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“People ask: Why should I care about the ocean? Because the ocean is the cornerstone of earth's 

life support system, it shapes climate and weather. It holds most of life on earth. 97% of earth's 

water is there. It's the blue heart of the planet — we should take care of our heart. It's what 

makes life possible for us. We still have a really good chance to make things better than they are. 

They won't get better unless we take the action and inspire others to do the same thing. No one is 

without power. Everybody has the capacity to do something.”  

― Sylvia A. Earle 
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Summary 

It is predicted that ocean acidification (OA) threatens coral reefs worldwide, by lowering 

seawater pH which in turn compromises essential metabolic processes such as carbonate genesis 

of corals. Inshore waters however, experience different spatial and temporal carbonate chemistry 

variability, raising questions over the future impact of OA within these habitats. It also remains 

unclear whether local biogeochemical conditions of some marine habitats can buffer, or provide 

a refuge against OA. The thesis systematically examines the response (ecological abundance, 

distribution, recruitment, and metabolic expenditure) of corals that have expanded their niche 

into variable pH habitats, to assess both the potential impact of OA and whether any habitats 

may act as a refuge against its effects by: (i) establishing robust methods to measure the local 

carbonate chemistry and the metabolic activity of corals in situ, (ii) characterising the natural 

carbonate chemistry variability over different temporal and spatial scales, and evaluating the 

biological versus abiotic control of non-reef habitats, (iii) quantifying the metabolic expenditure 

of corals living within non-reef habitats and assessing whether there are similarities in the 

physiological responses of corals existing in different regions to ascertain commonalities, and 

finally (iv) testing the impact of future predicted changes in temperature and pH on the 

physiological responses of corals from different variability habitats. The thesis demonstrates that 

across bioregion sites non-reef habitats exist that have highly variable carbonate chemistry but 

still house corals. These non-reef habitats have very different carbonate chemistry, influencing 

both their own susceptibility to future OA and their potential services (buffering versus pre-

conditioning) for local coral populations. Future studies can expand on this work by assessing 

the molecular differences of corals found within these highly-variable habitats to explore further 

the potential of adaptation and/or acclimatisation of coral species to low pH.   
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Chapter 1| General Introduction  

 

1.1 | Tropical coral reefs  

Coral reefs are considered a flagship ecosystem, providing life support and housing greater 

diversity than any other habitat on planet Earth. Coral reefs occupy less than 0.01 % of the 

marine environment, yield approximately 25 % of the fish catch in developing nations, and 

generate up to 30 % of export earnings in 100 countries that promote reef-related tourism (Burke 

et al., 2011); together these services from coral reefs and associated connected systems (e.g. 

seagrass beds) have been valued between $6,075 and $22,832 US$ per hectare per year (Moberg 

& Folke, 1999). Reef habitats support millions of people through the economic, biological and 

social services they provide (Table 1.1) (Worm et al., 2006; Wilkinson, 2008; Sheppard et al., 

2010; Barbier et al., 2011; Hicks, 2011).  

 The main skeletal structure of coral reefs is formed by scleractinian corals, an order 

within the phylum Cnidarian. Scleractinian corals are typically colonial and are comprised of 

individual polyps that secrete calcium carbonate (CaCO3), which forms the basis of the reef 

infrastructure. The secreted CaCO3 remains after a coral dies which allows reef accretion by 

providing a suitable framework for future growth and reef evolution (Merks et al., 2004; CoRis, 

2012). Scleractinian coral communities around the world’s oceans are highly diverse with more 

than 700 species found in the Indo-Pacific, but fewer than 70 species found in the Atlantic basin 

(Sorokin, 1995). Corals are both auto- and hetero-trophs with many taxa reliant upon a symbiotic 

relationship with endosymbiotic algae (collectively termed zooxanthellae), which can transfer up 

to 90 % of the organic products produced by photosynthesis to the host coral (Sumich, 1996). In 

some instances coral species can up-regulate their heterotrophic capacity under conditions that 
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are not optimal for the alga symbionts (e.g. Anthony, 1999), thus, in addition to providing 

complex reef architecture, scleractiniain corals act as keystone primary producers at the base of 

reef food webs.  

 Corals exhibit different life histories that influence their growth rates, energy expenditure 

and reproductive strategies (Hughes et al., 1992; Sorokin, 1995; Hall & Hughes, 1996), which 

in-turn can determine the survival and resilience of coral species challenged by increasing 

disturbances and environmental change (Garrabou & Harmelin, 2002). Massive corals tend to 

have a slow growth rate and expend large amounts of energy into growth and metabolic 

regulation (Sorokin, 1995). The low-profile of massive corals often provides greater stability to 

the reef infrastructure (Lirman & Fong, 1997) and consequently their presence is thought to 

enhance reef resilience (Kenyon et al., 2006). However, ecosystems dominated by massive 

corals appear to support less biodiversity and productivity (Alvarez-Filip et al., 2009). Other 

corals, such as the branching and plating corals have a faster growth rate and can repair damage 

quicker than the massive corals (Lirman & Fong, 1997; McClanahan et al., 2002). Branching 

corals provide the greatest three-dimensional infrastructure and are thus considered the dominant 

habitat-creating corals on a healthy reef system (Bellwood et al., 2004; Sheppard et al., 2010).   
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Table 1.1| Summary of key services provided by coral reef habitats 

(Hoegh-Guldberg, 1999; Moberg & Folke, 1999; Barbier et al., 2011) 

 

Biological 

 

Social Economic 

Support high-

biodiversity  

 

Heritage and culture Support over 500 million people’s 

livelihoods 

Nutrient cycling Recreation   Support fisheries  

Biological control Intrinsic value Coastal protection 

Water purification Artistic inspiration Tourism and coastal jobs 

Biogeochemical services  Support of spiritual and 

religious values 

Erosion control 

Information services  Education and research Supply many ecological goods 

such as: 

 Raw materials  

 Pharmaceuticals 

 Live fish and coral for the 

aquarium trade 

 Algae for agar 

 Materials for jewellery and 

gifts 
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1.2 | Coral calcium carbonate genesis  

Coral reefs precipitate ca. half of the world’s CaCO3 (Smith, 1978), with rates of calcification 

estimated at 10 kg m
2
 year

-1 
(Chave et al., 1975). Coral skeleton formation is thought to use 

carbonate ions (𝐶𝑂3
2−) as described by equation 1, whereby 𝐶𝑂3

2− combines with calcium ions 

(𝐶𝑎2+ ) to form CaCO3. However, bicarbonate (HCO3
-
) has also been proposed as the main 

source of dissolve inorganic carbon (DIC) due to the low ratio of [𝐶𝑂3
2−]/[HCO3

-
] at the 

physiological pH of 7.5-9.0 (Ichikawa, 2007). In this case, calcification would occur by the 

reaction of 2𝐻𝐶𝑂3
− and 𝐶𝑎2+producing two by-products: 𝐶𝑂2 and 𝐻2𝑂 as shown in equation 2. 

Thus the major source of DIC for calcification remains debated. Similarly, both external DIC 

(Land et al., 1975; Goiran et al., 1996; Gattuso et al., 1999) and internal metabolically-derived 

sources of DIC (Taylor, 1983; Furla et al., 2000) have been argued as the preferred carbon 

source. As yet, no “one size fits all model” has been determined for the process of calcification 

in corals, perhaps reflecting that different taxa may ultimately have evolved different strategies 

to calcify. 

 

𝐶𝑎2+ + 𝐶𝑂3
2− → 𝐶𝑎𝐶𝑂3         [1] 

𝐶𝑎2+ +  2𝐻𝐶𝑂3
− →  𝐶𝑎𝐶𝑂3 +  𝐶𝑂2 +  𝐻2𝑂       [2] 

 

Within corals, the site of calcification is between the base of the calicoblastic epithelium 

and the skeleton surface. Seawater is broadly thought to provide the starting fluid for coral 

calcification, which passively diffuses to the site of calcification (Cohen et al., 2001; Braun & 

Erez, 2004; Cohen & Holcomb, 2009), for example, seawater leakage through the tissue 

membranes as the calicoblastic epithelium pulsates (Tambutté et al., 1996; Furla et al., 2000; 
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Cohen & Holcomb, 2009). Coral calcification will not occur spontaneously due to kinetic 

barriers which include: (i) low concentrations of 𝐶𝑂3
2− (Garrels & Thompson, 1962; Lippmann, 

1973), (ii) high hydration energy of Ca
2+

 (Lippmann, 1973), and (iii) high concentration of 

sulphate and magnesium (Kastner, 1984). Consequently, calcification occurs in compartments 

that can be modified and tightly regulated to the required conditions (Cohen & Holcomb, 2009; 

Tambutté et al., 2011). In 2003, Al-Horani et al. demonstrated a pH change at the site of 

calcification, which has been attributed to a plasma membrane Ca
2+

-ATPase antiporter elevating 

the calcification fluid pH and saturation state (Ω). The antiporter removes two hydrogen ions 

(H
+
) for every Ca

2+
 transported from the calicoblastic epithelial cells (Cohen & Mc Connaughey, 

2003; Zoccola et al., 2004; Tambutté et al., 2012). The described ion-transporter demonstrates 

the energetic cost of calcification to corals with estimates that up to 20 % of a coral’s energy 

budget can be spent on calcification (Cohen & Holcomb, 2009).  

Coral calcification does not directly require photosynthesis as corals can calcify at night 

(Cohen & McConnaughey, 2003). However, coral calcification appears to be elevated in the 

light, with average calcification rates reported to be three times greater during light-periods 

(Gattuso et al., 1999). The relationship between photosynthesis and calcification remains debated 

despite extensive research into this area (Allemand et al., 2011). One train of thought is that 

photosynthesis increases the concentrations of 𝐶𝑂3
2− and the aragonite saturation state (Ωarg) 

which may stimulate calcification (Allemand et al., 1998). However, it seems unlikely that the 

elevation of the Ωarg by photosynthesis is solely responsible for light-enhanced calcification 

because: (i) photosynthesis lowers CO2 levels which is self-inhibiting and consequently limits 

the ability to increase the Ωarg (Cohen & McConnaughey, 2003), and (ii) an experimental 

increase in the Ωarg driven by the addition of Ca
2+

 was shown to have minimal impact on 
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calcification rates (Gattuso et al., 1998). Photosynthesis does however result in an active carbon 

cycle and the production of Adenosine Tri-Phosphate (ATP), which can enhance processes that 

require ATP, such as calcification (Al-Horani et al., 2003). 

 An alternative view is that calcification may stimulate photosynthesis by maintaining 

CO2 levels via the by-product of CaCO3 formation, thus ensuring that CO2 levels are not 

depleted for photosynthesis (McConnaughey et al., 2000). However, work by Gattuso et al. 

(2000) found that photosynthesis continued uninhibited when calcification was almost ceased. 

Another suggestion has been that calcification may stimulate nutrient uptake by the proton 

secretion of the Ca
2+

-ATPase antiporter, aiding nutrient uptake (Cohen & McConnaughey, 

2003). As summarised, review of the current literature demonstrates that the exact relationship 

between calcification and photosynthesis remains unclear. It seems plausible that species 

differences exist for the way these two processes interact, which would explain some of the 

differences in experimental results. The interaction of these two processes is explored further in 

Chapters 5 & 6.   

 

1.3 | Ocean acidification  

 The ocean plays a vital role in climate regulation through its role as a ‘biological pump’ and 

through the absorption of atmospheric CO2 (Ducklow et al., 2001; IPCC, 2007).  However, since 

the industrial revolution elevated atmospheric CO2 has driven ocean warming and the 

simultaneous absorption of this CO2 by the ocean (ca. 33-50 %, Sabine et al., 2004) is making it 

more acidic (ocean acidification, OA, Gattuso et al., 1999; Hoegh-Guldberg, 2011). OA is the 

net result of lowered pH via alterations in carbonate chemistry (Gattuso & Hansson, 2011; 

Hoegh-Guldberg, 2011). The oceans’ pH has already dropped from 8.2 to 8.1 between pre-
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industrial times and may get as low as 7.8 by 2100 (Gattuso & Lavigne, 2009), with various 

anthropogenically-driven CO2 emissions scenarios suggesting that by the end of the century 

ocean pH could be the lowest it has been in more than 50 million years (Figure 1.1, IPCC, 2015).   

 

 

 

 

 

 

 

 

 

Figure 1.1| Global ocean surface pH historical record and future predicted trajectory. 

Taken from the Intergovernmental Panel on Climate Change (IPCC) 5
th

 assessment report, the 

multi-model assessment shows time series data from 2050 to 2100 for global mean surface pH. 

The blue line is the RCP2.6 projection (best-case) and the red line is the RCP8.5 projection 

(worst-case, business-as-usual). The black line shows the historical model using reconstructed 

data. The shading around each line shows the levels of uncertainty. Numbers indicate the number 

of models that went into the projection (IPCC, 2015).  

 

 The carbonate system of seawater – The carbonate system of seawater consists of three 

main inorganic forms: CO2 (aq), HCO3
-
 and 𝐶𝑂3

2−.  A fourth form, carbonic acid (H2CO3) also 

exists but is normally represented by CO2 (aq) as its concentrations are minimal (~ 0.3 %) 

(Zeebe & Wolf-Gladrow, 2001). The carbonate system is related via a series of chemical 

equilibrium reactions that can shift in accordance to changes in temperature, pressure and salinity 

(see equations 3-5). As atmospheric levels of CO2 increase the carbonate system of the ocean 

shifts to re-establishes equilibrium. Atmospheric CO2 is absorbed by surface seawater and is in 
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thermodynamic equilibrium according to Henry’s Law. Dissolved CO2 forms a weak acid 

(H2CO3) which rapidly dissociates to form HCO3
-
 and a proton (H

+
). The HCO3

-
 also dissociates 

to form 𝐶𝑂3
2− and another H

+
; this H

+
 formation lowers the pH to make the water more acidic 

(strictly, less alkaline for OA where even the most severe emission scenarios predict pH to 

remain >7.0, i.e. neutral). 

 

𝐶𝑂2(𝑎𝑞) +  𝐻2𝑂 ↔  𝐻2𝐶𝑂3     [3] 

𝐻2𝐶𝑂3 ↔  𝐻𝐶𝑂3
− +  𝐻+     [4] 

𝐻𝐶𝑂3
−  ↔  𝐶𝑂3

2− + 𝐻+     [5] 

 

 The buffering capacity of seawater is quantified by the Revelle factor which is a measure 

of how the partial pressure of CO2 in seawater changes for a given change in DIC (Sabine et al., 

2004). The Revelle factor means that a doubling in atmospheric CO2 only results in a 10 % 

change in DIC (provided temperature and other factors remain the same). Buffering ability of 

seawater is due to 𝐶𝑂3
2− 

which reacts with CO2 and H2O to form 2HCO3
-
 (see equation 6).  

However, despite the buffering from 𝐶𝑂3
2−, the acidity of seawater still increases slightly as 

some of the HCO3
- 
dissociates to form 𝐶𝑂3

2−and H
+
. Current rates of change in CO2 (and 

consequently H
+
 production) exceed the natural geological scales of buffering; historically (over 

the last 50 million years) ocean mixing over longer time scales has been able to buffer the 

seawater chemistry via interactions with carbonate-sediment.  As the oceans absorb more CO2 

their ability to buffer changes in seawater chemistry are reduced (Zeebe & Wolf-Gladrow, 2001). 

  

 



 Chapter 1  

9 
 

 The total alkalinity (TA) of seawater also influences the buffering capacity of seawater 

and according to Dickson (1981) is defined as: 

 “the number of moles of hydrogen ion equivalent of excess proton acceptors with a 

dissociation constant K≤ 10
-4.5

over proton donors (acids K>10
-4.5

) in 1kg of sample” 

(Dickson, 1981).   

TA is a conservative property and relational to charge balance in seawater. In seawater, the 

charge balance of conservative species is not equal with slightly more cations than anions (~ 2.2 

mmol kg
-1

). Such an imbalance is equal to the TA and is compensated for by the anions of 

H2CO3. Thus, TA can be described as the difference between the sum of conservative cations 

minus the sum of conservative anions in seawater (see equation 7).  Both TA and DIC are 

important to ocean chemistry and are influenced by biogeochemical processes such as 

precipitation and dissolution of CaCO3.   

𝐶𝑂2 + 𝐶𝑂3
2− +  𝐻2𝑂 → 2𝐻𝐶𝑂3

−        [6] 

∑𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 𝑐𝑎𝑡𝑖𝑜𝑛𝑠 −  ∑𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 𝑎𝑛𝑖𝑜𝑛𝑠 =  𝑇𝑜𝑡𝑎𝑙 𝐴𝑙𝑘𝑎𝑙𝑖𝑛𝑖𝑡𝑦   [7] 
 

The saturation states of calcium carbonate – The saturation state (Ω) of carbonate 

minerals calcite and aragonite are influenced by changes in the oceans’ acidity. Ω of CaCO3 in 

seawater is dependent on the concentrations of Ca
2+

 and 𝐶𝑂3
2− and their solubility products (see 

equation 8).  If Ω is > a value of 1.0 then the water is supersaturated with regards to aragonite, 

and if < 1.0 then seawater is under-saturated. Importantly, Ω for the different mineral forms of 

CaCO3 are not the same as aragonite is more soluble than calcite due to its orthorhombic 

structure (Figure 1.2) (Zeebe & Wolf-Gladrow, 2001). Consequently some marine organisms, 

e.g. corals (aragonite skeleton), are at a greater risk from OA than others, e.g. soft corals (calcite 

skeleton). There are differences in Ω of CaCO3 between the North Pacific and North Atlantic 
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Oceans; the North Pacific has a lower Ω because the water is ‘older’, meaning that it has been 

longer since it was last in contact with the atmosphere so it has taken up more CO2 from 

remineralisation, resulting in lower 𝐶𝑂3
2− concentrations (Zeebe & Wolf-Gladrow, 2001). As the 

oceans become more acidic, there will be less 𝐶𝑂3
2− resulting in lower Ω of CaCO3.  The reduced 

Ω is extremely problematic for marine calcifers as seawater will start to become under-saturated 

at shallower depths, making calcification a more costly process (Gattuso et al., 1999; Gattuso & 

Hansson, 2011; Ries, 2011a). 

 

Ω=[𝐶𝑎2+]𝑠𝑤 x  [𝐶𝑂3
2−]𝑠𝑤

𝐾𝑠𝑝
          [8] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2| The different structures of the calcium carbonate minerals calcite and aragonite 

(Pengelly, 2012). Aragonite is the more soluble form of calcium carbonate due to its 

orthorhombic structure and is the form typically used by hard corals. The lines indicate the 

bonding structure.  

 

Unite Cell 

Pseudohexagonal prism 

Calcite     Aragonite 

 Ca2+ 
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 Threats of ocean acidification on reef processes – The range of threats of OA on marine 

life and reef processes are still being uncovered. A decrease in pH of 0.4 units (expected by 

2100) will result in an 100-150 % increase in H
+ 

concentrations (Orr et al., 2005), a 30-50 % 

decrease in 𝐶𝑂3
2− (Sabine et al., 2004) and a resulting decrease in the Ω of CaCO3 (Figure 1.3). 

All of these chemical changes threaten to disrupt marine systems and their functions (Gattuso et 

al., 1999; Zeebe & Wolf-Gladrow, 2001; Gattuso & Hansson, 2011; Hoegh-Guldberg, 2011). 

Some of the major threats identified include: (i) interference with extracellular and intercellular 

pH of organisms (Crawley et al., 2010; Gattuso & Hansson, 2011; McCulloch et al., 2012), (ii) 

reduced buffering capacity of the ocean and thus increased sensitivity to environmental change 

(Egleston et al., 2010), (iii) disrupted and reduced rates of calcification which can alter species 

fitness and potentially create a phase-shift from a CaCO3 dominated reef system to an organic 

algal dominated system (Fabry et al., 2008; Hall-Spencer et al., 2008; Kuffner et al., 2008), (iv) 

altered biological processes like photosynthesis that consume inorganic carbon (Gattuso et al., 

1999; Gattuso & Hansson, 2011), (v) potential metabolic suppression (Portner & Reipschlager, 

1996; Guppy & Withers, 1999), (vi) disruption to larval stages (Munday et al., 2009), (vii) a shift 

in species distribution, (viii) disruption of trophic levels, and (ix) an altering of CaCO3 and 

organic matter cycling (Fabry et al., 2008). Collectively these impacts threaten marine food 

webs, ecosystem services and biodiversity; negative effects are predicted on the survival, growth, 

calcification and reproduction of many marine organisms by the end of the century (Kroeker et 

al., 2010).  
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Figure 1.3| The Bjerrum Plot. Illustration of the carbonate species of seawater and their 

equilibrium relationships (Nature Education, 2012). Changes in the relative proportions of 

carbon dioxide (CO2), bicarbonate (𝐻𝐶𝑂3
−) and carbonate (𝐶𝑂3

2−) influence seawater pH and the 

buffering ability of seawater.  

 

 

 The impact of ocean acidification on scleractinian corals – Global CO2 emissions are 

tracking above worst-case scenarios from the 5
th

 Intergovernmental Panel on Climate Change 

(IPCC) report, with dire consequences predicted for coral reef ecosystems (van Hooidonk et al., 

2014). Corals with their CaCO3 skeleton are at risk as Ω decrease (Anthony et al., 2011a; 

Pandolfi et al., 2011). As the oceans become more acidic rates of dissolution will increase and 

the availability of 𝐶𝑂3
2− will fall making it harder to form CaCO3 (Rodolfo-Metalpa et al., 2011; 

McCulloch et al., 2012). Coral reefs produce the more soluble form of CaCO3, aragonite during 

bio-mineralisation (Cohen & Holcomb, 2009) and thus are more susceptible to dissolution. 

Notably dissolution of CaCO3 is increasing by 0.003 to 1.2 mol kg
-1

 year
-1 

near the Ωarg horizon 

(Feely et al., 2004). When [𝐶𝑂3
2−] reach 200 mol kg

-1
 (water) or less, the net accretion of coral 

reefs nears zero. This ion concentration is approached as atmospheric levels of CO2 reach 450 
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ppm, a level predicted to be reached before 2100 (IPCC, 2007; Gattuso & Hansson, 2011; 

Hoegh-Guldberg, 2011).   

 As pH and Ω fall, many reef species and communities are predicted to experience a net 

decrease in calcification (Langdon et al., 2000; Andersson et al., 2009; De’ath et al., 2009; 

Silverman et al., 2009; Price et al., 2012). Controlled laboratory studies have documented a 

reduction in calcification rates of a wide range of marine organisms, including corals, under 

future predictions for OA (see Table 1.2, Gattuso et al., 1998; Marubini & Thanke 1999; Ohde & 

vanWoesik, 1999; Langdon et al., 2000; Leclercq et al., 2000; Leclercq et al., 2002; Gazeau et 

al., 2007; Fabry et al., 2008; Ries et al., 2010; Porzio et al., 2011; Ries, 2011a; Kroeker et al., 

2013; Crook et al., 2013).  Laboratory studies have documented decreases in coral calcification 

ranging from 3 % to 79 % (Gattuso et al., 1998; Marubini and Thanke, 1999; Ohde and 

vanWoesik, 1999; Leclercq et al., 2000; Leclercq et al., 2002; Crook et al., 2013), and have 

found juvenile recruitment and post-settlement particularly threatened to decreasing Ω (Albright 

et al., 2008; Albright et al., 2010; Albright & Langdon, 2011; de Putron et al., 2011). Other 

studies however, have revealed species-specific responses to OA that include negative, neutral 

and positive responses to increasing levels of CO2 (Reynaud et al., 2003; Jury et al., 2010; Ries, 

2011b; Kroeker et al., 2013).  Examples of physiological mechanisms that can influence coral 

species abilities to tolerate changes in seawater chemistry include: (i) the control of carbonate 

chemistry at the site of calcification (Ries, 2011b; McCulloch et al., 2012) through the ability of 

coral species to modify H
+
 concentrations within the calicoblastic fluid (Jokiel et al., 2013), 

and/or (ii) their ability to utilise HCO3
-
 within calcification (Comeau et al., 2012). 
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Table 1.2 | A summary of the response of major taxa to predicted ocean acidification conditions 

Taxa Response References 

 Calcification Growth Photosynthesis Development Abundance 

 

 
Coral 

- 32 % 

 

 

 

 

 

 

 

  - 47 % Kroeker et 

al., 2013 

 

 
Seagrass 

 

 

 

 

 

 

 

 

 

+ 85 % 

+ 260 % 

 

  Durako, 

1993 

Zimmerman 

et al., 1997 

 

 

 
Flesy algae 

 

 

 

 

+ 17 % 

 

 

 

 

   Kroeker et 

al., 2013 

 

 

 

 

Molluscs 

- 40 % 

 

- 17 %  

 

 

 

 

 - 25 %  Kroeker et 

al., 2013 

 

 

 

 

Echinoderms 

 - 10 % 

 

 

 

 

 

 

 

 

 

 - 11 %  Kroeker et 

al., 2013 

 

 
Coccolithophores 

 - 23 % 

 

 

 

 

 

 

 

 

   Kroeker et 

al., 2013 

 

 

 

 

Diatoms 

 

 

 

 

 

+ 17 % + 28 %   Kroeker et 

al., 2013 

 

 

 

 

Fish 

 

 

 

 

 

+ 15 % 

+ 18 % 

  - 50 % 

- 90% 

Munday et 

al., 2009 

Munday et 

al., 2010 

 

 
Crustaceans  

 

 

 

 

 

- % 

- % 

   Kurihara et 

al., 2008 

Wickins, 

1984 

 

For the major taxa known to currently be affected by ocean acidification, a summary of their response to a pH 

change of up to 0.5 pH units is shown. For all taxa other than Fish, Crustaceans and Seagrass the values provided 

come from Kroeker et al., 2013 who conducted a meta-analysis on 155 studies. The values provided are the mean 

affects measured. Fish, Crustaceans and Seagrass were excluded from the Kroeker et al., 2013 summary due to 

confidence intervals overlapping at the 95 % level, or due to data deficiency. Relevant data for these taxa are shown 

to illustrate what is currently known. For Crustaceans due to data deficiency only general trends were reported. 
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 Investigating the impacts of OA on taxa is complex due to the number of abiotic factors 

that can interact to influence a species response to changes in pH. Also, changes in other abiotic 

parameters, e.g. temperature, occurring alongside pH can influence a species response. For 

example, a moderate rise in temperature is associated with increased metabolic rates in corals 

that potentially enhances growth and off-sets some of the negative effects associated with low 

pH (Lough & Barnes, 1999; Reynaud-Vaganay et al. 1999; Bessat & Buigues 2001; McNeil et 

al. 2004), while a larger rise in temperature can push corals to their physiological limits resulting 

in catastrophic mortality (Hoegh Guldberg et al. 2007; Hoegh-Guldberg & Bruno 2010). The 

interactive effects of pH and temperature are explored further in Chapter 5. Light has also been 

shown to enhance calcification (Suggett et al., 2013) as has the addition of nutrients (Langdon 

and Atkinson, 2005) or the upregulation of heterotrophy (Cohen and Holcomb, 2009). 

Conversely, threats from OA can be exasperated by other global (e.g. deoxygenation and 

increased UVB damage) or local stressors (e.g. over-fishing, pollution) (IGBP- IOC- SCOR, 

2013).  

 The interactive effect of biological and abiotic factors provides a challenge to researchers 

studying the impacts of OA on marine life. A criticism of almost all OA experimental studies is 

natural timescales with which OA as a stressor operates. Consequently, to overcome this, 

researchers have moved towards working in naturally acidified systems, e.g. CO2 vents 

(Fabricius et al., 2011). However, this has provided additional complexities in: (i) being able to 

deconvolve out the role of other stressors and/or, (ii) confidently dialling in “realistic scenarios” 

(e.g. abiotic interactions, specifically OA and elevated temp). A combination of both laboratory 

and field studies are thus required to try and resolve these complexities and has been the 

approach adopted within this thesis (see Chapter’s 2 through 5).  
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1.4| Approaches to study the threats of ocean acidification  

Coral reef climate research has to-date disproportionately focused on species-specific responses 

under controlled laboratory conditions (Wernberg et al., 2012). Whilst this research has provided 

valuable insight into the capacity of individual taxa to tolerate stress, it largely fails to account 

for the complex interactions that exist between all biological components of the system. 

Therefore, in an attempt to more confidently predict the future of reef community structure and 

functioning research approaches have diversified to overcome such limitations through increased 

emphasis on ecosystem level studies (e.g. Kleypas et al., 2011; Anthony et al., 2013), in situ 

experimentation (e.g. Klein et al., 2012; Okazaki et al., 2013), experimentation involving 

multiple climatic stressors (e.g. Anthony et al., 2011a; Dove et al., 2013), experimentation across 

natural climate gradients (Dunne et al., 2004), as well as opportunistic experiments (e.g. 

temperature induced gradients from thermal outfall of a power station: Schiel et al., 2004). The 

international research community has also attempted to optimise and standardise sampling 

practices to minimise sampling error and increase confidence in the results obtained. Similarly, 

efforts have been directed into establishing new methodologies to limit destruction and stress on 

test colonies. These topics are expanded upon in Chapter 2.    

Complementary to these various approaches has been the growing popularity of 

examining the nature and extent with which corals persist within environments that are 

considered extreme and towards their physiological limits for growth and survival (e.g. Fabricius 

et al., 2011; Price et al., 2012; Hume et al., 2015); specifically, broad scale latitudinal limits of 

coral growth (e.g. elevated temperature, Rodolfo-Metalpa et al., 2014), reef habitats that are 

considered atypical (e.g. CO2 vents, Fabricius et al., 2011) or typical  (reef-flat, Price et al., 

2012; Andersson et al., 2013) and non-reef habitats such as mangroves (Yates et al., 2014) and 
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seagrasses (Manzello et al., 2012). Recent interest in coral populations within mangroves and 

seagrasses is particularly intriguing since these habitats typically experience large diel variability 

in temperature and light conditions that included periods that would over longer-durations lead to 

bleaching-induced mortality within a classical reef setting; they also routinely experience pH 

conditions (daily average and/or variance) expected for many reefs under future OA scenarios 

(Price et al., 2012; Guadayol et al., 2014; Yates et al., 2014). Previous studies investigating 

environmental extremes have focused on the presence or absence of coral species in relation to 

their local carbonate chemistry conditions, however, the function and viability for coral survival 

remains largely unknown and is explored in Chapter’s 3 and 4 of this thesis.  

 

1.5| Coral habitats with large natural pH variability 

Non-reef habitats that house corals, such as seagrass beds and mangroves, are part of the main 

reef complex and are typical habitats found globally, however, they experience very different 

abiotic conditions to the main reef. Both seagrass and mangrove habitats are important primary 

producers and nursery habitats for fish and crustacean species (Dawes, 1998; Mumby et al,. 

2003; Harborne et al., 2006) as they provide shelter from predation (Nakamura & Sano, 2004) 

and an abundance of food. They are also often situated in locations that receive high larval 

supply (Parrish, 1989). Both systems also provide important coastal protection. In addition, 

seagrass beds provide support in biogeochemical cycling and substrate stabilisation (Dawes, 

1998; Duarte, 2000; Abecasis et al., 2009). Despite the range of important ecological services 

provided by seagrass beds and mangroves they are among the world’s most threatened habitats 

(Valiela et al., 2001; Short et al., 2011). Mangrove habitats are being lost at a rate of 1.8 % year
-1 

(Valiela et al., 2001) whilst seagrass habitats are being lost at an estimated rate of 1.5 % year
-1
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(Waycott et al., 2009). Persistence of corals within non-reef habitats such as mangroves and 

seagrass beds is receiving renewed attention (Manzello et al., 2012; Hendriks et al., 2014; Yates 

et al., 2014) and is particularly intriguing for two reasons:  

Firstly, the capacity of corals to grow under highly-variable sub-optimal growth 

conditions (Price et al., 2012; Yates et al., 2014) demonstrates their ability to adapt or 

acclimatise, and potentially tolerate wider environmental conditions. Several studies support the 

notion that highly-variable environments are important to enhancing coral tolerance against 

climate change (e.g. temperature: Baker et al., 2004; pH: Comeau et al., 2014). However, other 

studies have demonstrated no improved tolerance to stress despite prior regular exposure to 

environmental extremes (e.g. temperature: Rodolfo-Metalpa et al., 2014; pH: Crook et al., 2013; 

Okazaki et al., 2013). As such, it remains unclear to what extent corals currently persisting in 

highly-variable environments will actually provide added tolerance to future stressors.  

Secondly, the ability for certain non-reef habitats to locally buffer or off-set the negative 

impacts of OA. Inherent biogeophysical processes of seagrass habitats have been proposed to 

significantly alter the intrinsic carbonate chemistry so as to buffer coral populations by off-

setting future decreases in seawater pH (Hoegh-Guldberg et al., 2007; Manzello et al., 2010; 

Anthony et al., 2013), and thus effectively operate as a refuge.  Throughout the thesis refugia 

will refer to the ability of a habitat to maintain favourable chemical conditions that are being lost 

elsewhere (sensu Keppel & Wardell-Johnson, 2012). Mangroves have similarly been proposed as 

potential coral ‘refugia’ against climate change (Yates et al., 2014) but whether they could 

provide the same protective role (i.e. buffering) as  determined for seagrass beds remains 

unclear.  
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Whilst corals clearly demonstrate some form of tolerance to survive within highly 

variable habitats (Price et al., 2012; Yates et al., 2014) the physiological properties that govern 

tolerance remain unknown. Similarly, it is unknown whether species are selected for within these 

systems and thus are adapted, or are they just part of the wider species pool and have 

acclimatised (a species has adjusted to its local environmental conditions, sensu Folk 1966).  

Whether corals can persist in non-reef habitats, across bioregions and independent of taxa is also 

unclear and will be studied in this thesis across four bioregion sites (see Chapter 4).  

 

1.6| Study locations  

Within this thesis four study locations were selected each contributing differently to the overall 

project (Table 1.3). Methods development both in terms of analysis techniques, sampling 

strategies and respirometry were carried out in the Atlantic (Cayman Islands and Brazil) whilst 

biological assessments were studied at three sites (Cayman Islands, the Seychelles and 

Hoga/Kaludepa Islands) within the three ocean basins (Atlantic, Pacific and Indian). The three 

sites were selected to assess whether similar coral species occupied the marginal non-reef 

habitats across ocean basins, and whether the species found in non-reef systems was proportional 

to the diversity of the region. For example, in the Atlantic region site, are the species present in 

non-reef habitats restricted due to the species pool.  
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Table 1.3| Study site information  

Bioregion Location Site GPS N/S GPS E/W 

Atlantic Ocean Little Cayman, Back-reef 1 19°41.767 80°06.066 

 Cayman Islands Back-reef 2 19°42.479 80°00.161 

  Back-reef 3 19°42.503 79°.98.256 

  Seagrass 1 19°41.810 80°03.775 

  Seagrass 2 19°42.470 79°98.250 

  Seagrass 3 19°42.489 79°98.231 

  Outer-reef 1 19°41.815 80°04.122 

  Outer-reef 2 19°42.627 80°09.241 

  Outer-reef 3 19°42.623 79°98.344 

Atlantic Ocean Salvador, Brazil Patch-reef 12°59.570 38°31.500 

Indian Ocean Curieuse, Seychelles Mangrove 04°17.290 55°43.898 

  Seagrass 04°17.059 55°44.059 

  Outer-reef 04°17.081 55°44.219 

Pacific Ocean Hoga, Indonesia Mangrove 05°28.427 123°43.645 

  Seagrass 05°28.384  123°43.746 

  Outer-reef 05°28.382 123°43.738 

The study sites for each location indicated by their general habitat type and their GPS 

location. 

 

1.6.1| Atlantic Ocean: Little Cayman, Cayman Islands, British West Indies 

Little Cayman geography and oceanography – The Cayman Islands are made up of three low-

lying subtropical islands located in the northwest Caribbean Sea, approximately 145 km south of 

Cuba. Little Cayman is located 120 km northeast of Grand Cayman, and 10 km southwest of 

Cayman Brac (Manfrino et al., 2013). Little Cayman is the smallest island (17 x 2 km) and has a 

low resident population (< 200) meaning it is subject to minimal local anthropogenic stress 

(Turner et al., 2013). The Cayman Islands experience complex currents that can vary in duration, 

velocity and intensity across small spatial scales (Turner et al., 2013). The location of the 

Cayman Islands within the Caribbean Sea means that they are subject to a spin-off of the north 

Atlantic Gyre (Kinder, 1983). Typically currents move in a north-westerly direction (Stoddard, 
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1980; Turner et al., 2013), however, unpublished data from the Department of the Environment 

for the Cayman Islands shows that the local currents around Little Cayman head southeast and 

then loop back towards Little Cayman before they reach Jamaica. The currents then move west 

towards Grand Cayman (Turner et al., 2013).   

Little Cayman climate – The Cayman Islands have a tropical marine climate governed by 

two distinct seasons: the wet-summer season (May-November, average rainfall ca. 7.5 in per 

month), and the dry-winter season (April-December, average rainfall ca. 2.0 in per month) 

(Turner et al., 2013). Average air temperature is 24.8 °C in February and 28.4 °C in July, with 

northeast trade winds predominant most of the year. The Cayman Islands are vulnerable to 

hurricanes between August and early November, with the islands typically receiving a direct hit 

every ten years. The reefs of the Cayman Islands were impacted by hurricane Ivan in 2004, 

which severely damaged soft coral communities. Hurricane Gilbert in 1989 decimated Acropora 

colonies (Turner et al., 2013).  

Little Cayman marine habitats – The dominant coastal boundaries of Little Cayman are 

lagoons, seagrass beds, coral reefs, iron-shore and mangroves. The lagoons are shallow saltwater 

systems locally known as “Sounds”. Sounds typically have a back-reef habitat with marginal 

coral reef growth compared to the deeper spur-and-groove and reef flats. On the landward side of 

the back-reefs the substrate is a mix of small coral colonies, hard-ground, seagrass, sand, 

sediment, and algae (calcareous, macroalgae and filamentous) (Turner et al., 2013). Seagrass 

beds are dominant around the lagoons of Little Cayman covering 4.5 km
2
 (Turner et al., 2013). 

Ironshore (white limestone with a hard calcrete crust) is another common habitat, with coral 

reefs constituting the last major substrate type surrounding the coastal marine habitats of Little 

Cayman.  
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Little Cayman coral reefs – The Cayman Islands are the peaks of underwater mountains 

and consequently have a very narrow coastal shelf (< 1 km) where reef development occurs. At 

the edge of the coastal shelf a deep wall system exists that drops off to depths of greater than 

2000 m. Little Cayman has a northeast to southwest orientation which results in a high-energy 

and moderate-energy zone. The high-energy zones impact spur-and-groove reef formation with 

the south and east coasts developing the greatest spur-and-groove reef formations (Mc Coy et al., 

2010; Dromard et al., 2011).The north shelf of Little Cayman is comprised of two reef terraces: a 

shallow reef terrace (5-12 m), consisting of a lagoon and fringing reef, and a deeper reef terrace 

(12-25 m) which drops off into a vertical abyss. An exception to this general geomorphology is 

the northwest section of the Bloody Bay-Jackson Point Marine Park, where the shallow terrace 

extends to the vertical drop off into the abyss, and the deeper terrace is lacking (Fenner, 1993).   

Little Cayman has documented live coral cover higher than, or equivalent to, other 

islands in the Caribbean (Figure 1.4, Gardner et al., 2003). Between 1999 and 2004, Little 

Cayman experienced a decrease in live coral cover from 26 % to 14 % (Coelho & Manfrino, 

2007), primarily due to white plague syndrome which occurred after the 1998 bleaching event 

(Eakin et al., 2010; van Hooidonk et al., 2012). However in 2013, coral cover around Little 

Cayman was reported to be on a positive trajectory, with coral cover returning to levels seen in 

1999 (Manfrino et al., 2013).  

Little Cayman marine protected areas – Since 1986, approximately 50 % of Little 

Cayman’s near-shore habitats have been managed as Marine Protected Areas and no-take 

Replenishment Zones (Dromard et al., 2011). Bloody Bay Marine Park on the north coast of 

Little Cayman is one of the main diving attractions of the Cayman Islands. On Little Cayman, 

there are currently four environmental designations: Marine Park Zones, Designated Grouper 
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Spawning Areas, Replenishment Zone and Animal Sanctuaries/RAMSAR sites. There are four 

additional designations found elsewhere in the Cayman Islands: No Diving Zone, Environmental 

Zone, Wildlife Interaction Zone, and Prohibited Diving Zone (see Table 1.4).   

 

 

Figure 1.4| A photograph of the coral reef on the deeper terrace of Little Cayman, Cayman 

Islands, BWI. The picture was taken in 2012 on the dive site known locally as Mixing Bowl 

within the Bloody Bay Marine Park. 
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Table 1.4| The environmental designations on Little Cayman. The Cayman Islands have had 

Marine Protected Areas in place since 1986 (DOE, 2015). On Little Cayman there are four 

environmental designations whose rules are detailed below:  

Environmental 

designation 

Rules 

Marine Park Zone  No taking of any marine life alive or dead, except: line fishing 

from shore is permitted; line fishing at depths of 80 ft or 

greater is permitted; taking fry and sprat with a fry or cast net 

is permitted.  

 Fish traps, spear guns, pole spears and other nets are totally 

prohibited.  

 No anchoring – use of fixed mooring only, except; boats of 60 

ft or less may anchor in sand as long as no grappling hook is 

used, and neither the anchor of rope will impact coral; 

anchoring prohibitions are suspended during emergencies and 

by permission of the Port Director.  

 No commercial operations may use Bloody Bay Marine Park 

without a license from the Marine Conservation board.  

Designated Grouper 

Spawning Areas 
 East and west End of Little Cayman; no fishing for Nassau 

groupers 1
st
 November through 31

st 
March; No fish pots or 

spear fishing within one-mile radius of Designated Grouper 

Spawning Area during this period.  

Replenishment Zone  No taking of conch or lobster by any means; no anchors, lines 

or chains may touch coral; no spear guns, pole spears, fish 

traps or nets allowed.  

Animal 

Sanctuaries/RAMSAR 

Sites 

 No hunting; no littering; no collection of any species.  
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1.6.2| Atlantic Ocean: Salvador, Brazil 

Salvador geography and oceanography – The city of Salvador is located on the east coast of 

Brazil within the Bahia region. Salvador has a large population estimated at three million people 

making it the third most populated city in Brazil (Lessa et al., 2001). Located in the southern 

Atlantic, Salvador is situated at the entrance of Todos os Santos Bay (TSB). TSB is the second 

largest bay ecosystem of Brazil (Cirano & Lessa, 2007).  There is low annual variation in 

currents, with tides primarily responsible for annual variations (Cirano & Lessa, 2007). The tides 

are semidiurnal with a tidal range of 0.1 to 2.6 m (Cirano & Lessa, 2007). Tides are amplified by 

a factor of 1.5 in the bay and are bi-directional. The tides are strongest during the ebbing tide 

(Lessa et al., 2001).   

Salvador climate – Salvador experiences a tropical humid climate with mean annual 

water temperatures of 25.2 ± 3.0 °C and an annual mean precipitation of approximately 2100 

mm yr
–1 

(Cirano & Lessa, 2007). Salvador is subject to high-pressure weather cells due to its 

location within the south Atlantic trade wind belt (Bittencourt et al., 2000). The Atlantic Polar 

Front occurs during the autumn and winter, increasing wind speed whilst changing the wind and 

wave direction (Bittencourt et al., 2000).  

Salvador coral reefs – Along the eastern coasts of Brazil and the small offshore islands, 

there are shallow fringing reefs that have low hard coral diversity (ca. 21 species) and are 

characterised by high endemism (38 %) (Leão et al., 2003). The basal structure of these patch 

reefs originates from the pre-Cambrian basement that outcrops along the Salvador Fault (Dutra, 

et al., 2006). The TSB offers tropical shallow waters that house patch reefs ca. 1-4 m high (Leão 

et al., 2003). These patch reefs are subject to a lot of direct human pressure from the city.  
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Salvador marine protected areas – There is an Área de Proteҫão Ambiental for the TSB 

which was designated in 1999. It falls under the class of a sustainable-use area under Brazilian 

law, meaning that activities are restricted rather than any significant levels of marine protection. 

However, local police monitor research activities.  

 

 

Figure 1.5| A photograph of the fringing coral reef of Salvador, Brazil. The picture was 

taken in 2014 at a site in Todos os Santos Bay adjacent to the Yacht Clube da Bahia harbour. 

 

 

1.6.3| Indian Ocean: Curieuse, Seychelles 

Curieuse geography and oceanography – The Seychelles Archipelago on the northern edge of 

the Mascarene Plateau consists of 115 islands located 1600 km east of Africa within the Indian 

Ocean. The central islands are composed of granite, whilst the outlying islands are coral atolls 

(Stoddart, 1984). Curieuse is the fifth largest granitic island within the Seychelles Archipelago 

and has an area of 2.86 km
2
 (Hill et al., 2002). Curieuse consists of two large peaks (the highest 

172 m above sea level) which enclose a shallow bay (Baie La Raie). The Seychelles are subject 
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to seasonal currents, with north-westerly currents approaching from the Somali Basin dominating 

between December and March; May through September the wind shifts south-easterly changing 

the direction of the currents and exposing sites previously sheltered.  

Curieuse climate – The Seychelles Islands experience a seasonal humid tropical climate 

(Walsh, 1984), with temperatures typically ranging between 24-32 °C.  Wind speed is normally 

15-22 km h
-1

. Most of the annual rainfall occurs during the months of December and February. 

April marks the end of the ‘rainy season’ and is the month of monsoon reversal; the shift from 

northwest Monsoon to the onset of the southeast Trade Winds. From May to October, the climate 

is drier with cooler weather and often rougher seas resulting from elevated wind speeds of 19–37 

km h
-1

 (SNPA, 2014).  

Curieuse marine habitats – Curieuse is surrounded by patchy fringing reefs that have 

submerged granitic boulders where corals directly grow and provide a suitable substrate for 

recruitment. Surrounding the island are intertidal seagrass and dense algal beds comprised of 

calcifying and non-calcifying algae as well as small coral colonies. Baie La Raie is a bay located 

on the south side of the island. In 1909, a seawall was built across Baie La Raie effectively 

separating the mangroves from the rest of the bay. The 40 acre pond now has some connectivity 

with the surrounding waters as the 2004 Tsunami broke down part of the wall. Baie La Raie 

contains six of the seven mangrove species found in the Seychelles and is an important fish 

nursery habitat for the surrounding reefs (Domingue et al., 2010).  

Curieuse coral reefs – The Seychelles have an estimated 1690 km of coral reefs, 

comprised of fringing reefs, platform reefs and atolls (Spalding et al., 2001). The coral reefs of 

the Seychelles have species richness values between 47-59 % of the total species found in the 

western Indian Ocean (Figure 1.6, Obura, 2012). The Seychelles has granitic and carbonate reef 
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systems, both of which can be located around Curieuse. Historical monitoring data shows large 

variability in coral cover (1-40 %) for the shallow reef systems (Smith/Suggett, Unpublished 

data, pers. Comm.). Over the last two to three decades, an increase in development around the 

Seychelles has significantly altered parts of the coastline. The severe El Niño event of 1997/98 

resulted in unprecedented coral bleaching in the Indian Ocean, which severely impacted the reefs 

of the Seychelles with certain reefs experiencing 95 % bleaching (Dominigu et al., 2010). 

Graham et al. (2014) documented 12 out of 21 reefs around the Seychelles returning to pre-

disturbance coral cover after a loss of greater than 90 % of coral cover. The remaining nine reefs 

underwent a phase-shift to a macroalgae reef which was attributed to other local stressors and 

reef conditions (e.g. structural complexity and water depth).  

Curieuse marine protected areas – Curieuse and its surrounding waters make up one of 

the six National Marine Parks (NMP) of the Seychelles. A NMP is designated in the Seychelles 

as: 

“An area set aside for the propagation, protection and preservation for wildlife or the 

preservation of places or objects of aesthetic, geological, prehistoric, historical, 

archaeological or other scientific interest for the benefit, advantage and enjoyment of the 

general public and includes in the case of a Marine National Park an area of shore, sea or 

sea-bed together with coral reef and other marine features” (pg 30, Dominigue et al., 2010).  

The Curieuse National Marine Park consists of 2.86 km
2  

land and 13.70 km
2 

sea (total 16.56 

km
2
)  and stretches 200 m offshore around the island and all the way across to the westerly 

neighbouring island of Praslin. The Curieuse NMP was designated in 1979 and attracts many 

tourists annually (>21,000 tourists in 2007). Designation of this NMP has helped with socio-
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economic development of the surrounding islands, with the local economy heavily reliant on the 

fishing industry and tourism (Campling & Rosalie, 2006; Dominigue et al., 2010).  

 

 

Figure 1.6| A photograph of the Acropora beds found around Curieuse, the Seychelles. The 

picture was taken in 2014 on a site known locally as House Reef off the south coast of Curieuse 

within the Seychelles National Marine Park.  
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1.6.4| Pacific Ocean: Hoga and Kaledupa Islands, Wakatobi, southeast Sulawesi, Indonesia 

Hoga and Kaledupa Islands geography and oceanography – Hoga and Kaledupa Islands are 

located in the Wakatobi, southeast Sulawesi. The Wakatobi was established as its own separate 

district in 2004 and consists of four main islands: Wangi, Kaledupa, Tomia and Binongko (the 

acronym “Wakatobi” formed by the first two letters of each island). Several smaller islands are 

located in the Wakatobi, including Hoga found to the north of Kaledupa. The Wakatobi is central 

within the Coral Triangle; a global centre of marine biodiversity and a priority for marine 

conservation (Tomascik et al., 1997; Pet-Soede & Erdman, 2003; TNC, 2007). The Wakatobi 

region is subject to complex, highly variable currents (Clifton, 2010). During the north-westerly 

monsoon season (typically November to April) the currents run anti-clockwise around Sulawesi, 

whilst from May to November no clear pattern is apparent. On the Sulawesi side of the Makassar 

Straits the currents run southwards year-round. Along the northern Sulawesi coast there is a year-

long eastward current (Whitten, 1987). Locally, the reefs are subject to a large semi-diurnal tidal 

cycle with the inter-tidal zone being largely exposed at low tide.   

Hoga and Kaledupa Islands climate –The climate of Sulawesi is best described in 

relation to rainfall. Between September and March, north-westerly winds crossing the South 

China Sea pick up moisture and arrive in north Sulawesi around November time. After this 

period, variable and humid south-easterly winds blow towards the eastern side of Sulawesi, with 

rainfall peaking on the southeast coast between April and June. The east coast of Sulawesi where 

the Wakatobi is located experiences its wettest month around May (Whitten, 1987).  

Hoga and Kaledupa Islands marine habitats – The Wakatobi Marine National Park 

(WMNP) contains coral reef, mudflats, algal beds, seagrass and mangrove habitats, all with high 

conservation value which provide vital resources to local communities (Unsworth et al., 2007). 



