fσ(i) in the form

Fc1:0Fc2:c1Fc3:c2 · · ·FcΓ:cΓ−1Fd:cΓ , (10)

for a suitable sequence 0 < c1 < · · · < cΓ < d, with the only operation of changing the
order of pairs of commuting matrices. One can see that c1, . . . , cΓ are exactly the indices
i such that σ(i− 1) < σ(i) (i.e., i is a consecution [12]).

We prove the following result by induction on Γ: all Fiedler pencils with Γ consecutions
are strong linearizations for A(x), and each of their right singular indices is greater than
or equal to d− 1− Γ.

If Γ = 0, then we have Fdx+Fd−1Fd−2 . . . F0 = C(x), the first companion form, so the
result follows from Lemma 7.1.
Now, assuming that we have proved the result for a sequence c2, c3, . . . , cΓ, with

Γ < d− 1, we prepend an extra element c1 and prove it for the sequence c1, c2, c3, . . . , cΓ.
Let P = Fc1:0 and Q = Fc2:c1Fc3:c2Fc4:c3 · · ·Fd:cΓ ; the latter is nonsingular since all Fi
for i /∈ {0, d} are nonsingular. Note that P commutes with all terms in Q apart from
Fc2:c1 . Since Fc2:c1Fc1:0 = Fc2:0, the Fiedler pencil Fdx + QP is the one associated to
c2, c3, . . . , cΓ, which is a strong linearization by the inductive hypothesis. Moreover, also
from the inductive hypothesis, it is column-minimal, since all its right minimal indices
are greater than 0.

We premultiply this pencil by the nonsingular matrix Q−1, to obtain R(x) := Q−1Fdx+
P , which is still a column-minimal strong linearization for A(x). Now we claim that
L(x) = Fdx+ PQ is a left dual of R(x). The first condition is verified since Fd and P
commute, so we only need to check that rank row(L) = dn. Due to the structure of Fd, for
this to hold it is enough to prove that PQ has a n×n identity block somewhere in its first
block row. But, due to the structure of the involved matrices, Fc1:0Fc2:c1Fc3:c2 · · ·FcΓ:cΓ−1

has
[
I 0 . . . 0

]
as its first block row, while Fd:cΓ has an identity in the block in

position (1, d− cΓ + 1).
Thus, by Theorem 3.1, the regular parts of the KCFs of L(x) and R(x) coincide, all the

left minimal indices in L(x) are larger than those of R(x) by 1 , and all its right minimal
indices are smaller by 1. In particular, the number of left and right singular blocks is
preserved. Hence, by Theorem 6.1, L(x) is a strong linearization for A(x), too.

Corollary 7.3 ([12]). Let r1, r2, . . . , rh be the right minimal indices of a matrix polynomial
A(x) ∈ C[x]n×nd , and consider a Fiedler pencil F (x) with Γ consecutions associated with
A(x). Then, the right minimal indices of F (x) are r1+(d−1−Γ), r2+(d−1−Γ), . . . , rh+
(d− 1− Γ).

Proof. In the proof of Theorem , to construct F (x) we start from C(x) which has right
minimal indices r1 + d− 1, r2 + d− 1, . . . , rh + d− 1, and obtain F (x) after taking a left
dual Γ ≤ d− 1 times. Each of these times the right minimal indices are shortened by 1,
hence by keeping track of their lengths we get the above result.
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Note that d− 1− Γ is the number of inversions, i.e., indices i ∈ {1, 2, . . . , d− 1} which
are not consecutions.

We can expand on the proof of Theorem to find a minimal basis for each Fiedler pencil
explicitly.

Theorem 7.4. Consider the Fiedler pencil F (x) associated to a given permutation with
consecutions c1, c2, . . . , cΓ, and let T = F−1

d:cΓFdF
−1
d:cΓ−1

Fd · · ·F−1
d:c1Fd. If MC(x) is a right

minimal basis for the first companion form C(x), then MF (x) = TMC(x) is a right
minimal basis for F (x).