 Chapter 1  

31 
 

The coral reefs are some of the most diverse in the world and have been identified as a 

biodiversity hotspot. Mangroves are located on the northwest coast of Hoga, as well as the east 

and south coasts of Kaledupa (Pet-Soede & Erdman, 2003). 37 species of mangroves have been 

documented within the WMNP. The mangroves of the WMNP are unusual as they are able to 

develop on shallow calcium carbonate-rich sediments that contain fossilised corals that restrict 

root formation (Cragg & Hendy, 2010). Mangrove habitats throughout Sulawesi have 

unfortunately been cleared for timber or to create brackish aquaculture ponds (Whitten et al., 

1987). Around Hoga and Kaledupa, large areas of mangroves have been cleared over the last 30 

years for timber, fuel, and to accommodate the increasing populations.  

Seagrass beds dominate the intertidal zones of the WMNP, with numerous beds 

extending for several kilometres (Whitten et al., 1987). The two dominant species found in the 

seagrass beds of the WMNP are: Thalassia hemprichii and Enhalus acoroides (Unsworth et al., 

2007). However, a further seven species (Thallasodendron cilliatum, Halodule uninervis, 

Halophila spinulosa, Halophila ovalis, Halophila decipiens, Cymodocea rotundata, Syringodium 

isoetifolium) have been noted within the region. Like most intertidal areas of the Indo-Pacific, 

seagrass beds in the WMNP experience vertical zonation down the shore (Unsworth et al., 

2007). Seagrass beds are an important fishing location for the local communities and when in 

continuum with mangroves and reef environments they support significantly higher fish densities 

(Salinas De León, 2006). Unfortunately, seagrass beds are often overexploited locally with 

communities harvesting fish stocks and exposed invertebrates at low tides (Clifton, 2010).  

Hoga and Kaledupa Islands coral reefs – The Wakatobi district is located within the 

Coral Triangle and contains 600 km
2
 of the most biodiverse coral reefs in the world, with over 

350 species of hermatypic corals and 590 species of fish (Figure 1.7, Pet-Soede & Erdmann, 
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2003). From 2002 to 2007 hard coral cover for the WMNP fell by an average of 45 % for all 

study sites except Hoga, this suggested that local point sources were to blame for the decrease 

(McMellor & Smith, 2010). Overall, the reefs have experienced little impact from coral 

bleaching, likely due to cool water upwelling from the south (Tun et al., 2004) and seasonal 

temperature fluctuations increasing thermal tolerance. During the 2010 El Niño-La Niña event, 

the reefs around Wakatobi showed a high tolerance to prolonged thermal stress with only sub-

lethal bleaching documented, primarily on the branching Acropora spp. (Smith/Suggett, 

Unpublished data, pers. Comm). Certain reefs have been damaged by the illegal practice of blast 

fishing and other reefs close to local Bajo villages experience higher impact and exploitation.  

Hoga Island Wakatobi marine protected areas – The WMNP was established in 1996 

and covers 1.39 million ha making it the second largest national park in Indonesia (Tomascik et 

al., 1997). Unfortunately, the WMNP has historically been regarded as having ineffective 

enforcement, inappropriate zonation, insufficient funding and a lack of community support in 

management activities (Elliott et al. 2001). More recently however, several organisations have 

worked with the National Marine Park authorities to develop the area’s management and the 

added value of the WMNP has come from its worth as a ‘living laboratory’. Operation Wallacea 

and other NGOs have supported significant scientific research projects in the region. 

Collectively, this has resulted in the designation of the WMNP as a World Biosphere Reserve in 

2012. The biosphere reserve is recognised under UNESCO’s Man and the Biosphere programme 

and it acknowledges the site as an area of excellence, with sound science and local community 

efforts to conserve and preserve biodiversity (UNESCO, 2014).  
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Figure 1.7| A photograph of the coral cover on the reef crest of Hoga’s reefs, southeast 

Sulawesi, Indonesia. The picture was taken in 2014 on a site known locally as Pak Kasims off 

the north coast of Hoga.  
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1.7| Thesis aims  

Coral reefs are threatened by OA. However, there are habitats (e.g. seagrass and mangroves) that 

house corals where conditions already are considered representative of the future under climate 

change. The distribution of these habitats across bioregions in tropical reef locations makes them 

a potentially important management option for corals threatened by climate change. However, 

the ability of corals to expand their niches into these environments, and the metabolic cost of 

living in these habitats is entirely undescribed. Similarly, whether the biogeochemical conditions 

of non-reef habitats, like seagrass beds and mangroves, are able to provide an ecological service 

in the form of refugia against OA is unresolved. The main aims of this thesis were therefore to: 

1. Ascertain the natural levels of pH variability corals are already exposed to in reef and 

non-reef habitats;  

2. Understand the ability of corals to persist in non-reef habitats; 

3. Know the metabolic (photosynthesis, respiration and calcification rates) cost for 

dominant coral species living in non-reef habitats;  

4. Understand whether corals living in non-reef habitats that have highly-variable pH 

experience the same metabolic (photosynthesis, respiration and calcification rates) 

response as corals from a more stable reef environment when subjected to pH and 

temperature stress predicted under future climate change.  

In addressing these aims, a novel evaluation will be conducted to assess whether the local 

chemistry of non-reef systems can act as a buffer against future OA (see Chapter 6).  
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To achieve the thesis aims a systematic four-part approach was adopted; this approach is 

presented as each of four separate data chapters, all of which have been submitted or are in the 

final stages of preparation for submission, to peer review Journals: 

1) Chapter 2: Methodological development was undertaken to determine the appropriate 

water sampling procedure necessary to capture the natural spatial and temporal variability 

in carbonate chemistry. A novel in situ respirometry chamber was also developed to 

assess the metabolic activity (photosynthesis, respiration and calcification) of corals.  

Camp E, Krause S, Freitas L, Naumann MS, Kikuchi R, Smith DJ, Wild C, Suggett DJ. The 

"Flexi-Chamber": a novel cost-effective in situ respirometry chamber for coral physiological 

measurements. PLoS One (Accepted). 

2) Chapter 3: A low biodiversity Atlantic Ocean site was used to assess in detail the spatial 

and temporal variability in carbonate chemistry, and to evaluate the biological versus 

abiotic control of non-reef habitats and the rates of photosynthesis, respiration and 

calcification of corals living within them. 

Camp E, Lohr K, Dumbrell A, Manfrino C, Suggett DJ, Smith DJ. Coral recruitment into non-

reef habitats: Consideration for coral refugia. Marine Ecology Progress Series (Final draft).  

3) Chapter 4: To ascertain commonalities in the physiological responses of corals existing in 

non-reef habitats, three sites that were genetically disconnected and ranged in background 

diversity were compared. 

Camp E, Suggett DJ, Gendron G,
 
 Jompa J, Manfrino C, Smith DJ. Pre-conditioning and 

buffering services of mangroves and seagrass beds for corals threatened by climate change. 

Global Change Biology (In review).  
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4) Chapter 5: The impact of future predicted changes in temperature and pH on the 

physiological responses of corals pre-adapted to habitats of differing inherent 

environmental variability was assessed by superimposing temperature and pH changes 

estimated for 2100 on top of the natural diurnal oscillations of each habitat through a 

laboratory manipulation study.  

Camp E, Smith DJ, Evenhuis C, Enochs I, Suggett DJ. The roles of temperature and pH in non-

reef habitats on coral calcification and metabolic activity: Can marginal systems buffer against 

change? Proceedings of the Royal Society B (Final draft).  

A final general discussion (Chapter 6) considers these outputs to evaluate the role of non-reef 

habitats in providing some form of refuge for corals to future climate change. The discussion 

also considers what drives variability of non-reef habitats and how this variability may itself be 

changed in the future. The discussion considers the future for corals and coral reefs and 

concludes by identifying points for consideration for future OA research.  
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1.8| Thesis structure 

The thesis studies different non-reef habitats that house corals and have natural variability in 

carbonate chemistry to: (i) determine the appropriate sampling regime to capture accurate and 

precise carbonate chemistry and coral mertabolic activity data (Chapter 2); (ii) understand the 

levels of variability corals are already exposed to within these systems (Chapters 3 & 4); (iii) 

determine which corals are currently living in these non-reef habitats (Chapters 3 & 4); (iv) 

measure what the metabolic cost is for the coral species found living in non-reef habitats 

(Chapters 3 & 4); (v) understand whether corals living in non-reef habitats experience the same 

metabolic cost as corals from a more stable reef environment when subjected to pH and 

temperature stress predicted under future climate change (Chapter 5). The thesis will then 

summairse the main findings and will include a discussion where the role of non-reef habitats to 

act as refugia to future climate change is considered (Chapter 6).  
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Chapter 2| Methodology for capturing the 

variance of carbonate chemistry and 

inherent metabolic activity of corals within 

reef and non-reef systems  

Part of this chapter is in review in PLoS One as the manuscript: The “Flexi-Chamber”: a novel 

cost-effective in situ respirometry chamber for coral physiological measurements. 

 

2.1| Introduction 

Assessing the variability of carbonate chemistry parameters between habitats fundamentally 

depends on accurate and precise measurements from a highly resolute sampling approach. Such 

an approach needs to critically capture the environmental mean and variance of any given 

habitat. Determination of carbonate chemistry parameters within ocean acidification (OA) 

studies form the basis for assessing the biological response of systems and species to future 

predicted levels of CO2 (Ribas-Ribas et al., 2014). Thus, the integrity of the data collected is 

imperative in ensuring maximum confidence in the results obtained. The Carbon Dioxide 

Information Analysis Centre (CDIAC) protocol and the Dickson et al. (2007) Guide to Best 

Practice for Ocean CO2 Measurements provide guidelines on the levels of accuracy and 

precision within carbonate chemistry measurements that methods should strive for, as developed 

by the international community attempting to optimise and standardise sampling practice.  

 Similarly, when developing new methods and sampling techniques, it is imperative that 

their reliability is tested and that their outputs are compared to established methods that are 

considered the current “gold standard”. Current in situ respirometry chambers typically require 

colony removal and are rigid vessels requiring artificial mixing to disrupt the outer coral 
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boundary layer (McCloskey et al., 1978). They are often expensive and difficult to travel with 

due to the fragility of transporting glass/plexi-glass vessels and their often large size for 

deployment, which limits the scale and resolution with which respirometry data can be 

generated. Established chambers are also typically a fixed size and thus a range of chambers may 

be necessary, or experimentation would otherwise be limited to a targeted organism size. The 

size of the chamber (i.e. volume of the incubation medium) relative to the organism to be 

incubated is critical in order to balance: (i) maximised signal strength as compared to, (ii) 

minimising potential toxicity via hypoxic or anoxic conditions (Orr et al., 2014). Thus, there has 

remained a long-standing need to develop a low-technology, cost-effective, non-destructive 

respirometry vessel to measure in situ coral metabolism. Note that metabolism throughout this 

thesis will refer to the physiological processes of photosynthesis, respiration and calcification. 

The objectives of this chapter are therefore to:  

(1) Develop a discrete water sampling regime to capture the spatial and temporal pH 

variability of reef habitats; 

(2) Establish a discrete sampling method for pH and total alkalinity (TA) that meets 

CDIAC standards; 

(3) Construct a novel in situ bag respirometry chamber to test coral metabolism 

(respiration, photosynthesis and calcification) and verify against an established technique.  

Through meeting these objectives the core methods for assessing both the carbonate chemistry as 

well as coral metabolic properties used throughout Chapters 3 through 5 are established. 
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2.2| Materials and Methods 

Chapter two deals with a variety of methodological testing; figure 2.1 illustrates the layout of the 

material and methods section, whose format is followed in the results section.  

 

Figure 2.1| Flow-diagram of the material and methods section of chapter two. The sub-

sections of each chapter are indicated to clarify the outline of the chapter. The results section 

follows this lay-out.  

 

2.2.1| Study locations 

Water sampling regime – Little Cayman, Cayman Islands, British West Indies (BWI) was used 

as the study location to identify an appropriate sampling regime to capture the spatial and 

temporal variability in pH of reef and non-reef coral habitats (see Chapter 1, section 1.6.1). 

Sampling took place between November 2011 and January 2012. Preliminary pH sampling was 

conducted around the five main lagoons of Little Cayman, known locally as: Grape Tree Bay 
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(GTB), Mary’s Bay West (MBW), Mary’s Bay East (MBE), Charles Bay (CB) and South Sound 

(SS) (Figure 2.2). High resolution pH sampling was conducted in a dense seagrass biomass site 

within GTB. All sites were 2-4 m in depth and situated away from any freshwater inputs. Sites 

experienced a tidal cycle range of 0.12-1.00 ± 0.03 m during sampling. 

 Respirometry chamber development – All laboratory testing of the Flexi-Chamber design 

was conducted using the aquarium facility at the Coral Reef Research Unit, University of Essex 

(January 2013- December 2014). Field validation was conducted in Salvador (Brazil) from 

March 26
th

 to April 2
nd

 2014 (see Chapter 1, section 1.6.2). The study site was a near-shore 

fringing reef located at the entrance of Todos os Santos Bay adjacent to the Yacht Clube da 

Bahia harbour (Figure 2.3) at a depth of 3-5 m.  

 

 

Figure 2.2| Preliminary sampling sites around Little Cayman, Cayman Islands, BWI. 66 

sites (yellow dots) were sampled diurnally between November 2011 and January 2012 to identify 

different habitats with natural pH variability. pH was directly measured on discrete water 

samples collected at each site.  
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Figure 2.3| Study site location in Todo os Santos Bay (TSB) (modified from Ramos et al., 

2010). The study site was located at the entrance of TSB in depths between 3 and 5 m adjacent to 

the Yacht Clube da Bahia harbour in Salvador, Brazil.  

 

2.2.2| Discrete water sampling regime and approach  

To identify the spatial pH variability of different habitats, diurnal (one hour before sunrise and 

one hour before sunset) samples were collected at several sites (n= 66) inside and outside of the 

five main lagoons of Little Cayman (Figure 2.2). Basic abiotic data (depth, temperature, salinity, 

water velocity) was collected for each lagoon during the sampling period (Table 2.1). To 

quantify the resolution of sampling necessary to capture the diurnal variability in highly variable 

pH habitats, three 24 h sampling sessions were conducted in the seagrass habitat of GTB. pH was 
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determined every hour over the 24 h period starting at sunrise (ca. 7:00 h). Finally, to determine 

the extent of pH variability around sunrise and sunset, and thus whether initiating sampling at 

sunrise was the best time to capture the diurnal range in conditions, pH measurements were 

collected every 15 min for a 3 h window around sunrise and sunset to assess differences in mean 

and variability (coefficient of variation (Cv)) in pH values. 

 

Table 2.1| Abiotic data for the five main lagoons of Little Cayman. Data (mean ± 

standard error, SE) was obtained during water sample collection between November 

2011 and January 2012 (n= 66). 

Lagoon Dominant 

substrate* 

 

Depth  

(m) 

 

Salinity 

(ppm) 

 

Temperature 

(°C) 

 

Water 

velocity  

(cm/s) 

Grape Tree 

Bay 

Seagrass 1.4 ± 0.01 35 ± 0.01 26.3 ± 0.03 14 ± 0.01 

Mary’s Bay 

East 

Seagrass 1.6 ± 0.03 35.5 ± 0.01 26.4 ± 0.02 12 ± 0.04 

Mary’s Bay 

West 

Seagrass 1.9 ± 0.02   35 ± 0.01 26.4 ± 0.01 11 ± 0.02 

Charles Bay Seagrass 1.1 ± 0.01 35 ± 0.01 26.3 ± 0.01 13 ± 0.01 

South Sound Hard-

ground/sand 

1.9 ± 0.01 35 ± 0.01 26.2 ± 0.02 11 ± 0.01 

*Dominant substrate was assessed from GIS maps provided by the Cayman Islands 

Department of the Environment.  

 

Discrete water samples were collected between 0.5-1 m directly into 250 ml acid washed 

(2 % HCL) borosilicate glass bottles (Manzello, 2010). Immediately before sample collection the 

bottles were rinsed twice with the sample water as recommended by CDIAC and filled to 

overflow to eliminate headspace for gas exchange (Dickson et al., 2007). Mercuric chloride 

(0.05 ml of saturated (aq) solution) was added as the standard operating procedures for CDIAC 

to poison the samples and prevent any biological activity altering the carbonate chemistry 

parameters before measurement (Dickson et al., 2007). Stoppers were inserted to ensure a gas 
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tight seal and where possible, samples were stored in the dark until returned to the laboratory 

(within 30 min) for further analysis.   

During every sampling period, an additional seawater sample (250 ml) was collected to 

allow immediate measurements of pH, temperature, and salinity to obtain the in situ conditions 

needed for calculation of the carbonate parameters. The ORION 5 Star meter (model A329, 

Fisher Scientific, USA) with a pH/temperature probe (pH accuracy within ± 0.002 pH units, 

temperature accuracy within  ± 0.1°C; combination probe Ross Ultra, Fisher Scientific, USA) 

and a handheld refractometer to measure salinity (accuracy within ± 0.5 ppm;  model RF20, 

ExTech, USA) were used to obtain these measurements (pH measured in NBS scale). pH was 

measured in the field to ensure that it did not drift before samples were taken in the laboratory. 

Water flow was also measured using a mechanical flow meter (model 2030 series, General 

Oceanics, USA). All laboratory and field equipment were calibrated as recommended by their 

instruction manuals and/or CDIAC protocols (Dickson et al., 2007).    

 

2.2.3| Carbonate chemistry determination 

pH was quantified on all samples returned to the laboratory using an Orion Ross Ultra Glass 

Triode Combination Electrode (accuracy ca. ± 0.002 pH units; Ross Ultra, Fisher Scientific, UK) 

using the potentiometric technique and the total scale (Dickson et al., 2007). The pH probe was 

calibrated at 25 °C using 2-amino-2-hydroxy-1-3-propanediol (TRIS)/ HCL and 2-aminopyridine 

(AMP)/HCL buffers in synthetic seawater with a salinity of 35 ppm. The buffers were made up 

in the laboratory following the CDIAC recommendations and had their pH defined as (Dickson 

et al., 2007):  
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TRIS (2-amino-2-hydroxy-1-3-propanediol) 

pH (s)TRIS = (11911.08 – 18.2499S – 0.039336S
2
 ) 

1

𝑇/𝐾
  – 366.27059 + 0.53993607S +              [1]             

0.00016329S
2 

+ (64.52243 – 0.084041S) ln (T/K) – 0.11149858 (𝑇/𝐾). 

 

AMP (2-aminopyridine)  

pH (s)AMP = (111.35 + 5.44875S) 
1

𝑇/𝐾
 + 41.6775 – 0.015683S – 6.20815 ln (𝑇 𝐾⁄ ) –                  [2] 

    log10 (1 – 0.00106S).       

 

From equations 1 and 2 the electrode response(s) was calculated: 

    s =  
𝐸𝐴𝑀𝑃−𝐸𝑇𝑅𝐼𝑆

pH (s)𝑇𝑅𝐼𝑆−pH (s)𝐴𝑀𝑃
                                       [3]                      

s is the buffer, S is salinity, T/K is temperature in Kelvin and E is the e.m.f of the cell. 

 

The electrode response was compared to the Nerst value (RTln10/f) to ensure that the difference 

was not above the acceptable difference of 0.3 % (Dickson et al., 2007).  The pH was then 

calculated: 

 

     pH(x) = pH(s) + 
Es−Ex

RTln10/f
                                 [4] 

Where x is the sea water sample. 

 An open-cell potentiometric titration procedure was used to measure TA on the same 

sample as pH (Dickson et al., 2007). The Gran method was used to determine the second end 

point of the carbonate system, from which TA was then determined: 
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 TA= 
(Normality of the titrant)∗(mL of titrant added to reach eq2)

(Sample Volume in ml)
                                     [5] 

 

TA of all samples was determined using a Titrino titrator (model 848, Metrohm, Buckingham, 

UK) or high precision burette (Fisher Scientific, USA). 0.1 N standardised HCL was used 

(Appendix 1). TA was measured with an accuracy and precision of ca. ≤ 2 mol kg
-1

. The 

remaining carbonate chemistry parameters (pCO2, TCO2, Ωarg) were calculated with CO2SYS 

using TA and pH as determined in the laboratory (Riebesell et al., 2010), in situ temperature and 

salinity, and sampling depth (m) (accuracy within ± 0.5 m) as a proxy for pressure (Lewis and 

Wallace, 1998). For CO2SYS the dissociation constants of Mehrbach et al. (1973) were used for 

carbonic acid as refined by Dickson and Millero (1987), and for boric acid (Dickson, 1990). 

Pressure effects, orthophosphate and silicate concentrations were assumed to be negligible (see 

Jury et al., 2010). 

  To check the validity of the seawater sample storage method, a number of samples (n= 

72) had their pH measured in the field and subsequently re-measured in the laboratory to check 

for any drifts. Samples were collected over the three 24 h sampling sessions in GTB, with three 

replicate samples collected every 3 h over the three 24 h periods. In addition, to test the precision 

of the pH and TA measurements, R charts were created, whilst  𝑋̅ charts were used to assess the 

stability of the measurements (Dickson et al., 2007). 15 sequential pH and TA measurements 

were taken on the initial 24 h sampling day in GTB to test the absolute differences of duplicate 

measurements to assess their precision. Over 15 sequential days, pH and TA were measured 

from a control sample collected from GTB on the initial day at 7:00 h to assess the stability of 

the measurement process. For each graph, an upper control limit (UCL), upper warning limit 
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(UWL), lower warning limit (LWL) and lower control limit (LCL) were calculated as shown 

below: 

 𝑋̅ Charts: x is the mean value, s is the standard deviation  

     UCL = x + 3 s              [6]

 UWL = x + 2 s             [7] 

     LWL = x – 2 s             [8] 

     LCL = x – 3 s             [9] 

R charts: 𝑅̅ is the average range and is related to the short-term standard deviation: 

UCL = 3.267 R           [10] 

 

UWL = 2.512 R           [11] 

 

LWL = 0           [12] 

 

LCL = 0           [13] 

 

The recommendations by CDIAC are that 95 % of the plotted points should fall between the 

UWL and LWL, and rarely should any fall outside of the control limits. TA was also compared 

to Dickson Standards (Scripps University) to test accuracy against a stable reference material.  

 A comparative analysis was finally conducted on the calculated pCO2 values using 

CO2SYS to a direct pCO2 measurement technique. Water samples were collected as previously 

described, every 3 h starting at sunrise (ca. 7.00 h) over the three 24 h sampling days in GTB (n= 

24). For each sample, pH and TA were measured and pCO2 derived using CO2SYS. The direct 

measurement technique used a custom-built gas diffusible membrane (standard silicone tubing, 

0.31mm ID-0.64mm OD, Helix Medical, USA) attached to an external infrared gas analyser 

(IRGA, Li-820, Li-COR, Nebraska, USA) with a pump flow through system (see Suggett et al., 

2013).  The gas analyser was also attached to a notebook computer with Li-820 software.  Each 
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sample was transferred to a custom-built chamber and analysed for 60 min to allow the probe 

time to stabilise. A water bath was used to maintain the sample within 0.1 °C of the in situ 

temperature. After 60 min the stable probe reading for pCO2 was used for comparison with the 

pCO2 value derived from CO2SYS. To ensure that the direct measurement set-up was gas-tight, 

it was calibrated with CO2 free air, created by stripping the CO2 from air using Sodalime. If the 

computer readout from the IRGA read zero, then it could be confirmed that the direct 

measurement set-up was gas-tight and reading accurately.  

   

2.2.4| In situ, non-destructive respirometry chamber design  

 In the following sections, a novel in situ, low-cost, high thorough-put incubation chamber, 

termed the Flexi-Chamber is described and tested, both in the laboratory and field.  

Flexi-Chamber description – A transparent, gas-impermeable, 3 L urine bag (Vital Care, 

Essex) with a built-in heat-seam secured valve, formed the basis of the Flexi-Chamber (Figure 

2.4a). The bottom of the bag was cut to create a fringe that was secured around the base of the 

test colony. A watertight seal was created by using a customised neoprene cuff and fastening 

(Figure 2.4a). The neoprene cuff was customised to fit securely around the base of the test 

colony, thereby minimising the possible contribution of the surrounding substrate and/or water 

column to the metabolic signal of the test specimen (Figure 2.4b). The internal water volume was 

adjusted to accommodate corals of different sizes: larger coral colonies (ca. 5 cm diameter) 

required the entire volume of the chamber, whereas smaller colonies (ca. 2-3 cm diameter) 

required a reduced volume (in this case 60 % of the bag volume) to optimise the metabolic 

signal.  
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Figure 2.4| The Flexi-Chamber design: A) A schematic diagram of the Flexi-Chamber: A is 

the fastening mechanism, B is the neoprene cuff around the base of the coral, C is the urine bag 

(Vital Care, Essex), D is standard silicon tubing used to create a water tight seal with the valve, E 

is the valve of the urine bag and F is the three-way-valve. Figure 2.4 B) An example of the Flexi-

Chamber set-up.  

 

Flexi-Chamber incubation procedure – Prior to any experimental use all Flexi-Chambers 

were acid washed (2 % HCL). For each deployment, three Flexi-Chambers were filled with in 

situ water without any coral colonies to act as a control to correct for any planktonic metabolic 

activity within the surrounding water. Whilst colonies where haphazardly selected within any 

one habitat, colonies had to be ca. 3-5 cm in diameter, and chosen with no visible signs of 
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disease, bleaching, loss of colour (relative to the site mean), or excessive algal overgrowth 

(McCloskey et al., 1978). Colonies also needed a suitable surrounding substrate to allow the 

attachment method, i.e. a basal area raised from the substrate for chamber attachment. 

Photographs were taken of each colony before incubations (Canon G12 in an underwater 

housing, Canon, WP-DC 34, Amazon, England).  

Water was extracted from the chamber via the built-in three-way valve mechanism, 

which could be opened or closed to sample the internal water volume (Figure 2.4a). In this way, 

water could be conveniently extracted via a syringe without cross-contamination of the 

surrounding seawater. Two 100 ml syringes were attached to the three-way valve system; the 

first to remove ca. 30 ml of excess water from the bags valve which was discarded, and the 

second to extract 100 ml of the seawater sample from inside the Flexi-Chamber. For 

standardisation of the physiological measurements, water volume inside the chamber was 

accurately determined as the total of the water volume removed during the sampling process 

(100 ml) and the remaining water volume within the chamber (typically 950-1000 ml) 

determined by subsequent syringe removal of water until the bag was emptied. The swivel lock 

of the syringe to the valves as well as the watertight nature of the bag (see leakage testing) 

ensured that the water removed from the Flexi-Chamber was not contaminated with that from the 

surrounding seawater. 

Sample water was syringed from each Flexi-Chamber and immediately transferred to pre-

washed and labelled 250 ml borosilicate glass bottles (Naumann et al., 2013). Sample bottles 

were kept at ambient temperature and under dark conditions until analysis (within 30 min of 

collection, as per Dickson et al., 2007). Chambers were left in situ for 3 h. After this period, 

water samples were re-collected from each chamber and stored as previously described. After all 
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samples had been collected, chambers were removed from each colony, the water was flushed 

with ambient water, and chambers were re-secured; control chambers were treated in exactly the 

same way. The whole process was then repeated at 3 h intervals for the duration of the study 

period. For the procedure validation, dark-cycle metabolism was examined by artificially 

darkening (opaque black polyester material) the Flexi-Chambers, but the technique could be used 

equally well during night-time sampling (see Chapter’s 3 & 4).  

Analytical procedures – pH, TA, temperature and salinity of each sample were measured 

as previously described for the carbonate chemistry determination (see section 2.2.3). To 

determine the oxygen (O2) content (accuracy ca. 0.05 mol/L ) of each sample, a 100 ml aliquot 

of each water sample was transferred into a sealed chamber in the laboratory, where an O2 and 

temperature probe (O2 probe: Foxy-R, Temperature Probe: NeoFox TB, Ocean Optics, England) 

were attached to a bench-top fluorometer (NeoFox-FT, Ocean Optics, England) via a bifurcated 

fibre assembly (BIFBORO-10000-2, Ocean Optics, England) and attached to a PC running the 

O2 sensing software (NeoFox Viewer, Ocean Optics, England). Samples were run in a climate-

controlled laboratory until the O2 concentrations stabilised. All probes were calibrated according 

to the Ocean Optics instruction manual.  

Measurements of photosynthesis, respiration and calcification  – For all samples, 

calcification was determined via the TA anomaly method (Jury et al., 2010) corrected for any 

changes in TA of the seawater controls, to yield hourly calcification rates (G, mmol CaCO3 m
2
 h

-

1
) as: 

𝐺 (𝑡)  = [
(∆𝑇𝐴∙𝜌∙0.5) ∙𝑉

𝐼𝑡 ∙𝑆𝐴
]/1000     [14] 

Where TA= total alkalinity (mol kg
-1

), V = volume of water (L) surrounding the coral within 

the respirometry chamber, It (h) is incubation time, SA is the coral surface area (m
2
), is the 
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density of seawater and 0.5 accounts for the decrease of TA by two equivalents for each mole of 

CaCO3 precipitated. Calcification rates were not corrected for any changes in nutrients as 

Langdon et al. (2000), with Chisholm and Gattuso (1991) demonstrating that the assumptions of 

the TA method without the correction for nutrients are correct in obtaining accurate calcification 

rates for tropical coral reefs. 

Net photosynthesis and respiration rates were determined for several time points (t) 

throughout the light and dark cycles respectively as the change in O2 in the respirometry 

chamber corrected for any changes in O2 of the seawater controls to yield hourly rates (mmol O2 

m
2
 h

-1
) as: 

𝑃𝑁 𝑎𝑛𝑑 𝑅 (𝑡) =  [
(∆𝑂2) ∙𝑉

𝐼𝑡 ∙𝑆𝐴
] /1000                              [15] 

Integration of all photosynthesis and respiration measurements during the light (dark) yielded the 

daily daily photosynthesis (PN) and respiration (mmol O2 m
2
 d

-1
) as: 

𝑃𝑁 =  ∑ 𝑃 (𝑡) ∆𝑡
𝐿𝑖𝑔ℎ𝑡−𝑠𝑡𝑎𝑟𝑡
𝐿𝑖𝑔ℎ𝑡−𝑒𝑛𝑑  and 𝑅 =  ∑ 𝑅 (𝑡) ∆𝑡𝐷𝑎𝑟𝑘−𝑠𝑡𝑎𝑟𝑡

𝐷𝑎𝑟𝑘−𝑒𝑛𝑑                            [16] 

Gross photosynthesis (PG) was calculated by the addition of PN and R. All values of R are 

subsequently multiplied by the factor -1 to convert to positive values. The surface area of all 

colonies was determined by the advanced geometric technique (Naumann et al., 2008). 

Measurements of length and diameter were taken in situ using callipers, and the respective 

surface area calculations were calculated using the area formula of the most fitting geometric 

shape. 

Flexi-Chamber method validation –Acropora sp. coral specimens supplied by Tropical 

Marine Centre Ltd. (Chorleywood, UK) was the test organism since this genus is present across 

bioregions and widely used in physiological process measurements (Connell, 1973). Five 

colonies were used and were secured into 1 cm
2
 PVC plugs with a non-toxic epoxy resin 
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(Milliput-Standard) and left to acclimatise for 24 h prior to experimentation. Colonies were not 

fragmented and therefore did not need to heal before experimentation. Aquarium tanks were 

supplied with Tropic Marine PRO REEF salt-based seawater supplemented with NaHCO3 

maintained at 28.0 ± 0.9 °C (using Aquael Neo Heaters, IPX8, Poland), 35 ppm, a 4 L min
-1

 flow 

rate circulating between the tanks and a common biological sump of Fijian live rock (Tropical 

Marine Centre Ltd., Chorleywood, UK) and were kept under daylight conditions (ca. 80.2 mol 

photons m
2
 s

-1
) using 150 W Metal-Halide lamp (Arcadia Products PLC, Redhill, UK). A series 

of laboratory tests were conducted:  

Water extraction – To determine the average error of the water extraction method a Flexi-

Chamber was filled with exactly 250 ml of seawater and subsequently extracted via the syringe 

method described above; the volume removed was measured and subtracted from the 250 ml to 

quantify the amount of seawater unaccounted for. The process was repeated 30 times to gauge 

the mean and error for this step. 

Temperature – Possible temperature drifts as a result of incubation were tested. A Flexi-

Chamber was filled with synthetic seawater and maintained in an aquarium of a known constant 

temperature of 28.0 ± 0.9°C (Aquael NeoHeater, IPX8, Poland). The internal temperature within 

the Flexi-Chamber was then determined every hour over an 8 h period (repeated three times) by 

opening the valve and inserting a temperature probe (NeoFox TB, Ocean Optics, England). An in 

situ temperature comparison between the Flexi-Chamber and surrounding seawater was also 

conducted in Salvador, Brazil, with a HOBO Pendant Temperature/Light Loggers (model UA-

002-64, Microdaq, USA) set to log every 30 s, placed inside the Flexi-Chamber, and one outside 

the Flexi-Chamber for three 24 h periods. 
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Water flow – To test the extent of water movement (circulation) within the Flexi-

Chamber, the relative acceleration in the X, Y and Z planes (Figure 2.5a) was determined inside 

and outside of the Flexi-Chamber during a 1 h period (n= 3) using a G Pendant HOBO logger 

(UA-004-64; Microdaq, USA) set to log every second. The logger had tethered anchored beams 

in fixed locations that had centre plates. As the beams move, the centre plate is displaced 

creating a change in capacitance proportional to the applied acceleration (Onset, 2012). This 

change in capacitance is converted to an output voltage which is processed with calibration data 

to produce an equivalent acceleration value where 1G =9.8 m/s
2
. Prior to launch, both loggers 

were inter-calibrated by comparing their readings relative to one another when moving them 

through a series of set orientations (Figure 2.5b) (Onset, 2012).  Both loggers were initiated at 

the same time and set to log at 1 s intervals. To establish a reading in all three planes, the logger 

had to be free to move without touching the inside of the chamber. As the logger is positively 

buoyant, a 6 cm length of cable of 1 mm thickness was used to tie the logger to a weight, 

resulting in the HOBO being orientated upside down. A small piece of glass was then attached to 

the underside of the logger to make it neutrally buoyant so that it sat centrally within the Flexi-

Chamber. High water velocity could cause the HOBO to make contact with the Flexi-Chamber, 

constraining its movement and thus the acceleration; however this was never observed (as per 

Camp observation) and any restrictions associated with the cabling would influence both HOBOs 

equally and is therefore negligible.  
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Figure 2.5| The HOBO Pendant G Logger. A) The orientation of the three orthogonal axis. 

The HOBO logger measures acceleration along three planes: X, Y and Z. When the logger is 

orientated as shown, the direction of the three planes are as illustrated. B) The calibration 

orientations used for the two Pendant G HOBO Loggers.  

Lighting – Light penetration through the Flexi-Chamber was measured using a 

spectroradiometer (M/A-COM, model SR9910-UF, Lamington, Scotland), and converted from 

energy (W/m
2
)
 
to photons (µmol m

2
 s

-1
) by multiplying by the light source coefficient (Kirk, 

1994). Percent transmission was then determined as the amount of light transmitted through the 

respirometry chamber relative to no chamber present. Artificial lighting (240-800 nm) consisted 

A 

B 
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of LED arrays covering the Photosynthetically Active Radiation (PAR) (400-700 nm) spectra 

(Heliospectra, Göteborg, Sweden) and UV fluorescent 20 w tubes (Philips, Netherlands) 

covering UVB and UVA radiation (240-400 nm).  

Leakage testing – To ensure that a watertight seal could be created around coral colonies, 

the Flexi-Chamber was secured around a colony of Acropora sp. and natural red food colouring 

was syringed into the Flexi-Chamber via the three-way-valve mechanism. Five replicate colonies 

were sampled. The Flexi-Chamber was situated inside an aquarium with a pendant 

temperature/light HOBO placed inside the aquarium and Flexi-Chamber. An initial 30 mL 

aliquot of water was syringed out of the Flexi-Chamber and also from the surrounding aquarium 

water. The Flexi-Chamber was left in the aquarium for 3 h, before another water sample was 

collected from inside the Flexi-Chamber and aquarium. Absorbance of each sample was then 

measured using a USB 2000
+
 Spectrometer (Mikropack Halogen Light Source (HL-2000), 1 cm 

Cuvette Holder, serial fibre optic probes (727-733-2447) Ocean Optics, England) to determine if 

any dye had transferred from inside the Flexi-Chamber to the surrounding aquarium water.  

 Gas permeability – Whilst the Flexi-Chamber material is designed to be gas 

impermeable, we verified negligible permeability for both CO2 and O2 by filling five Flexi-

Chambers with in situ seawater (Salvador, Brazil). Mercuric chloride (as per CDIAC protocols) 

was added to prevent any further biological activity within the water and an initial 100 ml water 

sample was taken from each Flexi-Chamber. Flexi-Chambers were then secured in situ and left 

for 3 h. After the 3 h period, an additional 100 ml of water was removed from each Flexi-

Chamber (end sample). For the initial and end samples taken, O2 and CO2 were measured. O2 

was measured using Foxy-R O2 probe (Ocean Optics, England) and CO2 was measured using a 
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custom-built gas diffusible membrane attached to an external infrared gas analyser (see Suggett 

et al., 2013). 

Oxygen toxicity – Prior to any incubation procedure, a sensitivity analysis is first required 

to establish the optimum vessel size-to-organism biomass ratio, relative to the flushing time 

procedure to prevent anoxic or hypoxic conditions; time taken to reach anoxic or hypoxic 

conditions will be highly variable as a result of inherent differences in metabolism across taxa 

and growth environments. A benefit of the Flexi-Chamber is that the internal volume of water 

can be adjusted to accommodate different volumes of water to help mediate the balance of 

biomass-to-water required. An example of the sensitivity analysis required and how the Flexi-

Chamber can easily be adjusted to accommodate different water volumes was undertaken on 

Acropora sp. 18 colonies of Acropora sp. of similar size (mean ± SE) (12 ± 0.13 cm
2
) were 

enclosed in the Flexi-Chambers with a volume of either 250 ml, 500 ml, 750 ml, 1000 ml, 1250 

ml or 1500 ml of surrounding seawater to compare when anoxic or hypoxic levels were reached. 

Chambers were maintained in the aquaria under light-dark cycles (conditions previously 

described). Initial water samples were collected to measure the O2 levels at time zero. An aliquot 

of 30 ml of seawater was then removed every hour over a 4 h period to examine for changes in 

[O2].   

Additional stress factors –To ensure that no unforeseen factors were stressing the coral, 

such as chemicals leaching from the plastic, we further incubated Acropora sp. nubbins (n= 5) in 

separate Flexi-Chambers for 9 h with regular 3 h flushing to observe for any visible signs of 

stress, in the form of mortality, excessive mucus formation or loss of pigmentation. 

Zooxanthellae counts were taken from tissue stripped from the base of each nubbin (Berkelmans 

& van Oppen, 2006). Coral tissue was removed using a water pik (Waterpik Inc, England) in 5 
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mL of GF/F–filtered seawater, and the area of tissue removed was quantified via the advanced 

geometric technique (Naumann et al., 2008). The tissue slurry was homogenised using a pipeta 

pasteur and a small aliquot subsequently taken for cell quantification via microscopy using a 

neubauer haemocytometer (Berkelmans & van Oppen, 2006) 

Flexi-Chamber practical application – The performance of the Flexi-Chamber design 

was compared in situ with that of an established glass respirometry vessel routinely used in 

metabolic activity measurements (Naumann et al., 2013). Colonies of the commonly occurring 

Siderastrea cf. stellata were sampled from the entrance of Todos os Santos Bay in 3-5 m water 

depth. In total 40 colonies of S. cf. stellata were examined for P, R and G throughout a one-week 

period. All incubations occurred at a water depth of ca. 2-3 m. For 30 of the colonies, 

measurements using the Flexi-Chamber and glass chamber were made on separate colonies (15 

colonies per chamber type). For the remaining ten colonies, metabolic measurements for both 

chambers were made on the same colony but for different days, with a minimum rest period of 

24 h for any one colony between measurements, and random allocation to the initial chamber.  

Colonies tested in the glass chamber were removed from the seafloor at least 48 h prior to 

measurements (Naumann et al., 2013). During collection, all coral colonies were handled 

without any air exposure or direct tissue contact and gloves were worn throughout the handling 

process. Any extensive epibionts or endolithic boring organisms were excluded and any 

remaining overgrowth was cleaned using a soft toothbrush. Similarly, any air bubbles or large 

particulates in the water were removed from the chambers, to minimise O2 fluxes from non-coral 

sources (McCloskey et al., 1978). Colonies were chiselled from their substrate and transferred 

using individual zip-lock bags to avoid mechanical damage during transport (Naumann et al., 

2013). The chambers were fixed to a custom-made metal frame, to facilitate transport and rapid 
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deployment in situ (Figure 2.6). Chamber incubations were conducted under no-flow conditions 

so hourly manual stirring (magnetic stirring bars) was necessary to break-up the boundary layer 

(Patterson et al., 1991).  

In this case study, a 3 h light incubation was followed by a 3 h dark incubation. All 

incubations were run around the daylight maximum (ca. 11:00-14:00 h) for the light incubations 

for PN and GL. Corresponding dark rates, i.e. R and GD, were obtained during daylight hours by 

covering the Flexi-Chambers with an opaque black polyester material bag. During the dark 

sampling periods, the Flexi-Chambers were left for 1.5 h before the 3 h sampling session to 

ensure steady state respiration rates that were consistent with prolonged maintenance in darkness 

(Appendix 2). 

 

Figure 2.6| Example of a traditional incubation procedure. A photograph of the glass 

respirometery chambers on the metal frame used in incubations in Salvador, Brazil.  

 

2.2.5| Statistical analysis 
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Discrete water sampling regime – An independent t-test was conducted to compare pH 

variability (Cv) for sites inside versus sites outside of the lagoons. To establish the extent of 

spatial variability, the pH of all of the major lagoons was compared using an ANOVA with post-

hoc Tukey HDS. To determine the appropriate sampling frequency to capture the mean Cv in pH 

of highly variable habitats, the values of mean pH and Cv were compared using an ANOVA with 

post-hoc Tukey HDS for different sampling frequencies (diurnal data (2-points), data collected 

every 6 h (4-points), 4 h (6-points), 3 h (8-points), 2 h (12-points) and 1 h (24-points). 

Coefficients of variation (CV) was determined as: 

     CV = 
𝜎

𝜇
            [17] 

Where σ is the standard deviation and is the mean. 

All parametric test assumptions were met, with the Levene’s test used to check for homogeneity 

of variance and qq-plots to assess the normality of the data. Tests were conducted in R software 

(R 237 Development Core Team, 2011).   

Verification of pH and TA analytical procedures – To verify that the pH measured in situ 

did not shift when re-measured in the laboratory, a Perason’s correlation was conducted in R 

software (R 237 Development Core Team, 2011). R and 𝑋̅ charts for pH and TA were visually 

assessed to see the placement of sample points on the graph in relation to the warning limits. 

Finally, the relationship between derived pCO2 values and measured pCO2 values were assessed 

using a linear regression conducted in R.  

Flexi-Chamber laboratory validation – Water velocity within the Flexi-Chamber was 

measured in three planes: X, Y and Z and compared inside and outside of the Flexi-Chamber 

using a t-test in SPSS 17 (SPSS Inc, 2008).  Paired t-tests were used to compare the start and end 

O2, CO2, mean Hobo light data, and zooxanthellae densities to assess whether there were any 
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differences between the start and end of incubations. The test assumptions for homogeneity of 

variance (Levine’s test) and normal distribution (Sharpiro-Wilk test) of the data were met. To 

test the integrity of the watertight seals, start and end absorbance for inside the Flexi-Chamber 

and in the aquarium were compared using a Pearson’s correlation conducted in R software (R 

237 Development Core Team, 2011). Similarly, temperature inside the respirometry chamber 

was compared to the surrounding water in situ using a Pearson’s correlation.  

Flexi-Chamber practical application – For the ten S. cf. stellata colonies whose P, R and 

G were compared using both chamber designs, a paired t-test was used to compare each 

metabolic variable. Differences in mean photosynthesis, respiration and calcification integrated 

daily rates for the remaining 30 S. cf. stellata were compared between the two respirometry 

chamber designs using an independent t-test.  
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2.3| Results 

2.3.1| Discrete water sampling regime and approach  

 Wide-scale sampling from the five main lagoons of Little Cayman identified minimal diurnal 

variability (range: 0.023 pH units) in pH outside of the lagoons, but large pH variability inside of 

the lagoons (range: 0.474 pH units) independent of site (t64 = -5.87, P= 0.001, Figure 2.7). Sites 

inside of the lagoons all exhibited similar mean and Cv pH with the exception of South Sound 

(SS), which had lower Cv (F4,61 = 3.24, P= 0.05, post hoc Tukey, P= 0.05) and mean pH (F4,61  = 

9.82, P= 0.01, post hoc Tukey, P= 0.05).   

 A 3 h sampling schedule for the high-variability pH habitats resulted in mean pH and Cv 

pH the same as higher resolution (1 h and 2 h) sampling frequencies (mean pH: F5,12 = 268.60, 

P= 0.001, post hoc Tukey, P= 0.001, Cv pH: F5,12 = 7.14, P= 0.001, post hoc Tukey, P= 0.001, 

Figure 2.8). Sampling at a 4 h, 6 h, and 12 h frequency did not capture either the daily pH Cv or 

mean pH with values significantly different to the higher resolution sampling periods (post hoc 

Tukey P= 0. 01, Table 2.2). 

 The high-resolution sampling around sunrise and sunset indicated that initiating sampling 

within a 30 min window around sunrise captured the greatest diurnal range in pH (Figure 2.9a). 

Sampling initiated at sunrise and using the 3 h sampling schedule meant that dusk sampling fell 

ca. 1 h after sunset. Around sunset pH changed rapidly with pH varying by 0.005-0.008 units 

between 15 min sampling increments (Figure 2.9b).  
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Figure 2.7| Preliminary diurnal pH sampling inside and outside of the five main lagoons 

around Little Cayman, Cayman Island, BWI:  A) sites outside of the lagoons, B) back-reef 

sites and C) sites inside of the lagoon. Lagoons are identified along the x-axis by their initials: 

Grape Tree Bay (GTB), Mary’s Bay West (MBW), Mary’s Bay East (MBE), South Sound (SS), 

and Charles Bay (CB). Sampling was conducted diurnally (1 h before sunrise and 1 h before 

sunset) between November 2011 and January 2012. The black-dots represent outliers at the 95 % 

confidence interval.  
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Figure 2.8| A comparison of mean and Cv pH obtained using different sampling 

frequencies for the high-variability pH habitats. Values for mean and coefficient of variation 

(Cv) pH were compared for different sampling frequencies: diurnal data (2-points), data 

collected every 6 h (4-points), 4 h (6-points), 3 h (8-points), 2 h (12-points) and 1 h (24-points). 

Data was collected from the seagrass of Grape Tree Bay located on the north coast of Little 

Cayman, Cayman Islands, BWI, and is averaged for three 24 h replicates. The grey dashed lines 

indicate when sampling points level out and there was no significant difference between mean 

and Cv pH values.  
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Table 2.2| ANOVA with post hoc Tukey HDS results for the frequency of 

sampling pH in highly variable pH habitats.  

Variable ANOVA Comparison Group 

(Sampling 

Frequency) 

Post hoc P-value  

Mean pH  F5,12= 268.60 

P= 0.001 

 

12h Vs 6h 

12h Vs 4h 

12h Vs 3h 

12h Vs 2h 

12h Vs 1h 

6h Vs 4h 

6h Vs 3h 

6h Vs 2h 

6h Vs 1h 

4h Vs 3h 

4h Vs 2h 

4h Vs 1h 

3h Vs 2h 

3h Vs 1h 

2h Vs 1h 

0.0010*** 

0.0010*** 

0.0010*** 

0.0010*** 

0.0010*** 

0.9941 

0.0020** 

0.0001*** 

0.0010** 

0.0010** 

0.0020** 

0.0010** 

0.0727 

0.6326 

0.6327 

 

pH  Cv F5,12= 7.14 

P= 0.001 

 

12h Vs 6h 

12h Vs 4h 

12h Vs 3h 

12h Vs 2h 

12h Vs 1h 

6h Vs 4h 

6h Vs 3h 

6h Vs 2h 

6h Vs 1h 

4h Vs 3h 

4h Vs 2h 

4h Vs 1h 

3h Vs 2h 

3h Vs 1h 

2h Vs 1h 

0.0010*** 

0.0010*** 

0.0010*** 

0.0010*** 

0.0010*** 

0.0010*** 

0.0010*** 

0.0010*** 

0.0010*** 

0.0010*** 

0.0010*** 

0.0010*** 

0.9988 

0.9976 

0.9921 

 

*** indicates a significant statistical test with p<0.001,  

** indicates a significant statistical test with p<0.01,  

* indicates a significant statistical test with p<0.05.  
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Figure 2.9| pH variance around: A) sunrise and B) sunset for a seagrass habitat on Little 

Cayman, Cayman Islands, BWI. pH was measured at 15 min increments around sunrise and 

sunset to determine if mean pH and coefficient of variation (Cv) of pH was captured by initiating 

sampling at sunrise. Data was collected from the seagrass of Grape Tree Bay located on the north 

coast of Little Cayman, Cayman islands, BWI, and is averaged for three 24 h replicates.  
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2.3.2| Carbonate chemistry determination  

pH measured in the laboratory was similar to pH measured in the field (r= 0.999, n= 72, P= 

0.001). The absolute difference (R) charts for TA and pH showed that all values were within the 

UWL apart from one TA  measurement (Figure 2.10). The 𝑥̅ charts showed that all pH 

measurement fell within the LWL with one exception that fell between the LWL and LCL 

(Figure 2.11).  Derived values of pCO2 (from pH and TA) were similar to direct measurements 

of pCO2 (r
2
= 0.998, n= 72, P= 0.01, 1:1 ratio, Figure 2.12), however directly measured values 

were consistently higher (average ± SE; 5.5 ± 0.4 atm). Samples analysed directly were able to 

detect the diurnal range in pH, demonstrating the system’s ability to measure pCO2 at a variety 

of ppm and at different in situ temperatures (Figure 2.12).  

 

 

 

 

 

 

 

 

 

 

 

 

 



 Chapter 2  

68 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10| The absolute differences (R) charts for: A) pH and B) Total Alkalinity. The R 

charts have 15 duplicate measurements plotted sequentially to evaluate precision of the 

measurement prcoess.  The Upper Control Limits (UCL) and Upper Warning Limits (UWL) 

were calcuated  as: UCL = 3.267 𝑅̅, UWL = 2.512 𝑅̅, where 𝑅̅ is the average range between 

sequential measurements. All but one total alkalinity measurement fell within the UWL, showing 

that the sampling is in accordance with CDIAC protocols.   
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Figure 2.11| The 𝑥̅ charts to evaluate stability of: A) Total Alkalinity and B) pH. The 𝑥̅ 

charts have 15 repetitive measurements of a control sample taken over 15 days, to evaluate the 

stability of the measurement process.  The Upper Control Limits (UCL), Upper Warning Limits 

(UWL), Lower Control Limits (LCL), and Lower Warning Limits (LWL)  were calcuated  as: 

UCL= 𝑥̅   + 3 s, UWL= 𝑥̅  + 2 s, LWL= 𝑥̅   – 2 s, and LCL= 𝑥̅   – 3 s, where 𝑥̅ is the mean value 

and 𝑆 is the standard deviation. All but one pH measurement fell within the LWL, showing that 

the sampling is in accordance with CDIAC protocols.   
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Figure 2.12| Comparison of derived and directly measured pCO2 values. Direct values of 

pCO2 were obtained from a custom-built gas diffusible membrane attached to an external 

infrared gas analyser and compared to pCO2 calculated in CO2SYS using total alkalinity and pH. 

The two methods demonstrated high co-variability between derived and measured pCO2 r
2
= 

0.998, n= 72, P= 0.01. The direct values of pCO2 were able to detect the diurnal variability in pH 

of the seagrass habitat.  
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2.3.3| Flexi-Chamber method validation 

Water extraction – A 0.5 % error was induced onto the metabolic rate (P, G, R) measurements 

per ml of water not re-extracted from the Flexi-Chamber. From the 30 replicates, the range of 

water volumes unaccounted for in the syringe removal ranged from 0.5 – 5 ml of water, with an 

average of 2.0 ± 0.4 ml. Consequently, the average error of the system is 1 % but never >2.5 %), 

based on the water extraction procedure. 

Temperature – Temperature for the first 3 h of the 8 h laboratory test remained within 0.1 

°C of the ambient temperature, however, after 4 h the temperature within the Flexi-Chamber 

started to rise considerably, with a 1.4 °C increase relative to the surrounding water after 8 h 

(Figure 2.13). The temperature of the Flexi-Chamber in situ exhibited high co-variability with 

the surrounding water temperature (r= 0.991, n= 947, P= 0.001). There was no measurable 

temperature difference between the Flexi-Chamber and ex situ water during the day, however, 

during the hottest period of the day (12.00-17.00 h) the temperature in the Flexi-Chamber 

increased up to 0.3 °C greater than the surrounding water.  
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Figure 2.13| The internal temperature of the Flexi-Chamber relative to the surrounding 

water. Over an 8 h period, the temperature inside the Flexi-Chamber was compared to the 

surrounding aquarium water. The aquarium was at a constant temperature of 28.0 ± 0.9 °C. The 

graph shows the average temperature change per hour with standard error for the three 8 h 

replicates.  

 

Water Flow – Overall water acceleration along the three axes (X, Y and Z) within the 

Flexi-Chamber was between 78.0-80.1 ± 2.0 % of the surrounding water acceleration (Figure 

2.13). Despite the overall reduction in water acceleration experienced inside the Flexi-Chamber, 

there were no detectable differences between each individual plane of movement. The 

undulations visible on Figure 2.14b represent periods of restricted water movement within the 

Flexi-Chamber relative to the ambient water, which is represented by a smoother contour in 

Figure 2.14a. The greatest loss of movement was in the X dimension due to the way in which the 

HOBO logger was tethered and the Flexi-Chamber fixed to the substratum.   
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Figure 2.14| Mesh-contour graphs comparing the water acceleration (m/s
2
) along the X, Y 

and Z planes inside and outside the Flexi-Chambers. The graphs show the location of each 

HOBO in 3D space over the one hour incubation time. At each logging interval (1 s) an X, Y, Z 

coordinate was generated and is plotted onto the graph. Graph A shows the external water 

acceleration; graph B shows the water acceleration within the Flexi-Chamber measured with a 

Hobo Pendant G data logger. Graph C is an example of how graphs A and B were generated. 

Each square on graph A and B is one data point consisting of an X, Y and Z coordinate. For 

example, the yellow dot on graph C shows that at that logging interval the HOBO had the 

following coordinates: Y = -0.45, X= -0.12, Z= -0.74. One second later, the HOBO had 

accelerated to the location indicated by the green dot and had the coordinates: Y= -0.50, X= -

0.12, Z= -0.74. Over the one hour incubation all the acceleration points were plotted and form 

the mesh contour graphs shown in figures A and B.  

 

 

 

C 
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Light – Light transmission through the Flexi-Chamber was independent of wavelength 

within PAR and averaged 84 % (Figure 2.15); transmissions for the major wavelengths of blue, 

green and red were: 83.7 ± 0.2 %, 83.8 ± 0.1 %, and 85.8 ± 0.2 % respectively. However, there 

was greater loss of light within the UV range (64 % and 30 % for UVA and UVB respectively).  

 

Figure 2.15| The percent light transmission through the Flexi-Chamber and a traditional 

glass respirometry chamber. Transmission was tested using a spectroradiometer for PAR and 

UVB and UVA light.  
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Leakage testing –A strong correlation between the start and end absorbance both inside 

and outside of the Flexi-Chamber suggested none-to-minimal transfer of dye between the Flexi-

Chamber and surrounding aquarium water (r ranging from 0.240-0.200, n= 2048 per replicate, 

P= 0.01), thus confirming that a watertight seal was created.  

Gas permeability – No detectable difference was measured in the mean (SE) O2 (168 ± 

0.2 mol) and CO2 (321 ± 11 ppm) levels inside the Flexi-Chamber for any of the replicates over 

the 3 h incubation period.  

Oxygen toxicity – Hypoxia occurred for all colonies kept within 250 ml of water within 1 

h of sampling (Table 2.3a). Subsequent hourly sampling showed that all samples surrounded by 

500 ml of water showed hypoxia at 2 h (and 750 ml at 3 h). For the volumes that were not super-

saturated after 3 h (1000 ml, 1250 ml and 1500 ml), a detectable change in metabolism was 

identified. As with hypoxia trends, anoxic conditions were observed under dark conditions for all 

colonies incubated in 250 ml and 500 ml of water within 1 h (and two colonies incubated in 750 

ml anoxic within 3 h) (Table 2.3b). From these results, it was established that for Acropora sp. at 

the biomass used, an optimum volume of 1000-1250 ml of water was necessary to ensure a 

detectable change in metabolic response without hypoxia during daylight hours or anoxic 

conditions during darkness.  
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Table 2.3| Anoxic and hypoxic sensitivity testing for Acropora sp. in the 

Flexi-Chamber. 

Table 2.3a|  Oxygen hypoxic conditions (O2Sat) and detectable metabolic 

change (∆Met) for internal water volume of the Flexi-Chamber during light 

conditions for Acropora sp. 

Volume of 

water 

within the 

Flexi-

Chamber 

Water sample collection (Time in hours) Decision 

1 2 3 4 

O2Sat ∆Met O2Sa

t 

∆Met O2Sa

t 

∆Met O2Sa

t 

∆Met 

250 ml + + + + + + + + X 

500 ml ± + + + + + + + X 

750 ml ± + ± + + + + + X 

1000 ml – ± – + – + ± +   

1250 ml – + – ± – + – +   

1500 ml – – – ± – ± – + X 

2.3b| Oxygen anoxic conditions (O2Sat) and detectable metabolic change 

(∆Met) for the internal water volume of the Flexi-Chamber during dark 

conditions for Acropora sp. 

250 ml + + + + + + + + X 

500 ml + ± + + + + + + X 

750 ml – + – + ± + + + X 

1000 ml – ± – + – + ± +   

1250 ml – – – ± – + – +   

1500 ml – – – – – – – ± X 

Results are based on three colonies of Acropora sp. (surface area ca. 12 cm
2
) at each 

water volume. O2Sat is whether the water is hypoxic (2.3a) or anoxic (2.3b) in oxygen 

and ∆Met is whether there is a detectable metabolic change (total alkalinity and oxygen). 

The – indicates a unanimous negative response among the three coral replicates, i.e. no 

hypoxic/anoxic conditions or no detectable metabolic change, ± indicates a mixed 

response within the three colonies tested. Finally, + indicates a unanimous positive 

response, so all colonies hypoxic/anoxic or all colonies showing a measurable metabolic 

change. The green shaded boxes indicate the sample volumes at 3 h that have a 
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detectable metabolic change without hypoxic or anoxic conditions. 
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Additional stress factors – No visual signs of stress (excessive mucus release, loss of 

pigmentation) were detected for any of the colonies and zooxanthellae concentrations (3.5 ± 0.7 

x 10
6
 cells cm

2
) remained similar between the beginning and end of the incubation.  

 

2.3.4| Flexi-Chamber practical application 

The Flexi-Chamber and glass chamber had comparable internal temperatures, visible light 

transmission and UVA light permeability, but not UVB light penetration or internal water 

movement. The Flexi-Chamber acted as a neutral density filter for the major wavelengths of 

blue, green and red and allowed 50 % more transmission of UVB, compared to the glass 

chamber, which exhibited relatively reduced transmission in the red (Blue: 82.2 %, Green: 84.3 

%, Red 77.3 %, Figure 2.15). Furthermore, the Flexi-Chamber provided consistent water 

movement within the chamber (78.0-80.1 ± 2 % of the external water movement), whereas the 

glass chamber had zero water flow until the one-minute continuous hourly stirring was applied 

(89.2-131.0 ± 4 % of the external water movement). Daily integrated rates of photosynthesis, 

respiration and calcification showed no significant statistical difference for the glass and Flexi-

Chamber across the ten replicate colonies of S. cf. stellata (Figure 2.16). Similarly, the ranges in 

rates obtained for the 15 colonies measured in the Flexi-Chamber versus the 15 colonies 

measured in the glass chamber were not statistically different. 
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Figure 2.16| Physiological measurements for Siderastrea cf. stellata in Salvador Brazil using 

a conventional glass chamber and the Flexi-Chamber. A) Mean calcification (G) rates and B) 

mean photosynthesis and respiration rates for 30 colonies of S. cf. stellata are plotted with 

standard error (n= 10). Colonies were sampled from a site at the entrance of Todos os Santos 

Bay, Salvador, Brazil during March-April, 2014.  
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2.4| Discussion  

Techniques developed in this chapter are used repeatedly throughout the thesis (Table 2.4) and 

therefore the extensive methodological development performed for this chapter was essential to 

ensure the quality and integrity of data collected.  

 

Table 2.4| Summary table of techniques used throughout the thesis. 

 

Chapter Discrete 

water 

sampling 

pH 

measurement 

Total 

alkalinity 

measurement 

pCO2 

derived 

pCO2 

directly 

measured 

In situ 

respiro-

metry 

3             

4            

5            

 

2.4.1| Discrete water sampling regime and approach 

Evaluation of the pH sampling regime identified a 3 h discrete water sampling schedule as 

appropriate to capture the mean and Cv in pH. As anticipated, the greatest rates of change in pH 

occurred around sunrise and sunset. A 1 h window was identified around sunrise where by 

sampling could be initiated and the overall mean and Cv in pH were not significantly different. 

Outside of this window pH change occurred rapidly over a short period of time, which could bias 

the diurnal range measured, demonstrating the importance of using a consistent sampling 

schedule.  

The island-wide pH sampling of Little Cayman demonstrated that inshore areas have 

higher diurnal variability in pH and elevated mean pH relative to sites outside of the lagoons, 

which suggest that inshore sites are influenced by local biogeochemical forces (Anthony et al., 

2011b; Manzello et al., 2012; Anthony et al., 2013). A similar inshore-to offshore gradient has 

been observed in the Florida reef tract (Manzello et al., 2012) and has been attributed to the 

 3 
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dominance inshore of seagrass beds. Spatially, similar habitats within this study revealed 

analogous mean and Cv in pH. The inshore results of SS were the only exception, having lower 

mean and Cv pH compared to all other inner lagoon sites. SS was the only lagoon not dominated 

by seagrass and thus highlights the potential influence of photoautotrophs on elevating local 

seawater pH. Prior studies in the field (Manzello et al., 2012) and laboratory (Kleypas et al., 

2011; Anthony et al., 2013) have suggested that photoautotrophs may be able to offset locally 

the negative impacts of OA. The initial diurnal pH results around Little Cayman suggest that 

changes in local pH are reflective of the habitat type, however it remains unclear what the 

capacity is for photoautotrophs to influence local carbonate chemistry, and whether seasonal or 

lunar cycles influence the extent of the inshore to offshore gradient. Further examination across 

habitats, over longer temporal scales and at higher resolution will be necessary to address these 

questions and is conducted in Chapter 3.  

 

2.4.2| Carbonate chemistry determination 

Following CDIAC protocols, the methods employed generated pH and TA measurements that 

had an accuracy and precision acceptable for the sampling undertaken. Importantly, the two 

outliers on the R and 𝑥̅ charts confirm the importance of repeated measurements and updating the 

control charts throughout sampling. Similarly, the derived and directly measured pCO2 levels 

were comparable, adding confidence to the use of CO2SYS to derive the other carbonate 

parameters. 
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2.4.3| The Flexi-Chamber  

A novel method of adapting transparent urine bags to incubate corals in situ was developed and 

tested. In situ non-destructive incubations provide several benefits including: (i) the opportunity 

to study corals in their natural environment, (ii) minimising stress on the organism, (iii) 

eliminating the need to remove corals from their natural environment, and (iv) potentially 

providing more accurate results without the artefacts of colony removal. In addition to these 

benefits, the Flexi-Chamber overcomes some of the limitations of traditional respirometry 

chambers: 

Firstly, due to its non-rigid design the Flexi-Chamber is able to move with the ambient 

water flow which allows internal mixing within the chamber, thus removing the need for 

cumbersome artificial mixing (e.g. via stir bars and magnets (Davies, 1980) or via semi-

continuous automatic flushing systems (McCloskey et al., 1978)). The boundary layer must be 

disrupted to prevent a decrease in passive diffusion and to ensure continued advective exchange 

(Lesser et al., 1994; Baird & Atkinson, 1997; Schutter et al., 2011).  

Secondly, the Flexi-Chamber size can be adjusted to help establish the appropriate 

volume of incubation medium relative to the test colony size, which is important in minimising 

toxicity via hypoxic or anoxic conditions (McCloskey et al., 1978). In shallow environments, 

similar to those where the respirometry chambers are most often deployed, studies have 

measured zooxanthellae raising host tissue O2 levels to >200 % saturation (Dykens  et al., 1992; 

Kuhl et al., 1995; DeBeer et al., 2000), and photosynthetically produced O2 can be catalysed by 

UV radiation to produce harmful Reactive Oxygen Species (Foote, 1976).  Thus, the Flexi-

Chamber design helps to minimise these threats by appropriate chamber-incubation size. The 

Acropora sp. sensitivity analysis demonstrated the importance to initially establish the correct 
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water volume to biomass ratio and incubation time for any given incubation configuration. 

Before full and final experimental application of the Flexi-Chamber, users should identify the 

optimal time, coral biomass, and water volume, through such sensitivity analysis to ensure 

anoxic or hypoxic conditions do not occur for their organism or growth environment of interest. 

Differences in Symbiodinium spp., coral heterotrophy-to-autotrophy balance and local abiotic 

and/or experimental conditions all have the potential to influence metabolic rates and thus the 

time taken for anoxic or hypoxic conditions to occur.   

In addition, a third advantage of the Flexi-Chamber is the opportunity it provides to 

establish relatively “high throughput” and therefore, large-scale replication with high temporal 

and spatial resolution without the need for large and costly infrastructure in deployment and 

sampling. Importantly, the Flexi-Chamber returned similar coral metabolic data to a 

conventional glass chamber (Naumann et al., 2013). Consequently, datasets obtained by the two 

techniques can be compared historically or in the future, thus this new method developed will not 

detract from the ability to examine longer terms trends in the metabolic function of reef building 

corals or other benthic organisms. The comparison of the glass and Flexi-Chamber identified 

differences in their physical properties, however, despite these differences, they still provided 

similar metabolic rates suggesting that their inherent limitations carry an equal amount of 

inaccuracy. Whilst this inaccuracy was unable to be measured and benchmarked, the results 

suggest that the error between approaches is lower than the differences expected between 

organisms. Further research is needed to benchmark these methods against a ‘gold standard’ that 

can fully replicate the in situ environment.  

 Despite the benefits of the Flexi-Chamber there are still some limitations: (i) Only 84 % 

of incident PAR and 54 % of UV is currently transmitted and it may be possible to source other 
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materials to enhance light transmission, (ii) some small error is induced from the water 

extraction methods, (iii) the current 3 L maximum volume of the Flexi-Chamber and the existing 

attachment method limits the type of colony that can be examined. Although this current volume 

limitation is similar to traditional glass chambers there are options to significantly increase the 

Flexi-Chamber through the production of bespoke bags. This would be an important 

advancement in metabolic analysis since current respirometry methods are limited to smaller 

colonies, which do not represent the bulk of coral biomass in most classical reef systems 

(Vollmer and Edmunds, 2011). For example, colonies that have reached a size where they 

become reproductively active may well have different metabolic characteristics compared to 

newly-formed smaller colonies. It remains to be seen whether the improvements of the Flexi-

Chamber identified here are scalable.  

Consideration of the advancements and limitations of the Flexi-Chamber along with the 

comparative metabolic results of S. cf. stellata in Salvador, Brazil, with a conventional glass 

vessel ultimately demonstrates that the Flexi-Chamber design offers an alternative respirometry 

chamber for coral metabolic studies. The low-cost, ease of transport and non-destructive 

technique will allow wider scope for experimentation within this thesis; importantly including 

sampling where coral removal is prohibited (see Chapters 3 and 4).   
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2.5| Key Findings 

2.5.1| Sampling regime 

 A 3 h discrete water sampling schedule captures the diurnal mean and Cv pH across 

habitats.  

 Greatest variability in carbonate chemistry occurs around sunrise and sunset. 

 A 3 h sampling regime initiated at sunrise captures the extent of diurnal Cv and mean pH 

of highly variable seagrass habitats. There is an approximate 1 h window around sunrise 

where sampling can occur without an influence on the daily mean and Cv pH values 

recorded.   

 

2.5.2| Sampling protocol 

 pH measured in the laboratory was comparable to pH measured in the field.  

 TA and pH measurements provided precision and repeatability within CDIAC 

recommendations.  

 Direct and calculated pCO2 values were comparable. 

 

2.5.3| Novel in situ respirometry chamber 

 Major Flexi-Chamber characteristics:  

o Acts as a neutral density filter for visible light, and allow 54 % of UV light 

through.  

o Allows internal water movement in all three planes (ca. 80 % of the surrounding 

water velocity). 

o Gas impermeable and watertight seal. 

o Maintains internal temperature (within 0.1 °C of surrounding water temperature) 

with regular 3 h flushing. 

 The Flexi-Chamber produced comparable photosynthesis, respiration and calcification 

rates for Siderastrea cf. sp. as compared to a traditional glass chamber.  

 The Flexi-Chamber provides an alternative in situ method to traditional established 

glass/plexi-glass respirometry vessels.   
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Chapter 3| Biological versus abiotic control 

of coral habitats and the metabolic 

expenditure of corals living within them  

 

Part of this chapter is in final draft for Marine Ecology Progress Series as the manuscript: Coral 

recruitment into non-reef habitats: Consideration for coral refugia.  

 

3.1| Introduction 

Shallow reef and non-reef habitats are highly dynamic, where reef bathometry (Ohde & Woesik, 

1999), local benthic composition (Hoegh-Guldberg et al., 2007; Manzello et al., 2012; Anthony 

et al., 2013), and tidal cycles (Ohde & Woesik, 1999; Manzello et al., 2012) can create natural 

oscillations in pH and temperature. The scale of fluctuations is habitat and/or site specific (e.g. 

reef-flat versus seagrass/mangrove, Ohde & Woesik, 1999; Manzello et al., 2012; Yates et al., 

2014), with corals within these systems frequently experience periods of pH (Manzello et al., 

2012; Price et al., 2012) and temperature (Manzello et al., 2012) already considered 

representative of future reef conditions under IPCC climate change scenarios (Guadayol et al., 

2014). Therefore, the impact of future ocean acidification (OA) on these habitats remains unclear 

and they are increasingly becoming an important ‘natural laboratory’ (Okazaki et al., 2013) as 

they allow scientists to examine what range of environmental conditions corals can survive 

under, and at what physiological cost.  

The body of literature on in situ carbonate chemistry variability within different coral 

habitats is growing; however, there are still significant gaps in our understanding that need to be 

addressed for us to better manage the impacts of climate change on coral reef ecosystems. 

Primarily, coral habitats that experience large pH variability need to be assessed using a holistic 
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approach to examine their physiochemical and benthic properties, and to evaluate the 

physiological cost for coral species persisting there. More specific gaps include addressing the 

extent of ecophysical variability over different temporal scales (e.g. seasonal, lunar tidal cycle, 

and diurnal) and assessing the sampling timeframe necessary to capture this variability. In order 

to address these gaps, the following questions need to be answered: (i) what is the frequency and 

diversity of coral recruitment into these highly variable environments? (ii) Is there a 

physiological cost for corals to expand their niches into non-reef environments? (iii) What 

resolution of sampling is necessary to obtain robust measures of coral physiology? 

Consequently, the objectives of this chapter are to:  

1) Measure how the key physiochemical properties of reef and non-reef habitats change 

over temporal scales (seasonal, lunar tidal cycle, diurnal); 

2) Test whether a five-day resolution of sampling captures the mean and variability of the 

key physiochemical properties within a given season; 

3) Measure the influence of benthic and biogeochemical drivers on local carbonate 

chemistry; 

4) Quanitfy what the established and recruited coral populations of reef and non-reef 

habitats are; 

5) Test whether photosynthesis, respiration and calcification rates are stable for a coral 

species during the daytime or nighttime and thus, what sampling frequency is necessary 

to capture coral metabolic activity. 

In addressing these objectives, the data obtained will contribute important information on the 

extent of natural spatial and temporal variability in carbonate chemistry of reef and non-reef 

habitats. It will explore the ability of corals to expand their niches into highly-variable 
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habitats, and the potential susceptibility of different habitats to future OA. In addition, the 

resolution of daily sampling necessary to capture seasonal trends in the carbonate chemistry 

and the daily metabolic activity of corals will be determined, which will inform the methods 

employed in Chapters 4 and 5. 
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3.2| Materials and Methods 

3.2.1 | Study location 

Little Cayman, Cayman Islands, British West Indies (BWI) was used as the study location to 

explore how the key physiochemical properties of reef and non-reef habitats change over 

temporal scales, and to assess the differences in their local benthic community composition. Six 

non-reef sites (three back-reef and three seagrass) and three outer-reef sites were established 

where seawater carbonate chemistry varied but coral colonies were still present (Figure 3.1). The 

non-reef sites were situated within lagoons, whilst the outer-reef sites were situated outside the 

lagoons on the outer-reef. The back-reef habitat consisted of inter-dispersed seagrass and small 

patch reefs (15-30 % cover of seagrass) and was not a true reef, thus is referred to as a non-reef 

habitat within this chapter. All sites were sub-sampled three times, with each sub-sample a 

minimum of 50 m apart from one another (Figure 3.2).  All sites were situated away from any 

freshwater inputs.  

 The study sites were located in bays known locally as Grape Tree Bay and Mary’s Bay 

on the north coast of Little Cayman. Mary’s Bay is the largest lagoon covering almost 50 % of 

the north coast of the island at ca. 4.3 km long and ca. 0.2 km wide, with depths ranging from 

0.5-3.0 m. More than 50 % of Mary’s Bay is designated as a Replenishment Zone (see Chapter 1, 

section 1.6.1). Grape Tree Bay is ca. 2.3 km long by ca. 0.15 km wide, and ranges in depth from 

0.5-3.0 m. The bay gently slopes from east to west with more than 50 % of the bay designated a 

Marine Protected Area.  
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Figure 3.1| A close-up map of Little Cayman and a map of the Cayman Islands within the 

wider Caribbean region. The Cayman Islands are located 145 km south of Cuba and are made 

up of three islands. Little Cayman is the smallest of the three islands (17 x 2 km) and is shown as 

the large grey island. The nine study sites were all located on the north coast, with three high-

variability (HV) sites situated in the seagrass habitat, three medium-variability sites (MV) 

located within the back-reef habitat and three low-variability (LV) sites located on the outer-reef 

subject to open-ocean chemistry.  
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Figure 3.2| An example from Grape Tree Bay of the sub-sampling regime used in Little 

Cayman, Cayman Islands, BWI. All sites were sub-sampled as illustrated. Habitat type is 

shown by data symbol: outer-reef= black squares, the back-reef= black triangles and the 

seagrass= black dots). Each sub-site was a minimum of 50 m apart.  

 

3.2.2| Abiotic assessment  

Temperature and light – Temperature (°C, accuracy ± 0.53 ºC) and Light (Lux, accuracy relative 

to light levels: see Onset, 2012) were measured using a HOBO Pendant Temperature/Light 64k 

Logger (Model UA-002-64, Microdaq, USA). One HOBO was located in each of the six non-

reef study sites, and one in the outer-reef. Each HOBO was screwed face-up onto a 20 cm length 

of PVC piping which was placed over a galvanized nail and epoxied into position. The HOBOs 

were set to log temperature and light every 5 min. The HOBOs were installed in January 2012 

for 20 months. The HOBOs were cleaned and downloaded monthly in situ using a Waterproof 

Shuttle Data Transporter Optic Base Station with Couplers (Model U-DTW-1, Microdaq, USA). 

Due to fouling on the HOBO sensor, light quality decreased by ca. 11-34 % after the first ten 

days in situ, so only data from this initial ten-day period was used.  Light was measured in Lux 

and converted to PAR by diving Lux by the appropriate constant (as per Long et al., 2012). 

Light spectrum data (see Hennige et al., 2010) ranging from the main reef to the non-reef 
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habitats was compared to the spectrum data for each coefficient to determine the most 

appropriate constant in the conversion of PAR to Lux. Daily Light Integral (DLI) was also 

calculated for each site by: 

DLI = 𝑃𝐴𝑅 ∙ (3,600 ∙ 𝑃)/1,000,000    [1] 

Where PAR is μmol m
2
s

-1
, 3,600 is the number of seconds in an hour, P is the photoperiod (i.e. 

the period of time in hours of light exposure per 24 h) and 1,000,000 is the number of μmols per 

mole.   

  Nitrates – In the spring of 2013, nitrate sampling was conducted using an ORION 

Nitrate electrode (accuracy ± 0.01 M, Model 9307, Fisher scientific, USA) attached to the 

ORION 5 Star meter. Over a two-week period, seven diurnal (early morning and late afternoon) 

samples were collected (n= 14 total per site) at every study site.   

 Carbonate chemistry sampling regime and approach – Water samples were collected at 

the six non-reef sites over a six-week period during the two seasons: a) summer (wet season: 

July-August) and b) winter (dry season: February-March) (2012-2013). Within each season, 

three 24 h sampling sessions were conducted around both the neap and spring tides. Seawater 

samples were collected as described in chapter 2 (section 2.2.2). Sampling was initiated around 

sunrise, with samples collected from three locations within each site (each 50 m apart), every 

three hours over a 24 h period (total n= 24 per site per sampling day). In addition, three outer-

reef sites were sampled twice daily with samples collected from three sub-sites within each site 

(each 50 m apart, total n= 6 per site per sampling day)   
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3.2.3| Benthic measurements 

To assess differences in the highly variable non-reef habitats, a series of benthic assessments 

were conducted:  

Benthic community composition – To determine the percentage cover of the major 

benthic taxa, continuous line intercept transects were conducted in February 2012 and February 

2013. Within each site, 3 x 50 m permanent transects (marked by rebar at either end), each 

separated by a minimum of 50 m were established. The initial transect was randomly located, 

and transects ran parallel to shore. Transects were completed in ca. 5 min and the video camera 

was held at a distance of 30 cm above the transect tape. Data were recorded using a high 

definition video-camera (G12, Canon, Amazon, England) in an underwater housing (WP-DC 34, 

Canon, Amazon, England) and footage was later analysed to determine benthic community 

composition (species level). The GPS location of the start and end of each transect was recorded 

(Garmin etrex 20, Amazon, England).   

Established coral community – At the start of each transect a 20 m
2
 quadrat was installed 

to quantify the established coral (all corals greater than 1 cm) community composition, size-

frequency distribution and disease prevalence (visual assessment). Surveys were conducted in 

February 2012 and February 2013. Every coral colony within the quadrat was counted and 

identified to species level. Each colony’s maximum height, width and diameter were recorded 

with callipers or a measuring tape (accuracy ± 1 mm) depending on colony size. If any colonies 

could not be identified in situ, pictures were taken using a digital underwater camera and were 

later identified with reference materials on land. In addition, corals that were: (i) de-pigmented, 

and/or showed evidence of, (ii) recent or (iii) past mortality were also recorded (defined by 

AGRRA protocol version 5.4, Lang et al., 2010, Chapter 3, Table 3.1). 
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Table 3.1| Atlantic and Gulf Rapid Reef Assessment (AGRRA) mortality 

definitions 

Mortality Type AGRRA Definition 

Old mortality Is defined as any non-living parts of the coral in which the 

corallite structures are: (a) covered over by organisms that 

are not easily removed (e.g., thick turf algae, dense 

macroalgae, attached invertebrates, possibly including 

other corals); or (b) the overgrowing organisms (and 

perhaps the outer corallite structures) have been removed 

by a scraping herbivore (e.g., the stoplight parrotfish 

Sparisoma viride), or abraded by a storm, exposing the 

underlying skeleton. The coral’s soft tissues are presumed 

to have died within the previous months-years or decades. 

 

Transitional 

mortality 

Is defined as any non-living parts of the coral in which the 

corallite structures are slightly eroded at most, unless they 

have just been bitten by a fish or abraded, and its surface 

is covered by a thin layer of sediment, or by biofilms of 

bacteria (including photosynthetic cyanobacteria) and 

possibly diatoms or other microalgae, or by tiny turf 

algae. The coral’s soft tissues are presumed to have died 

within the previous day(s)-months. 

 

New mortality Is defined as the non-living part(s) of the coral in which 

the corallite (= surficial skeletal) structures are still intact, 

unless they have just been bitten by a fish or abraded, and 

the freshly exposed, white surface is free of any sediment, 

microbial/diatom biofilms, other microalgae, etc. The 

coral’s soft tissues would have died within the previous 

minutes-several days at most and, in some cases, may not 

have completely sloughed off the skeleton.  

 

Definitions of Old Mortality, Transitional Mortality and New Mortality are taken  

from the Atlantic Gulf Rapid Reef Assessment (AGRRA) Protocol Version 5.4  

(Lang et al., 2010). These definitions were used to assess mortality in the 20 m
2
  

quadrats to assess coral community composition and health at each site and 

habitat in February 2012 and 2013.  
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Coral recruitment – To assess coral recruitment rates within each non-reef habitat, 

settlement arrays were deployed in January 2012 for 20 months. Within each of the six non-reef 

sites, three locations each 50 m apart had three settlement arrays randomly installed.  Arrays 

were spaced a minimum of 5 m apart as per Salinas De León et al. (2011). In total, 54 settlement 

arrays were installed (324 tiles). The settlement arrays were constructed as a modification of 

Mundy (2000) and Salinas De León et al. (2011) (Figure 3.3). Arrays consisted of six unglazed 

limestone tiles (10 x 10 x 1 cm), as per Schmidt-Roach et al. (2008), that had two small holes 

(3/16 inch) drilled in the centre.  The six tiles were zip-tied through the holes to a length of PVC 

with a 5.0 cm space between each tile. Tiles were labelled one through six for identification. The 

PVC settlement arrays were then attached to the substrate at either end using two galvanized 

nails. The diameter of the PVC provided a 2.5 cm gap between the tile and ground substratum, 

which is known to facilitate coral settlement (Harriott & Fisk, 1987). Each array was labelled 

with a tag stating that it was for research and letters were sent to the local community and resorts 

informing them of the study to minimise unwanted human interactions.  

 Before installation, tiles were conditioned for one month in the shallows of GTB. Tiles 

were then installed and left in situ for one month. At the end of the month, a daytime visual 

survey was conducted in situ of the top-side of every tile, recording any coral spats or coral 

fragments. A modification of the traditional fluorescence census techniques (Piniak et al., 2005; 

Baird et al., 2006; Salinas De León et al., 2011) was used during the daytime using a flashing 

blue light (BW-1 Dive Light, Nightsea, Bedford, USA) and yellow barrier filter over a dive 

mask. This technique allows visual fluorescent detection during the daytime, improving visual 

census.   
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 After the monthly visual census, tile numbers two, three and six (randomly selected at the 

start of the study) were removed and replaced with new tiles that had been seasoned for two 

weeks in seawater. The removal of half of the tiles on a monthly basis allowed the timing and 

prevalence of recruitment to be investigated. The removed tiles were re-surveyed in the dark 

within the laboratory using the blue light on a continuous light mode. Tiles were also scanned 

under a microscope (20 x) (EZ4, Leica, Davie, USA). Any tiles with coral growth were treated 

for 48 h with chlorine solution to remove organic matter. Tiles were then re-surveyed using the 

microscope to count and identify any corallites as per Schmidt-Roach et al. (2008).  Recruits 

were identified as belonging to the families: Acroporidae, Agaricidae, Faviidae, Poritidae  or 

Siderastreidae using photomicrographs described by English et al. (1997), Babcock et al. (2003),  

Putron (2005), and Putron (2007). The remaining recruits, including any too damaged to identify, 

were labelled as ‘other’ (Schmidt-Roach et al., 2011).  At the end of the 20-month study, all of 

the tile arrays were removed and analysed following the same protocol as the monthly analysis.  

 

 

 

 

 

 

 

Figure 3.3| Photograph of a settlement array. The settlement array consisted of six unglazed 

limestone tiles zip-tied 5 cm apart onto a length of PVC. The PVC was secured into the reef 

substrate at either end using galvanized nails.  
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To analyse the recruited community composition over the 20 month period, the three tiles 

(one, four and five) on each array that were left in the water for the duration of the study were 

analysed using a modification of Coral Point Count with Excel extensions (CPCe) (Kohler & 

Gill, 2006) (total tiles n= 162).  A high-definition picture was taken of each tile to allow CPCe 

analysis. Instead of using the CPCe data input, the data was entered into Excel where defined 

headings had been pre-determined as suitable for this project.  From the CPCe points, the 

observed percentage covers were determined for each benthic component. The percentage of 

each polymorph (calcite, aragonite, high Mg-calcite) of calcium carbonate was also determined.  

 A power analysis was conducted to ensure that the correct point density (number of 

points per image frame) was used for the CPCe analysis, to ensure robust estimates of percent 

cover (Appendix 3). The actual percentage cover was determined for three tiles from the back-

reef and three tiles from the seagrass. To determine the number of points needed on CPCe to 

provide an estimate of percentage cover with 95 % confidence of the actual percentage cover, 5, 

10, 20, 40, 80, 160 and 320 points were initially overlaid on each image using CPCe. The 

estimated percentage cover for each number of points was compared to the actual percentage 

cover using the Chi-squared test (of association) in r (R 237 Development Core Team, 2011). 

From this analysis it was determined that the optimal point density was 150 (Appendix 3).  

 The metabolic expenditure of the dominant coral species across habitats –  From the 

coral community composition analysis, the five dominant coral species living within non-reef 

habitats were identified: Porites astreoides, Porites divericata, Siderastrea radians, 

Stephanocoenia intersepta and Dichocoenia stokeii. To assess the metabolic expenditure for 

these five coral species within each habitat (outer-reef, back-reef and seagrass), in situ 

respirometry analysis was conducted during the summer season of 2013 over three 24 h periods. 
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Flexi-Chambers were deployed as described in Chapter 2 (section 2.2.4). Sampling began at 7:00 

h (sunrise) with incubations running for 3 h (as deemed appropriate from Flexi-Chamber 

validation in Chapter 2) throughout the 24 h period (n= 8 incubations). Sample extraction and 

analysis followed the procedures outlined in Chapter 2 (section 2.2.4), from which 

photosynthesis, respiration and calcification daily rates were obtained.  

 

3.2.4| Statistical analysis 

All statistics were conducted in either R software (R 237 Development Core Team, 2011), Sigma 

Plot 10.0 (Systat Software, San Jose, CA), or SPSS 17 (SPSS Inc, 2008). Parametric test 

assumptions were all met unless stated, with the Levene’s test used to check homogeneity of 

variance and qq-plots to assess the normality of the data. 

 Abiotic assessment – Linear Mixed Effects (LME) models were applied, with site as a 

random effect, to examine the seasonal and lunar tidal cycle differences in mean and Cv between 

habitats for all abiotic variables measured (pH, TA, pCO2, Ωarg, temperature, salinity, light and 

water velocity; Appendix 4), with the exception of nitrates. Nitrates were only measured during 

the summer season and were therefore analysed via a two-way repeated ANOVA with post-hoc 

Tukey’s HDS. Within habitats, differences in abiotic parameters across sites were also compared 

using a two-way repeated ANOVA with post-hoc Tukey’s HDS.  

 For LME models, Cleavland dot-plots were used to determine outliers and boxplots and 

scatterplots were used to check for co-linearity within the dataset (Zurr et al., 2010). 

Assumptions of linearity, independence, homoscedasticity and normality were met. Models were 

fitted using the lme function in the nlme package in R software (R 237 Development Core Team, 

2011). Model simplification was undertaken using ANOVA to compare models with 

progressively simplified fixed effects, thus ensuring correct P values (Crawly, 2007). The 
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acceptability of the models was tested by plotting the residuals against: (i) fitted values to check 

for homogeneity and (ii) each explanatory variable in the model (including those dropped during 

model selection) to check for violations of independence (Zuur et al., 2007). Parameter 

estimation in LME models was done based on Restricted Maximum Likelihood (REML).  

 Mean inshore carbonate chemistry (TA, pH, pCO2 and Ωarg)  values were subtracted from 

the mean offshore values for each sampling period to establish the magnitude of the inshore to 

offshore gradient (as Manzello et al., 2012). Values of TA and pCO2 were normalised to salinity 

(S= 36) to allow a comparison between seasons and sites: 

      nTA= TA*36/S     [2] 

     npCO2= pCO2*36/S     [3] 

Where nTA is total alkalinity standardised by salinity, S is salinity, and npCO2 is pCO2 

standardised by salinity.  

A positive gradient indicated that the inshore non-reef sites had a higher value than the outer-reef 

sites, with a negative value showing the opposite (see Manzello et al., 2012). The magnitude of 

each gradient was compared across habitats, for each season and lunar tidal cycle again applying 

LME models.  

 Diurnal ranges in all abiotic parameters were calculated, with detailed analysis conducted 

on the diurnal trends in pH of each habitat. Histograms were used to evaluate the typical duration 

of time per day sites within each habitat spent at a given pH. Each histogram bin represented the 

percentage of time each site spent at a given pH class (classes each 0.1 pH units) and skewness 

(G1) for each habitat was determined. To evaluate whether a low-resolution (5-diel cycles) 

sampling schedule provided comparable mean and variability (Coefficient of Variation (Cv) 

determined as described in Chapter 2, section 2.2.5) values of pH, temperature, and TA, to a 
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high-resolution (18-diel cycles) sampling schedule for a given season, a one-way ANOVA was 

conducted. Data was compared from the summer season and the 5-diel cycle was randomly 

selected from the total diel cycles collected.    

 Biogeochemical controls of habitats – Salinity-normalised TA (nAT) to dissolved 

inorganic carbon (nCT) plots were generated (Suzuki & Kawahata, 2003; Kleypas et al., 2011; 

Yates et al., 2014) to assess the biogeochemical control of each habitat. Biochemical processes 

including photosynthesis (P), respiration (R), carbonate precipitation (G) and dissolution (D) all 

occur with a predictable gas exchange which can be theoretically modelled (Suzuki & Kawahata, 

2003). Calcification decreases TA by two moles for each mole of CaCO3 precipitated. If CaCO3 

is precipitated without photosynthesis then the line of the theoretical slope would be two. 

Photosynthesis lowers DIC whereas respiration increases DIC. Neither process alters TA so in 

theory the P-R line of the graph could be horizontal. However, 𝑁𝑂3
−and 𝑃𝑂3

−4accompanying 

changes in photosynthesis and respiration resulted in the slight gradient in the line established 

from both models and experimentation (see Yates et al., 2014).  The ratios of net ecosystem 

calcification to net community production (NEC:NEP) were derived from these nAT-nCT plots 

as: 

      NEC:NEP= 1/[(2/m)-1]     [4] 

where m is the regression slope from the corresponding linear regression equation of nAT vs nCT) 

(Suzuki & Kawahata, 2003; Kleypas et al., 2011). Finally, the threshold of calcification to 

dissolution (G-D) was determined. G-D is the level of Ωarg below (and/or pCO2 above) which 

dissolution of carbonate sediments exceeds rates of calcification. 

 Physiochemical controls of non-reef habitats – Finally, to assess any major trends in 

mean and Cv of the abiotic parameters (Note: nitrates were not included due to the limited 
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sampling replication), between non-reef habitats, two Principal Component Analysis’ (PCA) 

were conducted.  From each PCA, two main components were extracted (PC1 and PC2). PC1 

and PC2 scores were compared between habitats and seasons using a two-way ANOVA (as 

Dumbrell & Hill, 2005).  

 Benthic composition – Within habitat differences in abiotic parameters were independent 

of site, thus, benthic analysis focused on habitat differences. Inter-habitat benthic composition 

was analysed using a MANOVA (Wilk’s Lambda) after arcsine transformation with post-hoc 

Tukey HDS. In the case that the MANOVA was not significant, ANOVA’s or t-tests were 

conducted between each benthic taxa and Bonferroni correction was added to see if any taxa 

differences existed despite no overall statistical difference detected in benthic composition.   

Established coral community – For each habitat, actual and relative percentage coral 

cover, coral density per 20 m
2
, species richness, and Shannon-Wiener Index and Evenness were 

calculated (equations: 5 & 6) and compared via a two-way ANOVA.  

 

𝐻′ =  − ∑ 𝑝𝑖 ∙ ln (𝑝𝑖)𝑆
𝑖=1                [5] 

𝐽  
𝐻′

𝐻𝑀𝐴𝑋
                     [6] 

 

Where H’= Shannon-Wiener Diversity Index, S= number of species, i= total number of species, 

pi = relative abundance of each group of organisms, J = Evenness. 

Visual disease prevalence was compared between habitats with a one-way ANOVA and 

post-hoc Tukey HDS. Size-frequency graphs were created to compare the sizes of coral species 

within each habitat. The greatest width or length data was used, as per Suggett et al. (2012), to 

ensure some standardisation among colonies with different growth forms.  
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Coral recruitment – The number of coral spats recorded over the 20-month period were 

totalled within each habitat and their density per m
2
 was calculated. A t-test was used to compare 

the total density of recruits per habitat, with the three locations within each site used as 

replication (n= 9 replicates per habitat). The diversity of recruits per coral family was 

determined, and the relative percentage cover of each family was calculated. The relative 

percentage coral cover per family was compared to the relative percentage coral cover of the 

established coral community within each habitat using a MANOVA as described for the benthic 

composition analysis.  

Benthic community recruitment – CPCe analysis was used with 150 points to estimate the 

actual percentage cover of the major benthic taxa (Kohler & Gill, 2006). Actual percentage cover 

of recruited benthos was compared between habitats using a MANOVA as described for benthic 

composition analysis. The three locations within each site were used as replication (n= 9 

replicates per habitat). Similarly, for the calcareous benthic taxa (green, red and brown 

calcareous algae, corals, serpulid worms, crustose coralline algae and bivalves) the type of 

calcium carbonate polymorphs were determined and again compared between habitats using a 

MANOVA. 

 The relationship between pH and local benthic community composition –A series of 

linear regressions were conducted to assess the relationship between calcifying benthos (corals, 

hydrocorals, crustose coralline algae, calcifying algae) and photoautotrophs (seagrass and non-

calcifying algae) to mean and Cv pH for each non-reef habitat. pH was the carbonate chemistry 

parameter used for this assessment as it was directly measured.   

The metabolic expenditure of the dominant coral species across habitats – LME models 

with coral species as a random effect, were applied as described in the abiotic assessment section 
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to examine the effect of habitat on daily net photosynthesis, respiration and calcification (see 

Appendix 4). Two linear regressions were run to compare mean and Cv pH to G rates. Finally, 

two-way ANOVA’s were used to assess if there were differences in photosynthesis, respiration 

and calcification between each 3 h sampling period (n= 8 per day).  
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3.3| Results 

 

3.3.1| Abiotic assessment 

 

Non-carbonate chemistry parameters – All non-reef sites experienced greater variability in the 

abiotic parameters measured compared to the outer-reef sites (all values of P= 0.01, see 

Appendix 7 for t values). Between the two non-reef habitats, no differences in mean or Cv were 

evident between any of the measured non-carbonate chemistry abiotic variables, with the 

exception of salinity and light intensity (Figure 3.4).  In the seagrass habitat, salinity was more 

variable (P= 0.001, t= see Appendix 7) and had lower mean values (P= 0.01, t= see Appendix 7) 

relative to the back-reef (Table 3.2). Light intensity was elevated during the summer season in 

the seagrass habitat, where the mean DLI was ca. 2.0 mol m
2
d

-1
 greater than the back-reef (P= 

0.01, t= see Appendix 7, Table 3.3). Seasonally, mean temperature and water velocity were 

elevated during the summer season independent of habitat (Temperature: P= 0.001, Water 

velocity: P= 0.01, t= see Appendix 7, Table 3.1). Salinity was also more variable in the seagrass 

habitat during the summer season (P= 0.01, t= see Appendix 7). 
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Table 3.2| Summary table of the physiochemical characteristics of the outer-reef, 

back-reef and seagrass habitats on Little Cayman, Cayman Islands, BWI   

Abiotic Variable Season Outer-reef Back-reef Seagrass 

pH  Summer (Wet) 8.111 ± 0.01 8.165 ± 0.03 8.130 ± 0.02 

(total scale) Winter (Dry) 8.115 ± 0.01 8.200 ± 0.02 8.188 ± 0.04 

Total alkalinity Summer (Wet) 2373 ± 2.31 2257  ± 3.82 2247  ± 3.82 

(mol/kgSW) Winter (Dry) 2309 ± 3.74 2236 ± 6.21 2231 ± 1.64 

pCO2  Summer (Wet) 320 ± 1.71 280 ± 1.71 290 ± 1.83 

 (atm) Winter (Dry) 319 ± 2.88 220 ± 1.72 247 ± 2.23 

Ωarg Summer (Wet) 3.5 ± 0.01 4.3 ± 0.01 4.0 ± 0.02 

  Winter (Dry) 3.5 ± 0.02 5.2 ± 0.02 5.1 ± 0.02 

Salinity  Summer (Wet) 35.5 ± 0.01 35.5 ± 0.03 35.0 ± 0.02 

(ppm) Winter (Dry) 35.5 ± 0.01 35.4 ± 0.03 35.0 ± 0.03 

Temperature  Summer (Wet) 28.6 ± 0.02 29.8 ± 0.12 30.0 ± 0.19 

(°C) Winter (Dry) 27.3 ± 0.09 26.9 ± 0.10 27.3 ± 0.11 

Daily Light Integral  Summer (Wet) 330.8 ± 9.12 320.8 ± 4.44 334.1 ± 6.44 

(mmol m
2
 s

-1
) Winter (Dry) 301.2 ± 8.45 311.5 ± 4.03 284.9 ± 9.03 

Water velocity Summer (Wet) 17 ± 0.16 18 ± 0.31 16 ± 0.38 

(cm
1
s

-1
) Winter (Dry) 15 ± 0.27 13 ± 0.20 13 ± 0.18 

Nitrates  Summer (Wet) 1.12 ± 0.04 0.76 ± 0.04 0.80 ± 0.04 

(M) Winter (Dry) N/A N/A N/A 

Data shown are seasonal means (18-diel cycles) ± standard error (n= 432 per site) 

obtained from discrete water samples. Sampling was conducted in 2012-2013.  

Table 3.3| The seasonal daily light integral (mol m
2
d

-1
) for non-reef habitats on the 

north coast of Little Cayman, Cayman Islands, BWI 

Site Season Daily Light Integral 

(mol m
2
 d

-1
) 

Grape Tree Bay (Back-reef 1) Summer 18.06 

 Winter 16.24 

Grape Tree Bay (Seagrass 1) Summer 16.68 

 Winter 13.26 

Mary’s Bay West (Back-reef 2) Summer 20.76 

 Winter 18.72 

Mary’s Bay West (Seagrass 2) Summer 20.12 

 Winter 14.98 

Mary’s Bay East (Back-reef 3) Summer 24.03 

 Winter 18.65 

Mary’s Bay East (Seagrass 3) Summer 19.57 

 Winter 16.56 

The Daily Light Integral was calculated for 18-23 days for both the summer (July-

August) and winter seasons (March) of 2012.  
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Figure 3.4| The seasonal and lunar cycle trends in: A) temperature, B) water velocity, C) salinity and D) light for the two 

inner non-reef habitats (back-reef (BR) and seagrass (SG) on the north coast of Little Cayman, Cayman Islands, BWI. 

Sampling took place over a six-week period in both the wet-summer (July-August) and dry-winter (March-April) seasons in 2012 

(n= 12 diurnal cycles).  Box-plots show the range in parameters within the 95 % confidence interval with the median values shown 

as the solid black line. Outliers are shown as the solid black dots. 
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Carbonate chemistry (inshore to offshore gradient) – An inshore to offshore gradient was 

present for all three lagoons with average pCO2 and TA depleted in inshore waters relative to the 

outer-reef (P= 0.01, t= see Appendix 6, Figure 3.5). The depletion in pCO2 corresponded with an 

average increase in pH sufficient to elevate the mean Ωarg relative to the outer-reef (Back-reef: 

P= 0.01, Seagrass: P= 0.05, t= see appendix 6). Inshore values were highly dynamic with pCO2 

levels sometime elevated, thus pH and Ωarg depleted inshore relative to the outer-reef (Figure 3.5, 

Appendix 5). This result is indicative of diurnal variability within the non-reef habitats (see 

Inshore non-reef habitats results section).  

Seasonally, TA depletion was greatest within the non-reef habitats during the winter 

season (P= 0.01, t= see Appendix 6). Similarly, the inshore depletion of pCO2, and resulting 

elevation in pH was greater during the winter season, which resulted in a significant ca. two-fold 

increase in the mean ∆ Ωarg (P= 0.01, t= see Appendix 6). Offshore, the outer-reef habitat showed 

no difference in the mean or Cv of carbonate chemistry parameters between seasons or stage of 

the lunar tidal cycle, independent of site. The outer-reef habitat experienced less variability in all 

carbonate chemistry parameters measured compared to the non-reef habitats, for both seasons 

and lunar tidal cycles (P= 0.01, t= see Appendix 6).   
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Figure 3.5| The inshore to offshore seasonal carbonate chemistry gradient for the north side of Little Cayman, Cayman 

Islands, BWI. The seasonal gradient (∆) between the inner non-reef habitats (back-reef and seagrass) and outer-reef for: A) 

pH, B) n total alkalinity, C) n pCO2, and D) ∆ Ωarg are shown. Mean inshore carbonate chemistry values were subtracted from 

the mean offshore values for each sampling period to establish the magnitude of the inshore to offshore gradient (as Manzello 

et al., 2012. Total alkalinity and pCO2 were standardised to salinity (S= 36). The mean values are indicated by the red dots.  
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Carbonate chemistry (inshore) non-reef habitats – The inshore non-reef habitats were 

highly dynamic across different temporal scales. For example, the seagrass habitat recorded a pH 

range (mean ± SE) over a season of 0.588 ± 0.09 pH units, had a range of 0.554 ± 0.09 pH units 

over a lunar tidal cycle and experienced a range of 0.554 ± 0.16 pH units over a diel cycle (see 

Table 3.4). Despite the large range in carbonate chemistry parameters recorded over a season, 

habitats experienced a very consistent trends in their carbonate chemistry with the low-resolution 

(5-diel cycles) dataset generating mean and Cv values of pH, TA and temperature that did not 

significantly differ from values determined over the higher-resolution sampling period (18-diel 

cycles) (Figure 3.6). Inshore carbonate chemistry mean values were similar between stages of the 

lunar tidal cycle (Figure 3.7), however, pH and pCO2 Cv were elevated during spring tides (P= 

0.05, pH: t= see Appendix 6). Within habitat differences were also minimal for all carbonate 

chemistry parameters, with the exception of pH and pCO2 Cv being more variable at seagrass 

site one compared to seagrass site three (P= 0.05, Appendix 5; Figure 3.7).  