Proof. Our plan is following the proof of Theorem 7 and showing how right minimal
bases change along the needed duality operations. The result is obvious if Γ = 0; now,
let us suppose that it holds for a permutation with consecutions c2 < c3 < · · · < cΓ
and prove it for the same sequence with an additional consecution c1 < c2 < · · · < cΓ.
Applying Theorem 3.4 with (γ, δ) = (1, 0), we obtain that a right minimal basis for the
new permutation is

MF (x) = (Q−1Fd)F−1
d:cΓFdF

−1
d:cΓ−1

Fd · · ·F−1
d:c2FdMC(x),

with Q = Fc2:c1Fc3:c2Fc4:c3 · · ·Fd:cΓ as in Theorem 7. Since each term F−1
ci:ci−1 appearing

in Q−1 commutes with Fd and with all the terms F−1
d:cj for j > i, we can reorder the

factors to obtain

MF (x) = F−1
d:cΓFd(F

−1
cΓ:cΓ−1F

−1
d:cΓ)Fd(F−1

cΓ−1:cΓ−2F
−1
d:cΓ−1

)Fd · · · (F−1
c2:c1F

−1
d:c2)FdMC(x)

= F−1
d:cΓFdF

−1
d:cΓ−1

FdF
−1
d:cΓ−2

Fd · · ·F−1
d:c1FdMC(x) = T.

Corollary 7.5. If MA(x) is a minimal basis for A(x), then a right minimal basis for
F (x) is MF (x) = T (x)MA(x), where

T (x) = T
[
xd−1I xd−2I · · · xI I

]B
.

Using the fact that

F−1
d:ciFd = diag




0 0 · · · Ad
−I 0 · · · Ad−1
... . . . . . . ...
0 · · · −I Aci

 , I
 ,

one can compute the product one factor at a time, starting from the right, and verify
that this means that the i-th block of (−1)ΓT (x) contains −xIi(Adxi−1 + Ad−1x

i−2 +
· · ·+Ad−i+1) if i is a consecution and xIiI if i is an inversion, where Ii is the number
of inversions j with j ≤ i — see for instance the example 11 in the following. This
is in agreement with the equivalent expression found in [12], where the polynomials
Pi(x) = Adx

i−1 +Ad−1x
i−2 + · · ·+Ad−i+1 are called Horner shifts of A(x).

A similar result holds for Wong chains.
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Theorem 7.6. Let (W (λ)
i )i be the Wong chain attached to λ 6=∞ for the first companion

form C(x), and (V (λ)
i )i be the same Wong chain for a Fiedler pencil F (x). Then,

V
(λ)
i = TW

(λ)
i .

Proof. Once again, we follow the proof of Theorem 7 and show how the Wong chains
change along the duality operations. Since we suppose λ 6=∞, we can use (γ, δ) = (1, 0)
in Theorem 4.4, so the Wong chains are multiplied by Q−1Fd at each duality, exactly like
minimal bases. The same argument as in the proof of Theorem 7.4 applies, and yields
the same matrix T .

For a regular pencil, W (λ)
1 is the subspace of all eigenvectors with eigenvalue λ. Hence,

using (9), we get the following result.
Corollary 7.7. If v is an eigenvector of eigenvalue λ 6=∞ for a regular matrix polynomial
A(x), then the corrisponding eigenvector of C(x) is T (λ)v.
Once again, this agrees with the expressions in [12]. Our results on Wong chains,

however, are more general and can be applied to defective eigenvalues and singular pencils
as well.
With another choice of (γ, δ), we can obtain results with an excluded eigenvalue at 0

rather than ∞.
Theorem 7.8. Let (W (λ)

i )i be the Wong chain attached to λ 6= 0 for the first companion
form C(x), and (V (λ)

i )i be the same Wong chain for a Fiedler pencil F (x). Let T̃ :=
Fc1:0Fc2:0 . . . FcΓ:0. Then, V (λ)

i = T̃W
(λ)
i .

Proof. We use (γ, δ) = (0, 1), and proceed as in the previous cases. At each step, we
premultiply Fc2:0 . . . FcΓ:0 by P = Fc1:0, so the result is even easier to obtain.

Example 7.9. Consider the Fiedler linearization F6x+F0F1F3F5F2F4 [11, Examples 3.5
and subsequent ones]. It has three consecutions in c1 = 1, c2 = 2, c3 = 4. Therefore,
its expression as in (10) is F6x+ F0F1F3F2F5F4 = F1:0F2:1F4:2F6:4. By Corollary 7.5, a
right minimal basis for it is given by T (x)MA(x), where MA(x) is a minimal basis for
A(x) and

T (x) =
[
x2I xI −xP2(x) I −P4(x) −P5(x)

]B
. (11)

Similarly, all Wong chains with λ 6=∞ are obtained from those of A(x) by left multipli-
cation by T (λ). Obtaining an analogous result that includes λ =∞ with Theorem 7.8 is
not more complicated, but we have to move to the projective version with formula (8).
It turns out that all eigenvectors with λ = α