Seasonally, inshore pH, pCO2 and Ωarg were more variable during the summer (P= 0.01, 

t= see Appendix 6).  Mean pCO2 values were elevated during the summer season for both 

habitats, which corresponded with lower pH and Ωarg (Figure 3.5). Importantly, at no point 

during sampling did the Ωarg fall below one within either of the non-reef habitats, showing that 

both habitats remained supersaturated in aragonite. 
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Table 3.4| pH temporal variability for non-reef habitats of Little Cayman 

 

Temporal Scale Habitat Mean (±SE) Range  

Seasonal Back-reef 0.035 (0.09) 0.378 (0.12) 

Seagrass 0.060 (0.08) 0.588 (0.09) 

Lunar Tidal Cycle Back-reef 0.001 ( 0.01) 0.366 (0.13) 

Seagrass 0.008 (0.06) 0.554 (0.09) 

Diurnal Back-reef 0.002 (0.01) 0.343 (0.13) 

Seagrass 0.004 (0.01) 0.554 (0.16) 

Mean indicates the differences between temporal scale (i.e. between summer and 

winter) whereas range indicates the largest range of values obtained over the 

specified period. Means are based on the 24 h sampling replicates: Seasonal n= 18, 

lunar tidal cycle n= 18, diurnal n= 36. 

 

 

 

Figure 3.6| High-resolution (18-diel cycles) versus low-resolution (5-diel cycles) sampling of pH, 

total alkalinity and temperature for an outer-reef, back-reef and seagrass habitat on Little 

Cayman, Cayman Islands, BWI. High-resolution (n= 18 diel cycles) samples were collected in both 

seasons: 18-diel cycles during the dry-winter season and 18-diel cycles during the wet-summer season of 

2012. The five-diel cycles were randomly selected from the 18-diel cycles collected during the summer 

seasons of 2012.  
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Figure 3.7| The seasonal and lunar cycle trends in carbonate chemistry: A) pH, B) pCO2, C) total alkalinity 

and D) Ωarg for the Back-reef (BR) and Seagrass (SG) habitats on the north coast of Little Cayman, 

Cayman Islands, BWI. Sampling took place over a six-week period in both the wet-summer (July-August) and 

dry-winter (March-April) seasons in 2012 (n= 12 diurnal cycles).   Boxplots show the range in parameters within 

the 95 % confidence interval with the median values shown as the solid black line. Outliers are shown as the solid 

black dots.  
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Patterns of seasonal and diurnal variability were very different between non-reef habitats.  

The seagrass habitat experienced the largest seasonal variability in all carbonate chemistry 

parameters (P= 0.05, t= see Appendix 6), with the exception of TA, which remained similar 

between habitats. Diurnal variability was also greatest in the seagrass habitat (0.554 pH units) 

compared to the back-reef habitat (0.343 pH units). The differences in pH range between habitats 

was generated by the elevated daytime pH values for the seagrass habitat between 13:00 h and 

16:00 h and then the extreme low night-time pH values between 22:00 h and 7:00 h (Figure 3.8). 

The peaks and troughs of pH correspond with maximum and minimum PAR values (Figure 3.9).   

Daytime and nighttime mean pH values varied between the back-reef and seagrass 

habitats. For the back-reef habitat, the average daytime pH was 0.1 units higher than the 

nighttime (daytime= 8.263, night-time= 8.130), whereas the daytime seagrass average pH was 

0.245 units higher (daytime= 8.279, nighttime= 8.034).  These different daytime and nighttime 

averages resulted from the different durations of time each habitat spent at specific pH values. 

The back-reef habitat spent the majority of time (50-63 %) at a pH between 8.101-8.200 (Figure 

3.8). The seagrass habitat however, experienced much more variability, with 25 % of time spent 

between a pH of 7.900-8.100, 25 % spent between 8.101-8.200, 20-30 % of time spent between 

8.201-8.300, and up to 30 % of time spent between 8.301-8.400 (Figure 3.8).  Consequently, the 

seagrass habitat experienced more extreme daytime and nighttime pH averages and a more 

variable diurnal trend.  

Seasonal differences in diurnal trend were also apparent; both habitats showing relative 

symmetry for the amount of time spent at low and high pH values during the winter season 

(back-reef G1=0.27, seagrass G1= 0.12). However, in the summer season, both habitats spent a 

greater time at low pH values (back-reef G1= -0.41, seagrass G1= -0.43). 
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Figure 3.8| Daily proportion of time non-reef habitats on Little Cayman, Cayman Islands, 

BWI spent at set pH classes. The proportion of daily time was plotted by habitat (back-reef and 

seagrass), sites (site 1= Grape tree Bay, site 2= Mary’s Bay West, site 3= Mary’s Bay East) and 

season (summer-wet and winter-dry). The proportion of daily time was determined using 12-diel 

cycles. G1 is the collective skewness for the habitat during the particular season.  
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Figure 3.9| Diurnal pH trend for the: A) back-reef and B) seagrass habitats on the north 

coast of Little Cayman, Cayman Islands, BWI. The red dots indicated the mean (± SE) pH 

per time period. Data is based off of discrete samples collected every 3 h during the summer and 

winter seasons of 2012 (n= 12 diel cycles). Average PAR values for each time period are shown 

as the bar charts.   
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Biogeochemical control of habitats – Across all sites, the outer-reef control habitat 

showed strongest co-variability between nAT and nCT and was influenced most by calcification-

carbonate dissolution (Figure 3.10). Calcification decreases TA by two moles for each mole of 

CaCO3 precipitated and dissolution increases TA by two moles for each mole of CaCO3 

dissolved. If CaCO3 is precipitated without photosynthesis then the line of the theoretical slope 

would be two. All non-reef habitats exhibited co-variability between nAT and nCT that was more 

strongly influenced by photosynthesis-respiration (and thus CO2 uptake-release). Habitat 

differences in net ecosystem calcification to net community production (NEC:NEP, Table 3.5) 

were evident (F2, 22= 167.67, P= 0.001), with values consistently lowest for seagrass habitats 

(range: 0.05-0.55) and highest for the outer-reef control habitats (range: 1.10-1.20). The 

NEC:NEP ratios are influenced by the slope of the nCT-nAT plots and consequently, the outer-

reef habitats had a slope closer to two than all the non-reef habitats, which demonstrated less 

influence from photosynthesis and more influence from calcification.  

All outer-reef control sites showed a relationship between nAT and nCT for both seasons 

(r
2 

> 0.90, Table 3.5). A large seasonal effect was seen within the non-reef habitats, with the 

summer season experiencing the largest variability in nAT and nCT, showing greater influence 

from photosynthesis and respiration. Higher summer NEC:NEP values (F2,22= 18.64, P= 0.001) 

across sites also shows greater seasonal influence from calcification-carbonate dissolution.  

 

 

 

 

 



 Chapter 3  

113 
 

Table 3.5| NEC:NEP ratios for the nine study sites located within: Grape Tree Bay 

(GTB), Mary’s Bay West (MBW) and Mary’s Bay East (MBE)) with nAT vs. nCT 

Site Habitat Season NEC:NEP LRE R
2
 P-value 

GTB 

 

Seagrass Summer 0.40 0.5765x +  3303.2 0.35 0.0001 

Seagrass Winter 0.17 0.2852x + 2832.5 0.17 0.0001 

Back-reef Summer 0.42 0.5920x + 3335.4 0.41 0.0001 

Back-reef Winter 0.20 0.3338x  +  2899.4 0.24 0.0001 

Outer-reef  Summer 1.20 1.0889x + 224.8 0.98 0.0001 

Outer-reef  Winter 1.19 1.0847x + 234.5 0.97 0.0001 

MBW 

 

Seagrass Summer 0.33 0.4967x + 3130.8 0.37 0.0001 

Seagrass Winter 0.05 0.0989x + 2494.5 0.03 0.0001 

Back-reef Summer 0.50 0.6672x + 3467.6 0.37 0.0001 

Back-reef Winter 0.10 0.1843x + 2653.1 0.19 0.0001 

Outer-reef  Summer 1.10 1.0496x + 303.0 0.97 0.0001 

Outer-reef  Winter 1.10 1.0458x + 311.5 0.98  0.0001 

MBE 

 

Seagrass Summer 0.55 0.7080x + 3528.4 0.57 0.0001 

Seagrass Winter 0.14 0.2430x + 2733.9 0.18 0.0001 

Back-reef Summer 0.63 0.7698x + 3641.1 0.54 0.0001 

Back-reef Winter 0.15 0.2595x + 2764.9 0.18 0.0001 

Outer-reef  Summer 1.13 1.0599x + 283.7 0.94 0.0001 

Outer-reef  Winter 1.40 1.1672x + 72.2 1.00 0.0001 

Ratios of net ecosystem calcification to net community production (NEC:NCP) were 

calculated from the slopes of best-fit linear regression with all sites showing a correlation 

between nAT and nCT. NEC:NEP was calculated using the expression 1/[(2/m) – 1], where m is 

the slope from the corresponding linear regression equations (LRE). Calcification and 

dissolution are dominant processes when a linear regression slope approaches two. There was 

variation in NEC:NEP within all habitats as expected due to variation in community structure. 

 

 

 

 

 

 

 

Figure 3.10.A| A guide to understanding the nAT-nCT plots. The diagram illustrates how net 

photosynthesis, respiration, calcification and dissolution affect location of points. 
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Figure 3.10.B| Salinity-normalised total alkalinity (nAT) and total carbon (nCT) plots with best-fit linear regression. Average 

data is shown for all habitats (outer-reef control, back-reef, seagrass) on Little Cayman, Cayman Islands, BWI (Table 3.5 - r
2 

and 

equations). Sites are indicated by data symbol: Grape Tree Bay (circle), Mary’s Bay West (square) Mary’s Bay East (triangle). 

Sampling took place over a six-week period in both the wet-summer (July-August) and dry-winter (March-April) seasons in 2012. 

Black lines represent the theoretical impact of calcification (C), carbonate sediment dissolution (D), photosynthesis (P), and 

respiration (R) CO2 on AT and CT. Average nAT and nCT is indicated by a yellow dot. Calcification and dissolution are dominant 

processes when a linear regression slope approaches two. 
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Physiochemical controls of non-reef habitats – Two Principle Component Analyses 

(PCA) were conducted to evaluate the variation in mean and Cv of the physiochemical 

conditions between non-reef habitats. For each PCA, two main components were extracted (PC1 

and PC2). For Cv, the two components combined accounted for 54.0 % of the variation in the 

physiochemical conditions between non-reef habitats; 35.8 % of the variation was explained by 

elevated variation in the seagrass habitat of pH, pCO2 and Ωarg (F2,72= 265.22, P= 0.01, Figure 

3.11a), whilst 18.2 % of the habitat differences in Cv were explained by higher variance in TA 

and salinity within the seagrass habitat (F2,72= 53.06, P= 0.001). Seasonally, greater variance in 

the two components occurred during the summer season (PC1: F2,72= 10.84, P= 0.01,  PC2: 

F2.72= 7.70, P= 0.01, Table 3.6). An additional 12.8 % of Cv of the physiochemical conditions 

between habitats was explained by temperature differences (PC3).   

 For mean, the two components combined to account for 57.3 % of the variance in the 

physiochemical conditions between non-reef habitats (Figure 3.11b); 44.7 % of the variation was 

explained by higher mean values of pH, pCO2, Ωarg, temperature and salinity in the seagrass 

(F2,72= 5.89, P= 0.05, Table 3.6), whilst 12.6 % of the mean habitat differences were explained 

by elevated light in the seagrass habitat (F2,72= 18.10, P= 0.01). Again, seasonal effects were 

pronounced during the summer (PC1: F2,72=331.01, P= 0.01, PC2: F2,72=3.99, P= 0.05). 

Differences in mean water velocity accounted for an additional 10.7 % of the variation between 

habitats (PC3).  

  A comparison between the two PCA’s conducted demonstrates the importance of 

considering both Cv and mean in physiochemical habitat analysis. For example, in the Cv PCA, 

temperature contributed minimally in PC3 (weight 0.886, Eigin value 12.8 %); however, in the 

mean PCA, temperature contributed largely in PC1 (PC1, weight 0.825, Eigin value 44.7 %); 
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thus highlighting how physiochemical factors can influence a habitat differently depending on 

whether their mean or Cv values are considered. Comparison of the dispersal of each PCA 

(Figure 3.11a & b) demonstrates how seasonality is dominant in the mean PCA, whereas habitat 

differences are more evident in the Cv PCA.  
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Table 3.6| The PCA weightings for A) physiochemical variance (Cv) and B) 

physiochemical mean values for the non-reef habitats on Little Cayman, Cayman 

Islands, BWI  

 

A│ Physiochemical Cv: The contributions of the first three principle components (PC1, 

PC2 and PC3) that combined explained 66.8 % of the differences within the non-reef 

habitats. 

 

Variable Weighting 

PC1 PC2 PC3 

pH 0.824 0.000 0.022 

pCO2 0.875 0.005 0.000 

Total alkalinity  0.059 0.509 0.000 

Aragonite saturation state (Ωarg) 0.915 0.016 0.000 

Temperature 0.016 0.004 0.886 

Salinity 0.032 0.558 0.010 

Light 0.122 0.021 0.034 

Water Velocity 0.020 0.343 0.072 

B│ Physiochemical mean: The contributions of the first three principle components 

(PC1, PC2 and PC3) that combined explained 80.1 % of the differences within the non-

reef habitats. 

Variable Weighting 

PC1 PC2 PC3 

pH 0.878 0.363 0.066 

pCO2 0.885 0.368 0.118 

Total alkalinity  0.378 0.144 0.643 

Aragonite saturation state (Ωarg) 0.963 0.068 0.065 

Temperature 0.825 0.202 0.195 

Salinity 0.801 0.056 0.205 

Light 0.367 0.521 0.117 

Water Velocity 0.654 0.435 0.195 

Data was collected during a discrete water sampling procedure during the summer and winter of 

2012 (n= 18 diel cycles, see main text). The major contributing variables are shown in bold.   
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Figure 3.11| Principal component analysis (PCA) plot for: A) Coefficient of variation (Cv) and B) mean physiochemical data 

from non-reef habitats on the north coast of Little Cayman, Cayman Islands, BWI. The first two principle components are 

plotted (PC1 and PC2). The shape of the points indicates seasons, with circles representing the summer season and squares 

representing the winter. Filled or unfilled data points show lunar cycle; filled points representing the spring tide and no fill indicating 

the neap tide. The plot illustrates differences in variance between the two non-reef habitats. The red and blue circles distinguish the 

major clustering of habitats. Figure 3.11a: PC1 accounted for 35.8 % of the variance, and PC2 accounted for 18.2 % of the variance. 

Figure 3.11b: PC1 accounted for 44.7 % of the variance, and PC2 accounted for 12.6 % of the variance. 
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3.3.2| Benthic assessment  

Benthic community composition – No differences at the major benthic taxa level (e.g. corals, 

chlorophyta etc, see Figure 3.18 for all classifications) were detected within habitats between the 

2012 and 2013 benthic sampling data. Overall community composition was also similar between 

habitats, with no significant inter-habitat variation observed between sites (Figure 3.12). 

However, comparisons of individual taxa revealed subtle differences. For example, in both 2012 

and 2013, seagrass cover was lowest in the back-reef habitat (2012: t4= 22.22, P= 0.001, 2013: 

t4= 52.82, P= 0.01, Figure 3.13) and abiotic cover was largest (2012: t4= 40.12, P= 0.01, 2013: 

t4= 52.69, P= 0.01, Figure 3.13). Coral cover (mean ± SE) was low across habitats independent 

of year, with the back-reef (6.5 ± 1.2 %) having ca. double the coral cover of the seagrass 

habitats (2.7 ± 0.4 %).  

 

Figure 3.12| A dendrogram showing site clustering based on benthic composition for the six 

non-reef habitats on Little Cayman, Cayman Islands, BWI. Average percent benthic 

composition for 2012 and 2013 were used. Two habitats (back-reef (BR) and seagrass (SG)) 

were compared at the three sites: Grape Tree Bay (GTB), Mary’s Bay West (MBW) and Mary’s 

Bay East (MBE).  
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Figure 3.13| The percentage cover of major benthic taxa for the seagrass (SG) and 

back-reef (BR) habitats on the north coast of Little Cayman, Cayman Islands, BWI 

during: A) 2012 and B) 2013. Surveys were conducted in February at three sites: Grape 

Tree Bay (GTB), Mary’s Bay West (MBW) and Mary’s Bay East (MBE). Data is averaged 

for three 50 m transects per site.  
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Established coral community – Relative percentage coral cover (± SE) was similar for 

both years, with Porites astreoides the dominant species in the back-reef habitat (2012: 32.0 ± 

0.7 %, 2013: 36.0 ± 0.4 %, Figure 3.14a), and Siderastrea radians the dominant species in the 

seagrass habitat (2012: 49.0 ± 0.3 %, 2013: 52 ± 0.5 % ). The seagrass coral community 

belonged almost solely to the two families: Poritidae and Siderastreidae (99 %), whereas the 

back-reef habitat had 65 % of corals in these families, with 18 % in the Faviidae and 

Meandrinidae families (Figure 3.14b). Although biomass of corals was higher in the back-reef 

habitat, the actual number of coral colonies was greatest in the seagrass due to high densities of 

small P. divericata colonies spread-out through the seagrass beds (2012: 209 ± 112.5, 2013: 262 

± 98.3 colonies, Table 3.7). However, densities of P. divericata were highly variable between 

transects, as illustrated by the large standard error.  

The size of coral colonies was low at both habitats, with most corals ranging from 1-15 

cm (Figure 3.15). The seagrass habitat contained smaller colonies than the back-reef in 2012 and 

2013 (Seagrass, 2012: G1 = 2.82, 2013: G1= 2.84; Back-reef, 2012: G1= 1.70, 2013: G1= 1.85). 

In 2013, both habitats had a greater number of coral colonies observed, falling into the 0-5 cm 

bin. Between years, there was no significant decrease in the number of larger (21-50
+ 

cm) coral 

colonies. In both 2012 and 2013, the back-reef habitat had the highest species richness, species 

evenness and Shannon-Wiener Index (Table 3.7). The seagrass habitat did however have 

relatively large species richness, housing ca. 70 % of coral species found within the 

neighbouring back-reef habitat. Visually, disease prevalence was low across habitats (< 1 %), 

however there were obvious signs of old-mortality (back-reef: 14 %, seagrass: 2 %) with the 

back-reef showing greater amounts (F2,36= 253.46,  P= 0.001). No differences in new or 

transitional-mortality were detected.  
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Table 3.7| Summary table of established coral communities of the back-reef and 

seagrass habitats of Little Cayman, Cayman Islands, BWI 

Year Habitat Average 

Density (per 

20m
2
) 

Species 

Richness 

Shannon- 

Wiener 

Index 

Shannon- 

Wiener 

Evenness 

2012 Back-reef 107 ± 12.4 18 1.18 0.48 

2013 Back-reef 132  ± 10.2 21 1.45 0.58 

2012 Seagrass 209 ± 112.5 13 0.78 0.35 

2013 Seagrass 262  ±  98.3 14 0.84 0.37 
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Figure 3.14| The average relative coral cover for the seagrass and back-reef habitats of Little Cayman, Cayman Islands, BWI. 

Pie charts show the relative cover of each coral family around the edge, followed by the species coverage in the internal pie-chart. 

Data was obtained from 9 x 50 m benthic video transects analysed to species level conducted in 2012 and 2013.  
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Figure 3.15| The coral size-frequency distribution in the: A) seagrass and B) back-reef habitats in 2012 and 2013 around Little 

Cayman, Cayman Islands, BWI. Annually data was obtained from 9 x 20 m
2 

quadrats within each habitat during the month of 

February. Skewness (G1) is shown for each habitat and year.  
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  Coral recruitment – Monthly analysis of the settlement tiles at both non-reef habitats 

indicated that recruitment only occurred during the months of August and September (in both 

2012 and 2013). The back-reef habitat had the highest number of coral spats counted over the 

20-month period (back-reef: 181, seagrass: 81), averaging 1.2 ± 0.05 m
2
 compared to 0.5 ± 0.03 

m
2
 in the seagrass habitat. Along with a higher recruitment frequency in the back-reef habitat 

(t17= 8.84, P= 0.001), a greater diversity of corals recruited (Figure 3.16).  Across habitats, most 

recruits belonged to the families Poritidae and Siderastreidae. The back-reef had recruits 

identified across five families and ‘other’, whilst the seagrass had recruits identified to two 

families and ‘other’.  

 The newly recruited coral populations established from the recruitment tiles mirrored the 

adult coral populations for both habitats, with similar relative abundance of the major families 

(Figure 3.17). Analysis of individual families between the established and newly recruited coral 

populations revealed two differences: firstly, in the back-reef habitat Faviidae recruits were 8.1 

% higher than the relative established coral population (t4= 52.66, P= 0.01), and secondly, more 

corals fell into the ‘other’ category within the established coral population of the seagrass habitat 

compared to the recruited population (t4= 150.22, P= 0.001). 
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Figure 3.16| Coral recruitment per family per m
2
 for the seagrass and back-reef habitats of 

Little Cayman, Cayman Islands, BWI. Data was collected from recruitment tile analysis over 

20-months initiated in January 2012 from three back-reef and three seagrass sites. Data is the 

mean with standard error).  
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Figure 3.17| A comparison of the established and newly recruited coral communities of: A) 

the back-reef and B) the seagrass habitats of Little Cayman, Cayman Islands, BWI. The 

relative percentage cover of the major coral families was established for the counted recruits on 

settlement tiles (20-month period from January 2012), and established colonies on 9 x 50 m 

transects within each habitat (surveyed in February 2012 and 2013).  
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Benthic recruitment composition – The recruited benthic composition was different 

between the seagrass and back-reef habitats (F4,13= 200.73, P= 0.01), with the majority of taxa 

varying with the exception of tunicates, serpulid worms, corals, coralline algae, rhodophyta and 

chlorophyta (Figure 3.18). Recruited coral cover was very low (< 0.7 %) across habitats. A 

comparison of the percentage cover of recruited calcium carbonate polymorphs between habitats, 

revealed that there was a difference between the back-reef and seagrass habitats (t12= 114.14, P= 

0.01). Specifically, there was less aragonite (t12=5.24, P= 0.05), and high Mg-calcite (t12= 20.98, 

P= 0.001) in the seagrass habitat with more carbonate sediment (F12=1165.65, P= 0.001) than in 

the back-reef (Figure 3.19). Interestingly, for the least soluble polymorphy (calcite) there was no 

difference between habitats, however, for the more soluble polymorphs of high Mg-calcite and 

aragonite, we see less accretion in the seagrass habitat.  
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Figure 3.18| The percent cover of the major benthic taxa recruited over a 20-month period 

in the seagrass and back-reef habitats of Little Cayman, Cayman Islands, BWI. Starting in 

January 2012, for a 20-month duration, settlement tiles (n= 81 per habitat) were installed to 

record recruitment. Data presented is actual percentage cover estimated from CPCe counts (150 

points) of high-definition pictures of each tile.  
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Figure 3.19| The relative percentage cover of calcium carbonate polymorphs recruited over 

a 20-month period in the seagrass and back-reef habitats of Little Cayman, BWI.  Starting 

in January 2012, for a 20-month duration, settlement tiles (n= 81 per habitat) were installed to 

record recruitment. Data presented is relative percentage cover estimated from CPCe counts (150 

points) of high-definition pictures of each tile. 

 

3.3.3| The relationship between pH and benthic community composition 

An increase in pH Cv resulted in an increase in the percentage cover of photoautotrophs (r
2
= 

0.846, n= 18, P= 0.001, Figure 3.20a, Photoautotroph cover= 0.0002pHCv +0.0043) whilst 

calcifying benthos decreased (r
2
= 0.780, n= 18, P= 0.001, Calcifying benthos=  -0.0009pHcv + 

0.0125, Figure 3.20b). An increase in mean pH resulted in a decrease in the percentage cover of 

photoautotrophs (r
2
= 0.872, n= 18, P= 0.001, Photoautotroph cover= -0.0009pHCv +8.205, 

Figure 3.20c) and an increase in the percentage cover of calcifying benthos (r
2
= 0.802, n= 18, P= 

0.001, Calcifying benthos cover= 0.0038pHCv +8.129, Figure 3.20d).  
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Figure 3.20| Plots of mean and Coefficient of Variation (Cv) pH versus calcifying (coral, hydrocoral, calcifying 

algae) and non-calcifying (seagrass and non-calcifying algae) benthos for the non-reef habitats of Little 

Cayman, Cayman Islands, BWI. A) pHcv versus photoautotrophs (r
2
= 0.846, n= 18, P= 0.001, Photoautotroph 

cover= 0.0002pHcv +0.0043), B) pHcv versus calcifying benthos (r
2
= 0.780, n= 18, P= 0.001, Calcifying benthos=  -

0.0009pHcv + 0.0125), C)  mean pH versus photoautotrophs (r
2
= 0.872, n= 18, P= 0.001, Photoautotroph cover= -

0.0009pHcv +8.2055), D) mean pH versus calcifying benthos (r
2
= 0.802, n= 18, P= 0.001, Calcifying benthos cover= 

0.0038pHcv +8.129). Data is from three back-reef and three seagrass sites, with data collected in 2012 and 2013. 

Regression is shown with 95 % confidence interval. 
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3.3.4| The metabolic expenditure of the dominant coral species across habitats results 

Calcification was maintained across the non-reef habitats remaining similar to the outer-reef 

control (Figure 3.21a, Table 3.8), even with the elevated variance in pH of the non-reef habitats, 

(Figure 3.21b). The greatest rates of calcification were recorded for P. astreoides across habitats 

(10.4 ± 0.9 mmol cm
2
 d

-1
, Table 3.9). Rates of calcification were consistent over the daylight 

sampling period, however, calcification rates at dusk (16:00-20:00 h) were significantly higher 

than rates obtained during the other night-time sampling periods (F2,54= 11.53, P= 0.001, post-

hoc: P= 0.01). Rates of photosynthesis were elevated in the outer-reef control relative to the non-

reef habitats (F2,54= 3.32, P= 0.01), however, no differences in respiration rates were observed. 

Rates of photosynthesis varied over the day-light sampling period (F2,54= 11.60, P= 0.01), whilst 

respiration rates again remained stable.  

 

Table 3.8| Model parameters to estimate daily net Photosynthesis (P), Respiration 

(R) and Calcification (G) as a function of habitat (back-reef, outer-reef control, 

seagrass) for corals in reef systems around Little Cayman, Cayman Islands, BWI 

Metabolic 

Parameter 

Model terms Estimate SE t-value P-value 

P Intercept  18.03 4.16 4.33 0.005 

Habitat 5.37 1.62 3.32 0.01 

R Intercept  35.88 1.18 30.46 0.0001 

Habitat -0.42 0.42 -1.00 N/S 

G Intercept  29.18 5.97 4.89 0.001 

Habitat -2.80 2.36 -1.19 N/S 
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Figure 3.21| The mean daily integrated net calcification (G) (mmol m
2
 day

-1
) versus: A) 

mean pH and B) pH Coefficient of Variation (Cv) for five dominant coral species in reef 

habitats of Little Cayman, Cayman Islands, BWI. All data plotted are mean values ± standard 

error (SE, n= 3) for the five dominant coral species examined across non-reef habitats (seagrass, 

back-reef) and outer-reef habitat. Regression analysis was non-significant for both mean and Cv 

pH versus calcification.  
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Table 3.9| The metabolic response (Photosynthesis (P), Respiration (R) and Calcification (G) 

for five dominant coral species in reef systems around Little Cayman, Cayman Islands, BWI 

Habitat Metabolism  

(Mean ± SE) 

P.astreoides D.stokesii P.divaricata S.radians S.intersepta 

Seagrass P (mol O2 cm
2
 d

-1
)  30.2 ± 0.5 20.2 ± 0.4 25.6 ±  0.2 23.2 ±  0.6 23.2 ±  0.8 

 R (mol O2 cm
2
 d

-1
) 38.2 ±  1.2 35.2 ±  0.6 35.7 ±  0.3 34.2 ±  0.4 35.3 ±  0.1 

 G (mmol cm
2
 d

-1
) 10.5 ± 0.8 6.2 ± 0.2 7.2 ±  0.5 7.6 ±  0.1 6.5 ±  0.2 

Back-reef P (mol O2 cm
2
 d

-1
) 31.2 ±  0.3 23.2 ±  0.4 26.9 ±  0.3 25.3 ±  0.1 26.5 ±  0.8 

 R (mol O2 cm
2
 d

-1
) 37.3 ±  0.4 33.2 ±  0.4 34.2 ±  0.1 30.1 ±  05 37.4 ±  0.1 

 G (mmol cm
2
 d

-1
) 10.9 ±  0.4 6.4 ±  0.5 7.92 ±  0.3 7.5 ±  0.2 7.1 ±  0.3 

Outer-reef P (mol O2 cm
2
 d

-1
) 55.2 ±  0.1 30.1 ± 0.1 34.2 ±  0.6 29.2 ±  0.5 27.4 ±  0.1 

 R (mol O2 cm
2
 d

-1
) 36.2 ± 0.5 35.2 ±  0.1 34.1 ±  0.5 32.9 ±  0.2 36.2 ±  0.1 

 G (mmol cm
2
 d

-1
) 10.1 ±  0.3 7.1 ±  0.3 8.4 ±  0.6 7.29 ±  0.1 9.9. ±  0.2 

Data was collected during May 2013, over three 24 h sampling sessions, with rates calculated from 

eight 3 h incubations per 24 h period. All rates were corrected for any metabolic activity of the 

seawater, and were normalised to the volume of the respirometry chamber and surface area of the 

coral. 
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3.4| Discussion 

3.4.1| Spatial and temporal variability of physiochemical properties across habitats  

Non-reef habitats are highly variable in all physiochemical conditions relative to the outer-reef, 

which remained comparatively stable through all measured temporal and spatial scales. Globally, 

inshore habitats like seagrass beds are being identified as having highly variable carbonate 

chemistry conditions (Manzello et al., 2012; Price et al., 2012; Yates et al., 2014) which is 

raisings questions over how these sites will be influenced by OA in the future, due to the range 

of conditions they already experience on a regular basis (Durate et al., 2013).  

Inshore, the main physiochemical differences between habitats were pH, pCO2 and Ωarg. 

Sites within habitats had very similar local physiochemical conditions. To know whether habitat 

trends identified on Little Cayman apply more broadly, further investigation is necessary across 

other study locations situated across bioregions. Stage of the lunar tidal cycle did not appear to 

influence the carbonate chemistry, potentially due to the minimal tidal range experienced in the 

Cayman Islands (range during sampling: 0.4-0.9 m, NOAA, 2015). Seasonal influences were 

evident within the non-reef habitats with both habitats experiencing greater variation during the 

summer season. Interestingly, the range of pH measured over a season was not dissimilar to the 

average daily range experienced by each habitat.  

Diurnal trends in pH and pCO2 corresponded with the time-of-day and average PAR, 

showing a large drawdown of CO2 during the day when PAR is high and photosynthesis is the 

dominant metabolic process, with the reverse seen at night when respiration is prevailing. Local 

photosynthetic activity has been proposed through models (Unsworth et al., 2012) and field 

studies (Manzello et al., 2012; Anthony et al., 2013; Buapet et al., 2013; Hendricks et al., 2014) 

to influence the local chemistry, potentially buffer impacts of OA. Importantly however, the high 

drawdown of pCO2 measured in the seagrass habitat during the daytime was slightly offset by 
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periods of extreme low pH recorded at night. At some points, nighttime pH was recorded below 

7.8, which represents conditions predicted for the future open-ocean under OA scenarios (IPCC, 

2015). The periods of extreme low pH measured on Little Cayman are similar to the findings of 

Price et al. (2012) in the northern Line Islands, suggesting that our observations are not limited 

to this bioregion. The relationship between daytime draw-down of CO2 versus nightime 

production of CO2 will likely influence the response of these non-reef habitats to future OA.  

 

3.4.2| Influence of benthic and local biogeochemical drivers on carbonate chemistry  

The stability of the outer-reef suggests that it experienced minimal influence from local 

biogeochemical drivers and thus, its chemistry is driven primarily by that of the open-ocean. 

Conversely, the elevated variance experienced in the non-reef habitats, combined with seasonal 

influences (elevated variance in the summer-wet season) suggests that local chemistry is heavily 

influenced by the ambient benthic composition, a trend also observed in the Florida Reef Tract 

(Manzello et al., 2012). The seagrass habitat had greater variability in pH and pCO2 than the 

back-reef, likely resulting from the higher coverage of photoautotrophs (Anthony et al., 2011b). 

The shallow water depth (ca. 1m) also likely magnifies the chemical response as there is a 

smaller body of water. The nAT vs nCT plots corroborate this observation, with the seagrass 

habitats experiencing periods influenced significantly by photosynthesis and calcification, as 

well as respiration and carbonate dissolution, characteristic of the diurnal influence of pCO2 on 

the biogeochemistry of this habitat.  

Differences between the inshore non-reef habitats and the outer-reef created an inshore to 

offshore gradient in the carbonate chemistry. The gradient was driven primarily by changes in 

pCO2, which suggests that net primary productivity is again responsible. The gradient resulted in 
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depleted pCO2 and consequently, elevated pH and Ωarg in the non-reef habitats. The gradient was 

predominant during the dry-winter season. Conversely however, other studies documenting an 

inshore to offshore gradient have only documented it during the local summer season (e.g. 

Manzello et al., 2012). Within this study, the gradient was present across seasons, and the larger 

magnitude during the winter-dry season corresponded with reduced storm activity and rainfall 

(Turner et al., 2013), a pattern consistent with most other study-locations during the summer 

season.  No differences in PAR were detected between seasons, however, greater water velocity 

and higher variability in salinity were observed during the summer season. Elevated water 

velocity reduces the residency time of water and can increase mixing (Ohde & Woesik, 1999; 

Unsworth et al., 2012), which potentially dilutes the inshore to offshore gradient. Lower salinity 

can also increase pCO2 absorption as seawater can hold more gas (Feely, 2010).   

 

3.4.3| Coral populations of reef and non-reef habitats 

In both the back-reef and seagrass habitats, coral cover was low. However, surprisingly the 

seagrass habitat supported a high diversity of corals despite typically being considered a poor 

habitat for coral survival (Jackson, 1985) and experiencing periods of extremely low pH. Yates 

et al. (2014) recorded a high diversity of corals in mangrove systems (which experienced 

variable pH), around St John’s in the US Virgin Islands, adding to the growing body of evidence 

that corals can survive under a wide range of conditions, including periods of extreme low pH 

predicted under future OA (Fabricius et al., 2011).  Furthermore, minimal visual signs of coral 

stress (e.g. bleaching/disease/partial-mortality) were observed, suggesting that the coral species 

found within these habitats are coping with the highly variable and extreme conditions. It was 

however noted that the overall benthic recruitment of the more soluble polymorphs of calcium 
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carbonate were reduced in the seagrass habitat. The reduced recruitment of aragonite and high-

Mg-calcite organisms could be coincidence, however, it is plausible that the extreme low pH 

conditions, experienced at night (ca. 25 % of the total time of day), may be challenging 

carbonate genesis of the more soluble polymorphs; an observation reported in laboratory 

conditions (Kleypas et al., 2006).  

Importantly within this study, both non-reef habitats received coral recruits, with 

evidence that spawning events occur around August and September. In 2013 there were smaller 

colonies than (< 5 cm) in 2012 suggesting a potential recruitment event or an increase in 

recruitment survival from the preceding year. To-date, minimal research has been conducted 

globally on the recruitment of corals into non-reef habitats, despite the importance of 

determining the ability for corals to recruit into these systems when assessing their viability to 

act as a potential refuge against future climate change. The seagrass habitat only received 

recruits from two main families: Poritidae and Siderastreidae, which represents the established 

adult community of this habitat. However, what is not understood is whether these are the only 

families that are able to tolerate and survive the conditions of the seagrass habitats, or whether 

the seagrass population results from a larval supply limitation? Further investigation is necessary 

to address these unknowns, and they warrant exploration to help us understand the ability of 

these systems to act as a potential refuge.  

Previous studies have commented that seagrass beds are poor habitats for coral growth 

due to their soft substrate (Jackson, 1985) and the stunted growth of colonies recorded (Glynn, 

1974), therefore, any buffering effects of OA have been proposed downstream of seagrass beds 

(Manzello et al., 2010, Anthony et al., 2013). However, our findings demonstrate that patches of 

intermittent hard-ground within seagrass beds can house corals themselves, which in turn offers a 
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different form of refuge, directly within seagrass beds. Under this form of refugia, corals are: (i) 

exposed to a high-variability in pH conditions which potentially pre-conditions them to lower 

pH, and (ii) provided optimal conditions for calcification with mean pH and Ωarg elevated relative 

to the outer-reef despite the periods of low pH at night.  

 

3.4.4| Metabolic expenditure of dominant coral species across habitats 

For the coral species whose metabolism was investigated, the maintenance of calcification across 

non-reef habitats corresponds with the elevated mean pH and Ωarg for these habitats. Despite 

large variability in pCO2 resulting in pH as low as 7.8, calcification was sustained. These results 

suggest that the duration of time spent at a given pH is what influences overall rates of 

calcification. Daylight calcification was consistent over the daylight-sampling period, as was 

nighttime calcification rates. However, during the dusk-twilight period, calcification varied from 

the daytime and nighttime calcification rates, a consideration necessary for sampling frequency.  

Rates of calcification were sustained without a change in respiration, however, rates of 

photosynthesis were slightly reduced relative to the outer-reef. Rates of photosynthesis also 

varied during the day, which means that several daytime samples are needed to encapsulate this 

variance. Comparatively, high calcification within the back-reef and seagrass habitats supports 

the hypothesis that these habitats play a buffering role for resident corals possibly from OA 

through biologically-mediated elevation of mean pH. Understanding whether these habitats, 

across different bioregions, have similar biogeophysical conditions and can provide similar 

ecosystem services remains unknown. Similarly, it is unknown whether reef/non-reef habitats 

whose mean pH is lower than the outer-reef control, support the same metabolic functions as the 

habitats described in this chapter.  
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3.4.5| Consequences for future research  

The mean and range of pH, temperature, salinity and TA for each habitat remained similar over a 

5-day and 18-day sampling period within an individual season, thus highlighting the similarity in 

the contribution of these physiochemical factors on a daily, weekly and monthly scale. This 

finding was further supported by the similarities in the range of pH measured over a season, 

lunar tidal or diel cycle. Moving forward with the research to address questions raised within this 

chapter, confidence can be taken in a shorter sampling period to capture the physiochemical 

conditions of a habitat, as long as seasonality is considered.  

 When assessing the metabolic activity of coral in situ, differences in photosynthesis 

during daytime sampling demonstrates the need to have replicate samples throughout this period. 

However at night, no differences in respiration were recorded and calcification remained similar 

after the dusk sampling, therefore, a minimum of one dusk and one nighttime sample is 

necessary within each sampling replicate to estimate the metabolic activity of corals.  
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3.5| Key Findings 

3.5.1| Spatial and temporal variability of physiochemical properties across habitats  

 Non-reef habitats are highly variable in all physiochemical conditions relative to the 

outer-reef. 

 Carbonate chemistry was highly dynamic in the non-reef habitat, with large diel variation 

and increased variability during the summer season.  

 pH, pCO2 and Ωarg were the most variable physiochemical factors between the two non-

reef habitats.  

3.5.2| Influence of benthic and local biogeochemical drivers on carbonate chemistry  

 Inshore depletion of pCO2 created an inshore to offshore gradient, which was greatest  

during the winter season. 

 The non-reef habitats saw the greatest range in nAT and nCT and exhibited co-variability 

between nAT and nCT more strongly influenced by photosynthesis-respiration (and hence 

CO2 uptake-release).  

 The percent cover of photoautotrophs increased, whereas the cover of calcifying benthos 

decreased, with lower mean pH and increased pH Cv.  

3.5.3| Coral populations of reef and non-reef habitats 

 Coral cover was low across both habitats, however, a surprisingly large diversity (70 % 

of the back-reef diversity) of coral species was recorded in the seagrass habitat.  

 Corals recruited to both non-reef habitats. 

 Recruited coral populations were similar to the established adult coral populations. 

 

3.5.4| Metabolic expenditure of dominant coral species across habitats 

 For corals, net daily calcification was sustained across habitats, with no change in 

respiration and despite a slight decrease in photosynthesis rates.  
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3.5.5| Consequences for future research  

 A 5-diel sampling schedule can capture the mean and Cv of a habitat within a given 

season.  

 In situ analysis of coral metabolism requires replicated daytime sampling and a minimum 

of one dusk and one nighttime sampling period within each sampling replicate to 

encapsulate the daily variance in coral metabolic activity.  
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Chapter 4| Spatial variability of carbonate 

chemistry and the in situ metabolic 

response of dominant coral species 

Part of this chapter is in review in Global Change Biology as the manuscript: Pre-conditioning 

and buffering services of mangroves and seagrass beds for corals threatened by climate change.  

 

4.1| Introduction 

Coral reefs are typically restricted to the photic zone (< 60 m) of the tropics (Lesser, 2004) and 

tolerate relatively narrow ranges of abiotic variables (salinity, light, temperature, turbidity, pH) 

(Done, 1999; Kleypas et al., 1999; Sheppard et al., 2010). However, some species of corals have 

demonstrated great plasticity in surviving in conditions that would typically be considered sub-

optimal, maybe even extreme for coral growth. For example, Siderastrea siderea is routinely 

exposed to varying salinity (< 10 and/or > 37 ppm) in the coastal lagoons of south Florida 

(Lirman & Manzello, 2009) and corals living around CO2 vents in Papua New Guinea survive in 

seawater of 7.7-7.8 pH units (Fabricius et al., 2011). Consequently, our understanding of the 

fundamental niche of reef building coral is expanding as researchers look to suboptimal habitats.  

Worldwide environments are changing, partly as a response to global anthropogenic 

threats (e.g. ocean warming and acidification, Hoegh-Guldberg et al., 2007; Dove et al., 2013) 

and partly due to local point source stressors such as increased sedimentation due to coastal 

destruction (Hughes et al., 2003). Understanding the physiological tolerance of corals to highly-

variable, sub-optimal conditions are important for determining the vulnerability of reefs 

threatened by global environmental change. 

Researchers are starting to examine the characteristics and traits of corals that persist 

within environments that were traditionally considered extremes and representing growth 
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limiting conditions (e.g. Fabricius et al., 2011; Price et al., 2012; Hume et al., 2015). However, 

whilst corals clearly demonstrate some form of tolerance to survive within these highly variable 

habitats (Price et al., 2012; Yates et al., 2014), the biological mechanisms that infer tolerance 

remain unknown. Similarly, whether patterns in corals ability to biologically perform under 

variable environments today are common across taxa remains untested. It is also unknown if 

corals biological performance within these habitats is a localised phenomenon or characteristic of 

corals across larger spatial scales. Therefore the objectives of this chapter are to: 

1) Quantify the mean and variance of pH experienced by reef and non-reef habitats at sites 

in both high and low biodiversity regions;  

2) Measure the association between mean and variability (Cv) in pH and species richness;  

3) Quantify the ability of corals to expand their niches into non-reef habitats; 

4) Measure the physiological responses (photosynthesis, respiration, calcification) of corals 

existing in different regions to ascertain commonalities;  

5) Measure how coral calcification rates change between habitats and sites in relationships 

to photosynthesis and respiration;  

6) Test whether certain coral species or coral growth forms are superior in sustaining 

metabolic activity across different habitats. 

In addressing these objectives this research will deliver a novel dataset quantifying the metabolic 

costs for dominant coral species living in suboptimal environments that may become the norm in 

coral reefs in the near future. The data will provide insight in to the relationship between 

photosynthesis to respirtion and calcification. Combined the data will help in the identification of 

tolerant coral species and will expand our knowledge of their environmental niche and the 

metabolic costs of living at the extremes of their environmental distribution.  
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4.2| Materials and Methods 

4.2.1| Study locations  

Three study locations situated across three bioregions (Atlantic Ocean (AO), Pacific Ocean (PO) 

and Indian Ocean (IO)) were investigated (Figure 4.1). These three sites were selected to allow a 

comparison across three geographically separate locations that experience different species and 

levels of diversity. Each site was similar in that it was a small island that received minimal local 

anthropogenic impacts. All sites were also a similar size and had no direct impact from 

freshwater at the study location. At each location, an outer-reef control site subject to open-ocean 

seawater chemistry was compared to two non-reef habitat sites, with all sites 2-4 m in depth and 

situated away from any freshwater inputs. All sites experienced a tidal cycle range of 0.1-1.0 ± 

0.1m during sampling. All non-reef habitats were situated within lagoons that had high water 

retention making them ideal locations to study the effects of local water chemistry.   

The Atlantic Ocean study location was situated on the north coast of Little Cayman, with 

the two non-reef habitats (back-reef and seagrass) situated in Grape Tree Bay (Figure 4.1, see 

Chapter 1, section 1.6.1). The outer-reef habitat was adjacent to the bay. The back-reef habitat 

consisted of inter-dispersed seagrass and small patch reefs (15-30 % cover of seagrass) and was 

not a true reef, thus is referred to as a non-reef habitat within this chapter. This transitional site 

was selected to assess the continuum of carbonate chemistry changes from the outer-reef control, 

to the inshore seagrass habitat in the absence of tidal flooded mangrove shrubland (Turner et al., 

2013). The outer-reef site was subject to the ocean currents around Little Cayman which move in 

a northwesterly direction (Stoddard, 1980; Turner et al., 2013), while the two non-reef habitat 

sites experienced a western current. Sites were subject to a mix of diurnal and semi-diurnal tidal 

cycles. 
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The IO study location was situated around the island of Curieuse within the Seychelles 

archipelago (Figure 4.1, see Chapter 1, section 1.6.3). The two non-reef habitat sites consisted of 

a seagrass dominated habitat and a mangrove habitat situated within a bay known locally as Baie 

La Raie. The mangrove site was not directly under the mangrove canopy but in close proximity 

on the seaward side so it was not shaded from light. The outer-reef site was located on the reef 

flat adjacent to the reef crest. All sites were located within the Curieuse National Marine Park 

and subject to a semi-diurnal tidal cycle that ran in an anti-clockwise direction within the bay 

throughout sampling.  

The Pacific Ocean study location was situated in the Wakatobi, southeast Sulawesi 

(Figure 4.1, see Chapter 1, section 1.6.4). The outer-reef site was situated on the reef flat known 

locally and in previous publications as “Pak Kasims” off Hoga Island. One of the non-reef 

habitat sites was an adjacent inshore seagrass habitat also off the south coast of Hoga Island.The 

second non-reef habitat was immediately adjacent to the Langeria mangroves, located off the 

north coast of Kaledupa Island. As for the Indian Ocean site this non-reef habitat site was 

situated outside of the mangrove canopy. The carbonate reef systems here experience good water 

quality with minimal impact from sediment load (Bell & Smith, 2004). During sampling currents 

ran in a southeast direction but were driven by tides, with sites exposed to a semi-diurnal tidal 

cycle. 
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Figure 4.1| The three study locations indicated on a global map. A) Little Cayman, Cayman 

islands, BWI situated in the Atlantic Ocean, B) Curieuse, the Seychelles located in the Indian 

Ocean, and C) Hoga and Kaledupa located in the Wakatobi, southeast Sulawesi in the Pacific 

Ocean. At each location one outer-reef habitat and two non-reef habitats (Atlantic: seagrass and 

back-reef, Pacific and Indian: seagrass and mangrove) were sampled.  
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4.2.2| Sampling regime 

Environmental conditions and in situ coral metabolic activity for select coral species were 

measured over five 24 h sampling days within a two-week period. Sampling took place during 

the annual dry seasons of each region. Based on results from Chapter 3 it was determined that the 

mean and variance (coefficient of variation (CV)) of environmental conditions for this short 

period dataset did not significantly differ from values determined for a longer-term study across 

a full neap-spring cycle (18-days) within the same season. As expected (Albright et al., 2013), a 

seasonal affect (overall difference of 0.07 pH units) was identified and thus we subsequently 

focused on the dry season within each bioregion (Atlantic Ocean: March 2014, Indian Ocean: 

April 2014, Pacific Ocean: August 2014). 

 

4.2.3| Abiotic assessment  

Temperature, light and nitrates – Temperature (°C, accuracy ± 0.53 ºC) and Light (Lux, 

accuracy relative to light levels: see Onset, 2012) were measured using a HOBO Pendant 

Temperature/Light 64k Logger (Model UA-002-64, Microdaq, USA). Light was measured in 

Lux and converted to PAR as described in Chapter 3 (section 3.2.2). Three HOBOs were situated 

within each habitat (at each study location) and data was averaged, providing an accurate (ca. 3 

%) conversion to PAR (see Long et al., 2012). Each HOBO was temporarily secured in situ 
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using zip-ties and set to log every 30 s over a continual seven day period within the two week 

sampling period. Nitrate sampling was conducted using an ORION nitrate electrode (accuracy ± 

0.01 M, Model 9307, Fisher scientific, USA) attached to the ORION 5 Star meter. Samples 

were taken diurnally (7.00 and 16:00 h) on the days of the in situ coral incubations (n= 10 total 

per habitat per location).  

 Carbonate chemistry sampling regime and approach – Over the five sampling days, 

discrete water samples were collected every 3 h starting at 6:00 h and ending at 18:00 h. A total 

of four daytime samples were collected and one dusk sample (18:30-19:00 h). An additional 

evening water sample was collected (ca. 22:00 h). Seawater samples were collected as described 

in Chapter 2 (section 2.2.2). 

 

4.2.4| Benthic measurements 

Benthic habitat assessments were conducted using continuous line intercept transects. Within 

each habitat three 30 m transects were randomly located, with each being separated by a 

minimum of 50 m.  The initial transect was randomly located, and transects ran parallel to shore. 

Data were recorded using a high definition video-camera (Canon, G12 in underwater housing 

WP-DC 34) and footage was later analysed to determine benthic community composition 

(species level). One 20 m
2
 quadrat was examined at the start of each transect to determine 

species specific coral colony density. In addition corals that were: (i) de-pigmented, and/or 

showed evidence of, (ii) recent or (iii) past mortality were also recorded (defined by AGRRA 

protocol version 5.4, Lang et al., 2010, Chapter 3, Table 3.1).  