β 6= 0 are recovered by left multiplication by
T̃ (α, β), with

T̃ (α, β) =
[
α5I α4βI P̃2(α, β) α3β2I P̃4(α, β) P̃5(α, β)

]
.

and P̃i(α, β) =
∑d−1−i
j=0 Aiα

iβd−1−i.
One can obtain a completely analogous set of results for the left eigenvectors and

minimal bases, by starting with the second companion form and performing repeatedly
right dualities, one for each inversion in the associated permutation.
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8 Duality and L1, L2 linearization spaces
Let us consider an n× n matrix polynomial A(x) of grade d. In this section we study
the space L1 associated to A(x) and its connection with duality. An important pencil
belonging to L1 is the first companion form C(x), defined as in (6). Throughout this
section, we denote by B any matrix whose columns form a basis of ker row(A), and
we define µ = dim coker row(A). Notice that the rank-nullity theorem implies that
B ∈ C(dn+n)×(dn+µ).
The following result holds (see also [22, Section 1.4.3]).

Proposition 8.1. Let M(x) =
[
0dn,n −Idn

]
x+

[
Idn 0dn,n

]
. The dn× (dn+µ) pencil

D(x) = M(x)B is a minimal right dual of C(x).

Proof. It is straightforward to check that the structure of the first companion form gives
rank row(C) = dn− µ. The matrix col(M) has full column rank, implying rank col(D) =
rankB = dn + µ. Thus, it suffices to verify that row(C)Jdn col(D) = 0. To this

goal, we notice that row(C)Jdn col(M) =
[
row(A)

0

]
, yielding the desired result since

row(A)B = 0.

We now give a sufficient condition for a pencil belonging to L1 to be a linearization.

Theorem 8.2. Let L(x) ∈ L1(A) be such that rank row(L) = dn− µ. Then, L(x) is a
left dual of D(x) and a strong linearization.

Proof. By definition, L(x) must satisfy (7), which using the notation of Proposition 8.1
can be rewritten as row(L)Jdn col(M) = (v ⊗ In) row(A). It follows immediately that
row(L)Jdn col(D) = row(L)Jdn col(M)B = 0. Together with the rank condition in the
hypothesis, this implies that L(x) is a left dual of D(x). In particular, C(x) and L(x)
have the same (finite and infinite) elementary divisors, and the same right minimal
indices. Since L(x) is a square pencil, it has the same amount of left and right singular
indices; in particular, this numbers coincide with those of C(x), and thus L(x) is a strong
linearization by Theorem 6.1.

This sufficient condition is weaker than the one of having full Z-rank, found in [11].
Indeed, the following inclusions hold for pencils in L1:

{pencils with full Z-rank} ⊂ {left duals of D(x)} ⊂ {strong linearizations of A(x)}.
(12)

Both inclusions are strict: the pencil in [11, Example 2] is an example of left dual of D(x)
which has not full Z-rank, and the following example shows that the second inclusion is
strict as well.

Example 8.3. Consider the matrix polynomial A(x) =

 1 0 0
x 0 0
x2 0 0

 =: A0 +A1x+A2x
2.

A(x) has no elementary divisors, its left minimal indices are 1, 1, and its right minimal
indices are 0, 0.
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The 6× 6 pencil

L(x) =
[
A2x−A1 2A1x+A0

H −Hx

]
, with H =

0 0 0
0 1 0
0 0 1

 ,
belongs to L1. It is a strong linearization of A(x) by Theorem 6.1: indeed, it has no
elementary divisors and the dimension of its left and right kernels are 2.
The first companion form of A(x) has left minimal indices 1, 1; therefore, by Theo-

rem 3.2, D(x) has left minimal indices 0, 0, and all its left dual have left minimal indices
1, 1. However, L(x) has left minimal indices 0, 2, thus it cannot be a left dual of D(x).

In the case of a regular A(x), all the inclusions in (12) become equalities:

Theorem 8.4. Let A(x) ∈ C[x]n×nd be a regular matrix polynomial, and L(x) ∈ L1 for
the space L1 constructed based on A(x). Then, the following are equivalent:

1. L(x) is a strong linearization of A(x)

2. L(x) has full Z-rank ,

3. L(x) is regular,

4. L(x) is a left dual of D(x),

5. L(x) is row-minimal.

The first three equivalent conditions of the theorem appear already in [25]; here we
add (4) and (5). The last condition (5) seems the simplest one to check in practice.

Proof. As said above, the equivalence between (1), (2) and (3) is from [25]. The arrows
(5) =⇒ (4) =⇒ (1) do not require regularity of A(x); the first is the statement of
Theorem 8.2, and the second is contained in its proof. It remains to prove (1) =⇒ (5): if
L(x) is a linearization of a regular matrix polynomial, by the last point of Theorem 6.1
it has no left or right singular Kronecker blocks, hence in particular it has no K1,0 blocks
and thus is row-minimal.

Analogous results concerning the link between L2(A) and the right duals of the left
duals of the second companion form can be easily obtained by adapting the arguments
used in this section.

9 Linearizations and Möller-Stetter theorem
The linearization D(x) described in Section 8 can be introduced in an alternative way as
the generalization of a construction that is used in commutative computational algebra
to find the solution to (scalar) polynomial systems. While the theory developed so far is
self-consistent, it is still interesting to investigate the link between the dual linearization
D(x) and the Möller-Stetter theorem in algebraic geometry.
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In commutative algebra, a polynomial ideal I = (f1, . . . , fk) ⊆ C[x1, . . . , xm] is called
zero-dimensional if the system 

f1(x1, . . . , xm) = 0
...

fk(x1, . . . , xm) = 0

has only a finite number of solutions, or, equivalently [10, Finiteness Theorem, Section 2.5],
if the quotient space C[x1, . . . , xm]/I is finite-dimensional. The elements of the quotient
space are usually denoted by the notation [p] := {q ∈ C[x1, . . . , xm] | q = p+ r, r ∈ I}.
When this holds, we have the following result, which we present for simplicity in the

case of univariate polynomials m = 1 (see [10, Section 2.4] for the most general version).

Theorem 9.1 (Möller–Stetter). Let f, g ∈ C[x], and denote by (f) the (principal) ideal
generated by f . Consider the linear multiplication map Mg : C[x]/(f)→ C[x]/(f) defined
as [p] 7→ [pg]. When a basis of C[x]/(f) is chosen, this map is represented by a matrix. Its
eigenvalues (counted with multiplicity) are the values of g(xi), where xi are the solutions
(counted with multiplicity) xi of the polynomial equation f = 0.

Even though this stronger condition is usually not of interest in the commutative
algebra applications, it is possible to prove that Mx is a linearization of the single
polynomial equation f = 0 that generates the ideal (f is essentially unique, as C[x] is
a PID). In fact, when f is monic and the monomial basis is chosen, the multiplication
operator is the companion matrix of f .

We aim to generalize this result to polynomial matrices in order to produce linearizations.
Let us consider the space of all row vector polynomials of grade d

W := C[x]1×nd =
{

k∑
i=0

vix
i | vi ∈ C1×n for all i = 0, 1, . . . , d

}
.

This space is isomorphic to C(d+1)n, via R : v(x) 7→ row(v). For any row-minimal grade-d
matrix polynomial A(x) ∈ C[x]n×nd , the rows of the matrix row(A) span an n-dimensional
subspace A of C(d+1)n. It makes sense to consider its image under R−1. This is a
subspace of W :

rowid(A) := R−1(A) = {r(x) = rTA(x) | r ∈ Cn} ⊆W.

The notation rowid(A) suggests that it will play the role of the “ideal generated by
A(x)” in the Möller-Stetter theorem. More formally, we consider the quotient space
Q := W/ rowid(A). The elements of Q are the equivalence classes [w(x)] := {a(x) ∈
W | a(x) = w(x) + r(x), r(x) ∈ rowid(A)}. Acting with R we immediately obtain
the corresponding quotient set R(Q), i.e., the set of the equivalence classes defined as
[row(w(x))] := {a ∈ C(d+1)n | aT = row(w(x)) + rT row(A), r ∈ Cn}.
We can prove the following result.
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Theorem 9.2. Let A(x) ∈ C[x]n×nd be a row-minimal matrix polynomial of grade d,
and B be a matrix whose columns form a basis for ker row(A). Let V := C[x]1×nd−1 ,
W := C[x]1×nd , and Q = W/ rowid(A). Let Mx and M1 be the maps “multiplication by
x” and “multiplication by 1” between the spaces V and Q, i.e.,

Mx : V → Q v(x) 7→ [xv(x)],
M1 : V → Q v(x) 7→ [v(x)].

In suitable bases, it holds that Mx − M1x = D(x), where D(x) = M(x)B is the
linearization defined in Proposition 8.1.

Since Theorem 8.1 tells us that D(x) is a strong linearization, Theorem 9.2 shows
that Mx −M1x has the same eigenvalues of the matrix polynomial A(x), and thus it
can be regarded as a generalization of the Möller-Stetter result to (univariate) matrix
polynomials. We proceed with the proof.