 

4.2.5| In situ metabolic incubations  
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In situ incubations were conducted to assess the metabolic expenditure of dominant coral species 

existing across habitats within each study location. The metabolic function (daily-integrated 

calcification, photosynthesis and respiration) was determined for the dominant coral species: 

Atlantic Ocean site: Dichocoenia stokesii, Porites astreoides, Porites divaricata, Siderastrea 

radians, Stephanocoenia intersepta.  Indian Ocean site & Pacific Ocean site: Acropora austera, 

Pocillipora damicornis, Porites lutea. Indian Ocean site only: Porites attenuata. Together these 

species represented the majority (55-70 % Atlantic Ocean site, 56-72 % Indian Ocean site and 

49-70 % Pacific Ocean site) of the total coral abundance within the non-reef habitats. Acropora 

palmata, the iconic coral species of the Atlantic Ocean, was also examined due to its critically 

endangered status and functional importance in the Caribbean (Aronson et al., 2014). 

 Incubations were performed using the Flexi-Chamber protocol outlined in Chapter 2 

(section 2.2.4). At each location five separate colonies of each species were examined in each 

habitat over a period of two weeks.  Sampling was conducted from 7:00 to 16:00 h with 

incubations (n= 3) running for 3 h (as deemed appropriate from Flexi-Chamber validation in 

Chapter 2). From 16:00 to 19:00 h one dusk incubation was conducted. From 19:00 to 20:00 h 

one nightime incubation was conducted, as validated in Chapter 3 (section 3.2.2). Sample 

extraction and analysis followed the procedures outlined in Chapter 2 (section 2.2.4), from which 

daily rates of photosynthesis, respiration and calcification were obtained. 

 

4.2.6| Statistical analysis 

All statistics were conducted in either R software (R 237 Development Core Team, 2011), Sigma 

Plot 10.0 (Systat Software, San Jose, CA), or SPSS 17 (SPSS Inc, 2008). Parametric test 
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assumptions were all met unless stated, with the Levene’s test used to check homogeneity of 

variance and qq-plots to assess the normality of the data. 

Environmental characteristics were compared between habitats using 2-way ANOVA 

with post-hoc Tukey HDS. Linear regression was used to assess the relationship between daily 

net calcification rates to the daily photosynthesis-to-respiration ratio (P:R). Liner regression was 

also used to assess the relationships between calcification rates to pH mean, calcification rates to 

pH CV, percent cover of calcifying and non-calcifying species to pH CV and mean pH in relation 

to photosynthesis and respiration rates. A Pearson’s correlation was used to compare light with 

pH over a diel cycle for the non-reef habitats, as well as comparing changes in calcification with 

changes in photosynthesis.   

Salinity-normalised TA (nAT) to dissolved inorganic carbon (nCT) plots were generated 

(Suzuki & Kawahata, 2003; Kleypas et al., 2011; Yates et al., 2014) to assess the 

biogeochemical control of each habitat. The ratio of net ecosystem calcification to net 

community production (NEC:NEP) were derived from these nAT-nCT plots as 1/[(2/m)-1] (where 

m is the regression slope from the corresponding linear regression equation of nAT vs nCT) 

(Suzuki & Kawahata, 2003; Kleypas et al., 2011), as described in Chapter 3 (section 3.2.4). 

Finally, the threshold of calcification to dissolution (G-D) was determined. G-D is the level of Ω 

below (and/or pCO2 above) when dissolution exceeds rates of calcification as established from 

models and verified through experimentation (see Yates et al., 2014). 

Linear Mixed Effects (LME) models with bioregion as a random effect were applied to 

examine the influence of habitat on daily net photosynthesis and respiration (Appendix 3). All 

model testing was conducted as described in Chapter 3, section 3.2.4.  
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4.3| Results 

4.3.1| Abiotic assessment 

Across bioregions and habitats there were significant differences (see Table. 4.1 & Appendix 8) 

in carbonate chemistry (pH, TA, salinity and Ωarg) and in salinity, nitrate and temperature. Mean 

nitrate levels were slightly elevated on the outer-reef relative to the non-reef habitats and 

temperature Cv was greater in the lagoon habitats relative to the outer-reef (Table 4.1). Across 

all outer-reef sites seawater carbonate chemistry exhibited minor variability with similar mean (± 

SE) pH (8.120 ± 0.03), pCO2 (323 1.42 ppm), and TA (2372.1 ± 15.2 mol kg
-1

 SW) (Figure 

4.2). Greater variance in carbonate chemistry parameters was inherent within all non-reef 

habitats, with seagrass beds experiencing the greatest pH CV (seagrass pH Cv: 0.02 ± 0.01 

compared to 0.01 ± 0.01 for the other non-reef habitats, Appendix 8).   

The seagrass habitats had elevated mean pH (8.150 ± 0.01) and lower TA (2082.4 

±1.1mol kg
-1

 SW) relative to the outer-reef (pH: P= 0.001, TA: P= 0.001, Appendix 8). The 

elevation in pH and corresponding reduced pCO2 (290.0 ± 7.8 ppm) was significant enough to 

elevate mean Ωarg in the seagrass above the outer-reef (4.5 ± 0.1, P= 0.01). The back-reef 

(Atlantic) habitat exhibited similar mean pH and pH CV trends to the seagrass habitat, however, 
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pH CV was less extreme and mean pH was slightly reduced (8.130 ± 0.01). Mangroves 

experienced moderate pH CV (0.015) and lower TA (1987.7 ± 1.3 mol kg
-1

 SW). However in 

contrast to the seagrass beds, mangroves had a mean pH significantly lower than the outer-reef 

(8.04 ± 0.01, P= 0.001), which corresponded with elevated pCO2 (352.0 ± 6.7 ppm) and lower 

Ωarg (3.5 ± 0.1, P= 0.001, Table 4.1, Appendix 8). 

On average, the calcification-to-dissolution threshold (G-D) never fell below the Mg-

calcite Ω threshold levels of 3.0-3.2 for any the habitats (Table 4.2, Langdon and Atkinson, 

2005; Yates and Halley, 2006; Silverman et al., 2009; Yamamoto et al., 2012). However, non-

reef habitats came close-to, or breached the carbonate-sediment G-D of 3.7. The carbonate 

sediment values have been calculated by Yamamoto et al., 2012 experimentally. Carbonate 

sediment has been shown to typically consist of a mixture of low Mg-calcite, Mg-calcite and 

aragonite (Yamamoto et al., 2012). The mixture of these different structural forms of CaCO3 

results in the Ω threshold of carbonate-sediment occurring at a higher Ω. All mangrove habitats 

mean Ω remained just above the carbonate sediment G-D. Mangroves experienced minimal 

variability in pCO2 and consequently Ω levels rarely fell below this threshold. However, seagrass 

habitats experienced diurnal variability in pCO2 which resulted in the threshold being breached 

(seagrass pCO2 CV: 0.4 ± 0.01), resulting in times (within nighttime hours) when dissolution of 

carbonate-sediment would exceed rates of calcification. The maintenance of average Ω above the 

carbonate-sediment G-D demonstrated that daytime elevation of Ω off-set nighttime lows; where 

dissolution exceeds rates of calcification. The pH diel variability of each habitat was similar 

independent of bioregion location (Figure 4.3), with all non-reef habitats exhibiting pH peaks 

and troughs that correspond with maximum and minimum PAR values (r= 0.519, n= 36, P= 

0.001). The tidal cycle for the Pacific Ocean sites corresponded with pH peaks and troughs. In 
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the Atlantic Ocean and Indian Ocean sites pH peaks and troughs did not correspond with the 

tidal cycles (Figure 4.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2| The pH variability for habitats across the three study locations. The study 

locations were within the Atlantic Ocean (Little Cayman, Cayman Islands, BWI), Pacific Ocean 

(Hoga and Kaledupa Islands) and Indian Ocean (Curieuse, the Seychelles). At each study 

location an outer-reef control site (OR) was compared to two non-reef habitats (Atlantic: 

seagrass (SG) and back-reef (BR), Pacific and Indian: SG and mangrove (M)). pH (total scale) 

was averaged from discrete water samples collected over five-days within the dry season of each 

location (n= 30 per habitat per location). 
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Figure 4.3| The average diel trends in pH, PAR and tidal cycles for habitats within each 

bioregion site. The study locations were within: A) the Indian Ocean (Curieuse, the Seychelles), 

B) the Pacific Ocean (Hoga and Kaledupa Islands) and C) the Atlantic Ocean (Little Cayman, 

Cayman Islands, BWI). At each study location an outer-reef control site was compared to two 

non-reef habitats (Atlantic: seagrass and back-reef, Pacific and Indian: seagrass and mangrove). 

pH (total scale) was averaged from discrete water samples collected over five-days within the dry 
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Table 4.1| Bio-physiochemical data for all habitats (outer-reef control, seagrass, back-reef and mangrove) and bioregion sites (Atlantic, Indian 

and Pacific Ocean).  Data shown is the mean (± standard error, SE) and coefficient of variation (CV) of 40 discrete water samples collected over 

five days.   pH, temperature, salinity and nitrates were directly measured from each discrete water sample. Total alkalinity was determined for 

each water sample via an open-cell potentiometric titration. pCO2 and Ωarg were derived from pH and total alkalinity using CO2SYS. Light was 

measured in Lux at the sea floor (ca. 1 m) over five-days by in situ HOBOs and converted to PAR. 

Abiotic Factor  Outer-reef Seagrass Back-reef Mangrove 

pH  Mean 8.123 8.122 8.121 8.140 8.155 8.139 8.134 8.004 8.056 

(total scale)   ±0.01  ±0.01  ±0.01 ±0.02  ±0.01  ±0.02 ±0.01  ±0.01  ±0.03 

  Cv ̴ 0.00 ̴ 0.00 ̴ 0.00 0.01 0.02 0.02 0.09 0.01 0.01 

Total alkalinity Mean 2422.5  2358.5 2305.2  2167.1 2072.6 2087.3 2250.0  1955.7 2093.9 

(mol Kg/SW)   ±0.63 ±0.05 ±0.03 ±0.93 ±1.56 ±1.83  ±0.66 ±1.14 ±0.04 

  Cv ̴ 0.00 0.02 0.01 0.03 0.05 0.06 0.02 0.04 0.04 

pCO2  Mean 322 323 326 290 259 323 261 372 333 

(atm)   ±1.35 ±1.02 ±1.26 ±26.86 ±16.45 ±24.36 ±10.59 ±19.30 ±12.07 

  Cv 0.02 0.02 0.02 0.51 0.35 0.41 0.22 0.28 0.20 

Ωarg Mean 4.2 4.3 4.3 4.6 4.6 4.5 4.6 3.8 3.9 

  ±0.01 ±0.01 ±0.07 ±0.16 ±0.12 ±0.03 ±0.09 ±0.13 ±0.06 

  Cv 0.02 0.02 0.02 0.19 0.15 0.18 0.10 0.20 0.10 

Salinity (ppm)  Mean 36 35.5 35 36 36.5 36.0 36.0 35.5 34.5 

  ±0.01 ±0.03 ±0.02 ±0.02 ±0.06 ±0.05 ±0.02 ±0.05 ±0.15 

  Cv ̴ 0.00 ̴ 0.00 ̴ 0.00 ̴ 0.00 0.01 0.01 ̴ 0.00 0.01 0.02 

Temperature (°C) Mean 28.5 29.2 27.4 29.1 30.5 27.4 28.5 30.7 27.5 

  ±0.02 ±0.02 ±0.02 ±0.11 ±0.11 ±0.05 ±0.04 ±0.16 ±0.09 

  Cv 0.01 0.01 0.01 0.02 0.02 0.01 0.02 0.02 0.02 

Daily light integral 

(PAR) 

Mean 21.96 20.79 21.18  17.76 17.70 17.14 18.02  17.00 17.10 

  ±0.24 ±0.17 ±0.27 ±0.21 ±0.20 ±0.19  ±0.27 ±0.07 ±0.12 

  Cv 0.02 0.02 0.03 0.03 0.01 0.02 0.03 0.01 0.02 

Nitrates  Mean 1.12 1.07 1.02 0.83 0.72 0.83 0.95 0.78 0.80 

(M)   ±0.04 ±0.04 ±0.02 ±0.03  ±0.01 ±0.03 ±0.02 ±0.01  ±0.03 

  Cv 0.07 0.07 0.05 0.08 0.03 0.08 0.05 0.03 0.08 

1
5
6
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Biogeochemical control of habitats – Across all bioregion locations, the outer-reef 

showed strongest co-variability between nAT and nCT via calcification-carbonate dissolution 

(Figure 4.4). In contrast, the non-reef habitats exhibited co-variability between nAT and nCT that 

was more strongly influenced by photosynthesis-respiration (and thus CO2 uptake-release). The 

seagrass habitats showed the greatest range in nAT and nCT, with data indicating periods 

influenced significantly by photosynthesis and calcification, as well as respiration and carbonate 

dissolution. These characteristics are consistent with periods of extreme high (e.g. 8.402 pH 

units) and low (e.g. 7.809 pH units) pH as experienced in the seagrass habitats during the day 

(mean daytime pH= 8.246) and night (mean nightime pH= 8.032) respectively. The ratio of net 

ecosystem calcification to net community production (NEC:NEP, Table 4.2) was consistently 

lowest for seagrass/back-reef habitats (range: 0.27-0.55), highest for the outer-reef (range: 0.99-

1.45) and intermediate for the mangroves (range: 0.75-0.79). The NEC:NEP ratios are influenced 

by the slope of the nCT-nAT plots and consequently, the outer-reef habitats had a slope closer to 

two than all the non-reef habitats, which demonstrated less influence from photosynthesis and 

more influence from calcification.  
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Table 4.2| NEC:NEP ratios for study sites with nAT vs. nCT. 

Bioregion Site Habitat NEC:NEP LRE r
2
 P-value 

Atlantic Ocean Seagrass 0.270 0.4253x + 1418.8 0.8101 = 0.0001 

Atlantic Ocean Back-reef 0.342 0.5101x +1363.9 0.8289 = 0.0001 

Atlantic Ocean Outer-

reef 

1.452 1.1843x + 169.8 0.9954 = 0.0001 

Indian Ocean Seagrass 0.546 0.7066x + 900.5 0.7948 = 0.0001 

Indian Ocean Mangrove 0.790 0.8826x + 496.1 0.4374 = 0.0001 

Indian Ocean Outer-

reef 

1.275 1.1208x + 158.8 0.9951 = 0.0001 

Pacific Ocean Seagrass 0.536 0.6982x+ 881.7 0.8785 = 0.0001 

Pacific Ocean Mangrove 0.753 0.8589x + 565.2 0.8744 = 0.0001 

Pacific Ocean Outer-

reef 

0.990 0.9952x + 333.2 0.8304 = 0.0001 

Ratios of net ecosystem calcification to net community production (NEC:NEP) were 

calculated from the slopes of best-fit linear regression with all sites showing a relationship 

between salinity-normalized total alkalinity (nAT) and total carbon (nCT), with P= 0.05, and 

eight out of the nine sites r
2
>0.5. NEC:NEP was calculated using the expression 1/[(2/m) – 

1], where m is the slope from the corresponding linear regression equations (LRE). 

Calcification and dissolution are dominant processes when a linear regression slope 

approaches two.  
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Figure 4.4| Salinity-normalised total alkalinity (nAT) and total carbon (nCT) plots with 

best-fit linear regression for three marine habitats in the Atlantic, Indian and Pacific 

Oceans. Data was collected over five days during a two week sampling period during the dry 

season for each bioregion (2013-2014). The Atlantic Ocean location consisted of a seagrass, 

back-reef and outer-reef control site, whilst the Indian Ocean and Pacific Ocean locations had 

seagrass, mangrove and outer-reef control sites. Black lines represent the theoretical impact of 

calcification (G), carbonate sediment dissolution (D), photosynthesis (P), and respiration (R) on 

nAT and nCT. Average nAT and nCT is indicated by a yellow dot. G and D are dominant 

processes when a linear regression slope approaches two.   
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4.3.2| Benthic assessment 

Habitats showed relatively consistent cover of major benthic taxa across bioregion sites. The 

benthic surveys corroborating the nAT vs nCT plots with the outer-reef sites having the highest 

cover of benthic calcifiers (coral and coralline algae, 37.7 ± 2.2 %, Figure 4.5), and thus an 

environment where calcification-carbonate dissolution is the most influential process upon 

carbonate chemistry. Non-reef sites had greatest cover of photoautotrophs (seagrass, macro-and 

turf algae, 27.4 ± 2.2 %, Figure 4.5) and hence more heavily influenced by CO2 uptake-release. 

Despite low cover of benthic calcifiers in the non-reef habitats (8.6 ± 0.1 %, Figure 4.5), corals 

were found persisting within these habitats with a surprisingly high coral species richness in the 

Atlantic Ocean site (7-15 species, Table 4.3).  

The corals found within the non-reef habitats accounted for 28 – 86 % of coral cover on 

the main outer-reef (Table 4.3, Figure 4.6). In the Atlantic Ocean site, the coral species of the 

non-reef habitats collectively accounted for a large (back-reef= 86 % and seagrass= 48 %) 

percentage cover of coral species found on the outer-reef.  In the higher diversity regions of the 

Indian Ocean and Pacific Ocean, the non-reef habitat coral species contributed between 28 – 40 

% to the coral cover of the outer- reef habitats (Table 4.3). Coral cover at the Atlantic Ocean 

outer-reef site (13.5 ± 0.5 %) was ca. 60 % lower than the same habitat type in the Indian Ocean 

site (34.5 ± 1.4 %) and Pacific Ocean site (32.3 ± 0.9 %). Across bioregion locations, corals 

within the non-reef habitat sites showed minimal (2.2 ± 0.8 %) visual signs of stress (e.g. 

bleaching/disease/partial mortality). 
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Figure 4.5| The percentage cover of major benthic taxa for the: A) Atlantic Ocean (AO), B) Indian Ocean (IO) and C) Pacific 

Ocean (PO) sites. Data is averaged from three by 30 m transects conducted within each habitat at each bioregion location. Surveys 

were conducted in the dry season of each region. Video transects were conducted and analysed to species level (see main text).  
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Table 4.3| Coral species list for non-reef sites in the Atlantic, Indian and Pacific Oceans. The percent cover 

within each non-reef habitat is indicated with the percent cover of that coral on the outer-reef in parentheses. Coral 

species with individual cover less than 1 % were represented by < 1; however their absolute values were included to 

get the total actual percent coral cover. Colonies not found within a particular region are indicated by a dash. X 

indicates that the species was not observed despite being present in that bioregion.  

 

  Non-reef habitat and bioregion location 

Seagrass Mangroves Back-reef 

Species Atlantic Indian Pacific Indian Pacific Atlantic 

Acropora austera   < 1 (< 1) < 1 (1.0) < 1 (< 1) < 1 (1.0)   

Acropora formosa   < 1 (< 1) 1.0 (1.3) < 1 (< 1) 1.0 (1.3)   

Acropora gemmifera   < 1 (< 1) < 1 (< 1) < 1 (< 1) X   
Acropora palmata X         < 1 (< 1) 

Acropora sp 1.    X < 1 (< 1) X X   
Agaricia agaricites X         < 1 (< 1) 

Agaricia humilis X         < 1 (< 1) 

Dichocoenia stokesi < 1 (< 1)         < 1 (< 1) 

Diploria strigosa X         < 1 (< 1) 

Favites abdita   X < 1 (< 1) X X   

Fungia danai   X < 1 (< 1) X < 1 (< 1)   

Galaxea cryptoramosa   X < 1 (< 1) X X   

Goniastrea edwardsi   X < 1 (< 1) X < 1 (< 1)   

Goniastrea pectinata   < 1 (< 1)   X X   
Lobophyllia hataii   X < 1 (< 1) X X   
Millepora alcicornis X         < 1 (1.2) 

Millepora sp.     < 1 (< 1) X X X   
Montastraea annularis X         1.1 (1.9) 

Pavona varians   X < 1 (< 1)   < 1 (< 1)   

Pocillopora damicornis   1.2 (2.5) 1.0 (1.8) < 1  (2.1) < 1 (1.8)   

Pocillopora verrucosa   X X < 1 (< 1) X   
Porites astreoides < 1 (3.1)         3.3 (3.1) 

Porites attenuata   < 1 (< 1) < 1 (< 1) < 1 (< 1) < 1 (< 1)   

Porites divaricata 1.3 (< 1)         < 1 (< 1) 

Porites furcata < 1 (< 1)         X 

Porites lobata   X < 1 (1.2) X < 1  (1.2)   

Porites lutea   1.3 (1.7) 1.4 (1.8) < 1 (1.7) 1.6 (1.8)   

Porites porites < 1 (1.2)         < 1 (1.2) 

Scolymia lacera X         < 1 (< 1) 

Siderastrea radians < 1 (< 1)         1.1 (< 1) 

Siderastrea siderea < 1 (1.2)         < 1 (1.2) 

Solenastrea bournoni X         < 1 (< 1) 

Stephanocoenia intersepta < 1 (< 1)         < 1 (< 1) 

Total Number of Species 8 8 14 7 9 15 

Actual percent cover  3.10% 4.20% 5.40% 2.20% 4.10% 8.70% 

Relative percent coral 

cover of outer-reef  

48.00% 40.00% 35.70% 36.50% 28.30% 86.00% 
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Figure 4.6| Examples of the non-reef habitats and corals present. A) Curieuse, the Seychelles, B) Hoga and Kaledupa Islands, 

Indonesia C) Little Cayman, Cayman Islands BWI.  The larger picture show the general habitat type, whilst the small pictures are 

specific examples of some of the corals found within each habitat. Pictures were taken during each sampling period (see main text).  
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Figure 4.6| Examples of the non-reef habitat habitats and corals present.  A) Curieuse, the Seychelles, B) Hoga and Kaledupa 

Islands, Indonesia C) Little Cayman, Cayman Islands BWI.  The larger picture show the general habitat type, whilst the small pictures 

are specific examples of some of the corals found within each habitat. Pictures were taken during each sampling period (see main 

text). 
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4.3.3| The relationship between pH and benthic community composition 

Benthic composition naturally varied between regions, however a consistent trend in percent 

cover (mean ± SE) of calcifying and non-calcifying phototrophs was observed within the 

seagrass (calcifying= 8.6 ± 0.7 %; non-calcifying= 36.3  ± 11.5 %), mangrove (calcifying= 14.1 

± 0.2 %; non-calcifying= 72.6 ± 1.0 %) and outer-reef sites (calcifying= 37.8 ± 2.2 %; non-

calcifying= 7.8 ± 3.4 %). Consequently, the relative abundance of non-calcifying benthic 

phototrophs increased with increasing pH Cv (r
2
= 0.713, n= 9, P= 0.001, non-calcifying benthic 

phototrophs cover= 0.0022pHCv + 0.0002, Figure 4.7c) whereas benthic calcifiers decreased 

(r
2
= 0.864, n= 9, P= 0.001, benthic calcifiers cover= 0.0188pHCv – 0.0005, Figure 4.7a). 

However, when mean pH was considered there was no relationship with calcifying benthos or 

non-calcifying benthic phototrophs (Figure 4.7b & d). For the non-calcifying benthos, all 

habitats had relatively low (< 25 %) cover, irrespective of their mean pH, with the exception of 

the seagrass habitat (cover ca. 70 %, Figure 4.7d).  
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Figure 4.7| Plots of pH Coefficient of Variation (cv) and mean pH versus the percent cover 

(±SE) of: A & C) calcifying (coral and calcifying algae) and B & D) non-calcifying (seagrass 

and fleshy macro algae) benthos for the non-reef habitat sites and an outer-reef site in the 

Atlantic, Indian and Pacific Oceans. Data is averaged from three by 30 m transects conducted 

within each habitat at each bioregion location. Surveys were conducted in the dry season of each 

region. Regression is shown with 95 % confidence interval. 
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4.3.4| The metabolic expenditure of the dominant coral species across habitats 

Calcification rates were highest at the outer-reef habitat across regions (257.0 ± 15.93 mmol m
2 

d
-1

), in particular for the fast growing Acropora spp. (340.0 ± 2.87 mmol m
2 

d
-1

). Here, 

conditions were relatively stable compared to non-reef habitats (Table 4.1). Very different trends 

for coral calcification were observed between the non-reef habitats. Seagrass and back-reef 

habitats supported corals with relatively small decreases in calcification relative to the outer-reef 

(12.5-33.0 %, with the exception of Acropora spp. 68.0 %), whereas mangrove coral 

calcification rates were 63.0-81.0 % lower than the outer-reef.  

Maintenance of relatively high calcification in the seagrass beds and back-reef 

corresponds with the elevated mean pH and Ωarg for these habitats. Similarly, low rates of 

calcification within mangroves were consistent with higher pCO2 levels and reduced Ωarg. 

Overall calcification rates decreased in line with a decrease in mean pH (r
2
= 0.372, n= 38, P= 

0.001, Figure 4.8b), and to a lesser extent with increasing pH (CV, r
2
= 0.268, n= 38, P=0.01, 

Figure 4.8a). This potential regulatory function of mean pH is consistent with the corresponding 

change of NEC:NEP across habitats (Table 4.2). The similarity in mean and Cv of the abiotic 

factors (light, temperature, nitrates, Appendix 8) between the non-reef habitats suggests that 

differences in carbonate chemistry were the proximal driver in structuring coral biomass and 

growth between mangroves and seagrass habitats. Supporting this is the fact that no relationships 

were detected between calcification rates and mean or Cv temperature and light (Appendix 8 & 

9).  

Across all bioregion sites, an increase in the gross photosynthesis-to-respiration ratio 

(P:R) corresponded with a positive increase in calcification (r
2
= 0.501, n= 38, P= 0.001,  Figure 

4.9). In the outer-reef, P:R remained above one, however, in the non-reef habitats P:R decreased 
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largely due to a decrease in photosynthesis (P= 0.05, Appendix 10) whilst respiration remained 

stable (within 8 %), a trend that was greatest within the mangroves. Photosynthesis rates 

decreased with lower site mean pH (r= 0.427, n= 38, P= 0.01), however, again respiration rates 

were found to remain constant (Figure 4.10). For the branching species, changes in respiration 

with mean pH were best represented by a sigmoidal graph, (r
2
= 0.848, n= 9, P= 0.05, 

Photosynthesis= 15.269 + 42.676/(1 + exp(-(pHmean – 8.114)/ 0.020)) Figure 4.10). Within the 

non-reef habitats, massive and sub-massive species exhibited higher P:R than branching species 

(F2,26=  4.18, P= 0.05) corresponding with increased calcification rates. P:R was lower in 

branching species because of a dramatic decrease in photosynthesis (60.0 ± 1.3 %) as compared 

to both massive (22.0 ± 0.5 %) and sub-massive (40.0 ± 1.4 %) species (F2,26= 4.55, P= 0.05, see 

Figure 4.10).  
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Figure 4.8| Mean daily integrated net calcification (G) (mmol m
2
 day

-1
) versus: A) pH 

Coefficient of Variation (CV) and B) mean pH. All data plotted are mean values ± standard 

error (SE, n= 5) for the dominant coral species examined across non-reef habitat sites (seagrass, 

back-reef and mangrove) and outer-reef habitat sites for all bioregion locations (Indian, pacific 

and Atlantic Ocean sites). Sampling was conducted within the dry seasons of each region. 

Regression is shown with 95 % confidence interval.   
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Figure 4.9| Mean daily integrated net calcification (G) (mmol m
2
 day

-1
) versus the ratio of 

daily net photosynthesis (P) to daily net respiration (R).  Data was obtained from five 

replicate days of sampling on five individual colonies of each species, within each habitat and 

bioregion location (Indian, Pacific and Atlantic Ocean sites). Sampling was conducted within the 

dry seasons of each region. Across sites, G decreased with corresponding decreases in the gross 

photosynthesis-to-respiration ratio (P:R, r
2
 = 0.501, n= 38, P= 0.001). Regression is shown with 

95% confidence interval.   
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Figure 4.10| The relationship between: A) Respiration rates and B) Photosynthesis rates for 

the dominant coral species examined across non-reef habitats (seagrass, back-reef and 

mangrove) and outer-reef habitat sites for all bioregion locations. The bioregion locations 

were sites situated within the Indian, pacific and Atlantic Oceans. Sampling was conducted 

within the dry seasons of each region. Corals are indicated by their growth form. The solid black 

line is the correlation for the whole dataset with 95 % confidence interval (grey dashed line). The 

black dotted line is a polynomial quadric curve fitted to the branching species data. Data is mean 

(± SE, n= 5).  
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4.4| Discussion 

4.4.1| pH mean and Cv trends across bioregion sites 

The sites sampled across bioregions demonstrated that the same general trend in carbonate 

chemsitry is apprent for similar habitats in both high and low biodiversity regions. All inshore 

habitat sites within this study had more variable carbonate chemistry than the outer-reef sites, 

however mean values of pH, pCO2 and Ωarg were very different between the non-reef habitats. 

Seagrass sites and the back-reef site within this study consistently had elevated mean pH, 

reduced pCO2, and therefore elevated Ωarg relative to the outer-reef. Periods of elevation and 

depletion in pCO2 corresponded with time of day and light intensity. Seagrass habitats also 

experienced low pH at night which corresponded with periods of under-saturation of carbonate 

sediment resulting in dissolution. Dissolution has been proposed as a self-regulatory function of 

marine habitats to buffer some of the negative impacts of future OA, by raising pH and TA 

(Anthony et al., 2011a; Andersson et al., 2013).  Andersson et al. (2013) demonstrated a partial 

offset of future OA due to dissolution by increasing pH and Ωarg by 9 % and 11 % respectively. 

The ability of seagrass habitats to buffer future OA will depend in part on the fine balance of G-

D over diel cycles.  

In contrast, mangrove habitats consistently experienced a lower mean pH relative to the 

outer-reef, which corresponded with elevated pCO2 and a reduction in Ωarg when compared to 

both the outer-reef and seagrass habitats. Despite overall low mean pH, the mangrove habitats 

did not experience the magnitude of diel variability experienced in the seagrass habitat. 

Consequently, Ω levels rarely resulted in the dissolution of carbonate-sediment which would 

elevate TA (as evidenced in the nAT-nCT plots) and thereby self-regulate or “buffer” the local 

system.  Failure to maintain favourable conditions suggests that mangroves therefore do not 

strictly operate as refugia, as it is currently defined (Keppel & Wardell-Johnson, 2012).  
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4.4.2| The relative influence of mean versus Cv pH on structuring the local coral 

populations 

Characterising the relative importance of mean versus CV pH on the local coral population is 

important in identifying potential refugia to OA (Guadayol et al., 2014). Results from this study 

demonstrate why it is significant to consider the actual amount of time a coral is exposed to a set 

of environmental conditions within any habitat. In this instance characterising the variability 

(CV) as well as the mean in pH is important for understanding the buffering capacity of non-reef 

habitats and in therefore evaluating their role as potential refugia (Guadayol et al., 2014). Within 

this study, overall cover of benthic calcifies showed an increase with lower pH Cv. No difference 

in cover of benthic calcifies was identified with mean pH.  However, in situ coral metabolic 

analysis suggested that mean pH had a greater association with calcification rates rather than CV.   

The fact that no overall relationship was observed with mean pH and the cover of benthic 

calcifies, despite coral calcification showing an increase with mean pH could be explained by a 

few different possibilities, including but not limited to: (i) the percent cover of benthic calcifers 

includes several different taxa and species that may have different pH regulatory mechanisms 

(Comeau et al., 2012), potentially facilitating different levels of survival within habitats and in 

turn the overall cover of benthic calcifers, and (ii) other factors besides the carbonate chemistry 

determine the benthic cover, for example available substrate and recruitment rates (Babcock & 

Mundy 1996; Salinas-de-León  et al., 2011), which in turn have a feedback on the local system. 

These results therefore suggest that both mean and Cv pH likely influence local 

populations, or that local benthic assemblages influence the dominant habitat characteristics (e.g. 

mean and Cv pH) which in turn influence local populations. Based solely on coral calcification, 

mean pH appears to be more influential on structuring the local coral population. Supporting this 
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is the fact that the site with the lowest mean pH (the mangrove habitat) had greatly suppressed 

coral calcification. Whether the supressed calcification is directly due to the influence of mean 

pH on calcification, or is associated with reduced productivity which in turn reduces 

calcification, remains unresolved. However, these findings support the growing consensus that 

low mean pH threatens the sustainability of reef accretion and therefore function (Dove et al., 

2013).  

 

4.4.3| The ability of corals to expand their niches into non-reef habitats 

The cross-bioregion dataset from this chapter demonstrates that a range of coral taxa can persist 

in non-reef habitats. Recent work by Yates et al. (2014) on Caribbean mangroves, has similarly 

documented numerous coral species living in sub-optimal non-reef habitats. Corals in this study 

were documented having a variety of different growth forms and included species of 

architecturally complex genera such as Acropora and Pocillipora that have demonstrated varied 

responses to environmental extremes (Hughes et al., 2003; Baker et al., 2004). Whilst the total 

number of coral species recorded in non-reef habitats was similar across regions, these total 

values represent very different proportions of the overall number of coral species found within 

each bioregion location. For example, corals found in the non-reef habitats of the Atlantic Ocean 

site represent ca. 20-30 % of the total number of coral species currently documented in the 

Atlantic region. However, in the Indian Ocean and Pacific Ocean sites, corals recorded in the 

non-reef habitats only represent 1-2 % of coral species found in the Indo-Pacific region. Clearly 

examining the ecophysiology of corals in these environmentally more extreme and variable 

habitats can inform our understanding of the potential for individual coral taxa to persist under 

future environmental change. 
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4.4.4| The metabolic expenditure of dominant non-reef coral species 

In the seagrass habitats some corals sustained calcification and some experiencing a reduction, 

which averaged 17.0 ± 6.1 % relative to the outer-reef control. In contrast, corals found within 

the mangroves were pre-conditioned to generally low pH (and Ω) but with significant 

suppression to calcification (70.0 ± 7.3 % relative to the outer-reef control). Corals in mangrove 

habitats were metabolically impaired, evidenced through lower photosynthesis and calcification 

but with no net change in respiration rates. Both habitats also experienced variable  temperature 

(diel range up to 2.5°C) relative to the outer-reef (diel range less than 0.7 °C) which did not 

correspond with changes in calcification rates but can potentially increase thermal tolerance of 

coral species making them important future stores of genetic diversity.   

 

4.4.5| The relationship between coral calcification and photosynthesis/respiration rates 

Across non-reef habitats, any decreases in coral calcification were accompanied by a reduction in 

photosynthesis without a change in respiration. Such a trend is consistent with experimental 

work of Anthony et al. (2008) on Acropora spp. and Porites spp. exposed to future IPCC IV and 

VI scenarios.  An increase in light has been shown to enhance calcification (Suggett et al., 2013) 

and a moderate rise in temperature is also associated with increased metabolic rates in corals that 

potentially enhance growth (McNeil et al. 2004; Bessat & Buigues 2001).  Unsurprisingly there 

were no significant relationships observed between calcification and temperature or light 

(Appendix 9) in our study due to the similarity in mean conditions at all habitats (Table 4.1).  

 Increased heterotrophy (Cohen & Holcomb, 2009) and the addition of nutrient’s 

(Langdon & Atkinson, 2005) have also been suggested to enhance calcification for some coral 



Chapter 4 

176 
 

species (Cohen & Holcomb, 2009). Nitrate concentration were higher in outer-reef control sites 

but differences in calcification rates observed in non-reef habitats are not explained by variability 

in nitrate concentrations (Appendix 8). It is possible that other nutrients may influence coral 

metabolic activity within non-reef habitats (Langdon & Atkinson, 2005). Collectively however 

our results suggest that photosynthesis and calcification were most likely impaired by the 

metabolic costs of maintaining cellular homeostasis within a low pH environment (Anthony et 

al., 2008; McCulloch et al., 2012). Photosynthesis could be impaired by pH induced bleaching as 

observed by Anthony et al. (2008); however this will need to be explored further within the 

laboratory study of Chapter 5. Within the limitations of the study and the environmental factors 

measured the abiotic characteristic that appears to be most important in potentially influencing 

the abundance and productivity of corals in the non-reef habitats is the local carbonate chemistry. 

These findings across bioregion sites are consistent with the initial study results on Little 

Cayman (see Chapter 3).   

 

4.4.6| Coral species and growth form responses to varying carbonate chemistry conditions  

Acopora spp. experienced the largest decrease in calcification whilst Porites spp. were better 

able to maintain calcification across environments. McCulloch et al. (2012) modeling internal 

pH regulation also concluded that the calcification rates of Acropora spp. would be most 

sensitive to reductions in external pH and Porites spp. the least. Branching coral species 

documented the largest reduction in P:R driven by a decrease in photosynthesis at low pH 

habitats, irrespective of bioregion. The reduction was associated with a large decrease in 

calcification. The decrease in photosynthesis for branching species was significantly greater than 

that measured for massive and sub-massive species. Also, a non-linear response was observed 
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for the changes in photosynthesis for branching species. As pH increased there were dramatic 

increases in calcification rates of branching species but only moderate and quickly saturated 

calcification rates by massive and sub-massive species. Collectively these results suggest that the 

branching species have a different ability in maintaining photosynthesis under elevated pCO2, 

compared to the massive and sub-massive corals. The difference in sustaining photosynthesis 

corresponds with the corals ability to maintain calcification.  

 

4.4.7| Consequences for future research 

Across bioregions locations, Poritidae and Acroporidae were the most common coral families 

with both found in eight out of the nine study sites. Specifically, massive Porites spp. and 

branching Acropora spp. were documented to experience very different abilities in maintaining 

their photosynthesis rates across the non-reef habitats, which corresponded with their abilities to 

sustain calcification. The results from this study suggest that photosynthesis and calcification 

were most likely impaired by the metabolic costs of maintaining cellular homeostasis within a 

low pH environment. Within field experimentations there are however, several possible reasons 

for changing calcification, not only pH. Therefore, to explore the different responses of Porites 

spp. and Acropora spp. observed in the field, a controlled laboratory experiment is necessary, 

whereby, corals can be subjected to natural variability in pH whilst controlling all other 

variables.  Chapter 5 will therefore explore the response of these two genera (Acropora and 

Porites) to future predicted changes in pH. Temperature effects will also be explored as this is 

going to vary alongside pH under future climate change.   
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4.5| Key Findings 

4.5.1| pH mean and Cv trends across bioregion sites 

 All outer-reef sites experienced minimal carbonate chemitry variability. 

 Seagrass habitats and the back-reef site within this study consistently elevated local mean 

pH (reduced pCO2) and therefore elevated Ωarg relative to the outer-reef. 

 Periods of low pH within the seagrass habitat resulted in times of carbonate-sediment 

dissolution which increased TA and the buffering ability of the system. 

 Mangrove habitats consistently experienced a lower mean pH (elevated pCO2) relative to 

the outer-reef, with a decrease in Ωarg. 

 

4.5.2| The relative influence of mean versus Cv pH on structuring the local coral 

populations 

 Overall benthic cover of calcifying organisms was related to pH Cv (higher cover of 

calcifiers in low pH Cv) and not mean pH.  

 Coral calcification was enhanced under higher mean pH.  

 

4.5.3| The ability of corals to expand their niches into non-reef habitats 

 A range of coral species were recorded in the non-reef habitat that were not restricted to a 

specific growth form or genera.  

 The total number of coral species recorded in non-reef habitats was similar across regions 

 Very different proportions of the overall number of coral species found within each 

bioregion location were represented by the coral species within the non-reef habitats 

(Atlantic Ocean site= 20-30 %, Indian Ocean & Pacific Ocean sites= 1-2 %). 

 

4.5.4| The metabolic expenditure of dominant non-reef coral species  

 Generally higest calcification rates occurred on the outer-reef. 
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 In the seagrass habitats rate of coral calcification were sustained or experienced minimal 

reductions (<17 % relative to the outer-reef control) with the exception of Acropora spp. 

(68.0 % relative to the outer-reef control). 

 Calcification was supressed in the mangrove habitats (>70 % relative to the outer-reef 

control). 

 

4.5.5| The relationship between coral calcification and photosynthesis/respiration rates 

 Within all non-reef habitats, coral metabolism was governed by reductions in 

photosynthesis and calcification but respiration was maintained. without an up-regulation 

in respiration.  

 Of the environmental factors measured the abiotic characteristic that appears to be most 

important in potentially influencing the abundance and productivity of corals in the non-

reef habitats is the local carbonate chemistry. 

 

4.5.6| Coral species and growth form responses to varying carbonate chemistry conditions  

 Calcification rates of branching species were negatively affected across non-reef habitats 

more than sub-massive and massive coral species. 

 Productivity was most affected in branching species across non-reef habitats. 

 Under low pH productivity of branching species were similar to massive and sub-massive 

species 

 As pH increased there were dramatic increases in calcification rates of branching species 

but only moderate and quickly saturated calcification rates by massive and sub-massive 

species.  

 

4.5.7| Connection between chapter 4 research findings and the research approach reported 

in chapter  

 Across bioregions locations, Poritidae and Acroporidae were the most common coral 

families (present in 8 out of 9 sites).   
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 Massive Porites and branching Acropora documented very different abilities in 

maintaining their photosynthesis rates across the non-reef habitats, which corresponded 

with their abilities to sustain calcification. 

 Photosynthesis and calcification were most likely impaired by the metabolic costs of 

maintaining cellular homeostasis within a low pH environment.  

 Within field experimentations there are several possible reasons for changing 

calcification, not only pH. Therefore, a controlled laboratory experiment is necessary, 

whereby, corals can be subjected to natural variability in pH whilst controlling all other 

variables.   
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Chapter 5| The impact of future predicted 

changes in temperature and pH on the 

biological performance of corals from 

different variability habitats 

Part of this chapter is in final draft for the Proceedings of the Royal Society B as the manuscript: 

The roles of temperature and pH in non-reef habitats on coral calcification and metabolic 

activity: Can marginal systems buffer against change? 

 

5.1| Introduction 

As atmospheric pCO2 concentrations continue to rise tropical coral reefs are under threat from 

both ocean warming and lower global seawater pH (ocean acidification, OA) (Gattuso et al., 

1999; Hoegh-Guldberg & Bruno 2010). How these two factors will interact to drive future 

productivity of reef building corals (Anthony et al. 2008; Kroeker et al., 2010, 2013) and in turn 

their distribution (van Hooidonk et al. 2014; Vergés et al. 2014; Cacciapaglia & van Woeosik 

2015) is still unclear. For example, there is evidence that a moderate rise in temperature is 

associated with an increase in metabolic rates of corals that potentially enhances growth 

(Reynaud-Vaganay et al., 1999; Lough & Barnes, 2000; Bessat & Buigues 2001; McNeil et al. 

2004), whilst a larger rise in temperature can push corals past their physiological limits resulting 

in catastrophic mortality (Hoegh Guldberg et al. 2007; Hoegh-Guldberg & Bruno 2010). 

Similarly, lowered pH could potentially fuel the metabolism of the symbiont by increasing the 

concentration of CO2 used in photosynthesis (Brading et al., 2011; Suggett et al., 2012). 

However, low pH also increases the energetic cost of calcification by lowering the concentration 

of 𝐻𝐶𝑂3
− (Cohen & Holcomb 2009; McCulloch et al., 2012). Consequently, research efforts 

have focused on attempting to deconvolute the impacts of these two factors whilst also trying to 
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understand the potential synergistic interaction of combined stressors to evaluate the net 

physiological and ecological responses of the coral holobiont to future climate change scenarios.  

As demonstrated throughout the thesis, shallow reef and non-reef habitats are highly dynamic, 

with some habitats already routinely experiencing periods of pH (pH 7.8: see Chapter 3 & 4, 

Manzello et al., 2012; Price et al., 2012) and temperature (>34 °C; Manzello et al., 2012) 

considered representative of future reef conditions under business-as-usual IPCC climate change 

scenarios (Guadayol et al., 2014). However due to the innate variability and the possible 

synergistic effect of multiple environmental variables, knowledge concerning the future 

implications of OA on fringe habitats remains confused and often contradictory.  

Corals populating habitats with inherently greater environmental variability as compared 

to classic reef settings,  appear to exhibit increased resilience to anomalous stressors (e.g. 

temperature, Baker et al., 2004, pH, Comeau et al., 2014), by expanding their physiological 

thresholds (Donner et al., 2007). However, this seemingly is not always the case with several 

other studies demonstrating no improved tolerance to stress despite prior regular exposure to 

high environmental variance (e.g. temperature, Rodolfo-Metalpa et al., 2014; pH, Crook et al., 

2013; Okazaki et al., 2013). Reconciling such findings may reflect the fact that few stress-based 

studies have included both temperature and pH as experimental variables, and fewer experiments 

still have actually replicated the natural daily oscillations (frequency and range) of temperature 

and pH within coral environments.  

Experiments that have accounted for ambient pH variability have recently demonstrated  

enhanced calcification rates for coral recruits (Seriatopora caliendrum, Dufault et al., 2012) and 

adult corals (Acropora hyacinthus, Comeau et al., 2014) when grown under oscillating rather 

than steady-state pCO2 conditions. However, despite showing a positive role for pH variance in 
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potentially offsetting the negative impacts of OA on a local scale, they do not consider the likely 

simultaneous role of temperature variance. Other studies that have considered both temperature 

and OA on massive (Anthony et al., 2008 (Porites sp.), Thompson & van Woseki, 2009 

(Siderastrea siderea)) and branching (Anthony et al., 2008 (Acropora sp.)) corals, demonstrated 

a negative but variable response on coral calcification. These studies however, did not replicate 

the ambient variability, instead maintaining steady-state conditions. One study by Dove et al. 

(2013) has incorporated daily and seasonal variability for both temperature and pH within their 

study on patch reef communities, predicting serious implications for coral reef systems under 

future climate change. However, this study focused on one habitat only and does not allow for 

the elucidation of how natural habitat variability effects coral productivity.  

Review of previously published experiments demonstrates that there has been a lack of studies 

that have compared the physiological response of corals from relatively “stable” and highly-

variable coral habitats, considering both natural temperature and pH daily oscillations. 

Differences observed in the in situ metabolic responses of massive Porites and branching 

Acropora make them interesting genera to study (see Chapter 4). Therefore, the objectives of this 

chapter are to: 

1) Re-create the natural diurnal oscillations of pH and temperature within a laboratory 

setting and superimpose their future predicted changes (as per 2100) for a reef and non-

reef habitat;  

2) Determine the relative influence of temperature and pH on the metabolic activity of 

corals;  

3) Measure whether diel variability in experimental conditions influences the metabolic 

response of corals; 
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4) Test whether two common Caribbean species (Acropora palmata and Porites astreoides) 

exhibit the same metabolic response to enhanced temperature and low pH when 

superimposed on top of their natural variability; 

5) Test whether corals from highly variable (pH & temperature) habitats are better at 

maintaining their metabolic activity under conditions predicted in 2100 (high 

temperature, low pH). 

To address these objectives a multifactorial manipulative experiment was conducted. 

Importantly, the experiment: (i) superimposes predicted temperature and pH changes on top of 

the natural diurnal oscillations of each habitat (following Dove et al., 2013) and (ii) cross-

compared corals from each habitat by exposing them to present-day and future, high- and low-

variance conditions. Using this approach the study demonstrates the relative influence of pH and 

temperature on key metabolic traits (photosynthesis, respiration and calcification) for corals in 

high-and low-variability habitats, and demonstrates how the biological performance of corals 

may be impacted under climate change.  
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5.2| Materials and methods 

5.2.1| Study location, study organisms and collection  

The study was conducted on Little Cayman, Cayman Islands, British West Indies. The Atlantic 

Ocean study location was selected for the laboratory study because the high-resolution abiotic 

and benthic analysis was conducted there (see Chapter 3). Two sites located on the north coast of 

Little Cayman were selected: an outer-reef site (low-variability site, LV) on the reef terrace and a 

seagrass site (high-variability site, HV) within the shallow adjacent lagoon (Grape Tree Bay, see 

Chapter 3, section 3.2.1). The manipulation study was conducted between May-July 2014.  

Baseline in situ chemistry data was collected over 18-days between July and August of 2012 (see 

Chapter 3) and was used as the target control conditions within the study. Spot sampling in June 

2014 confirmed similarities in seawater chemistry to the measured values in 2012. 

Two study organisms were used: Acropora palmata, which was only found at the LV site and 

Porites astreoides which populated both the HV and LV sites. For each species and site 40 

fragments (> 5 cm total length) were collected, allowing for five replicates per experimental 

treatment. Corals were collected from the LV and HV habitats from a depth of ca. 1.5 m. Corals 

were never exposed to air and were handled underwater with PVC gloves and transported in 

individual zip-lock bags filled with in situ seawater back to the laboratory within 30 min of 

collection.  
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5.2.2| Experimental design 

To incorporate the natural diurnal pH and temperature variability of each habitat, pH and 

temperature conditions predicted in 2100 were superimposed on the natural diurnal trends (as 

Dove et al., 2013, Figure 5.1). The conditions predicted in 2100 were manipulated on top of the 

natural diurnal trends of each habitat. A mean (SE) temperature increase of 2.2 ± 0.03 °C and pH 

decrease of 0.3 ± 0.02 units were used based on A1B scenario estimates (IPCC, 2015). It should 

be noted that it remains unclear how systems like seagrass habitats will respond to future 

changes in carbonate chemistry due to the high cover of photoautotrophs and their use of DIC for 

photosynthesis (Langdon et al., 2005). As their response remains unclear a “worst-case” scenario 

has been used here where the predicted 0.3 unit decrease in pH for the open-ocean has been 

superimposed onto the seagrass HV present-day diel trends.  

Seven sampling periods were identified from the natural diurnal trends in temperature 

and pH. These periods represent the greatest rates of change and were selected to best replicate 

the habitats natural oscillations (Figure 5.2). For each time period, the average in situ pH and 

temperature were determined, and the IPCC predicted changes for 2100 were superimposed onto 

these values. In total eight experimental treatment conditions were created within controlled 

laboratory conditions (Figure 5.3), including a control, temperature increase, pH decrease, and 

temperature increase with pH decrease, all superimposed over the ambient HV and LV habitat 

conditions. Experimental treatments were replicated five times, with one test organism from each 

site in an aquarium.   

 

 

 



 Chapter 5  

187 
 

 

 

Figure 5.1| The average pH and temperature tank conditions for: A) the outer-reef and B) 

the seagrass habitats of Little Cayman, Cayman Islands, BWI, for both present day and 

2100 (under IPCC A1B scenario estimates). The 2100 conditions (grey) represent an 

approximate mean (SE) temperature increase of 2.2 ± 0.03 °C and pH decrease of 0.3 ± 0.02 

units. pH was measured from daily discrete water samples over the seven time periods, whilst 

temperature was measured continuously with a HOBO Pendant Temperature/Light 64K data 

logger set at a 30 min interval.  
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Figure 5.2| The natural diurnal oscillations in: A) temperature and B) pH for the seagrass 

habitat on Little Cayman, Cayman Islands, BWI. From the natural diurnal cycles, seven time 

periods were selected to manipulate the temperature and pH to conditions predicted in 2100. The 

seven time periods were selected to try and best-represent the natural diurnal conditions.  
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Figure 5.3| Schematic of the experimental design. Each treatment (1-8), which included a 

control and the effect of elevated pH and/or temperature, was performed relative to the 

background variance for the low variability outer-reef site (LV) and high-variability seagrass site 

(HV). Five replicate samples (n= 5) of the species chosen (Acropora palmata sampled from the 

LV site, and Porites astreoides form both the HV and LV sites) were simultaneously subjected to 

each of the eight treatments (total n= 40 per species).    