Proof. The maps Mx and M1 can be represented as π ◦Mx and π ◦M1, where

Mx : V →W v(x) 7→ xv(x),
M1 : V →W v(x) 7→ v(x),

and π : v(x) 7→ [v(x)] is the projection onto the quotient space Q = W/ rowid(A). We
use as bases of V and W the image of the canonical basis of Cdn and C(d+1)n via the
isomorphism R; in these bases, Mx and M1 are represented by right multiplication of
row vectors by

[
Idn 0dn×n

]
and

[
0dn×n Idn

]
, respectively. Now we need to choose a

basis for Q and work out the matrix corresponding to π.
Thanks to the definition of B, the map v 7→ vB (i.e., the action of B on row vectors)

has kernel equal to A. Hence, by the first isomorphism theorem, its image is isomorphic
to Cn(d+1)/A, which is itself isomorphic via R to W/ rowidA = Q. Therefore, the map
v 7→ vB passes to the quotient and becomes a projection onto Q.
To complete the proof, it now suffices to compose the two maps. We conclude that[
Idn 0dn×n

]
B and

[
0dn×n Idn

]
B represent Mx and M1.

10 Constructing duals
The relation L1R0 = L0R1 has been studied estensively in the context of pencil arithmetic
and inverse-free matrix iterative algorithms [2, 3, 9, 14, 27]. Two main techniques exist
for constructing L0, L1 starting from R0, R1 (or vice versa).

QR factorization [22, Section 1.5.4.7], [2, 3, 27] Construct the QR factorization

col(R) =
[
Q11 Q12
Q21 Q22

] [
U
0

]
,

and take L0 = Q∗12, L1 = −Q∗22. In practice, a QRP factorization should be used,
since col(R) being close-to-rank-deficient is a concern here.
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Enforcing an identity block [9, 30] Suppose that the identity matrix is a submatrix
of col(R), for a pencil R ∈ Cn×p[x]. Then, we can select a permutation matrix
Π ∈ C2n×2n and X ∈ C(2n−p)×p such that

col(R) = Π
[
Ip
X

]
.

Then, the identity

0 =
([
−X I2n−p

]
Π−1

)
Π
[
Ip
X

]
holds, and thus we can choose[

L0 −L1
]

=
[
−X I2n−p

]
Π−1.

Slightly generalizing, if a p× p submatrix Y of col(R) is known to be nonsingular,
we have

col(R) = Π
[
Y
Z

]
= Π

[
I

ZY −1

]
Y

and thus [
L0 −L1

]
=
[
−ZY −1 I

]
Π−1.

Example 10.1. Let us start from the first companion form of a matrix polynomial
with grade d = 3, for which

row(C) =



A3
−I

−I
A2 A1 A0
I

I


The 3n× 3n matrix formed by the block rows number 2, 3 and 5 is nonsingular.
Therefore, we choose a permutation Π that rearranges the block in the new order
(5, 2, 3, 1, 4, 6). In this way,

X = ZY −1 =

A3
A2 A1 A0

I


I −I

−I


−1

,

and [
L0 −L1

]
=
[
−X I

]
Π−1 =

I −A3
A1 A0 I −A2
I I

 ,
which recovers a pencil belonging to a generalized Fiedler family [1, Example 2.5].
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11 Conclusions and acknowledgements
In this paper, we brought some attention on the duality of matrix pencils and on Wong
chains, two concepts which have been introduced in the past but whose use is not common
in this research area. We have given several examples in the study of matrix pencils
where these ideas give a more manageable framework. They have allowed us to derive
new results and to simplify proofs of, and shed more light into, known properties. It
remains to check if the more recent advances on rectangular Fiedler pencils [13] can be
embedded in the same framework; although in principle there are no major obstructions,
there are some additional complications due to the varying dimensions of the blocks in
their definition.

Moreover, we find the connection to the Möller-Stetter theorem a promising new point
of view to look at linearizations. We are currently investigating other extensions of this
approach, to see if it can be extended to a more systematic derivation.

We thank Nick Higham and Françoise Tisseur for useful comments and suggestions on
an older version of this manuscript. We are grateful to two anonymous referees for their
remarks that helped to improve the presentation.

We wish to thank Paul Van Dooren, who pointed out the paper [21], and Froilán Dopico,
who referred us to [22]. Indeed, we were initially unaware of the work by Kublanovskaya
and collaborators, and we had derived independently many of these theoretical results
before realizing they were already known to these authors.
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