 

 

The basis of the experimental set-up was a reservoir (4 x 55 gallon PVC Tote, Lowes, USA) of 

non-filtered outer-reef (LV) natural seawater that supplied the four LV experimental conditions. 

The reservoir was re-filled with fresh seawater every 2-3 days as necessary. Water from the 

reservoir was pumped (DC Utility pump connected to 5/8 in garden hose, Pacific hydrostar, 

USA) into a sump (10 gallon PVC Tote, Lowes, USA) containing seagrass and carbonate 

sediment (collected from the in situ seagrass habitat) to re-create the natural variability in pH 

experienced in the seagrass habitat. The sump contained a pump and aerator (EHEIM 200, 

EHEIM GmbH & Co. KG, Deizisau, Germany), which subsequently supplied water to the four 

HV experimental treatments. For this, water was tapped into additional aquaria where pH was 

altered by subsequently manipulating the seawater by equimolar additions of strong acid (1 mol 
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L
−1 

HCl, Thermo Fisher Scientific, NJ, USA), NaOH (Thermo Fisher Scientific) and Na2CO3 

(Thermo Fisher Scientific) (Richier et al., 2014). The volumes of HCL and HCO3
-
 required to 

adjust pCO2 and pH to the chosen target values were first calculated from the measured ambient 

state of the carbonate system in seawater using CO2SYS (Richier et al., 2014). For each of the 

seven daily time periods, water within each aquarium was flushed with new manipulated 

seawater.  

pH and total alkalinity (TA) were tested before water exchanges from discrete water 

samples. pH was measured using the Orion Ross Ultra Glass Triode Combination Electrode 

(Ross Ultra; Fisher Scientific, UK) calibrated with TRIS buffers (accuracy ca. ± 0.002 pH units) 

using the potentiometric technique and the total scale (see Chapter 2, section 2.2.2. and Dickson 

et al., 2007). An open-cell potentiometric titration procedure was used to measure TA using the 

Gran method to determine the second end point of the carbonate system. TA of all samples was 

determined using a Titrino titrator (Model 848; Metrohm, Buckingham, UK) with accuracy and 

precision of ca. ≤ 2 mol kg
-1 

as verified with certified reference materials distributed by A. 

Dickson (Scripps Institute of Oceanography). Temperature was controlled by a water bath 

incubating each aquarium to the desired temperature via heaters at either end (NeoHeater IPX8, 

Aquael, Poland). Temperature was continuously measured over the duration of the experiment 

using a HOBO Pendant Temperature/Light 64k Logger (Model UA-002-64; Microdaq, USA) set 

to log every 30 min. Experimental conditions were also monitored daily using a temperature 

Probe (NeoFox TB, Ocean Optics, England). All aquaria were exposed to natural daylight-dark 

cycles 12:12 cycle (Anthony et al., 2008), with average daylight PAR of 350-500 moles 

photons m
2
 s

-1
 which was representative of in situ light conditions. Light was measured using 

three HOBO Pendant light loggers (Model UA-002-64, Microdaq, USA), with values averaged 
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and converted to PAR using the daylight coefficient (Long et al., 2012, see Chapter 3 section 

3.2.2).  

The experiment was divided into three phases: 1) Recovery (3-days), where corals were 

removed from their in situ environment and left to recover in the laboratory under their ambient 

conditions; 2) Acclimate (21-days) where pH and temperature were manipulated for each tank 

and corals were able to adjust to the specific experimental conditions (as deemed appropriate 

from prior experimentation, see Suggett et al., 2013), and 3) Experimentation (35-days) where 

corals continued to be exposed to the treatment condition via pH and temperature manipulation 

(total experimental duration = 59 days). During the acclimation period, regular (every 3 days) 

spot checks were conducted to assess the metabolic response (photosynthesis, respiration, 

calcification rates) of a sub-set (20 %) of the corals to assess if rates were becoming regular, i.e. 

had acclimation taken place. At the end of the recovery period (t0) and at the end of the 

experimental period (te) zooxanthellae and chlorophyll  measurements were taken and a 24 h 

incubation (described in detail below in the measurements of photosynthesis, respiration 

calcification and growth rates section) was conducted to measure photosynthesis, respiration and 

calcification daily integrated rates. At the end of the acclimatory period (ti) and te buoyant mass 

measurements were taken to establish an average daily growth rate over the 35 days.  

Carbonate chemistry baseline – At each location discrete water sampling was conducted 

over 18-days between July and August 2012 to establish the natural diurnal trends in pH and 

temperature. See Chapter 3 (section 3.2.2) for detailed methods, but in brief, discrete water 

samples were collected at 3 h intervals starting at sunrise (n = 144 per site: three sub-sites each 

sampled eight times per 24 h sampling session, with six 24 h replicates). Seawater carbonate 

chemistry was measured through direct water sampling following the Carbon Dioxide 
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Information Analysis Centre (CDIAC) protocols (Dickson et al., 2007), with carbonate 

parameters (pCO2, TCO2 and Ωarg) calculated with CO2SYS from TA and pH (Riebesell et al., 

2010), in situ temperature and salinity, and sampling depth (m) as a proxy for pressure (Lewis 

and Wallace, 1998). For CO2SYS the dissociation constants of Mehrbach et al. (1973) were used 

for carbonic acid as refined by Dickson and Millero (1987), and for boric acid (Dickson, 1990). 

Pressure effects, orthophosphate and silicate concentrations were assumed to be negligible (Jury 

et al., 2010).  

Measurements of photosynthesis, respiration calcification and growth rates – All nubbins 

were weighed in seawater (buoyant weight) at ti and te with a Ohaus Scout Pro balance (accuracy 

0.01 g). Skeletal dry weight was demined using the method described by Davies (1989) and 

normalised to surface area that was calculated via the advanced geometric technique (AGT) 

(Naumann, 2013). Growth rates established from buoyant mass closely coupled rates established 

from the TA method demonstrating that this method is a good indicator of mass (Figure 5.4). 

Consequently, data presented is obtained from the TA method as rates of calcification (mmol 

CaCO3 m
2
 h

-1
).  
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Figure 5.4| The relationship between growth rates based on the total alkalinity depletion 

and buoyant mass methods. Each point represents measurements from both methods on an 

individual coral fragment. Data is shown for the high-variability and low-variability treatments. 

The grey line illustrates a 1:1 ratio, the solid black line represents the best fit line (Buoyant Mass 

(mmol m
2 
day

-1
) = 4.32 + 0.864 * Alkalinity depletion (mmol m

2 
day

-1
), r

2
= 0.791, n= 120, P= 

0.001) and the blue lines represent the 95 % confidential internals. Rates were obtained from 

eight 3 h incubations conducted over a 24 h period at t0 and te.  

 

At all incubations every colony was incubated in a separate 750 ml closed plastic 

chambers filled with the experimental water. TA was measured at the start and end of the 3 h 

incubation. After this period, the water was flushed with new experimental water and chambers 

were re-secured. The next incubation was then initiated following the same sampling procedure 

and repeated at 3 h increments over the 24 h period. The same procedure was performed on three 

control chambers that contained only seawater. The change in TA in each respirometry chamber 

was corrected for any changes in TA of the seawater controls to yield rates of G as: 

𝐺 (𝑡)  = [
(∆𝑇𝐴∙𝜌∙0.5) ∙𝑉

𝐼𝑡 ∙𝑆𝐴
]/1000                       [1] 
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Where TA= total alkalinity (mol kg
-1

), V = volume of water (L) surrounding the coral within 

the respirometry chamber, It (h) is incubation time, SA is the coral surface area (m
2
), is the 

density of seawater and 0.5 accounts for the decrease of TA by two equivalents for each mole of 

CaCO3 precipitated.   

 

G rates for the day (i.e. G light, GL) and night (G dark GD) were calculated as: 

𝐺𝐷𝐴𝑌 = ((∑ 𝐺 (𝑡) ∆𝑡𝑑𝑢𝑠𝑘
𝑑𝑎𝑤𝑛 ) +  (∑ 𝐺 (𝑡) ∆𝑡𝑑𝑎𝑤𝑛

𝑑𝑢𝑠𝑘 ))/1000 ; i.e. = GL + GD    [2] 

 

Net photosynthesis (PN) and respiration rates (R) were determined at the same incubation periods 

(8 x 3 h incubations at t0 and te) as G. O2 was measured at the start and end of each incubation 

using a Foxy-R O2 probe (Ocean Optics, England). The change in O2 in each respirometry 

chamber was corrected for any changes in O2 of the seawater controls to yield hourly rates 

(mmol O2 m
-2

 h
-1

) as:  

𝑃𝑁 𝑎𝑛𝑑 𝑅 (𝑡) =  [
(∆𝑂2) ∙𝑉

𝐼𝑡 ∙𝑆𝐴
] /1000                                                    [3] 

Integration of all P and R measurements during the day (night) yielded the daily PN and R (mmol 

O2 m
-2

 d
-1

) as: 

𝑃𝑁 =  ∑ 𝑃 (𝑡) ∆𝑡𝑑𝑢𝑠𝑘
𝑑𝑎𝑤𝑛  and 𝑅 =  ∑ 𝑅 (𝑡) ∆𝑡𝑑𝑢𝑠𝑘

𝑑𝑎𝑤𝑛                                                                      [4] 

Gross photosynthesis (PG) was calculated by the addition of PN and R. All values of R are 

subsequently converted to a positive value as multiplied by a factor of -1. Surface area of all 

colonies was determined by the AGT.  

Chlorophyll α and zooxanthellae counts – Coral tissue was removed from the base of 

each nubbin using a water pik (Waterpic Inc, England) in 5 mL of GF/F–filtered seawater; the 

area of tissue removed was quantified via the AGT method. The tissue slurry was homogenised 
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using a pipeta pasteur and a small aliquot subsequently taken for cell quantification via 

microscopy using a neubauer haemocytometer (Berkelmans & van Oppen, 2006). A second 

aliquot of sample was subsequently filtered and extracted in 3 mL methanol for 24 h at 4 °C. 

Chlorophyll α was subsequently quantified by measuring the pigment extracts on a USB 2000
+
 

Spectrometer (Mikropack Halogen Light Source (HL-2000) and applying the equations of 

Ritchie (2006) for dinoflagellates. 

 

5.2.3| Statistical analysis 

All statistics were conducted in either R software (R 237 Development Core Team, 2011) or 

Sigma Plot 10.0 (Systat Software, San Jose, CA). Parametric test assumptions were all met 

unless stated, with the Levene’s test used to check homogeneity of variance and qq-plots to 

assess the normality of the data. Within the results section means are shown with standard error 

(SE).  

Linear regression was used to compare rates of calcification between t0 and te, 

calcification rates calculated from the TA anomoly method compared to the buoyant mass 

technique. A paired t-test was conducted to assess whether rates of calcification at t0 were 

different from rates of calcification at te. An independent sample t-test was used to compare the 

average ranges in temperature and pH recorded for experimental treatments, as well as 

differences in density between high- and low-variability treatments.  

Multi-model comparison – Within the study P. astreoides was found at both sites whereas 

A. palmata was only found at one site, meaning that the experiment could not be fully factorial. 

In addition to being unbalanced, from exploratory analysis of the data it appeared that third-order 

interaction terms (such as pH, temperature and species) may be significant.  The large number of 
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terms in a third-order ANOVA and the unbalanced design raised concerns that an ANOVA may 

be affected by over-fitting or ill-conditioning (Zurr et al, 2010).  For these reasons the results 

have been analysed in two ways: (i) by ANOVA with restrictions on the variables (Zurr et al, 

2010), and (ii) with a set of nested non-linear models using the multi-model selection framework 

(Burnham & Anderson, 2003).  

ANOVA and non-linear analysis – Three ANOVA analyses were performed; main 

effects, second order interactions, and with third order interactions (Appendix 10). Non-linear 

models were also applied. Non-linear multi-model selection is a very general and flexible 

approach that estimates the parameters of non-linear functions by maximum likelihood, and 

compares different models using the Akaike Information Criteria (AIC). Using the guidelines 

from Burnham & Anderson (2003), a difference in AIC of 0-2 was considered negligible. The 

values of the coefficients were found by maximising the likelihood, which the case of normally 

distributed errors is equivalent to least squares fitting.  Confidence intervals (95 %) were 

calculated by the log-profile method.   

Exploratory data analysis was initially conducted. The saturating model had the maximum 

number of variables that can be used to describe the results (25 parameters). This model is not 

overly useful as it provides no insight into the relationships between the factors, however it is 

used to provide an upper-bound on model complexity. From these plots the relative size of the 

various effects were gauged (e.g. influence on photosynthesis, see Figure 5.5; Appendix 10). 
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Figure 5.5| An example of data exploration for the non-linear models. The saturation model 

(blue-line) contains the maximum number of variables that can be used to describe the results, in 

this case 25 parameters. It is used to set an upper-bound on model complexity. The graph also 

shows the non-linear model 6 that was used and how this related to the saturation model.  

 

From the initial analysis the structure of the non-linear model was: 

V =V0 ´ 1+ ass + ahh[ ]´

1+   T      bT     + bT ,v     v +   bT ,h  h( )

 +   pH    cpH   + cpH ,v   v +   cT ,h   h( )
 +T × pH dT ,pH + dT ,pH ,vv + dT ,pH ,hh( )

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

    [5]
 

The model describes the process of interest, say calcification (G), in terms of an average value 

for the two species (V0).  The second bracketed term describes the difference between corals 

under control conditions (i.e. no temperature or pH manipulation) using multiplicative term. The 
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third term describes the changes resulting from experimental manipulation as an additional 

multiplicative term. This term is organised first in terms of temperature, pH and an interaction 

between temperature and pH (bT, cpH, dT,pH coefficients).  In addition there are coefficients to 

account for the differences due to the variability of experimental treatment and the habitat from 

which the coral were sourced (bT,v, bT,h, etc). There are several versions (1-6) of this model that 

correspond to dropping the terms to simplify the model (NL1-NL6, see Appenidx 10).
  

Model NL6 was selected to explain the data due to its low AIC value, the number of 

parameters that were included and its close relationship to the trends of the data shown with the 

saturation models.  As recommended by Burnham & Anderson (2003) confidence intervals (CI) 

at the 95 % level are displayed next to model estimates rather than significance values. CI are 

beneficial for this study as it allows the size of a difference to be measured between experimental 

treatments, species, and habitats, rather than simply indicating whether or not there is a statistical 

difference. In attempting to de-convolve the relative influence of temperature and pH on coral 

metabolism, along with investigating some of the more intricate third order interactions, the 

approach of using CI is favoured (Gardner & Altman, 1986; Burnham &Anderson, 2003).  

The ANOVA and non-linear models were compared using their AIC. The AIC of the 

linear (ANOVA) and non-linear models were compared with each other and were found to be 

consistent. The benefit of the non-linear model is that any terms with insignificant p-values or 

confidence intervals were excluded and the models are not affected by over fitting or ill 

conditioning. The non-linear model NL6 consistently had lower AIC scores than the linear AN3 

model (2.7 vs 8.7), which indicates that the non-linear model has considerable more empirical 

support (Appendix 10).   
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5.3| Results 

5.3.1| Carbonate chemistry manipulation 

The method of manipulating the pH and temperature was able to recreate the predicted pH and 

temperature changes of 2100 under IPCC A1B scenarios and included the natural diel trends of 

each habitat (Figure 5.1). Under both the HV and LV treatments, more daily variability in both 

temperature and pH was experienced for the tanks exposed to the 2100 level conditions 

(temperature: t6= 6.36, P= 0.001, pH: t6= 4.44, P= 0.005). Growth rates from ti were the same as 

te demonstrating that the experimental method sustained conditions in the control tanks 

throughout the experimental period (r
2
= 0.859, n= 30, P= 0.001, Figure 5.6), showing no 

difference over the study duration (e.g. 1:1 ratio). 
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Figure 5.6| Avergae (SE) daily calcification rates (G) at the end of the experiment (te) for all 

three coral species: Acropora palmata (outer-reef, low-variability site (LV)), Porites astreoides 

(outer-reef, LV site), and P. astreoides (seagrass, high-variability site (HV)) within the high-

variability and low-variability control tanks. A regression between rates of G at the start (t0) and 

end (te) of the experiment show strong co-linearity between rates (r
2
= 0.859, n= 30, P= 0.001, 

G(t0) = 18.55 + 0.93* G (te). 

 

 

5.3.2| Native habitat response 

Reciprocal transplantation of corals to high/low variability control tanks did not induce a change 

in calcification for any species (Figure 5.6).  Corals native to the LV outer-reef site sustained 

calcification in the HV seagrass control tanks. Corals originating from the HV seagrass site 

showed no enhanced rates of calcification under the more stable LV control conditions.   

 Prior exposure to variability in pH and temperature for P. astreoides originating from the 

seagrass habitat was found to have minimal influence on their response to all experimental 

treatments. Colonies native to the seagrass habitat experienced a reduction in calcification that 
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was similar (ca. 4 % lower reduction, Table 5.1) to colonies from the more stable outer-reef 

habitat. Similarly, rates of photosynthesis decreased proportionally for P. astreoides originating 

from both habitats under the pH (- 17.3 %, CI: -14.8 to -19.7 %) and pH and temperature (- 26.5 

%, CI: -22.5 to -30.6 %) experimental treatments (Table 5.1).  

 

5.3.3| Experimental variability response 

Overall the variability in pH and/or temperature of the experimental treatment had minimal 

influence on the physiological response of each coral (Figure 5.7). One exception was observed 

under the pH treatment, where gross productivity was reduced by a further 6.3 % under the HV 

treatment (Table 5.1). Although all colonies experienced a decrease in calcification rates 

independent of the level of variability experienced (Figure 5.7), colonies exposed to the LV 

water treatment all experienced a larger decrease in skeletal density relative to the control 

colonies (t= -3.79, P= 0.005, Figure 5.8). Under the HV (seagrass) treatments, both P. astreoides 

species experienced an increase in skeletal density. No significant difference was detected in the 

skeletal densities of the controls between the HV and LV treatments, independent of species.  

Although the net calcification response of P. astreoides and A. palmata were similar for 

both the HV and LV treatments, the conditions they were exposed to within each habitat were 

very different (Figure 5.9). Over a diel-cycle pH fluctuations resulted in daily oscillations in Ωarg 

(Figure 5.9), where by daytime peaks (control tanks: HV 4.5 ± 0.02, LV 4.0 ± 0.01) occurred 

around mid-day and lows occurred during the night (control tanks: HV 2.7 ± 0.04, LV 3.8 ± 

0.01). Diel cycles resulted in the HV habitat under current seawater conditions spending ca. 43 

% of its time under the CaCO3 sediment calcification-to-dissolution threshold (G-D). A further 

20 % of time was spent below the Mg-calcite G-D. The outer-reef, LV habitat was exposed to 
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carbonate-sediment under saturation for less than 12 % of its daily cycle. When the -0.3 pH and 

2.2 °C conditions were added, both habitats had a very similar reduction in their mean Ωarg 

(Reduction of: HV = 1.4 and LV =1.5 units) although their exposure to over-and under-saturated 

conditions were very different. The HV habitat spent time (< 10 %) close-to and/or below the 

Ωarg with 85 % of time below the ΩMg-calc. The LV habitat spent all time below the ΩMg-calc and 

remained above the Ωarg.  
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Figure 5.7| The metabolic response of corals across experimental treatments. The relative 

percent change in respiration (R), gross productivity (PG) and calcification (G) for Acropora 

palmata (outer-reef, low-variability site) (4.a, d, g), Porites astreoides  (seagrass, high-variability 

site) (4.b, e, h) and P. astreoides  (outer-reef, low-variability site) (4.c, f, i) relative to the 

controls, within the high-variability and low-variability experimental tanks. Relative percent 

change (± SE) was detemined by averaging the experimental replicates per treatment (n= 5) and 

standardising by the control at the end of the experiment (te).Experimentation ran for five weeks, 

with a three week acclimitasation phase. Corals were from Little Cayman, Cayman Islands, 

BWI, with control conditions resprentative of present day in situ conditions for the seagrass and 

outer-reef, whilst experimental conditions best represent the temperature increases and pH 

decreases estimated under the IPCC A1B scenario. 
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Table 5.1| a) The non-linear model results (NL6). 

 Photosynthesis (%) Respiration (%) Calcification (%) 

est CI  lo CI hi est CI lo CI hi est CI lo CI hi 

V0   299 293 305 151 147 155 249 244 254 

a s 6.5 5.2 7.9 8.7 7.2 10.3 -9.3 -10.7 -7.8 

  h -0.4 -2.5 0.9 -0.6 -3.3 1.6 2 0 3.9 

b T 8.3 5.6 11.1 -1.5 -4.7 3.5 -20.4 -22.9 -17.8 

  T,v 3.4 1.6 5.2 -0.4 -2.7 1 1.7 -0.1 3.5 

  T,h 1.2 -2.8 4 0.3 -0.7 3.6 1.1 -2.6 3.6 

c pH -17.3 -19.7 -14.8 -2.2 -5.5 1.1 -38.7 -41 -36.3 

  pH,v -6.3 -8.1 -4.5 -3.2 -5.4 0.9 -1.9 -3.7 -0.1 

  pH,h 3.8 1.3 6.2 3.2 -0.1 6.5 3.7 1.4 6 

d T,pH -26.5 -30.6 -22.5 1.5 -3.6 6.1 3.2 -0.8 7.1 

  T,pH,v 3.7 0.6 6.9 4.4 0.5 8.3 3.8 0.7 7 

  T,pH,h 0.5 -1.1 4.5 -4.6 -9.3 0 0.1 -0.2 4 

Table 5.1| b) Legend to the model output shown in table 5.1a  

Variable Symbol Values Meaning   

species  

 

1 P. astreoides  

 -1 A. palmata 

habitat  

 

1 High variability, 

seagrass 

 -1 Low variability, Outer 

reef 

variability  

 

1 High variability, 

seagrass 

 -1 Low variability, Outer 

reef 

temperature  

 

0 Control 

 1 Manipulation, + 2.2 

°C 

pH  

 

0 Control 

 1 Manipulation, -0.3 

units 

 

 

 

 

Colour coding: 

 

Small Increase (x < 10 %) 

 

Small decrease (x < 10 %) 

 

Medium decrease (10 ≥ x < 20) 

 

Large decrease (x ≥ 20) 
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Figure 5.8| The changes in coral density over the experimental period. The average (SE) 

changes in density for each coral species, from each location (low-variability (LV) outer-reef, 

high-variability (HV) seagrass) for both the high and low variability treatments, relative to the 

controls at the end of the experiment (te). Density was determined on a sub-sample of corals from 

each experimental treatment, (n= 3 per treatment, total n= 24) using a 3D scanning process 

following the protocol of Enochs et al., (2014). 
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Figure 5.9| The time each habitat is exposed to a given saturation state. Data is averaged for 

each level of variability (high or low). The grey shaded area shows the daily trend in the 

saturation state of seawater within each habitat under current and future (2100) seawater 

conditions. A & C) show current ambient seawater conditions, B & D) show the effect a change 

of – 0.3 pH units and a 2.0 °C temperature increase has on the saturation states of each habitat. 

Calcification-to-dissolution thresholds are shown for Mg-calcite, CaCO3 sediment, aragonite 

theoretical (e.g. the calculated level of one) and experimental aragonite (levels experiments have 

measured the aragonite threshold to occur at). The carbonate-sediment values were calculated by 

Yamamoto et al., 2012 experimentally based on sediment that contained a mixture of low Mg-

calcite, Mg-calcite and aragonite. The mixture of these different structural forms of CaCO3 

results in the Ω threshold of carbonate-sediment occurring at a higher Ω.  
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5.3.4.| Species response  

Under control conditions, growth rates were 9.3 % higher (CI: 7.8 – 10.7 %) for Acropora 

palmata (Table 5.1), with an average daily rate of 268.5 ± 1.2 mmol m
2
 d

-1
, compared to 228.0 ±  

0.9 mmol m
2
 d

-1
 for P. astreoides (Table 5.2). Comparison of the relationship between growth 

rates for all species based on the TA anomaly method versus buoyant mass showed that the data 

from each were significantly correlated (r
2
= 0.791, n= 120, P= 0.001), with their relationship 

described by the equation: Buoyant Mass (mmol m
2
 day

-1
) = 0.864 * Alkalinity depletion (mmol 

m
2
 day

-1
) (Figure 5.4). Respiration (8.7 %, CI: 7.2 - 10.3%) and photosynthesis (6.5 %, CI: 5.2 - 

7.9 %) rates were slight elevated for P. astreoides compared to A. palmata. Overall physiological 

responses to the experimental treatments were generally similar for both A. palmata and P. 

astreroides (Figure 5.7), however clear species differences were evident when gross 

photosynthesis was standardised to zooxanthellae counts: 

 pH influence – Under both levels of variability in environmental conditions, and across 

all species, lower pH under the 2100 scenario led to a reduction in daily gross photosynthesis 

(Figure 5.8). The reduction in gross photosynthesis resulted from a decrease in net productivity 

(17.3 %, CI: 14.8 - 19.7, Table 5.1) whilst respiration remained constant (within 5.5 % of the 

control, Figure 5.8). Decreased pH led to a significant reduction in calcification rates across all 

treatments (38.7 %, CI: 36.3- 41.0, Figure 5.8, Table 5.1).  

  Temperature influence – Elevated temperature under the 2100 scenario increased 

photosynthesis for all species and under both levels of habitat variability (8.3 %, CI: 5.6 -11.1 %, 

Table 5.1). Temperature had no influence on respiration rates, however, calcification decreased 
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for all species under elevated temperature independent of variability (20.4 %, CI: 17.8 – 22.9 %, 

Figure 5.7, Table 5.1).  

Combined pH and temperature effect – The combined influence of elevated temperature 

and lower pH resulted in a large decrease in gross photosynthesis across species and habitats, 

which corresponded with a decrease in calcification (Figure 5.7). Within the non-linear model 

the combined effect of pH and temperature was negligible (3.2 %, CI: -0.8 - 7.1 %, Table 5.1) 

due to the additive response of temperature and pH independently explaining the majority of 

trends within the dataset. Consequently, an additive response of temperature and pH stress 

resulted in a decrease in calcification of 59.1 % (Table 5.1). Again, the decrease in gross 

photosynthesis resulted from a decline in net photosynthesis whilst respiration remained constant 

(Table 5.2).  

 Productivity and calcification standardised to zooxanthellae counts – Rates of 

calcification were closely coupled to rates of gross photosynthesis, independent of species and 

experimental treatment (r
2
= 0.831, n= 90, P= 0.01, Figure 5.10a), with gross photosynthesis 

explaining 83 % of the variance in calcification. For P. astreoides, changes in gross 

photosynthesis were independent of the density of zooxanthellae (remaining within ca.10 % of 

the control (Figure 5.11)). Similarly, A. palmata, colonies exposed to the temperature treatment 

had a decrease in gross photosynthesis that was independent of the density of zooxanthellae. 

However, when A. palmata was exposed to both the pH, and pH and temperature treatments a 

decrease in gross photosynthesis occurred that corresponded with a loss in zooxanthellae cell 

density (Figure 5.10b) and a decrease in chlorophyll 10-23 %, Figure). Visual 

observations support these measurements, with paling observed for A. palmata from day 14 of 

the experiment. 
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Table 5.2| Raw data measurements before experimental manipulation (t0) and at the end (te) of the 

experimental period for the corals Acropora palmata and Porites astreodies from a high-variability 

(HV) seagrass habitat and a low-variability (LV) outer-reef location on Little Cayman, Cayman 

Islands, BWI. Measurements include: daily net productivity (PN), daily respiration (R), daily calcification 

(G), and growth rates. Note: buoyant mass rates were calculated from the end of the acclimatory period ti 

to te.  

 

Table 5.2a| High-variability treatments 
 

 

Variability 

 

Treatment 

 

Species 

 

PN (mmol m
2
 d

-1
) 

 

R (mmol m
2
 d

-1
) 

 

G (mmol m
2
 d

-1
) 

 

Buoyant 

Mass  

(mg d
-1

 

g
-1

 

coral) 

 

t0 te t0 te t0 te Rate (ti 

to te) 

High Control A.palmata  

LV 

132.0  

± 1.7 

138.0 

±  0.3 

142.1  

± 2.1 

139.5  

± 0.3 

284.1 

± 0.3 

272.2  

± 2.1 

6.08 

 ± 0.2 

P.astreoides 

HV 

157.0 

 ± 0.6 

161.2 

± 0.1 

165.2 

± 1.9 

159.1 

± 1.7 

226.1 

± 1.6 

231.6  

± 0.6 

3.93 

± 0.1 

P.astreoides 

LV 

162.1  

± 0.2 

157.8 

± 0.8 

169.9 

± 3.1 

163.8  

± 2.5 

230.1 

± 1.0 

221.4 

 ± 0.7 

3.60 

± 0.1 

Temperature A.palmata 

LV 

129. 9 

± 3.2 

173.7 

± 1.2 

142.1 

± 3.2 

138.1 

± 5.1 

280.1. 

± 0.7 

220.2 

± 0.9 

4.71  

± 0.1 

P.astreoides 

HV 

142.1  

± 2.2 

193.8  

± 0.8 

150.1 

± 0.8 

159.1 

± 3.7 

231.9 

± 0.6 

174.3 

± 1.1 

2.71  

± 0.3 

P.astreoides 

LV 

160.0 

± 2.1 

179.3  

± 0.9 

152.1 

± 0.4 

160.9 

± 7.9 

223.1 

± 0.2 

146.5  

± 1.3 

2.22 

 ± 0.2 

pH A.palmata 

LV 

127.0 

± 1.9 

72.1 

± 2.2 

137.2 

± 2.6 

131.9 

± 3.6 

277.3 

± 1.7 

173.2 

 ± 1.7 

3.58   

± 0.1 

P.astreoides 

HV 

155.1 

± 3.8 

100.1  

± 1.7 

155.0 

± 0.7 

160.6  

± 3.7 

233.1 

± 0.2 

155.6  

± 2.7 

2.38 

± 0.1 

P.astreoides 

LV 

162. 9 

± 0.5 

188.5 

± 2.3 

151.1 

± 0.3 

158.7  

± 4.1 

228.1 

± 0.3 

111.2  

± 3.1 

1.85  

± 0.1 

Temperature & 

pH 

A.palmata 

LV 

139.2 

± 0.2 

28.1 

± 2.8 

139.1 

± 0.4 

138.5  

± 4.4 

265.9 

± 0.4 

118.6  

± 0.2 

2.56  

± 0.2 

P.astreoides 

HV 

141.2  

± 0.4 

68.8 

± 4.1 

151.6 

± 1.1 

158.6  

± 3.3 

225.5 

± 0.2 

150.2   

± 0.2 

1.78 

± 0.2 

P.astreoides 

LV 

146.2 

± 0.9 

42.1 

± 3.1 

158.3 

± 0.5 

164.9 

± 4.2 

225.1 

± 0.4 

89.2 

± 0.9 

1.76 

± 0.1 
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Table 5.2b| Low-variability treatments 
 

 

Variability 

 

Treatment 

 

Species 

 

 

PN (mmol m
2
 d

-1
) 

 

 

 

 

R (mmol m
2
 d

-1
) 

 

 

G (mmol m
2
 d

-1
) 

 

Buoyant 

Mass  

(mg d
-1

 

g
-1

 

coral) 

 

t0 te t0 te t0 te Rate (ti 

to te) 

Low Control A.palmata 

LV 

129.2  

± 1.1 

134.8 ± 

1.9 

135.1  

± 0.6 

141.7 

± 1.9 

272.0 

± 0.9 

262.6  

± 1.7 

6.21 

± 0.1 

P.astreoides 

HV 

143.9  

± 2.1 

149.3  

± 2.7 

170.3  

± 1.3 

167.3  

± 0.7 

231.0 

± 0.6 

229.0  

± 0.9 

3.74  

± 0.1 

P.astreoides 

LV 

160.1 

± 0.4 

158.8 ± 

4.9 

160.1  

± 0.3 

163.2  

± 1.8 

221.1 

± 0.1 

218.6 

 ± 0.9 

3.46  

± 0.1 

Temperature A.palmata 

LV 

133.8 

± 0.1 

164.5 ± 

0.5 

134.2  

± 0.3 

135.0  

± 1.7 

225.1 

± 0.4 

236.8 

 ± 1.3 

4.88  

± 0.4 

P.astreoides 

HV 

149.3  

± 2.4 

170.6 ± 

0.2 

167.7  

± 0.8 

163.5  

± 2.0 

272.0 

± 0.9 

170.0  

± 1.4 

2.64  

± 0.2 

P.astreoides 

LV 

140.1 

± 0.1 

163.9  

± 2.2 

171.9 

± 1.6 

163.0 

± 2.7 

231.0 

± 0.6 

157.8  

± 1.1 

2.07  

± 0.2 

pH A.palmata 

LV 

163.9 

± 1.5 

111.8  

± 3.4 

144.3  

± 0.2 

137.8  

± 5.2 

221.0 

± 0.6 

153.8 

± 2.7 

3.53  

± 0.3 

P.astreoides 

HV 

147.3 

± 3.1 

125.3  

± 1.1 

168.1 

± 1.1 

168.8 

± 1.9 

270.0 

± 1.2 

168.8 

 ± 1.7 

2.50  

± 0.2 

P.astreoides 

LV 

139.9  

± 3.4 

103.2  

± 5.5 

152.3  

± 0.5 

160.7  

± 3.5 

235.0 

± 0.1 

150.6  

± 3.9 

2.06  

± 0.1 

Temperature & 

pH 

A.palmata 

LV 

137.9 

± 0.4 

21.6  

± 2.2 

144.7 

± 2.6 

139.5  

± 3.8 

229.6 

± 0.3 

105.4  

± 2.3 

2.40  

± 0.4 

P.astreoides 

HV 

153.1 

± 0.8 

63.4 

± 0.1 

162.1  

± 0.7 

156.8  

± 3.5 

275.0 

± 0.1 

129.0  

± 2.9 

2.09  

± 0.3 

P.astreoides 

LV 

146.2. 

± 2.1 

28.8  

± 2.9 

150.3  

± 1.9 

158.9  

± 3.7 

230.0 

± 0.1 

68.4  

± 1.6 

1.61  

± 0.4 
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Figure 5.10| Gross productivity (PG) versus calcification (G) and zooxanthellae percent 

change for Acropora palmata (outer-reef, low-variability site), Porites astreoides  (seagrass, 

high-variability site) and P. astreoides  (outer-reef, low-variability site) from Little Cayman, 

Cayman Islands, BWI. A) Percent change in PG versus G and B) Percent change in PG plotted 

against the percent change in zooxanthellae. Relative percent change (±SE) was detemined by 

averaging the experimental replicates per treatment (n= 5) and standardising by the control at the 

end of the experiment (te). 
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Figure 5.11| The relative percent change in chlorophyll  and zooxanthellae for Acropora 

palmata (outer-reef, low-variability site) (A, D), Porites astreoides  (seagrass, high-

variability site) (B, E) and P. astreoides  (outer-reef, low-variability site) (C, F) relative to 

the controls, within the high-variability and low-variability experimental tanks. 
Experimentation ran for five weeks, with a three week acclimitasation phase. Relative percent 

change (± SE) was detemined by averaging the experimental replicates per treatment (n= 5) and 

standardising by the control at the end of the experiment (te). Corals were from Little Cayman, 

Cayman Islands, BWI, with control conditions resprentative of present day in situ conditions for 

the seagrass and outer-reef, whilst experimental conditions best represent the temperature 

increases and pH decreases estimated under the IPCC A1B scenario.  
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5.4| Discussion 

5.4.1| Species metabolic responses to enhanced temperature and low pH  

The overall result of the study aligns with the body of literature suggesting that calcification rates 

will fall under lower seawater pH (Gattuso & Hansson, 2011; Hoegh-Guldberg, 2011; Kroeker et 

al., 2013), with little-to-no upregulation in calcification from elevated temperature (Anthony et 

al., 2008). Upregulation of pH requires energy (Cohen & Holcomb, 2009) and these results 

suggest that the levels of photosynthesis sustained under low pH and elevated temperature, 

combined with any heterotrophy, were not able to meet the corals energy demands to maintain 

calcification at current day rates.  

Within this study, both A. palmata and P. astreoides experience a large decrease in 

calcification despite differences in their life history traits and growth forms. McCulloch et al. 

(2012) reported different abilities of Acropora spp. and Porites spp. in sustaining calcification 

under future OA based on their abilities to up-regulate their internal pH. Within this study 

however both species shows a similar negative response, which may indicate a threshold level 

for which species are able to upregulate pH. Supporting this theory is previous work 

demonstrating a significant decrease in calcification (ca. 40 %) of P. astreoides along a natural 

lowering pH gradient in Yucatan (Crook et al., 2013), which is also similar to decreases 

measured within laboratory studies (Albright & Langdon, 2011; De Putron et al., 2011). 

However, at Puerto Morelos, Mexico, P. astreoides have been documented to maintain net 

calcification in under saturated seawater (Crook et al., 2012), with other studies also 

documenting little-to-no negative impact on coral calcification (Carricart-Ganivet & Merino, 

2001; Rodolfo-Metalpa et al., 2011;  Comeau et al., 2013). A diversity of responses have been 

recorded for coral species to lower pH and/or elevated temperature demonstrating the 
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complexities of interacting factors (SCBD, 2014) and the need to consider the coral as a 

holiobiont (Morrow et al., 2012), e.g. the coral, algal Symbiodinium, and bacterial communities.  

Findings within this study demonstrate the importance of species differences even at the 

Symbiodinium level. For P. astreoides changes in rates of gross photosynthesis over the 

experimental treatments were independent of the density of zooxanthellae. This suggests that the 

loss in photosynthesis occurred due to the cells themselves becoming less productive. A. palmata 

however, when exposed to the pH treatments, experienced a decrease in gross photosynthesis 

that corresponded with a reduction in zooxanthellae cell density and a decrease in chlorophyll  

thus the loss of cells explained the reduction in productivity. OA induced bleaching has been 

documented by Anthony et al. (2008) on both massive and branching corals. The cause of OA 

induced bleaching (depigmentation) remains debated, but could include direct impacts of 

acidosis (Leggat et al., 1999), disruption to the carbon-concentration mechanisms (Kim et al., 

2004) or disruption to the photoprotective mechanism of corals due to the reduction of PGPase 

(Crawley et al., 2010).  

 

5.4.2| Coral’s native habitat influence on their metabolic response  

All corals examined within this study were sourced from habitats where the mean pH is currently 

elevated (seagrass: 8.142 ± 0.03) or in accordance with global averages (outer-reef: 8.118 ± 0.01) 

(Manzello et al., 2012; IPCC, 2015). Differences between native habitats were therefore based 

on the magnitude of daily pH and temperature oscillations, as well as the duration of time spent 

at particular carbonate chemistry conditions. Within this study, it did not appear that P. 

astreoides from the HV seagrass habitat was more adversely affected than the P. astreoides from 

the LV habitat to temperature and pH conditions predicted in 2100, over the study duration 

tested. There was actually a small enhanced ability in sustaining calcification rates relative to the 
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colonies from the more stable environment, however, further replication over a longer study 

duration would be necessary to assess any significance in this difference.  

 These findings suggest that environmental history of short exposure to less favourable 

(pH and/or temperature) conditions is not significant enough to promote an adaptive or 

acclamatory response evident over the short duration of this study. Alternatively, the differences 

in environmental history may be too small to affect coral physiology. The results do potentially 

highlight the importance of the duration of prior exposure to less favourable conditions. 

Guadayold et al. (2014) highlight that short-diel exposures to sub-optimal conditions may not be 

long enough for acclimatisation or species to prolonged events of unfavourable conditions.  

These findings are in accordance with work from the Florida Reef Tract where habitats exposed 

to large highly-dynamic diel and seasonal fluctuations in pH experienced no reduced effect to 

elevated pCO2 conditions expected under OA (Okazaki et al., 2012).  Prior exposure to elevated 

temperature has been shown to enhance resilience to anomalous stressors, e.g. though changes in 

Symbiodinium clade (e.g. temperature, Baker et al., 2004; Keshavmurthy et al., 2013).  However, 

recent work in the Mediterranean highlights the need for prolonged exposure to unfavourable 

conditions for thermal adaption to potentially take place (Rodolfo-metalpa et al., 2014).  

 Another important point to consider is that A. palmata from the LV outer-reef site was 

able to maintain its calcification rates under current conditions experienced in the seagrass 

habitat. This is unsurprising as the seagrass had a high mean pH, however, it does indicate that A. 

palmata can tolerate large fluctuations in pH including extreme lows (< 7.8). It also demonstrates 

the importance of other factors (e.g. fecundity, available substrate) in determining the ability of 

corals to expand their niches into non-reef habitats (Sanford & Kelly, 2011).  
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5.4.3| The role of variability on the corals metabolic response 

There was very little difference in the mean coral metabolism between the HV and LV 

experimental treatments, independent of coral species. Interestingly however, the HV pH and pH 

and temperature treatments induced a response of denser coral calcification. The HV conditions 

resulted in periods of extended low pH (at night) and consequently low Ωarg. In abiogenically 

grown aragonite, low Ωarg has resulted in shorter and wider crystals compared to longer thinner 

crystals in elevated Ωarg (Cohen & Holcomb, 2009). Similarly, aragonite crystals of corals raised 

under low pH conditions were observed to have disordered, tightly packed bundles, with short, 

wide crystals (Cohen & Holcomb, 2009; Holcomb & Cohen, 2009) which would result in a 

higher skeletal density similar to what we observed within the HV treatment. Although the HV 

habitat under current conditions still has a large diel variability and low pH at night, it seems 

plausible that the duration of low pH under current conditions is not significant enough to induce 

changes in crystal formation as experienced under the experimental change of -0.3 pH units.  

An important consideration from this study is the influence daily pH and temperature 

oscillations have on the duration of time habitats spend under certain carbonate conditions, as 

this will ultimately shape whether habitats sustain calcification above dissolution thresholds on a 

net daily basis. For aragonite the saturation state is one; however, some experiments have 

documented dissolution occurring from 1.3 units (Yamamoto et al., 2012). For Mg-calcite, the 

saturation state (ΩMg-calc) has been experimentally measured at 3.0-3.2 units with carbonate 

sediment dissolving from 3.7-3.8 units (Yamamoto et al., 2012). If we consider the results of this 

study, both habitats had very similar mean Ωarg, however, their daily exposure to over-or-under 

saturated conditions was very different. During the daytime, CO2 removed by photosynthesis 

resulted in an increase in pH (and increase in Ω) and conversely at night CO2 from respiration 

led to a decrease in pH (and decrease in Ω) (Silverman et al., 2009). TA was controlled within 
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the experiment only drifting in accordance with calcification or dissolution over each 3 h 

incubation. Consequently diel cycles in saturation states occurred.  

Under current ambient seawater conditions we see that neither habitat experienced 

conditions over a diel-cycle close to the Ωarg. In the HV habitat there were periods of time at 

night when the G-D for carbonate sediments was low enough that dissolution could supersede 

calcification. The result of this is a potential offsetting of changes in low pH because it increases 

the seawater buffering ability by reducing the depletion of TA (Anthony et al., 2011b; Andersson 

et al., 2013). For example, studies that have considered the buffering role of dissolution have 

shown a 9 % and 11 % unit offset of pH and Ωarg respectively (Andersson et al., 2013). However 

in this study there were periods of time when the habitat saturation state was lower than the ΩMg-

calc which meant dissolution could occur for species utilising the more soluble polymorph of 

CaCO3, e.g. foraminifera and coralline algae (Yamamoto et al., 2012).  

Looking forward to 2100 however, a different story emerges based on the experimental 

treatments conducted. Under LV the whole system spent time under the carbonate sediment Ω 

and ΩMg-calc, but remained above the Ωarg. For the HV habitat, some time was spent above the 

ΩMg-calc; thus allowing net calcification to supersedes dissolution. However, during the nightime 

period, respiration increased the ambient pCO2 and created conditions that are in the range where 

aragonite dissolution has been documented to exceeding rates of calcification (Yamamoto et al., 

2012). From these results it becomes apparent that habitats have a very different response to 

future OA based on the duration of time they spend at given carbonate chemistry conditions. 

Also, whether dissolution of carbonate sediment (Anthony et al., 2011b; Andersson et al., 2013) 

or enhanced daytime productivity of photoautrotrophs (Manzello et al., 2012; Buapet et al., 
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2013; Hendriks et al., 2014) can off-set the influence of OA on inshore habitats remains to be 

seen.   

 

5.4.4| The relative influence of temperature and pH on the metabolic activity of corals  

Determining the relative influence of temperature and pH on coral metabolism has yielded a 

variety of experimental responses (SCBD, 2014). Within this study, reduced pH had a larger 

negative impact on photosynthesis and calcification rates than elevated temperature. An additive 

response was documented for pH and temperature stress on decreasing coral calcification. 

However, work on molluscs have documented a synergistic relationship on reducing calcification 

rates (Rodolfo-Metalpa et al., 2011) a trend also observed on massive and branching coral 

species (Anthony et al., 2008). In some instances an antagonistic impact has been seen, with 

temperature off-setting some of the negative impacts of OA (Byrne & Przeslawski, 2013).  

 Low pH in this study resulted in a net decrease in calcification as observed across 

numerous laboratory and field studies (see Kroeker et al., 2010, 2013). Elevated temperature 

stimulated photosynthesis (as per Reynaud et al., 2003); however, this elevation did not transpire 

into elevated calcification rates, with rates actually decreasing. Work by Anthony et al. (2008) 

found that at intermediate warming levels (equivalent to levels within this study) productivity 

increased for Acropora sp. but fell for Porites sp., with both having an overall decrease in 

calcification rates. The cause of decreased calcification despite elevated productivity is not fully 

understood but it is plausible that the thermal windows that govern metabolic processes (e.g. 

inorganic carbon acquisition) are breached, resulting in a negative response (Anthony et al., 

2008).  As previously discussed, upregulation of the internal calcifying fluid is energetically 
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costly and thus, corals that are unable to maintain photosynthesis due perhaps to a narrower 

thermal tolerance window are likely to experience a decrease in calcification rates.  
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5.5| Key findings 

5.5.1 Carbonate chemistry manipulation 

 The method employed was able to recreate a temperature increase (2.2 ± 0.03 °C) and pH 

decrease of 0.3 units (± 0.02) superimposed on the habitats natural diel cycles.  

 

5.5.2 Species metabolic responses to enhanced temperature and low pH  

 Calcification rates fell for both A. palmata and P. astreoides with calcification rates 

closely coupled with net photosynthesis rates.  

 For A. palmata OA induced bleaching (loss of zooxanthellae) corresponded with the loss 

in productivity; however, for P. astreoides the loss was associated with reduced 

efficiency of the zooxanthellae.   

 

5.5.3 Coral’s native habitat influence on their metabolic response  

 Prior exposure to low pH and/or elevated temperature did not provide any adaption or 

acclimatisation for P. astreoides over the duration of this study. 

 

5.5.4 The role of variability on the corals metabolic response 

 Ambient variability did not influence the overall net effect on corals, with decreased 

calcification and productivity observed across experimental treatments.  

 Oscillating conditions of habitats results in very different conditions experienced for the 

ambient corals which has the potential to influence species responses to future OA. 

 Exposure to HV treatments resulted in denser corals, independent of species. 

 

5.5.5 The relative influence of temperature and pH on the metabolic activity of corals  

 pH had a greater negative influence on calcification than temperature. 

 Temperature alone stimulated photosynthesis, but in combination with low pH reduced 

photosynthesis. 

 Respiration remained unchanged across treatments.  

 Elevated temperature and low pH had an additive response on reducing calcification. 
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Chapter 6| Discussion 

The thesis set out to explore non-reef habitats that house corals and experienced variability in 

carbonate chemistry to: (i) understand the levels of variability corals are already exposed to 

within these systems (Chapters 3 & 4), (ii) understand which corals are found living in these 

non-reef habitats (Chapters 3 & 4), (iii) know the metabolic cost for coral species found living in 

non-reef habitats (Chapters 3 & 4), and (iv) understand whether corals living in non-reef habitats 

experience the same metabolic cost as corals from a more stable reef environment when 

subjected to pH and temperature stress predicted under future climate change (Chapter 5). 

Fundamental to addressing any of these thesis aims was initially establishing the appropriate 

sampling methods to capture accurate and precise carbonate chemistry and coral metabolic 

activity data (Chapter 2).  Through addressing these aims, this chapter will explore the results 

from the thesis and assess whether the local chemistry of non-reef systems can act as a buffer 

against future ocean acidification (OA). The chapter will also consider the corals of non-reef 

habitats and what this means for the future of coral reefs. Finally the chapter will consider what 

upcoming OA research needs to cogitate.  

 

6.1| Characterisation of non-reef habitats 

Fundamental to research is obtaining accurate and precise data that allows characterisation of the 

system being assessed. Through work conducted in this thesis (see Chapter 2), a novel 

respirometery chamber: the “Flexi-Chamber” was created, which fills an existing knowledge gap 

by allowing in situ coral metabolic work to be conducted cost-effectively without the need for 

specimen removal. The testing and validation of the Flexi-Chamber compared to other 

respirometry vessels identified how variable chamber properties can be (e.g. light penetration). 
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Similarly, testing of the Flexi-Chamber identified the need for careful sensitivity analysis to 

determine the appropriate biomass-to-volume ratio and flushing time; a step often unreported and 

potentially unaccounted for in incubation studies (e.g. Okazaki et al., 2013). In the same way, 

few studies have provided appropriate testing and analysis of their vessels making it hard for the 

scientific community to interpret differences between experimental results (e.g. Levy et al., 

2004; Anthony et al., 2008; Comeau et al., 2014). Within OA studies, experimental results have 

been highly variable, even for the same species, making it more important to have a full analysis 

conducted and reported of the experimental set-up.  

In attempting to deconvolve the ability for non-reef systems to buffer OA the full suite of 

carbonate chemistry parameters needs to be known over both short- (i.e. diel) and long- (i.e. 

seasonal) term cycles. Whilst several studies have provided information on the latter by installing 

long-term instrumentation (e.g. the SeaFET, Price et al., 2012; Comeau et al., 2014) and 

conducting regular (weekly or monthly) discrete water samples for TA (e.g. Manzello et al., 

2012; Price et al., 2012; Yates et al., 2014), no known studies have considered the short-term 

diel variability of all carbonate chemistry parameters, rather than just one (e.g. pH or pCO2).  As 

demonstrated in Chapter 3, non-reef habitats can spend more than 5 % of their daily time at a pH 

below 7.9, with Chapter 5 highlighting the differences in daily Ω of non-reef habitats. 

Consequently on a daily basis, corals can experience periods when calcification is energetically 

favourable, or costly. Arguably, it is this proportion of daily time that  will determine how corals 

respond to future environmental change and is dependent on the diel variability of the system, 

which can only be characterised by high-resolution sampling of more than one carbonate 

chemistry parameter as the Ω ultimately need to be determined. Although it is noted that 24 h 

water sampling schedules require a large effort (time and manpower), results from this thesis 



 Chapter 6  

223 
 

demonstrate the value of the data obtained and highlight the importance of accurately 

determining the natural carbonate chemistry variability at high-resolution (see Chapters 2-5).  

 

6.2| Seagrass and mangrove non-reef habitats 

Arguments have been put forward that OA is only an open-ocean syndrome and cannot be 

transposed onto coastal ecosystems, due to the large fluctuations in pCO2 they inherently 

experience as a result of metabolic, physiochemical and local hydrography conditions (e.g. 

Durate et al., 2013). Results from this thesis support the view that the impacts of OA on coastal 

ecosystems must be considered separately to those on the open-ocean. Non-reef habitats adjacent 

to coral reefs have highly dynamic carbonate chemistry conditions. From the abiotic variables 

measured within this thesis, differences in carbonate chemistry appear to be the dominant driver 

in structuring coral biomass and growth between the non-reef habitats examined (see Chapters 3 

& 4). Corals were found persisting within non-reef habitats across bioregion sites despite the 

innate variability of these systems, as demonstrated in Chapters 3 and 4, and by Yates et al., 

2014. The heterogeneity of non-reef habitats relative to the outer-reef created an inshore-to-

offshore gradient (see Chapters 3, 4 & Manzello et al., 2012). The magnitude of this gradient 

appears to be seasonal, influenced by the rainfall, temperature, light and salinity differences 

between wet and dry seasons (see Chapter 3 & Manzello et al., 2012; Hendriks et al., 2014). The 

direction of this gradient, i.e. whether pH is elevated or lowered relative to the open-ocean 

appears to be dependent on the habitat type.   

The ability of seagrass habitats to elevate local seawater mean pH from the ambient 

background control has been well documented across regional locations (e.g. Schmalz and 

Swanson, 1969; Invers et al., 1997; Semesi et al., 2009a; Hofmann et al., 2010; Manzello et al., 
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2012; Hendriks et al., 2014), supporting the hypothesis that seagrass habitats play a buffering 

role for resident corals (Hofmann et al., 2011; Manzello et al., 2012; Hendriks et al., 2014). A 

model formed from records of seagrass metabolism in the Indo-Pacific estimated that seagrass 

metabolism could enhance coral calcification downstream by 18 % (Unsworth et al., 2012).  

However, none of these prior studies have actually explored the metabolic activity of resident 

coral species in non-reef habitats. It is essential to know the metabolic cost for corals to persist in 

these environments, in order to ascertain if they can provide a buffering service for resident coral 

species that results in maintained and/or enhanced calcification. For example, if seagrass habitats 

do elevate local seawater pH, but other ambient conditions make it difficult for coral 

calcification (e.g. light, nutrient availability, temperature), any local buffering benefits would be 

dampened or restricted to downstream environments where other conditions maybe more 

favourable. However, downstream buffering has a greater risk of being lost due to the dilution by 

ocean currents; consequently it is important to study resident corals of non-reef habitats, which 

to-date have largely been understudied.    

Within this thesis, seagrass habitats (and the back-reef habitat) experienced an overall 

elevation in mean pH relative to the adjacent outer-reef, but with periods of high and low pH, 

which resulted in some native corals sustaining calcification and some experiencing a reduction 

relative to the outer-reef controls (17.0 ± 6.1 %, see Chapters 3 & 4).  Previous studies have 

demonstrated that under oscillating CO2 rather than continuously elevated CO2 both coral 

recruits (Dufault et al., 2012) and adult corals (Acropora hyacinthus) had elevated growth rates 

(Comeau et al., 2014), demonstrating the importance of variability in influencing coral 

calcification. Biologically-mediated elevation of mean pH and consequently Ωarg recorded in this 

thesis supports the potential of seagrass habitats to act as refugia from OA (Semesi et al., 2009a, 
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b; Kleypas et al., 2011; Anthony et al., 2011a; Manzello et al., 2012). The low pH (around 7.8 

pH units) for seagrass habitats at night resulted in chemical conditions where carbonate-sediment 

dissolution could occur (Yamamoto et al., 2012). The dissolution of carbonate-sediment that was 

found to be abundant in the seagrass habitat increases local TA and pH creating a self-buffered 

system (see Chapter 3, Andersson et al., 2013).  

In contrast, mangrove habitats were found to lower local mean pH and Ωarg relative to the 

outer-reef, suggesting that they are unlikely to buffer the impacts of OA. Supporting this 

conclusion is the metabolic impairment of resident corals that resulted in large decreases in 

calcification rates relative to the outer-reef (70.0 ± 7.3 %, see Chapter 4). More suitable 

descriptions of the services they are providing include: (i) pre-conditioning of local corals to 

future seawater conditions and/or, (ii) naturally selecting for corals that can tolerate low pH. In 

both cases mangrove systems seem likely to support an important genetic store of tolerant corals. 

The role of mangrove habitats in pre-conditioning corals to a low pH environment expands on 

other ecological services they may provide as put forward by Yates et al. (2014) through 

elevating downstream TA as a result of carbonate-sediment dissolution (i.e. buffering potential 

similar to seagrass habitats). Within the mangrove systems studied in this thesis, the 

environmental conditions that would drive carbonate-dissolution and consequently elevate TA 

downstream were relatively rare (< 3 hours per day), suggesting that pre-conditioning corals to 

low pH, or natural selection of tolerant corals to future OA, offers a more appropriate description 

of the services mangroves can provide. 

 Fundamental to the services described for non-reef habitats is the heterogeneity in their 

physiochemical environment which ensures their conditions remain out of balance with the open-

ocean. Within this thesis, the variability in carbonate chemistry conditions of seagrass habitats 
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appears to be tightly coupled with the local cover of photoautotrophs (see Chapter 3 & 4). Other 

studies have concluded similar findings through in situ experimentation (Manzello et al., 2012; 

Shaw et al., 2013; Hendriks et al., 2014), modelling (Unsworth et al., 2012) and laboratory 

analysis (Semesi et al., 2009b; Anthony et al., 2011b). It is important to note however, that it is 

still debated within the scientific community whether top-down (i.e. photoautotrophs adjust the 

local carbonate chemistry) or bottom-up (i.e. chemical-physio differences promote 

photoautotroph communities which in turn influence the local conditions) drivers result in the 

heterogeneity of non-reef habitats. Results from this thesis suggest that seagrass habitats are 

under more internal control (top-down) than mangrove habitats, however, whether this balance 

shifts with changing external forces remains to be seen. Either way the large cover of 

photoautotrophs, such as seagrasses, utilise CO2 in photosynthesis during daylight hours, 

removing CO2 from seawater and consequently elevating pH and Ωarg (Anthony et al., 2011b; 

Buapet et al., 2013). Peaks of elevated pH corresponded with the time of day and average PAR 

further supporting the hypothesis that local phototrophic activity is the primary influence on 

seawater carbonate chemistry of seagrass habitats during daylight hours (see Chapter 3).  At 

night, respiration draws down the local seawater pH in the absence of photosynthesis (Hendriks 

et al., 2014). The nightly draw-down of pH helps to create the characteristic diel swings in 

carbonate chemistry experienced in the seagrass habitats. TA in seagrass habitats was generally 

lower than the open-ocean demonstrating that calcification is occurring, however, the high cover 

of non-calcifying organisms resulted in seagrass habitats dominated by photosynthesis (CO2 

uptake) and respiration (CO2 release) as demonstrated in all nAT-nCT plots (see Chater 3 & 4 and 

Manzello et al., 2012; Hendriks et al., 2014; Yates et al., 2014).  
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 Mangrove habitats within this study had carbonate chemistry conditions in part 

influenced by the local benthic composition, but they also appeared to be largely affected by 

other biological processes such as decomposition (Lugo, 1974; Lovelock & Ellison 2007; 

Bouillion et al., 2008; Kristensen et al., 2008). The mangrove habitats demonstrated a similar 

daily trend in pH as observed in seagrass habitats (i.e. a relative elevation in pH during daylight 

hours with a reduction at night, see Chapter 4), however, the magnitude of this variability was 

greatly reduced. The reduction in variability can be accounted for by the reduction in benthic 

photoautotrophs (of 80.5 %). However, the large overall decrease in mean pH of mangrove 

habitats is still unaccounted for. It seems likely that a combination of: (i) microbial respiration 

processes (Kristensen et al., 2008; de Souza Rezende et al., 2013), (ii) mineralisation of organic 

matter (Hyde & Lee, 1997; Bouillion et al., 2008), and (iii) mangrove respiration which is 

dominant in the root network (Lovelock et al., 2006; Huxham et al., 2010), drive down local 

mean pH by the release of CO2 into the water column (Shafer & Roberts, 2007). In addition, 

mangrove soils contain prokaryotes that conduct anaerobic respiration within the anoxic 

sediment. In some cases, mangrove soils that are high in pyrite can become oxidised, creating 

iron oxide and sulfate. The sulfate can react with water to produce sulphuric acid (Kristensen et 

al., 2008). Collectively these processes can influence the local pH and DIC. Mangroves have 

long been reported to impact heavily upon the local carbon balance of tropical coastal 

ecosystems (Borges et al., 2005); however, their exact contribution is still debated due to 

difficulties in tracing carbon within this system (Bouillion et al., 2008).  

 It remains unclear how changes in climate will influence coastal ecosystems due to the 

multitude of drivers and their complex interactions that exists (Durate et al., 2013). For example, 

relationships between species cannot easily be predicted or understood where they act 
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predominantly in a non-additive manor, due to synergistic or antagonistic relationships that can 

vary between response level (e.g. community versus population), or trophic guild (e.g. 

autotrophs versus heterotrophs) (Crain et al., 2008). Fundamental to the climate service 

previsions described for seagrass and mangrove habitats is the maintenance of heterogeneity and 

non-equilibrium with the open-ocean. Although it is hard to predict how these complex 

ecosystems will respond, evaluation of current literature can provide some insight into the 

possible effects of climate change on seagrass and mangrove habitats and their connected 

ecosystems.  

 Seagrass habitats are currently under threat from coastal degradation (Durate et al., 2002; 

Boudouresque et al., 2009), with seagrass habitats being lost worldwide (Waycott et al., 2009). 

Shoot densities that are fundamental to the productivity of seagrasses have also been reported to 

be decreasing in the Mediterranean (Marbà & Duarte, 2010). Increased storm activity predicted 

under future climate change may increase destruction of coastal systems (Short & Neckles, 

1999). Any degradation of seagrass habitats reduces their ability to buffer marine calcifiers 

because the modification of seawater pH is directly linked to the abundance of seagrass habitats 

(Hendriks et al., 2014).  

Changes in DIC are also predicted to directly influence marine plants (Short & Neckles 

1999) due to the increased availability of CO2 and HCO3
-
 that can be utilised for photosynthesis 

(Koch, 1994; Beer & Koch, 1996; Buapet et al., 2013). Seagrasses are carbon limited (Hendriks 

et al., 2014), and therefore the increase in CO2 could enhance photosynthetic rates (Durako, 

1993) and increase the growth and biomass of seagrass beds (Zimmerman et al., 1997). Studies 

that have explored naturally high CO2 locations have provided compelling evidence that 

seagrasses will flourish (Hall-Spencer et al., 2008; Fabricius et al., 2011; Durate et al., 2013), 
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sustaining their ability to modulate pH (Durate et al., 2013). Associations with other climate 

stressors however, could reduce photosynthetic rates despite the increased abundance of DIC. 

For example, elevated temperature has been documented to adversely affect the photosynthesis-

to-respiration ratio of the seagrass species Zostera marina L (Marsh et al., 1986). Increasing 

levels of UVB can also damage plant tissue (Short & Neckles, 1999). However, again the ability 

to predict habitat responses to environmental change are complicated as sea-level rise will result 

in deeper water, reducing the risk of UVB damage but also reducing the light availability needed 

for photosynthesis (Short & Neckles, 1999). It becomes apparent that the multitude of factors 

interacting to influence seagrass ecosystems make it hard to predict how they will ultimately 

respond to future environmental change (Hendriks et al., 2014). However, at the habitat level it 

seems likely that seagrasses will flourish given the increased availability of CO2. It will then 

depend on the preservation of these habitats, and the availability of shallow inshore land for them 

to recruit to as sea-level changes, to ensure their ecosystem function and services.  

 Mangrove habitats are threatened by similar stressors that affect seagrass habitats 

including: habitat destruction (Feller et al., 2010), physical disturbance (Valiela et al., 2001), 

protein damage from elevated UVB levels (Lovelock & Ellison, 2007) and adverse effects on 

photosynthesis rates as species temperature thresholds are exceeded (Lovelock & Ellison, 2007). 

Temperature increases associated with climate change will also increase respiration rates of both 

mangroves and associated microbial communities. The predicted average increase in temperature 

of 2 ºC over the next century is estimated to increase plant and soil respiration by ca. 20 %, 

shifting photosynthesis-to-respiration ratios and influencing local DIC levels (Lovelock & 

Ellison, 2007). Importantly, temperature changes are predicted to be different across bioregions, 

with areas of the western pacific predicted to experience temperature increases up to 4 °C under 
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business-as-usual IPCC scenarios (IPCC, 2015). Consequently, regional differences will likely 

occur, whereby the stressors discussed will be enhanced within these hotter locations and non-

reef habitats may have to alter their geographic distribution to survive.   

Mangrove distribution could be impacted because they have water-dispersed propagules 

that may be influenced by changes in ocean currents (Lovelock & Ellison, 2007). The ability of 

mangroves to alter their geographic dispersal could be beneficial if it allows them to establish in 

more favourable environments, e.g. cooler regional locations. Mangrove habitats are also under 

threat from rising sea level because they may not be able to maintain their peat production 

enough to keep their leaves above water (Feller et al., 2010; Huxham et al., 2010). Although 

mangroves could potentially shift landwards, increasing urbanisation of coastal areas is limiting 

this option for many mangrove systems. Enzyme activity of mangrove microbial communities 

could also be affected by changes in pH, with Yamada and Suzumura (2010) reporting a 

decrease in the activity of some hydrolytic enzymes important in organic matter degradation. 

Reduced enzyme efficiency will influence carbon cycling and the control of local DIC levels. 

Like seagrass beds, mangroves may experience enhanced rates of photosynthesis under elevated 

CO2 levels. However, the complexity of bio-geophysical conditions of mangrove habitats, 

combined with the lack of long-term studies investigating stressors on mangrove systems, make 

it hard to determine how this non-reef habitat will respond to future climate change. It seems 

plausible that mangrove systems will maintain their services as long as they have the capacity to 

shift their distribution in accordance with rising sea-levels and elevating temperatures. As with 

seagrasses, mangrove habitats need to be protected via regional management to help maintain 

their ecosystem services (Lovelock & Ellison, 2007; Feller et al., 2010).  
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 An important consideration of non-reef habitats and coral reefs is that they are inter-

connected systems with each other. Consequently, they should not be considered in isolation 

when evaluating their ability to sustain their ecosystem function and services under future 

climate change. Several studies have explored the importance of inter-connectivity of habitats 

across the whole reef continuum for fish ontogenetic shifts, e.g. from mangroves, to seagrasses 

and then to the main reef (e.g. Sheaves, 2005; Dorenbosch et al., 2007; Unsworth et al., 2008). 

However, the connectivity of all of these habitats in terms of carbonate chemistry has largely 

been unexplored. Seagrasses have been proposed to buffer downstream coral reef systems (e.g. 

Anthony et al., 2013); a clear example of their inter-connected relationship. However, how 

mangrove and seagrass habitats interact has received minimal-to-no attention. Seagrass habitats 

are typically found on the seaward side of mangroves, so it is possible that the low pH of 

mangrove habitats (and elevated pCO2 and H
+
) can actually enhance the productivity of seagrass 

habitats by stimulating photosynthesis. In turn, this may increase the buffering effect seagrasses 

can provide to resident corals and downstream coral reefs. Coral reefs are dominated by 

calcification which results in the by-product of CO2 which may also feedback onto local seagrass 

habitats, stimulating photosynthesis during daylight hours. It is also possible that dead seagrass 

can wash inshore during incoming tides (Bouillion et al., 2008), providing a source or organic 

matter for decomposition within the mangroves, which in turn facilitates the cycle of lowering 

local seawater pH within mangrove habitats. The described interactions are dependent on tidal 

cycles, residency time and time-of-day. Although untested it seems highly logical that inter-

connected biogeochemical services exist in terms of carbonate chemistry across a reef continuum 

and is an area for further research (Figure 6.1).  
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Figure 6.1| A simple example of how mangrove, seagrass and coral reef carbonate 

chemistry maybe connected. Mangrove habitats could supply CO2 and H
+
 to seagrass habitats, 

which can utilise this additional CO2 during photosynthesis to raise local pH, [𝐶𝑂3
2−]and 

aragonite saturation (Ωarg) downstream on coral reefs. Coral reefs may provide CO2 and H
+
 back 

to the seagrass as a by-product of calcification: this process is indicated as a dashed line as there 

is currently no evidence for this, indicating the need for further research. Dead seagrass materials 

can wash inshore and supply organic matter to mangroves where decomposition is prevalent, 

releasing CO2 and contributing to the characteristic low pH of the mangrove system. Local 

mangrove organic material can also be used in decomposition. CO2 is also being supplied to all 

habitats from the atmosphere.  

 

 

6.3| Corals of non-reef habitats 

Results from this thesis significantly expand upon recent localised reports that a relatively large 

range of coral species can survive in highly variable non-reef habitats (see Chapter 3, 4 and 

Yates et al., 2014). The ability for corals to survive within these habitats demonstrates that they 

are either buffered (e.g. in seagrass habitats) or adapted and/or acclimatised to low pH conditions 

(e.g. in mangrove habitats). It is also possible that non-reef habitats naturally select for coral 

species that are able to tolerate their conditions. For example, the corals found in mangrove 

habitats may be the species that have an innate physiological plasticity to survive low pH 
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conditions due to their genotype. Consequently, investigating the coral populations found in 

marginal non-reef habitats, that already experience conditions predicted under future climate 

change, may provide evidence of what future coral communities will look like.  

The non-reef habitats investigated in this thesis contained a range of coral species that 

were not restricted to encrusting or massive forms (Fabricius et al., 2011; Yates et al., 2014) but 

also included architecturally complex genera (e.g. Acropora and Pocillipora, see Chapter 3 & 4). 

The corals documented in non-reef habitats had different life-history strategies, for example, 

corals fell into three of the four life history categories established by Darling et al. (2012) 

(Competitive, Weedy and Stress-tolerant). Differences in life history strategies may influence the 

abilities for coral species to survive (Sheppard et al., 2010). Interestingly, about one third of 

corals in both the seagrass and mangrove habitats fell into the competitive life-history category 

of Darling et al. (2012), which would suggest that they are only dominant in ideal communities. 

Work from this thesis expands our knowledge on what conditions corals can persist under, and 

demonstrates that generalised classification of species tolerance cannot always predict the ability 

of corals to expand into highly-variable, often sub-optimal non-reef habitats.   

Persistence of corals in the non-reef habitats demonstrates that either: (i) these corals 

have a larger fundamental niche than initially accounted for or, (ii) these coral species have 

expanded their fundamental niche into less optimal environments, compared to the realised niche 

of most corals that are determined due to biological pressures (e.g. competition). Quantifying the 

accurate scale of coral species fundamental niches is important in determining changes in species 

distribution and the potential threats they may face under changing environmental conditions 

(Wright et al., 2006). The magnitude of climate change threats will be unequal around the world, 

with sea surface temperature elevating most around the equator, whilst OA impacts will be 
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predominant around the poles (Meissner et al., 2012). Consequently it remains unclear how the 

geographic distribution of coral populations will be affected, because these two climate stressors 

are acting antagonistically on geographic dispersion (Meissner et al., 2012; Yara et al., 2012). 

Corals that have a larger fundamental niche may therefore have a greater chance of surviving 

changes in environmental conditions as they can survive across a broader range of habitats, thus 

reducing the risk of extinction if one habitat becomes uninhabitable under climate change.  

Within this thesis the total number of coral species recorded in non-reef habitats was 

similar across regions, but these total values represented very different proportions of the overall 

numbers of coral species found within each bioregion location (see Chapter 4). Corals found in 

the non-reef habitats of the Indian and Pacific Ocean sites only represented 1-2 % of coral 

species found in the Indo-Pacific (7- 14 species of over 700). Conversely, corals in the Atlantic 

Ocean non-reef habitat sites represented 20-30 % of the total number of coral species currently 

documented in the Atlantic region (8-15 of up to 40 species, see Chapter 4). Differences between 

bioregions is an important observation as it raises questions over the ability of coral reefs in the 

Indo-Pacific to sustain their characteristic of high-biodiversity over times of wide-spread 

environmental change. Conversely, for the Atlantic region it is promising that a wide range of 

coral species were found in the non-reef habitats, as there is less functional redundancy in this 

low-biodiversity region. Consequently, any missing species could represent a whole functional 

group (Bellwood et al., 2004). For example, Acropora palmata is the only tall tabular coral in the 

Caribbean so its absence from a habitat would mean that a whole functional group was not 

represented. Whether the high proportion of total species of the Atlantic Ocean site that are 

found within non-reef habitats reflects the bioregions overall reduced species pool, past 

environmental histories, present-day ecological and/or environmental pressures, or is a feature of 
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regionally-specific evolutionary relationships remains unclear. Understanding which 

mechanisms are responsible for the regional differences is important as it will inform whether 

adaptive or acclamatory forces are responsible for corals to persist in these non-reef habitats, and 

ultimately, what time-scales are necessary for these mechanisms to come into effect, which in 

turn influences potential management strategies.   

Importantly, the absence of a coral species from a non-reef habitat could be indicative of 

their tolerance to the local carbonate chemistry conditions, however, it is also likely to be the 

result of other biotic or abiotic conditions, e.g. fecundity or recruitment ability (Sanford & Kelly, 

2011). Complex interactions between abiotic factors and the stage of a corals life-cycle may also 

be responsible, for example, studies have documented increased sensitivity of coral recruits and 

early life stages to low pH (Morita et al., 2009; Albright et al., 2010; Albright & Langdon, 

2011). In this thesis, A. palmata was not found in the Atlantic Ocean seagrass habitat site and 

was also not found to settle as new recruits into this habitat (see Chapter 3). However, under 

experimental conditions, adult A. palmata was found to maintain productivity and calcification 

rates under carbonate chemistry and temperature conditions currently experienced in the seagrass 

habitat (see Chapter 5). Consequently, we see the complexities that exist in evaluating why 

certain corals are not located in non-reef habitats, as it is likely for A. palmata that supply side 

ecology limited recruitment (Sanford & Kelly, 2011), however it is also possible that the highly 

variable pH was unfavourable for recruitment (Albright & Langdon, 2011). Ultimately, if a 

species is absence from a non-reef system then it cannot experience the potential climatic 

services of that habitat. It is possible however, that coral species could be transplanted and raised 

within non-reef habitats, e.g. mangroves, if regular exposure to low pH does indeed result in 

adaption to these conditions.  
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6.3.1| Adaption and/or acclimatisation of corals  

To-date few OA studies have investigated the ability of species to acclimatise and/or adapt to 

low pH environments (see however, Sunday et al., 2011; Lohbeck et al., 2012; Foo et al., 2012). 

It has generally been thought that species have little chance of adapting to low pH as few natural 

gradients were thought to exist (Kelly & Hofmann, 2012). However, as demonstrated in this 

thesis, natural pH gradients exist at sites across bioregions where daily pH variations already 

exceeds mean global levels predicted over the next 60 years.  Investigating these natural 

gradients to test for adaption and acclimation is a research priority and a clear area for 

progressive work from this thesis.  

Initial exploration of phylogenetic trees revealed that the coral species present in non-reef 

habitats of this study were taxonomically diverse, occurring in both of the two major 

mitochondrially derived coral clades: (i) “robust” corals that typically consist of solid, heavy 

calcified skeletons, and (ii) “complex” corals that are less heavily calcified (Romano & Palumbi, 

1996; Kitahara et al., 2010). It is believed that these two clades diverged from each other early in 

the history of the Scleractinian group (Romano & Cairns, 2000) and consequently corals in these 

two clades have been exposed to alike past evolutionary conditions. Therefore, acclimation 

and/or genetic adaptation to local environmental conditions over more recent time scales likely 

explain why some coral species are able to colonise and survive in non-reef habitats (Kelly & 

Hofmann, 2012). Paleoecology analysis of coral reefs around Papua New Guinea also suggested 

that local environmental conditions are most influential in shaping coral communities (Pandolfi, 

1996). Further exploration is needed of coral phylogenetic trees to fully deconvolved the role of 

past evolutionary history on coral recruitment into non-reef habitats, however, it appears that 
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local environmental conditions are key in driving adaption. The low mean pH of mangrove 

habitats and the high variability of pH in the seagrass habitats consequently provide 

environmental conditions that may drive adaption in resident corals. Non-reef habitats have the 

potential to give their resident corals a “head-start” to adapting to future climate change 

conditions due to the low and variable pH they already experience.  

Increasingly we understand that adaption can occur over relatively short time frames 

(Carroll et al., 2007), with epigenetic changes potentially imprinting past environmental history 

into a species DNA that has the potential to be passed onto future generations, speeding up rates 

of adaption (Chinnusarry et al., 2009; Klironomos et al., 2012). Importantly, short-term 

phenotypic plasticity can also help coral populations persist in environments long enough for 

genetic adaption to occur (Munday et al., 2013). Phenotypic plasticity has already been 

documented to allow corals to persist across environmental gradients (Bongaerts et al., 2011).  

Acclimation to low pH has been documented for the coccolithophore algae Emiliania huxleys 

(Lohbeck et al., 2012) as well as the cold water coral Lophelia pertusa (Form & Riebesell, 

2012).  However, Okazaki et al. (2013) reports that stress tolerant corals of Florida Bay were 

equally sensitive to future OA, despite frequent exposure to pCO2 and temperature variability. In 

this case it appears that a species may have a maximum acclamatory ability that is not influenced 

by its environmental history. Results from this study support the notion that corals may have a 

maximum acclamatory ability, with P. astresoides exposed to life-long pH variability showing 

no enhanced tolerance to extreme low pH (7.6-7.7, see Chapter 5). Further research is needed to 

explore the maximum acclamatory potential of corals.  

For tropical coral species to acclimatise, both the host and Symbiodinium must utilise 

available resources (Hennige et al., 2010). Within this thesis, the non-destructive protocol of the 
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Flexi-Chamber meant that Symbiodinium analysis was not possible. Different clades of 

Symbiodinium have shown enhanced tolerance to temperature stress (e.g. Baker et al., 2004). 

Although this is another understudied area in OA research,  a study on free-living cells have 

shown a large shift in their Symbiodinium clades to elevated CO2 (Brading et al., 2011), thus 

suggesting that the clade of Symbiodinium will likely affect how corals respond to future OA. 

The high energetic demand of calcification under low pH means that corals will rely even more 

on the energy produced by their Symbiodinium, supporting the hypothesis that corals capable of 

upregulating or changing their Symbiodinium clade under environmental stress (e.g. Baker et al., 

2004 with temperature), will be better able to acclimatise and/or adapt to changes in ocean pH.  

The coral host its-self may also be able to assist with adaption (Kelly & Hofmann, 2012). For 

example, the host can regulate protective compounds (e.g. Baird et al., 2009) which could shield 

photosynthetic organelles helping to maintain rates of photosynthesis which are known to be 

tightly coupled with rates of calcification. Clearly the ability for corals to acclimatise and/or 

adapt to low pH conditions is dependent on the holobiont (i.e. genetic content from both the host 

and microbial communities) and the rate of environmental change. 

 

6.3.2| Coral physiological responses – Results from this thesis corroborate the growing 

consensus that species-specific responses exist for corals to changes in pH (see Chapter 4, 

Kroeker et al., 2013). A large range of physiological responses have been documented for corals 

exposed to low and more variable pH (Ries et al., 2009), which can be explained by: (i) the 

ability of coral species to modify H
+
 concentrations within the calicoblastic fluid (McCulloch et 

al., 2012; Jokiel et al., 2013), (ii) the potential for species to utilise HCO3
-
 as well as  𝐶𝑂3

2− for 

calcification (Comeau et al., 2012), and (iii) the response of additional and multiple interactive 
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stressors interacting with the pH effect (e.g. pH & temperature, Anthony et al., 2008). 

Physiological differences measured both in the laboratory (Chapter 5) and field (Chapter 4), 

between massive Porites and branching Acropora, to changing pH suggest that a corals ability to 

sustain calcification is tightly coupled to their ability to maintain photosynthesis. Previous 

studies have also demonstrated a close coupling of calcification and photosynthesis (Gatusso et 

al., 1999; Langdon & Atkinson, 2005), although their exact relationship remains unresolved 

(Allemand et al., 2011).  

 The Ca
2+

-ATPase pump that supplies Ca
2+ 

to the calicoblastic fluid and removed H
+ 

(Al-Horani et al., 2003; McCulloch et al., 2012) has advanced our understanding of how the two 

processes may interact.  During daylight, the combined activity of metabolic respiration and 

photosynthesis result in an active carbon cycle that produces ATP. Elevation of ATP during light 

enhances processes that require ATP, such as calcification (Al-Horani et al., 2003). 

Photosynthesis and calcification may also be related by the direct modification of internal DIC 

(Schneider & Erez, 2006), with photosynthesis removing CO2 and consequently raising 

intracellular pH and Ω towards more favourable conditions for calcification (Allemand et al., 

1998). Alternatively, calcification could stimulate photosynthesis by supplying CO2 via the by-

product of CaCO3 formation, thus ensuring that CO2 levels are not depleted for photosynthesis 

(McConnaughey et al., 2000).   

 The coupled relationship between photosynthesis and calcification observed within this 

thesis demonstrates that future susceptibilities of corals to changes in pH will largely depend on 

their abilities to sustain photosynthesis. Consequently, stressors that influence photosynthesis 

will greatly impact a corals response to changes in pH. Temperature, as demonstrated in the 

laboratory study (see Chapter 5) impacts photosynthesis and calcification rates. Interestingly 
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however, under the elevated temperature treatment, the relationship between photosynthesis and 

calcification was uncoupled, with no increase in calcification documented despite the rise in 

temperature. These results are broadly consistent with the experimental work of Anthony et al. 

(2008) on Acropora and Porites spp. exposed to future IPCC IV and VI scenarios. Again, the 

exact, mechanism for the uncoupling of photosynthesis and calcification is not clear, however, it 

seems likely that the thermal windows that govern metabolic processes (e.g. inorganic carbon 

acquisition) are breached, resulting in a negative response (Anthony et al., 2008).  Thermal 

tolerance windows are species-specific (Coles & Jokiel, 1978) and would explain why some 

studies have observed an increase in calcification with increased temperature (e.g. Reynaud et 

al., 2003), whilst other have observed no change at all (e.g. Langdon & Atkinson, 2005). In 

addition, the Symbiodinium associated with corals can have different thermal tolerances 

(Keshavmurthy et al., 2013) that would affect the susceptibility of the coral to increasing 

temperature.   

 Other abiotic variables will undoubtedly interact to determine how corals will respond 

to low pH and ultimately meet their daily metabolic needs. Within this thesis, rates of respiration 

were found to remain relatively stable despite the reduction in photosynthesis. It is possible that 

heterotrophic energy acquisition was upregulated to maintain the basal energetic demands lost 

from photosynthesis. Grottoli et al. (2006) reported that some coral species were able to increase 

heterotrophy after a bleaching event to maintain the corals basal metabolic needs.  Heterotrophy 

has also been documented to offset the negative impacts of high pCO2 on Porites spp. over a one 

month period (Edmunds 2011), with biomass-normalised rates of calcification actually 

increasing. An increase in light availability has also been shown to enhance calcification (e.g. 

Marubini et al., 2001; Suggett et al., 2013). The multitude of variables that influence corals make 
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it is hard to predict how coral species will ultimately respond to future changes in seawater pH. 

However, results from this thesis, combined with recent literature (McCulloch et al., 2012) 

suggest that maintenance of calcification under lower pH is an energetically costly process. 

Consequently, coral species will have to redistribute energy supplies to account for the additional 

energy to calcify under low pH. Corals will therefore be unable to distribute the same energy 

resources to other important biological processes (Cohen & Holcomb, 2009). The difference 

between species to tolerate environmental change will affect their own survival but will also 

affect the overall structure of coral reefs.  

 

6.4| The future of coral reef ecosystems  

The different susceptibility of corals to environmental change will likely impact the structure and 

biodiversity of coral reefs. Within this thesis, branching species appeared to be the most 

vulnerable to changes in pH, a phenomenon also predicted by McCulloch et al. (2012). 

Branching corals form the 3D architecture of coral reefs, providing habitat complexity utilised by 

reef fish and invertebrates (Bellwood et al., 2004; Sheppard et al., 2010). A loss of reef 

complexity could have dire consequences for many reef organisms, threatening reef biodiversity, 

ecosystem functioning and service provision (Alvarez-Filip et al., 2009). Reef structure could 

also be influenced by changes in growth form under lower pH. The laboratory study (see Chapter 

5) found higher coral density under the highly variable, low pH treatments. If corals are able to 

maintain calcification at low pH the crystal structure could be altered to shorter, less organised, 

and denser formations (Cohen & Holcomb, 2009), potentially resulting in smaller corals which 

would again alter the composition of coral reefs.  
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 Changes in reef calcification under low pH are accompanied by the potential increase in 

the efficiency of marine plants to photosynthesise. The increased efficiency of marine plants can 

be beneficial in helping to regulate and buffer the local chemical conditions (Manzello et al., 

2012; Hendriks et al., 2014). However, there is also the risk of a phase-shift occurring from a 

coral-dominated to an algal-dominated reef system (Hughes, 1994; Pandolfi et al., 2005). Corals 

generally have slow growth rates and under lower pH it is likely that growth rates will fall even 

more (De’arth et al., 2009). Conversely, marine plants have relatively fast growth which could 

be enhanced under increased photosynthetic activity from elevated CO2 levels (Zimmerman et 

al., 1997). Similarly, other reef organisms may thrive, e.g.  non-calcifying anthozoan (Suggett et 

al., 2012), macro algae (Fabricious et al., 2011) and sponges (Bell et al., 2013) which corals will 

have to compete against for space and other resources. Competitive interactions between species 

and taxa under OA conditions will be central in determining the composition of future reefs.  

 Successful survival of corals on the main reef, as well as in non-reef habitats will depend 

on their colonisation ability, both in terms of growth and recruitment (Hennige et al., 2010). 

Currently, it is unclear whether the corals found in the non-reef habitats of this study are self-

recruiting. All colonies were typically small (see Chapter 3 & 4), however, due to their altered 

growth within these habitats it cannot be assumed that they are not reproductively active (see 

Chapter 5). Further population genetics is necessary to determine the source of corals within 

non-reef habitats because this will ultimately dictate the climate services they can provide. If 

corals in the non-reef habitats originate from the main reef, then the buffering and/or pre-

conditioning services they can provide are dependent on coral populations being sustained on the 

main reef. Conversely, if non-reef habitats are self-recruiting, then under changing 

environmental conditions they may be able to populate surrounding reef environments, 
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potentially with more resistant coral species that have adapted to tolerate a greater range of 

environmental conditions. Importantly, under OA calcification will become more energetically 

costly (Cohen & Holcomb, 2009), which will likely reduce the energy available for other 

important processes such as reproduction. Consequently, maintaining viable coral populations is 

antagonised by the challenge of meeting the additional energetic costs of maintaining basic 

physiological processes under OA.  

Another important consideration for the future of coral reefs is how the abiotic structure 

of the reef will respond to changing pH. This thesis has focused on the ability of corals to sustain 

calcification; however, corals accrete their framework onto the dead skeletons of old coral 

colonies. Consequently, the integrity of the foundations of the reef may be compromised under 

low pH as there is no live tissue attempting to maintain the structure. Similarly, reef bioeroders 

appear to flourish under OA conditions (e.g. Fabricious et al., 2011), worsening the threat of 

erosion. Reefs therefore could be at risk from a loss of physical stature (Kroeker et al., 2013).  

Results from this thesis significantly expands on the growing evidence that at low mean 

pH, as experienced in mangrove habitats, coral calcification is suppressed. Crook et al. (2013) 

demonstrated a 40 % reduction in calcification of Porites astreoides exposed to life-time low pH. 

If low pH conditions became the norm within classical reef settings, the functional role of reef 

building corals as the ecosystem architects that support system biodiversity and productivity is 

greatly threatened (Dove et al., 2013). OA has the potential to impact all ecosystem services, 

including: (i) supporting services (e.g. processes that serve all other ecosystem provisions) such 

as primary production and nutrient cycling, (ii) provisioning services such as raw materials and 

food sources, (iii) regulating services, e.g. climate regulation, and (iv) cultural services, such as 
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education and recreation (SCBD, 2014). Importantly however, coral reefs are inter-connected 

systems that include habitats that have the potential to provide local climate regulation. 

 Results from this thesis highlight that non-reef habitats have the potential to provide 

important local climate management for coral reef ecosystems. The proximity of non-reef 

habitats in relation to coral reefs may either: (i) buffer corals, or (ii) provide a source of genetic 

tolerant corals that can help sustain reef populations. As demonstrated throughout the discussion, 

there are several areas that remain understudied which need to be addressed to fundamentally 

determine how these non-reef habitats can best be utilised to help manage the negative effects of 

future climate change.  Only then will we be able to address whether strategies such as coral non-

reef nurseries, targeted development of non-reef habitats by coral reefs, or out planting of 

mangrove corals onto the main reef, are viable management options. A major finding of this 

thesis is that a range of service provisions are provided by seagrass and mangrove non-reef 

habitats that have previously received little-to-no attention. The importance of non-reef habitats 

in carbon cycling, local climate management options, and as important natural laboratories for 

climate change research, significantly enhances their conservation value.  

 

6.5| Considerations for ocean acidification research  

As explored in this chapter, there are still significant knowledge gaps within OA research. A 

fundamental finding of this thesis is that scientists need to study the coral populations of non-reef 

habitats that have typically been under-explored by coral reef scientists as they are considered 

sub-optimal for coral growth (see however, Hennige et al., 2010; Yates et al., 2014). However, 

as marine habitats are exposed to rapid changes in environmental conditions, it will arguable be 

these non-reef habitats that are better able to deal with change. The natural pH gradients non-reef 
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habitats provide, demonstrate that there are systems where corals are exposed to conditions that 

may allow adaption and/or acclimation to occur. Studies therefore need to consider the levels of 

natural pH variability corals are exposed to and how this compares to the scale of gene flow and 

a species life-span (Kelly & Hofmann, 2012). Future research needs to explore the capacity for 

corals in non-reef habitats to adapt and/or acclimatise by methods such as: (i) exploration of 

phylogenetic trees, (ii) laboratory quantification of standing genetics through breeding or 

selection experimentations, (iii) reciprocal transplant experiments, (iii) exploration of 

transcriptomic data, and (iv) quantitative genetics. The inter-connectivity of non-reef habitats 

based on their carbonate chemistry also needs further examination. We also need to determine 

the population genetics of non-reef habitats to determine if these habitats are self-recruiting. 

Further global analysis of non-reef habitats is necessary to determine the fundamental niches of 

coral species.  The coral holobiont also needs to be further explored, as does the response of 

Symbiodinium to elevated CO2.  

 Results from this thesis also demonstrate the importance of resolute method development, 

highlighting the need for future OA research to fully explore and report experimental set-ups, 

particularly for coral physiological studies. Findings from this thesis also demonstrate the 

importance of variability in carbonate chemistry conditions of habitats. Consideration of the 

amount of time habitats spend at specific pH conditions is imperative in determining how they 

will likely respond to future OA. Both the mean and variability in pH conditions are important in 

determining coral physiology, and future OA studies need to account for habitat variability. 

Finally, further work is needed to explore how acidification interacts with other environmental 

stressors and consequently how coral populations may shift their geographic location in the 

future.  
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6.6| Conclusions 

Coral reefs are at threat from climate change, however, reefs are not isolated systems, they are 

interconnected with highly-dynamic non-reef habitats that may buffer against low pH or provide 

a source of pre-conditioned corals that are able to sustain growth under low pH conditions (see 

Chapters 3, 4 & 5). A range of coral species are found living in non-reef habitats that are already 

exposed to low and variable pH predicted  under future climate change, demonstrating some 

level of tolerance in corals to low pH (see Chapter 3 & 4). The ability of non-reef habitats to 

potentially drive acclimatisation or promote adaption to suboptimal temperature and pH remains 

unclear, as does the maximum acclamatory potential of coral species (see Chapter 5).  The 

environmental heterogeneity of both seagrass and mangrove systems is essential in maintaining 

different biogeochemical conditions that underpin the ecosystem services described. Appropriate 

experimental design is fundamental to encapsulating the environmental variability of a habitat, 

with both mean and variability in local conditions influencing the physiological response of local 

corals (see Chapters 2 & 3). Non-reef habitats have been under-studied by coral scientists and 

greater effort is needed to study coral populations in these systems. Data from this thesis 

contribute significantly to the efforts identifying options to manage or mitigate against the 

possible impacts of climate change stressors on one of the world’s most important ecosystems 

(Salm et al., 2006; Yates et al., 2014).   
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Appendices 
 

Appendix 1| Procedure for standardising hydrochloric acid for alkalinity titration 

To standardise hydrochloric acid the following procedure was used: 

A. The standard solution of sodium carbonate was prepared 

1. Dry 1.0g sodium carbonate (AR) in an oven 80 °C for 18 h 

2. Cool in a desiccator, weigh out 0.8686 g sodium carbonate; add to a 1 L 

columetric flask, and dilute with deionised water (DIW) to the 1 L mark.  

   NA2CO3: 
0.8686

(
105.59

2
)
 = 0.01639 N      [S1] 

B. The Hydrochloric acid solution was prepared 

1. Add 900 ml DIW to a 1 L flask, and then add 1.7 ml concentrated HCL (32 %) to 

the flask, and mix thoroughly: and then dilute with DIW to the 1 L mark.  

2. Dilute HCL: (1.7 ml x 10.18 N)/1000 ml = 0.0173 N 

 

C. The sodium carbonate solution was titrated with diluted HCL 

1. Add 25 ml of sodium carbonate into a 1000 ml beaker, 

2. Titrate with the diluted HCL solution (Using the Titrino titrator, Buckingham, 

UK) 

3. Record the volume of acid (ml) taken to reach the second equivalence point 

4. Calculate the accurate concentration if the diluted HCL: 

Standardised Acid Concentration = (0.01639 N x 25 ml)/ Volume of HCL used (ml) 
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Appendix 2| The time taken to stabilise oxygen levels to respiration levels for Siderastrea cf. 

stellata  

For five colonies of Siderastrea cf. stellata. the time taken for oxygen levels to drop to 

respiration rates was determined. A black opaque bag was covered over the respirometry 

chambers and the time taken for oxygen levels to level off before depletion was measured at five 

min increments. Oxygen was measured by drawing out 30 ml water samples and testing the 

oxygen levels using an oxygen probe (RDO probe (ORION RDO, model 087010MD; Fisher 

Scientific, USA). Tests were conducted in ca. 3 m of water in Salvador Brazil and all colonies 

were a similar size (surface area ca. 12 cm
2
).  Results showed that it took between ca. 30-70 min 

for oxygen levels to stabilise (Figure S.1).   

 

Figure S.1| The time it took for five colonies of Siderastrea cf. stellata oxygen concentrations 

to change from daytime to night-time rates. The colonies were tested in Salvador Brazil.  
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Appendix 3| CPCe point density 

Summary – To ensure that the correct point density (number of points per image frame) was 

used to obtain robust estimates of percent cover, a power analysis was conducted (Pante & 

Dustane, 2012). Three tiles from the back-reef and three tiles from the seagrass habitats had their 

actual percent cover established.  To determine the number of points needed on CPCe to provide 

an estimate of percent cover with 95 % confidence of the actual percent cover, 5, 10, 20, 40, 80, 

160 and 320 points were initially overlaid on each image using CPCe. The estimated percent 

cover for each number of points was compared to the actual percent cover using the Chi-squared 

test (of association). 

Results – For the back-reef habitat between 80 and 160 points were necessary in CPCe to get a 

significant Chi-squared test of association (X
2
˂ 21.03, d.f.= 12, P= 0.05) between the actual and 

observed percent covers. For the seagrass habitat between 10 and 20 points were necessary (X
2
 ˂ 

11.07, d.f = 5, P= 0.05, Table S.1). Further analysis on the most diverse tiles of each habitat 

(Tile 2 for the back-reef and tile 3 for the seagrass) determined that 150 points for the back-reef 

(Figure S.2) and 60 points for the seagrass (Figure S.3) were optimal in estimating the percent 

cover with 95 % accuracy, whilst maintaining the species diversity (Table S.1). The precision of 

repeating the estimated percent cover three times was tested; however, the error was minimal (e˂ 

0.02) once an optimum number of points (150) was used, making it preferable to reduce error 

from repeated sampling by just sampling each tile once. 
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Table S.1| CPCe point density summary.   

Habitat Replicate 

Tile 

Number of points needed to 

get significant Chi-squared 

test of association result 

Number of points needed to 

get the same observed and 

actual number of species  

Back-reef 1 80 120 

 2 160 160 

 3 80 120 

Seagrass 1 10 20 

 2 10 40 

 3 20 60 

For each habitat and tile replicate, the number of points necessary in CPCe to obtain a 

significant Chi-squared test of association results (back-reef: X
2
˂ 21.03,  d.f.= 12, P= 0.05; 

Seagrass: X
2
˂ 11.07,  d.f = 5, P= 0.05) is shown, is the number of points needed to get the same 

observed and actual number of species.  
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Figure S.2| The proportion of each benthic component for the back-reef tile two (the tile with the greatest diversity) that was 

above or below the actual percent cover using 80 up to 160  points in CPCe in 10 point increasing increments. * in the legend 

denotes a significant Chi-Squared test of association result (X
2
˂ 21.023,  d.f.= 12, P= 0.05).  
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Figure S.3| The proportion of each benthic component for the seagrass tile three (the tile with the greatest diversity) that was 

above or below the actual percent cover using 20 up to 60  points in CPCe in 10 point increasing increments. * in the legend 

denotes a significant Chi-Squared test of association result (X
2
˂ 11.07,  d.f.= 5, P= 0.05).  
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Appendix 4| Linear Mixed Effects (LME) models 

The final model applied to compare each abiotic variable between habitats, and seasons was: 

AJ = α + β1* SeasonJ + β2 * HabitatJ + εJ    [S2] 

Where A is the abiotic parameter being measured, J is the site, α is the intercept, β1 is the 

slope of Season, β2 is the effect of habitat for site J, and εJ is the residual error.  

The model input into R was: modelpH<-

lme(meanA~season*habitat,random=~1|site,data=ocean) 

 

Similar model application was applied for lunar cycle comparisons: 

AJ = α + β1* SeasonJ + lunarcycleJ + β2 * HabitatJ + εJ                    [S3] 

Where A is the abiotic parameter being measured, J is the site, α is the intercept, β1 is the 

slope of Season, β2 is the effect of habitat for site J, and εJ is the residual error.  

The model input into R was:  

modelpH<-lme(meanpH~season+lunarcycle*habitat,random=~1|site,data=ocean) 

An adaption of this model was also used to examine the coral physiology data obtained. 

Mixed Effects (LME) models with coral species as a random effect, were applied as 

described to examine the effect of habitat on daily net photosynthesis, respiration and 

calcification.  

 

 

 

 

 

 



 Appendices  

254 
 

Appendix 5| The seasonal and lunar cycle means and ranges in abiotic variables for 

each of the nine sites on Little Cayman, Cayman Islands, BWI.  

Table S.2| Temporal ranges in abiotic variables for each of the nine sites on Little Cayman. 

Abiotic 

Variable 

Season Lunar 

Cycle 

Site and Habitat 

Back-reef 1 Back-reef 2 Back-reef 3 

Mean 

(±SE) 

Range Mean 

(±SE) 

Range Mean 

(±SE) 

Range 

pH Summer Spring 8.12 (0.01) 0.31 8.15 (0.01) 0.37 8.15 (0.01) 0.32 

   Neap 8.16 (0.01) 0.27 8.16 (0.01) 0.35 8.14 (0.01) 0.30 

 Winter Spring 8.19 (0.01) 0.23 8.20 (0.01) 0.37 8.23 (0.01) 0.35 

   Neap 8.20 (0.01) 0.22 8.19 (0.01) 0.21 8.20 (0.01) 0.18 

pCO2 Summer Spring 309 (9.97) 274 292 (8.87) 285 274 (7.57) 240 

(atm)   Neap 281 (6.71) 219 272 (9.34) 262 273 (7.94) 235 

 Winter Spring 246 (6.11) 187 222 (7.43) 281 226 (6.54) 260 

   Neap 206 (3.60) 139 213 (4.75) 153 199 (3.50) 106 

Total 

Alkalinity 

Summer Spring 2239 (7.03) 248 2260 

(10.62) 

353 2220 

(5.98) 

228 

(mol/kg
-1

)   Neap 2279 (9.36) 302 2257 

(9.74) 

299 2291 

(8.07) 

299 

 Winter Spring 2232 (1.66) 201 2235 

(4.10) 

151 2230 

(5.10) 

176 

   Neap 2244 (3.86) 138 2247 

(3.84) 

101 2230 

(5.68) 

226 

Aragonite Ω Summer Spring 4.2 (0.08) 2.5 4.3 (0.09) 3.5 4.4 (0.09) 3.0 

   Neap 4.2 (0.07) 2.3 4.4 (0.10) 2.9 4.3 (0.08) 2.2 

 Winter Spring 4.9 (0.06) 2.0 5.3 (0.09) 3.1 5.2 (0.06) 2.7 

   Neap 5.4 (0.06) 2.5 5.3 (0.06) 1.8 5.3 (0.06) 1.9 

Temperature Summer Spring 29.6 (0.05) 2.1 30.1 (0.11) 3.4 29.8 (0.08) 2.8 

(°C)   Neap 29.2 (0.11) 3.8 29.8 (0.11) 3.7 29.6 (0.08) 2.7 

 Winter Spring 27.4 (0.12) 3.2 27.9 (0.16) 5.0 27.7 (0.14) 4.8 

   Neap 26.4 (0.09) 2.8 26.8 (0.09) 3.6 26.9 (0.08) 3.2 

Salinity Summer Spring 35.2 (0.03) 0.5 35.0 (0.04) 1.0 35.4 (0.03) 0.5 

(ppm)   Neap 35.2 (0.03) 0.5 35.2 (0.03) 1.0 35.2 (0.03) 0.5 

 Winter Spring 35.2 (0.03) 0.5 35.1 (0.03) 0.5 35.2 (0.03) 0.5 

   Neap 35.2 (0.03) 0.5 35.2 (0.03) 1.0 35.1 (0.03) 1.0 

Light Summer Spring 304.1 

(54.48) 

1735.

0 

308.7 

(54.16) 

1326.8 328.2 

(55.97) 

1581.

0 

(mol m
-2

 s
-1

)   Neap 350.8 

(57.19) 

1479.

8 

332.7 

(61.08) 

1530.9 303.8 

(52.24) 

1275.

3 

 Winter Spring 319.1 

(55.19) 

1428.

8 

284.3 

(48.92) 

1345.7 339.9 

(59.6) 

1530.

9 

   Neap 324.8 

(53.89) 

1530.

9 

282.6 

(51.25) 

1479.0 319.4 

(54.7) 

1530.

9 

Water 

Movement 

Summer Spring 18 (0.54) 19 16 (0.39) 13 16 (0.61) 20 

(cm
-1

s
-1

)   Neap 18 (0.46) 13 17 (0.40) 11 20 (0.54) 21 

 Winter Spring 13 (0.39) 12 15 (0.49) 13 14 (0.44) 12 

   Neap 10 (0.31) 11 12 (0.30) 8 24 (0.42) 13 
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Abiotic 

Variable 

Season Lunar 

Cycle 
Site and Habitat 

Seagrass 1 Seagrass 2 Seagrass 3 

Mean 

(±SE) 
Range 

Mean 

(±SE) 
Range 

Mean 

(±SE) 
Range 

pH Summer Spring 8.17 (0.02) 0.614 8.12 (0.02) 0.551 8.12 (0.02) 0.598 

    Neap 8.13 (0.02) 0.576 8.12 (0.02) 0.59 8.12 (0.02) 0.541 

  Winter Spring 8.15 (0.02) 0.504 8.16 (0.02) 0.519 8.21 (0.01) 0.473 

    Neap 8.19 (0.02) 0.506 8.20 (0.01) 0.409 8.22 (0.01) 0.48 

pCO2 Summer Spring 285 (20.08) 608 
313 

(14.31) 
511 

301 

(15.32) 
591 

(atm)   Neap 279 (17.74) 570 
300 

(16.52) 
585 

280 

(14.62) 
507 

  
Winter Spring 276 (12.62) 433 

272 

(14.55) 
461 232 (9.88) 378 

  
  Neap 243 (11.97) 459 

240 

(10.70) 
329 

220 

(10.33) 
403 

Total 

Alkalinity 
Summer Spring 2264 (8.14) 351 

2264 

(11.28) 
331 

2241 

(10.67) 
304 

(mol/Kg
-1

)   Neap 
2250 

(10.64) 
302 

2222 

(6.52) 
203 

2246 

(5.43) 
179 

  
Winter Spring 2251 (6.30) 277 

2207 

(4.68) 

153 

 

2219 

(4.75) 
226 

  
  Neap 2242 (4.86) 176 

2236 

(3.39) 
101 

2234 

(5.17) 
176 

Aragonite Ω Summer Spring 4.4 (0.15) 4.7 4.3 (0.12) 4.0 4.3 (0.13) 4.1 

    Neap 4.5 (0.15) 4.6 4.2 (0.14) 4.7 4.2 (0.13) 4.1 

  Winter Spring 4.9 (0.13) 4.3 5.0 (0.13) 4.0 5.2 (0.11) 4.3 

    Neap 5.1 (0.13) 4.1 5.3 (0.12) 3.5 5.4 (0.13) 4.2 

Temperature Summer Spring 29.8 (0.07) 2.8 30.2 (0.12) 3.6 30.2 (0.11) 3.6 

(°C)   Neap 29.2 (0.12) 4.1 29.9 (0.13) 4.4 29.8 (0.11) 3.5 

  Winter Spring 28.1 (0.20) 6.7 28.0 (0.18) 6.7 27.8 (0.15) 5.3 

    Neap 26.9 (0.10) 4.3 26.9 (0.11) 4.3 26.9 (0.09) 3.0 

Salinity Summer Spring 35.2 (0.06) 2.0 35.0 (0.06) 2.0 35.0 (0.05) 2.0 

(ppm)   Neap 35.0 (0.07) 2.0 35.0 (0.06) 2.0 35.0 (0.07) 2.0 

  Winter Spring 35.3 (0.04) 0.5 35.4 (0.03) 1.0 35.3 (0.03) 1.0 

    Neap 35.2 (0.03) 1.0 35.2 (0.03) 1.0 35.3 (0.03) 1.0 

Light Summer Spring 
327.5 

(54.43) 

1224.

7 

352.6 

(61.68) 
1530.9 

358.3 

(63.16) 

1632.

9 

(mol m
-2

 s
-1

)   Neap 
308.4 

(53.08) 

1275.

7 

329.7 

(60.53) 
1530.9 

333.6 

(56.44) 

1567.

2 

  
Winter Spring 

265.8 

(43.53) 
969.6 

311.5 

(53.03) 
1377.8 

260.2 

(46.36) 

1224.

7 

  
  Neap 

252.0 

(40.53) 
918.5 

307.1 

(51.03) 
1275.7 

313.8 

(51.98) 

1256.

5 

Water 

Movement 
Summer Spring 16 (0.65) 19 17 (0.57) 19 19.5 (0.42) 13 

(cm
-1

s
-1

)   Neap 16 (0.64) 21 19 (0.43) 11 17.6 (0.38) 12 

  Winter Spring 12 (0.41) 14 12 (0.30) 8 12.4 (0.33) 11 

    Neap 13 (0.48) 15 15 (0.60) 18 14.1 (0.56) 18 
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Abiotic 

Variable 

Season Lunar 

Cycle 
Site and Habitat 

Outer reef 1 Outer reef 2 Outer reef 3 

Mean 

(±SE) 
Range 

Mean 

(±SE) 
Range 

Mean 

(±SE) 
Range 

pH Summer Spring 
8.12 

(0.00) 
0.006 

8.11  

( ̴0.00) 
  ̴0.00 

8.12  

( ̴0.00) 
0.009 

  
  Neap 

8.11 

(0.00) 
0.003 

8.11  

( ̴0.00) 
0.007 

8.12  

( ̴0.00) 
0.007 

  
Winter Spring 

8.11 

(0.00) 
0.003 

8.12  

( ̴0.00) 
0.007 

8.11  

( ̴0.00) 
 ̴0.00 

  
  Neap 

8.12 

(0.00) 
0.011 

8.11  

( ̴0.00) 
 ̴0.00 

8.12  

( ̴0.00) 
 ̴0.00 

pCO2 Summer Spring 317 (1.20) 21 321 (1.23) 26 
321 

(0.67) 
12 

(atm)   Neap 319 (0.91) 17 319 (0.33) 6 
320 

(0.89) 
21 

  
Winter Spring 324 (0.41) 9 314 (0.91) 16 

317 

(0.74) 
17 

  
  Neap 317 (1.32) 24 327 (0.92) 18 

320 

(0.45) 
11 

Total 

Alkalinity 
Summer Spring 

2357 

(6.70) 
110 

2377 

(7.59) 
162 

2404 

(4.11) 
90 

(mol/Kg
-1

)   Neap 
2365 

(5.65) 
100 

2391 

(0.39) 
9 

2375 

(4.44) 
97 

  
Winter Spring 

2418 

(2.50) 
50 

2343 

(4.00) 
70 

2343 

(4.37) 
90 

  
  Neap 

2355 

(6.18) 
99 

2420 

(5.33) 
106 

2394 

(2.86) 
60 

Aragonite Ω Summer Spring 3.5 (0.01) 0.19 3.5 (0.01) 0.30 3.6 (0.01) 0.25 

    Neap 3.5 (0.01) 0.22 3.6 ( 0̴.00) 0.05 3.5 (0.01) 0.15 

  Winter Spring 3.6 (0.01) 0.11 3.5 (0.01) 0.10 3.4 (0.01) 0.18 

    Neap 3.5 (0.01) 0.16 3.6 (0.01) 0.20 3.6 (0.01) 0.12 

Temperature Summer Spring 
28.6 

(0.01) 
0.2 28.4 (0.01) 0.1 

38.5 

(0.01) 
0.3 

(°C)   Neap 
28.5 

(0.01) 
0.3 28.5 (0.01) 0.3 

28.5 

(0.01) 
0.3 

  
Winter Spring 

27.5 

(0.01) 
0.2 27.6 (0.01) 0.2 

27.4 

(0.01) 
0.1 

  
  Neap 

27.5 

(0.02) 
0.3 27.4 (0.01) 0.3 

27.4 

(0.02) 
0.3 

Salinity Summer Spring 
35.5 

( ̴0.00) 
̴̴̴0.00 

35.5 

( ̴0.00) 
̴̴̴0.00 

35.5 

( ̴0.00) 
̴̴̴0.00 

(ppm)   Neap 
35.5 

( ̴0.00) 
̴̴̴0.00 

35.5 

( ̴0.00) 
̴̴̴0.00 

35.5 

( ̴0.00) 
̴̴̴0.00 

  
Winter Spring 

35.5 

( ̴0.00) 
̴̴̴0.00 

35.5 

( ̴0.00) 
̴̴̴0.00 

35.5 

( ̴0.00) 
̴̴̴0.00 

  
  Neap 

35.5 

( ̴0.00) 
̴̴̴0.00 

35.5 

( ̴0.00) 
̴̴̴0.00 

35.5 

( ̴0.00) 
̴̴̴0.00 
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Appendix 6| Carbonate chemistry statistical results Little Cayman, Cayman Islands, Atlantic 

Ocean.  

 

Table S.3| Intra-habitat site comparison of mean and coefficient of variation (Cv) of 

carbonate chemistry parameters (pH, pCO2, total alkalinity, Ωarg): 2-Way ANOVA with 

post hoc Tukey-Kramer test. Only significant intra-habitat differences at 0.05 % significance 

are shown, all other results were non-significant.  

Variable ANOVA Comparison Group Post hoc P -value  

pH Cv F2,11 = 5.84 

P = 0.005** 

 

SG1 Vs SG3 0.05*  

pCO2 Cv F2,11  = 8.15 

P = 0.0005*** 

 

SG1 Vs SG3 

 

0.005**  

*** indicates a significant statistical test with P < 0.001, ** indicates a significant statistical test 

with P < 0.01, * indicates a significant statistical test with P< 0.05. SG = Seagrass, BR = Back 

Reef.   

Table S.4| Carbonate chemistry LME model results.  

A| Model parameters to estimate the inshore to offshore gradient (∆) between the lagoon non-reef 

sites and the outer reef sites  as a function of habitat for each season. Study site was modelled as a 

random effect. 

Model Term Estimate SE t-value P-value 

Model 1:  ∆ pH     

Intercept=Summer:Back reef 0.0409 0.0084 4.8710 0.0001 

Season=Winter 0.0700 0.0078 9.0331 0.0001 

Habitat=Seagrass  -0.0245 0.0078 -3.1551 0.0016 

 

Intercept=Summer-Seagrass 

 

0.0164 

 

0.0084 

 

1.9578 

 

0.0500 

Season=Winter 0.0694 0.0078 8.9570 0.0001 

Habitat=Back reef 

 

Intercept=Winter:Back reef 

Season=Summer 

Habitat= Seagrass 

 

Intercept= Winter:Seagrass 

Season=Summer 

Habitat=Back reef 

0.0245 

 

0.1109 

-0.0700 

-0.0250 

 

0.0859 

-0.0694 

0.0250 

0.0078 

 

0.0084 

0.0078 

0.0078 

 

0.0084 

0.0078 

0.0078 

3.1550 

 

13.2113 

-9.0330 

-3.2309 

 

10.2282 

-8.9570 

3.2309 

0.0016 

 

0.0001 

0.0001 

0.0013 

 

0.0001 

0.0001 

0.0013 

     

Model 2: ∆ npCO2 

Intercept=Summer:Back reef -41.3736 7.9123 -5.2290 0.0001 

Season=Winter -42.3521 6.5778 -6.4387 0.0001 

Habitat=Seagrass  34.3960 6.5778 5.2291 0.0001 

 

Intercept=Summer-Seagrass 

 

-6.9776 

 

7.9123 

 

-0.8819 

 

0.3780 
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Season=Winter -46.4457 6.5778 -7.0610 0.0001 

Habitat=Back reef 

 

Intercept=Winter:Back reef 

Season=Summer 

Habitat= Seagrass 

 

Intercept= Winter:Seagrass 

Season=Summer 

Habitat=Back reef 

-34.3960 

 

-83.7257 

42.3521 

30.3024 

 

-53.4233 

46.4457 

-30.3024 

6.5778 

 

7.9123 

6.5778 

6.5778 

 

7.9123 

6.5778 

6.5778 

-5.2291 

 

-10.5817 

6.4387 

4.6068 

 

-6.7519 

7.0610 

-4.6068 

0.0001 

 

0.0001 

0.0001 

0.0001 

 

0.0001 

0.0001 

0.0001 

     

Model 3: ∆ ntotal alkalinity 

Intercept=Summer:Back reef -156.9896 4.7441 -33.0912 0.0001 

Season=Winter 100.7381 6.7092 15.0149 0.0001 

Habitat=Seagrass  -18.2020 6.7092 -2.7130 0.0067 

 

Intercept=Summer-Seagrass 

 

-175.1915 

 

4.7441 

 

-36.9280 

 

0.0001 

Season=Winter 115.8809 6.7092 17.2719 0.0001 

Habitat=Back reef 

 

Intercept=Winter:Back reef 

Season=Summer 

Habitat= Seagrass 

 

Intercept= Winter:Seagrass 

Season=Summer 

Habitat=Back reef 

 

18.2020 

 

-56.2514 

-100.7381 

-3.0592 

 

-59.3106 

-115.8809 

3.0592 

6.7092 

 

4.7441 

6.7092 

6.7092 

 

4.7441 

6.7092 

6.7092 

2.7130 

 

-11.8570 

-15.0149 

-0.4560 

 

-12.5019 

-17.2719 

0.4560 

0.0067 

 

0.0001 

0.0001 

0.6485 

 

0.0001 

0.0001 

0.6485 

Model 4: ∆ Ωarg 

Intercept=Summer:Back reef 0.0076 0.0475 0.1610 0.8722 

Season=Winter 0.8984 0.0623 14.4127 0.0001 

Habitat=Seagrass  0.0043 0.0623 0.0684 0.9455 

 

Intercept=Summer-Seagrass 

 

0.0120 

 

0.0475 

 

0.2508 

 

0.8020 

Season=Winter 0.7900 0.0623 12.6735 0.0001 

Habitat=Back reef 

 

Intercept=Winter:Back reef 

Season=Summer 

Habitat= Seagrass 

 

Intercept= Winter:Seagrass 

Season=Summer 

Habitat=Back reef 

 

 

 

 

 

 

 

 

 

 

 

-0.0042 

 

0.9060 

-0.8984 

-0.1041 

 

0.8019 

-0.7900 

0.1041 

0.0623 

 

0.0475 

0.0623 

0.0623 

 

0.0475 

0.0623 

0.0623 

-0.0684 

 

19.0883 

-14.4127 

-1.6708 

 

16.8941 

-12.6735 

1.6708 

0.9455 

 

0.0001 

0.0001 

0.0949 

 

0.0001 

0.0001 

0.0949 
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B| Model parameters to estimate the Coefficient of Variation (Cv) between sites of pH, pCO2, 

total alkalinity and  Ωarg as a function of habitat for each season.  Study site was modelled as a 

random effect. 

Model Term Estimate SE t-value P-value 

Model 5:  Cv pH     

Intercept=Summer:Back reef 0.0109 0.0005 20.3437 0.0001 

Season=Winter -0.0031 0.0007 -4.3958 0.0001 

Habitat=Outer reef  

Habitat=Seagrass  

-0.0106 

0.0077 

0.0007 

0.0007 

-15.0052 

10.8456 

0.0001 

0.0001 

     

Intercept=Summer:Outer reef 0.0003 0.0005 0.6208 0.5398 

Season=Winter -0.0001 0.0007 -0.0884 0.9302 

Habitat=Back reef  

Habitat=Seagrass  

0.0106 

0.0183 

0.0007 

0.0007 

15.0052 

25.8508 

0.0001 

0.0001 

     

Intercept=Summer:Seagrass 0.0186 0.0005 34.5993 0.0001 

Season=Winter -0.0031 0.0007 -4.4212 0.0001 

Habitat=Back reef  

Habitat=Outer reef  

-0.0077 

-0.0183 

0.0007 

0.0007 

-10.8456 

-25.8508 

0.0010 

0.0001 

     

Intercept=Winter: Back reef 0.0078 0.0005 14.5658 0.0001 

Season=Summer 0.0031 0.0007 4.3958 0.0001 

Habitat=Outer reef  

Habitat=Seagrass  

-0.0076 

0.0076 

0.0007 

0.0007 

-10.6977 

10.8202 

0.0001 

0.0010 

     

Intercept=Winter: Outer reef 0.0003 0.0005 0.5046 0.6178 

Season=Summer 0.0001 0.0007 0.0884 0.9302 

Habitat=Back reef  

Habitat=Seagrass  

0.0076 

0.0152 

0.0007 

0.0007 

10.6977 

21.5180 

0.0010 

0.0001 

     

Intercept=Winter: Seagrass 0.0155 0.0005 28.7881 0.0001 

Season=Summer 0.0031 0.0007 4.4212 0.0001 

Habitat=Back reef  

Habitat=Outer reef  

-0.0077 

-0.0152 

0.0007 

0.0007 

-10.8202 

-21.5180 

0.0070 

0.0001 

     

Model 6:  Cv pCO2     

Intercept=Summer:Back reef 0.2510 0.0138 18.1715 0.0001 

Season=Winter -0.0463 0.0190 -2.4361 0.0215 

Habitat=Outer reef  

Habitat=Seagrass  

-0.2279 

0.1836 

0.0190 

0.0190 

-11.9833 

9.6556 

0.0001 

0.0001 

     

Intercept=Summer:Outer reef 0.0231 0.0138 1.6754 0.1050 

Season=Winter -0.0021 0.0190 -0.1080 0.9147 

Habitat=Back reef  

Habitat=Seagrass  

0.2279 

0.4115 

0.0190 

0.0190 

11.9833 

21.6389 

0.0001 

0.0001 

     

Intercept=Summer:Seagrass 0.4346 0.0138 31.4633 0.0001 

Season=Winter -0.0350 0.0190 -1.8414 0.0462 

Habitat=Back reef  

Habitat=Outer reef  

-0.1836 

-0.4115 

0.0190 

0.0190 

-9.6556 

-21.6389 

0.0001 

0.0001 

     

Intercept=Winter: Back reef 0.2047 0.0138 14.8180 0.0001 

Season=Summer 0.0463 0.0190 2.4361 0.0215 

Habitat=Outer reef  

Habitat=Seagrass  

-0.1836 

0.1949 

0.0190 

0.0190 

-9.6553 

10.2503 

0.0001 

0.0010 
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Intercept=Winter: Outer reef 0.0211 0.0138 1.5267 0.1381 

Season=Summer 0.0021 0.0190 0.1080 0.9147 

Habitat=Back reef  

Habitat=Seagrass  

0.1836 

0.3785 

0.0190 

0.0190 

9.6553 

19.9055 

0.0001 

0.0001 

     

Intercept=Winter: Seagrass 0.3996 0.0138 28.9284 0.0001 

Season=Summer 0.0350 0.0190 1.8414 0.0462 

Habitat=Back reef  

Habitat=Outer reef  

-0.1949 

-0.3785 

0.0190 

0.0190 

-10.2503 

-19.9055 

0.0001 

0.0001 

 

Model 7:  Cv Total Alkalinity     

Intercept=Summer:Back reef 0.0318 0.0027 11.9226 0.0001 

Season=Winter -0.0141 0.0038 -3.7582 0.0008 

Habitat=Outer reef  

Habitat=Seagrass  

-0.0145 

0.0013 

0.0038 

0.0038 

-3.8654 

0.3566 

0.0006 

0.7241 

     

Intercept=Summer:Outer reef 0.0172 0.0027 6.4561 0.0001 

Season=Winter -0.0022 0.0038 -0.5792 0.5671 

Habitat=Back reef  

Habitat=Seagrass  

0.0146 

0.0159 

0.0038 

0.0038 

3.8654 

4.2220 

0.0006 

0.0002 

     

Intercept=Summer:Seagrass 0.0331 0.0027 12.4269 0.0001 

Season=Winter -0.0147 0.0038 -3.8879 0.0006 

 

Habitat=Back reef  

Habitat=Outer reef  

-0.0013 

-0.0159 

0.0038 

0.0038 

-0.3566 

-4.2220 

0.7241 

0.0002 

     

Intercept=Winter: Back reef 0.0176 0.0027 6.6078 0.0001 

Season=Summer 0.0142 0.0038 3.7582 0.0008 

Habitat=Outer reef  

Habitat=Seagrass  

-0.0026 

0.0009 

0.0038 

0.0038 

-0.6865 

0.2268 

0.4980 

0.8222 

     

Intercept=Winter: Outer reef 0.0150 0.0027 5.6369 0.0001 

Season=Summer 0.0022 0.0038 0.5792 0.5671 

Habitat=Back reef  

Habitat=Seagrass  

0.0026 

0.0034 

0.0038 

0.0038 

0.6865 

0.9133 

0.4980 

0.3689 

     

Intercept=Winter: Seagrass 0.0185 0.0027 6.9285 0.0001 

Season=Summer 0.0147 0.0038 3.8879 0.0006 

Habitat=Back reef  

Habitat=Outer reef  

 

-0.0009 

-0.0034 

0.0038 

0.0038 

-0.2268 

-0.9133 

0.8222 

0.3689 

Model 8:  Cv Ωarg     

Intercept=Summer:Back reef 0.1678 0.0063 26.5358 0.0001 

Season=Winter -0.0622 0.0084 -7.4234 0.0001 

Habitat=Outer reef  

Habitat=Seagrass  

-0.1498 

0.1000 

0.0084 

0.0084 

-17.8824 

11.9415 

0.0001 

0.0010 

     

Intercept=Summer:Outer reef 0.0179 0.0063 2.8385 0.0083 

Season=Winter -0.0043 0.0084 -0.5112 0.6133 

Habitat=Back reef  

Habitat=Seagrass  

0.1500 

0.2498 

0.0084 

0.0084 

17.8824 

29.8239 

0.0001 

0.0001 

     

Intercept=Summer:Seagrass 0.2677 0.0063 42.3603 0.0001 
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Season=Winter -0.0607 0.0084 -7.2509 0.0001 

Habitat=Back reef  

Habitat=Outer reef  

-0.1000 

-0.2498 

0.0084 

0.0084 

-11.9415 

-29.8239 

0.0060 

0.0001 

     

Intercept=Winter: Back reef 0.1055 0.0063 16.6985 0.0001 

Season=Summer 0.0622 0.0084 7.4234 0.0001 

Habitat=Outer reef  

Habitat=Seagrass  

-0.0919 

0.1015 

0.0084 

0.0084 

-10.9701 

12.1141 

0.0001 

0.0001 

     

Intercept=Winter: Outer reef 0.0137 0.0063 2.1611 0.0394 

Season=Summer 0.0043 0.0084 0.5111 0.6133 

Habitat=Back reef  

Habitat=Seagrass  

0.0919 

0.1933 

0.0084 

0.0084 

10.9701 

23.0842 

0.0001 

0.0001 

     

Intercept=Winter: Seagrass 0.2070 0.0063 32.7517 0.0001 

Season=Summer 0.0607 0.0084 7.2509 0.0001 

Habitat=Back reef  

Habitat=Outer reef  

0.1015 

0.1933 

0.0084 

0.0084 

-12.1141 

-4.7657 

0.0001 

0.0001 

 

 

 

 

 

 

    

C| Model parameters to estimate the mean between sites of pH, pCO2, total alkalinity and Ωarg as 

a function of habitat for each season.  Study site was modelled as a random effect. 

Model Term Estimate SE t-value P-value 

Model 9:  mean pH     

Intercept=Summer:Back reef 8.1533 0.0084 971.2630 0.0001 

Season=Winter 0.0733 0.0101 7.2711 0.0001 

Habitat=Outer reef  

Habitat=Seagrass  

-0.0317 

-0.0433 

0.0101 

0.0101 

-3.1398 

-4.2965 

0.0040 

0.0002 

     

Intercept=Summer:Outer reef 8.1217 0.0084 967.4745 0.0001 

Season=Winter 0.0017 0.0101 0.1653 0.8699 

Habitat=Back reef  

Habitat=Seagrass  

0.0317 

-0.0117 

0.0101 

0.0101 

3.1398 

-1.1568 

0.0040 

0.0471 

     

Intercept=Summer:Seagrass 8.1100 0.0084 966.1039 0.0001 

Season=Winter 0.0783 0.0101 7.7668 0.0001 

Habitat=Back reef  

Habitat=Outer reef  

0.0433 

0.0117 

0.0101 

0.0101 

4.2965 

1.1568 

0.0002 

0.0471 

     

Intercept=Winter: Back reef 8.2267 0.0084 979.9983 0.0001 

Season=Summer -0.0733 0.0101 -7.2711 0.0001 

Habitat=Outer reef  

Habitat=Seagrass  

-0.1033 

-0.038 

0.0101 

0.0101 

-10.2456 

-3.8008 

0.0001 

0.0007 

     

Intercept=Winter: Outer reef 8.1233 0.0084 967.6878 0.0001 

Season=Summer -0.0017 0.0101 -0.1653 0.8699 

Habitat=Back reef  

Habitat=Seagrass  

0.0103 

0.0650 

0.0101 

0.0101 

10.2456 

6.4448 

0.0001 

0.0001 

     

Intercept=Winter: Seagrass 8.1883 0.0084 975.4309 0.0001 

Season=Summer -0.0783 0.0101 -7.7668 0.0001 
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Habitat=Back reef  

Habitat=Outer reef  

 

0.0383 

-0.0650 

0.0101 

0.0101 

3.8008 

-6.4448 

0.0007 

0.0001 

     

Model 10:  mean pCO2     

Intercept=Summer:Back reef 283.5617 6.7778 41.8374 0.0001 

Season=Winter -64.9067 7.8937 -8.2226 0.0001 

Habitat=Outer reef  

Habitat=Seagrass  

35.6800 

36.6800 

7.8937 

7.8937 

4.5201 

4.6161 

0.0001 

0.0001 

     

Intercept=Summer:Outer reef 319.2417 6.7778 47.1018 0.0001 

Season=Winter 0.9300 7.8937 0.1178 0.9071 

Habitat=Back reef  

Habitat=Seagrass  

-35.6800 

0.7583 

7.8937 

7.8937 

-4.5201 

0.0961 

0.0001 

0.0442 

     

Intercept=Summer:Seagrass 320.0000 6.7778 47.2139 0.0001 

Season=Winter -72.8333 7.8937 -9.2267 0.0001 

Habitat=Back reef  

Habitat=Outer reef  

-36.4383 

-0.7583 

7.8937 

7.8937 

-4.6161 

-0.0961 

0.0010 

0.0442 

     

Intercept=Winter: Back reef 218.6550 6.7778 32.2609 0.0001 

Season=Summer 64.9067 7.8937 8.2226 0.0001 

Habitat=Outer reef  

Habitat=Seagrass  

101.5167 

28.5117 

7.8937 

7.8937 

12.8604 

3.6119 

0.0001 

0.0012 

     

Intercept=Winter: Outer reef 320.1717 6.7778 47.2392 0.0001 

Season=Summer -0.9300 7.8937 -0.1178 0.9071 

Habitat=Back reef  

Habitat=Seagrass  

-101.5167 

-73.0050 

7.8937 

7.8937 

-12.8604 

-9.2485 

0.0001 

0.0010 

     

Intercept=Winter: Seagrass 247.1667 6.7778 36.4678 0.0001 

Season=Summer 72.8333 7.8937 9.2267 0.0001 

Habitat=Back reef  

Habitat=Outer reef  

-28.5117 

73.0050 

7.8937 

7.8937 

-3.6119 

9.2485 

0.0012 

0.0001 

     

Model 11:  mean Total Alkalinity     

Intercept=Summer:Back reef 2257.6350 8.9987 250.8857 0.0001 

Season=Winter -21.2733 12.7260 -1.6716 0.1057 

Habitat=Outer reef  

Habitat=Seagrass  

120.5317 

-9.8017 

12.7260 

12.7260 

9.4713 

-0.7702 

0.0001 

0.4476 

     

Intercept=Summer:Outer reef 2378.1667 8.9987 264.2801 0.0001 

Season=Winter 1.8333 12.7260 0.1441 0.8865 

Habitat=Back reef  

Habitat=Seagrass  

-120.5317 

-130.3333 

12.7260 

12.7260 

-9.4713 

-10.2415 

0.0001 

0.0001 

     

Intercept=Summer:Seagrass 2247.8333 8.9987 249.7965 0.0001 

Season=Winter -16.3333 12.7260 -1.2835 0.2099 

Habitat=Back reef  

Habitat=Outer reef  

9.8017 

130.3333 

12.7260 

12.7260 

0.7702 

10.2415 

0.4476 

0.0001 

     

Intercept=Winter: Back reef 2236.3617 8.9987 248.5216 0.0001 

Season=Summer 21.2733 12.7260 1.6716 0.1057 

Habitat=Outer reef  

Habitat=Seagrass  

143.6383 

-4.8617 

12.7260 

12.7260 

11.2870 

-0.3820 

0.0001 

0.7053 
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Intercept=Winter: Outer reef 2380.0000 8.9987 264.4838 0.0001 

Season=Summer -1.8333 12.7260 -0.1441 0.8865 

Habitat=Back reef  

Habitat=Seagrass  

-143.6383 

-148.5000 

12.7260 

12.7260 

-11.2870 

-11.6690 

0.0001 

0.0001 

     

Intercept=Winter: Seagrass 2231.5000 8.9987 247.9814 0.0001 

Season=Summer 16.3333 12.7260 1.2835 0.2099 

Habitat=Back reef  

Habitat=Outer reef  

4.8617 

148.5000 

12.7260 

12.7260 

0.3820 

11.6690 

0.7053 

0.0001 

     

Model 12:  mean Ωarg     

Intercept=Summer:Back reef 4.3069 0.1006 42.8300 0.0001 

Season=Winter 0.9476 0.1422 6.6633 0.0001 

Habitat=Outer reef  

Habitat=Seagrass  

0.2183 

0.1223 

0.1422 

0.1422 

1.5348 

0.8590 

0.0360 

0.0477 

     

Intercept=Summer:Outer reef 4.5252 0.1006 45.0006 0.0001 

Season=Winter -0.0030 0.1422 -0.0212 0.9833 

Habitat=Back reef  

Habitat=Seagrass  

-0.2183 

-0.0961 

0.1422 

0.1422 

-1.5349 

-0.6759 

0.0360 

0.0447 

     

Intercept=Summer:Seagrass 4.5252 0.1006 45.0056 0.0001 

Season=Winter -0.0030 0.1422 -0.0212 0.9833 

Habitat=Back reef  

Habitat=Outer reef  

-0.2183 

-0.0961 

0.1422 

0.1422 

-1.5348 

-0.6759 

0.0477 

0.1360 

     

Intercept=Winter: Back reef 5.2545 0.1006 52.2532 0.0001 

Season=Summer -0.9476 0.1422 -6.6633 0.0001 

Habitat=Outer reef  

Habitat=Seagrass  

-0.7323 

-0.4316 

0.1422 

0.1422 

-5.1496 

-3.0351 

0.0001 

0.0051 

     

Intercept=Winter:Outer reef 4.5221 0.1006 44.9707 0.0001 

Season=Summer 0.0030 0.1422 0.0212 0.9833 

Habitat=Back reef  

Habitat=Seagrass  

0.7323 

0.3007 

0.1422 

0.1422 

5.1496 

2.1145 

0.0001 

0.0435 

     

Intercept=Winter:Seagrass 4.8228 0.1006 47.9610 0.0001 

Season=Summer -0.3938 0.1422 -2.7692 0.0099 

Habitat=Back reef  

Habitat=Outer reef  

 

0.4316 

-0.3007 

0.1422 

0.1422 

3.0351 

-2.1145 

0.0051 

0.0435 

D| Model parameters to estimate the Coefficient of Variance (Cv) between sites of pH, pCO2, total 

alkalinity and Ωarg as a function of habitat for each lunar tidal cycle and season.  Study site was 

modelled as a random effect. From the model, results for lunar tidal cycle for each habitat are 

shown.  

Model Term Estimate SE t-value P-value 

Model 13:  ∆pH     

Intercept=Neap:Back reef 0.0094 0.0010 9.4498 0.0001 

Lunar Tidal Cycle=Spring -0.0001 0.0009 -0.1183 0.9061 

     

Intercept=Neap:Outer reef 0.0007 0.0010 0.6761 0.5006 

Lunar Tidal Cycle=Spring 0.0002 0.0009 0.1865 0.8525 
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Intercept=Neap:Seagrass 0.0184 0.0010 18.6383 0.0001 

Lunar Tidal Cycle=Spring -0.0019 0.0009 -2.0248 0.0456 

 

     

Model 14: ∆pCO2     

Intercept=Neap:Back reef 0.2577 0.0315 8.1857 0.0001 

Lunar Tidal Cycle=Spring -0.0323 0.0315 -1.0268 0.3071 

     

Intercept=Neap:Outer reef 0.0466 0.0315 1.4800 0.1421 

Lunar Tidal Cycle=Spring -0.0154 0.0315 -1.1228 0.6257 

     

Intercept=Neap:Seagrass 0.5067 0.0315 16.0979 0.0001 

Lunar Tidal Cycle=Spring -0.1056 0.0315 -3.3543 0.0011 

     

 

Model 15: ∆ Total alkalinity 

    

Intercept=Neap:Back reef 0.0273 0.0032 8.4261 0.0001 

Lunar Tidal Cycle=Spring -0.0002 0.0028 -0.0749 0.9405 

     

Intercept=Neap:Outer reef 0.0211 0.0032 6.5146 0.0001 

Lunar Tidal Cycle=Spring -0.0000 0.0028 -0.0117 0.9907 

     

Intercept=Neap:Seagrass 0.0314 0.0032 9.7131 0.0001 

Lunar Tidal Cycle=Spring 

 

-0.0007 0.0028 -0.2390 0.8116 

Model 16: ∆ Ωarg     

Intercept=Neap:Back reef 0.1362 0.0131 10.4236 0.0001 

Lunar Tidal Cycle=Spring -0.0011 0.0125 -0.0875 0.3905 

     

Intercept=Neap:Outer reef 0.0183 0.0131 1.4009 0.1644 

Lunar Tidal Cycle=Spring 0.0092 0.0125 0.7386 0.4619 

     

Intercept=Neap:Seagrass 0.2515 0.0131 19.2432 0.0001 

Lunar Tidal Cycle=Spring 

 

-0.0207 0.0125 -1.6580 0.1005 

E| Model parameters to estimate the mean between sites of pH, pCO2, total alkalinity and Ωarg as 

a function of habitat for each lunar tidal cycle and season.  Study site was modelled as a random 

effect. From the model, results for lunar tidal cycle for each habitat are shown.  

Model Term Estimate SE t-value P-value 

Model 17:  mean pH     

Intercept=Neap:Back reef 8.1904 0.0141 581.5556 0.0001 

Lunar Tidal Cycle=Spring -0.0287 0.0137 -2.0915 0.0391 

     

Intercept=Neap:Outer reef 8.1038 0.0141 575.4062 0.0001 

Lunar Tidal Cycle=Spring -0.0030 0.0137 -0.2175 0.8283 

     

Intercept=Neap:Seagrass 8.1645 0.141 579.7139 0.0001 

Lunar Tidal Cycle=Spring 

 

-0.0264 0.0137 -1.9189 0.0579 

Model 18:  mean pCO2     

Intercept=Neap:Back reef 259.4031 12.2144 21.2373 0.0001 

Lunar Tidal Cycle=Spring 23.9431 11.7524 2.0037 0.0479 

     

Intercept=Neap:Outer reef 339.2763 12.2144 27.7765 0.0001 
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Lunar Tidal Cycle=Spring 1.2367 11.7524 0.1052 0.9164 

     

Intercept=Neap:Seagrass 292.3756 12.2144 23.9368 0.0001 

Lunar Tidal Cycle=Spring 

 

22.6797 11.7524 1.9298 0.0567 

Model 19:  mean Total alkalinity     

Intercept=Neap:Back reef 2270.1467 12.2429 185.4259 0.0001 

Lunar Tidal Cycle=Spring -26.1384 12.2429 -2.1350 0.0353 

     

Intercept=Neap:Outer reef 2396.2482 12.2429 195.7258 0.0001 

Lunar Tidal Cycle=Spring -14.3740 12.2429 -1.1741 0.2432 

     

Intercept=Neap:Seagrass 2250.4127 12.2429 183.8140 0.0001 

Lunar Tidal Cycle=Spring 

 

-1.7462 12.2429 -0.1426 0.8869 

Model 20:  mean Ωarg     

Intercept=Neap:Back reef 4.6386 0.1255 36.9496 0.0001 

Lunar Tidal Cycle=Spring -0.1752 0.1255 -1.3958 0.1659 

     

Intercept=Neap:Outer reef 4.3338 0.1255 34.5222 0.0001 

Lunar Tidal Cycle=Spring -0.0816 0.1255 -0.6503 0.5170 

     

Intercept=Neap:Seagrass 4.5921 0.1255 -1.0634 0.0001 

Lunar Tidal Cycle=Spring 

 

-0.1821 0.1255 -1.4508 0.1500 
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Appendix 7| Abiotic stats, Little Cayman, Cayman Islands, Atlantic Ocean.  

Table S.5 | Abiotic variables (temperature, light, salinity and water velocity) LME model results.  

A|  Model parameters to estimate the Coefficient of Variation (Cv) between sites of  temperature, 

light, salinity and water velocity as a function of habitat for each season.  Study site was modelled 

as a random effect. 

Model Term Estimate SE t-value P-value 

Model 1:  Cv Temperature     

Intercept=Summer:Back reef 0.0232 0.0018 13.2336 0.0001 

Season=Winter 0.0054 0.0022 2.4905 0.0144 

Habitat=Outer reef  

Habitat=Seagrass  

-0.0200 

0.0059 

0.0022 

0.0022 

-9.2396 

2.7241 

0.0001 

0.8722 

     

Intercept= Summer:Outer reef 0.0032 0.0018 1.8248 0.7100 

Season=Winter -0.0001 0.0022 -0.0595 0.9527 

Habitat=Seagrass  0.0200 0.0022 9.2396 0.0001 

     

Intercept:Summer:Seagrass 0.0291 0.0018 16.5972 0.0001 

Season:Winter 0.0052 0.0022 2.4191 0.0174 

     

Intercept=Winter:Back reef 0.0286 0.0018 16.3088 0.0001 

Habitat=Outer reef  

Habitat=Seagrass  

-0.0256 

0.0057 

0.0022 

0.0022 

 

-11.7895 

2.6528 

0.0001 

0.0093 

Intercept= Winter:Outer reef 0.0031 0.0018 1.7514 0.0829 

Habitat=Seagrass  0.0313 0.0022 14.4423 0.0001 

     

Model 2:  Cv Light     

Intercept=Summer:Back reef 1.4924 0.0221 67.6216 0.0001 

Season:Winter 

Habitat=Seagrass  

-0.0003 

0.0004 

0.0291 

0.0291 

-0.0089 

0.0141 

0.9929 

0.8611 

     

Intercept=Summer:Seagrass 1.4928 0.0221 67.6401 0.0001 

Season=Winter -0.0075 0.0291 -0.2573 0.7978 

     

Intercept=Winter:Back reef 1.4922 0.0221 67.6099 0.0001 

Habitat:Seagrass -0.0068 0.0291 -0.2343 0.8155 

     

Model 3:  Cv Salinity     

Intercept=Summer:Back reef 0.0072 0.0028 25.964 0.0001 

Season=Winter -0.0004 0.0004 -0.8883 0.3820 

Habitat=Outer reef  

Habitat=Seagrass  

-0.0072 

0.0096 

0.0004 

0.0004 

-18.278 

24.2664 

0.0010 

0.0010 

     

Intercept= Summer:Outer reef 0.0003 0.0028 0.1156 0.9088 

Season=Winter -0.0001 0.0004 -0.0727 0.9426 

Habitat=Seagrass  0.0168 0.0004 42.5443 0.0010 

     

Intercept:Summer:Seagrass 0.0168 0.0028 60.2821 0.0001 

Season:Winter -0.0087 0.0004 -21.9920 0.0001 

     

Intercept=Winter:Back reef 0.0072 0.0003 25.9643 0.0001 

Habitat=Outer reef  -0.0072 0.0004 -18.2778 0.0001 
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Habitat=Seagrass  0.0096 

 

0.0004 20.1190 0.0010 

Intercept=  Winter:Outer reef 0.0001 0.0003 0.0128 0.9899 

 

Model 4: Cv Water Velocity     

Intercept=Summer:Back reef 0.2216 0.0188 11.7896 0.0001 

Season:Winter 

Habitat=Seagrass  

 

0.0368 

-0.0039 

0.0240 

0.0240 

1.5370 

-0.1628 

0.1291 

0.8712 

Intercept=Summer:Seagrass 0.1985 0.0188 10.5618 0.0001 

Season=Winter 0.0191 0.0240 0.8009 0.4261 

     

Intercept=Winter:Back reef 0.1848 0.0188 9.8313 0.0001 

Habitat:Seagrass 0.0137 0.0240 0.5734 0.5684 

     

B|  Model parameters to estimate the mean between sites of  temperature, light, salinity and water 

velocity as a function of habitat for each season.  Study site was modelled as a random effect. 

Model Term Estimate SE t-value P-value 

Model 5:  mean Temperature     

Intercept=Summer:Back reef 29.6948 0.1415 209.8489 0.0001 

Season=Winter -2.4907 0.1931 -12.8965 0.0001 

Habitat=Outer reef  

Habitat=Seagrass  

-1.2114 

0.1592 

0.1931 

0.1931 

-6.2726 

0.8241 

0.0001 

0.1232 

     

Intercept= Summer:Outer reef 28.4833 0.1415 201.2879 0.0001 

Season=Winter -0.0337 0.1931 -0.1747 0.8616 

Habitat=Seagrass  1.3706 0.1931 7.0967 0.0001 

     

Intercept:Summer:Seagrass 29.8539 0.1415 210.9737 0.0001 

Season:Winter -2.3948 0.1931 -12.3998 0.0001 

     

Intercept=Winter:Back reef 27.2040 0.1415 192.2472 0.0001 

Habitat=Outer reef  

Habitat=Seagrass  

1.2456 

0.2551 

0.1931 

0.1931 

6.4492 

1.3208 

0.0001 

0.1896 

     

Intercept=  Winter:Outer reef 28.4496 0.1415 201.0493 0.0001 

Habitat=Seagrass  

 

-0.9905 0.1931 -5.1284 0.0001 

Model 6: mean Light     

Intercept=Summer:Back reef 321.3705 8.2520 38.9447 0.0001 

Season:Winter 

Habitat=Seagrass  

-9.6979 

13.6489 

11.6700 

11.6700 

-0.8310 

1.1696 

0.4090 

0.2464 

     

Intercept=Summer:Seagrass 335.0194 8.2520 40.5987 0.0001 

Season=Winter -49.9503 11.6700 -4.2802 0.0001 

     

Intercept=Winter:Back reef 311.6727 8.2520 37.7695 0.0001 

Habitat:Seagrass 

 

-26.6036 11.6700 -2.2797 0.2590 

 

Model 7:  mean Salinity 

    

Intercept=Summer:Back reef 35.1697 0.2430 144.3421 0.0001 

Season=Winter -0.0400 0.0344 -1.1639 0.2543 

Habitat=Outer reef  

Habitat=Seagrass  

-0.1950 

-0.1767 

0.0344 

0.0344 

-5.6740 

-5.1405 

0.0001 

0.0001 
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Intercept= Summer:Outer reef 35.0016 0.2430 144.3179 0.0001 

Season=Winter -0.0017 0.0344 -0.0485 0.9617 

Habitat=Seagrass  0.0184 0.0344 0.5353 0.0010 

     

Intercept:Summer:Seagrass 35.0200 0.0243 144.0723 0.0001 

Season:Winter 0.2650 0.0344 7.7108 0.0001 

     

Intercept=Winter:Back reef 35.1567 0.0243 146.6961 0.0001 

Habitat=Outer reef  

Habitat=Seagrass  

-0.1567 

0.1283 

0.0344 

0.0344 

-4.5586 

3.7342 

0.0001 

0.0009 

     

Intercept=  Winter:Outer reef 35.0000 0.0243 144.2493 0.0001 

Habitat=Seagrass  

 

0.2850 0.0344 8.2928 0.0010 

Model 8: mean Water Velocity     

Intercept=Summer:Back reef 13.0231 0.7367 17.6784 0.0001 

Season:Winter 

Habitat=Seagrass  

4.8819 

0.1227 

0.9096 

0.9096 

5.3674 

0.1349 

0.0001 

0.8931 

     

Intercept=Summer:Seagrass 13.1458 0.7367 17.8450 0.0001 

Season=Winter 4.3171 0.9096 4.7464 0.0001 

     

Intercept=Winter:Back reef 17.9051 0.7367 24.3054 0.0001 

Habitat:Seagrass -0.4421 0.9096 -0.4861 0.6285 

     

C| Model parameters to estimate the Coefficient of Variance (Cv) between sites of  temperature, 

light, salinity and water velocity as a function of habitat for each lunar cycle and season.  Study 

site was modelled as a random effect. From the model, results for lunar cycle for each habitat are 

shown. 

Model Term Estimate SE t-value P-value 

Model 9:  Cv Temperature 

Intercept=Neap:Back reef 

 

0.0259 

 

0.0018 

 

14.2845 

 

0.0001 

Lunar Cycle=Spring 0.0001 0.0023 0.04159 0.9669 

     

Intercept=Neap:Outer reef 0.0038 0.0018 2.1197 0.0365 

Lunar Cycle=Spring -0.0014 0.0023 -0.6167 0.5389 

     

Intercept=Neap:Seagrass 0.0304 0.0018 16.8320 0.0001 

Lunar Cycle=Spring 0.0025 0.0023 1.1060 0.2714 

     

Model 10:  Cv Light 

Intercept=Neap:Back reef 

 

319.0138 

 

9.3139 

 

34.2515 

 

0.0001 

Lunar Cycle=Spring -4.9845 13.1718 -0.3784 0.7063 

     

Intercept=Neap:Seagrass 307.4276 9.3139 33.0075 0.0001 

Lunar Cycle=Spring 

 

5.2332 13.1718 0.3973 0.7063 

Model 10:  Cv Salinity 

Intercept=Neap:Back reef 

 

0.0071 

 

0.0016 

 

6.1313 

 

0.0001 

Lunar Cycle=Spring -0.0001 0.0016 -0.0140 0.9889 

     

Intercept=Neap:Outer reef 0.0003 0.0016 0.0261 0.9793 

Lunar Cycle=Spring -0.0001 0.0016 -0.0151 0.9880 
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Intercept=Neap:Seagrass 0.0123 0.0016 10.6860 0.0001 

Lunar Cycle=Spring -0.0003 0.0016 0.1717 0.8649 

     

Model 11:  Cv Water Velocity 

Intercept=Neap:Back reef 

 

15.2269 

 

0.8814 

 

17.2753 

 

0.0001 

Lunar Cycle=Spring 0.4745 1.2049 0.3938 0.6950 

     

Intercept=Neap:Seagrass 15.8102 0.8814 17.9371 0.0001 

Lunar Cycle=Spring 

 

-1.0116 1.2049 -0.8395 0.4042 

D| Model parameters to estimate the mean between sites of temperature, light, salinity and water 

velocity as a function of habitat for each lunar cycle and season.  Study site was modelled as a 

random effect. From the model, results for lunar cycle for each habitat are shown. 

Model Term Estimate SE t-value P-value 

Model 12:  mean Temperature 

Intercept=Neap:Back reef 

 

28.1361 

 

0.2696 

 

104.3593 

 

0.0001 

Lunar Cycle=Spring 0.6267 0.3813 1.6436 0.1034 

     

Intercept=Neap:Outer reef 28.4452 0.2696 105.5060 0.0001 

Lunar Cycle=Spring 0.0425 0.3813 0.1115 0.9115 

     

Intercept=Neap:Seagrass 28.2841 0.2696 104.9085 0.0001 

Lunar Cycle=Spring 0.7448 0.3813 1.9534 0.0536 

     

Model 13:  mean Light 

Intercept=Neap:Back reef 

 

319.0138 

 

9.3139 

 

34.2515 

 

0.0001 

Lunar Cycle=Spring -4.9845 13.1718 -0.3784 0.7063 

     

Intercept=Neap:Seagrass 307.4276 9.3139 33.0075 0.0001 

Lunar Cycle=Spring 

 

5.2332 13.1718 0.3973 0.6924 

Model 14:  mean Salinity 

Intercept=Neap:Back reef 

 

35.1600 

 

0.0417 

 

844.0201 

 

0.0001 

Lunar Cycle=Spring 0.0334 0.0589 0.5658 0.5760 

     

Intercept=Neap:Outer reef 35.0017 0.0417 840.2193 0.0001 

Lunar Cycle=Spring -0.0017 0.0589 -30.0283 0.9776 

     

Intercept=Neap:Seagrass 35.1750 0.0417 844.3802 0.0001 

Lunar Cycle=Spring -0.0450 0.0589 -0.7638 0.4514 

     

Model 15:  mean Water Velocity 

Intercept=Neap:Back reef 

 

15.2269 

 

0.8814 

 

17.2753 

 

0.0001 

Lunar Cycle=Spring 0.4745 1.2049 0.3938 0.6950 

     

Intercept=Neap:Seagrass 15.8102 0.8814 17.9371 0.0001 

Lunar Cycle=Spring -1.0116 1.2049 -0.8395 0.4042 
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Appendix 8| Statistical results for bioregion site comparison of environmental variables 

Table S.6| Mean and coefficient of variation (CV) comparison of environmental variables: carbonate chemistry (pH, total alkalinity and Ωarg), temperature, 

light, nitrates and salinity among habitats: 2-Way ANOVA with post hoc Tukey-Kramer test. 

Environmental 

Variable 

ANOVA Post hoc P-values 

SG Vs OR SG Vs BR SG Vs M OR Vs BR OR Vs M BR Vs M 

pH CV F3,36 = 103.07 

P< 0.0005*** 

P < 0.05* P < 0.05* P < 0.05* P < 0.005** P < 0 .001*** N/S 

pH mean 

(Total scale) 

F3,36 = 62.94 

P  < 0.0005*** 

P  < 0.0001***  N/S P < 0.005** P < 0.05* P < 0 .0005*** P < 0.001*** 

Total alkalinity CV 

 

F3,36 = 18.06 

P  < 0.0005*** 

P  < 0.005*** N/S P  < 0.02* N/S P  < 0 .006** N/S 

Total alkalinity mean 

(mol Kg/SW) 

F 3,36 = 172.35 

P  < 0.0005*** 

P < 0.0005*** N/S P < 0.005** P < 0.005*** P <  0.005** P < 0.001*** 

Ωarg CV F 3,36 = 87.51 

P  < 0.0005*** 

P < 0.0005*** P < 0.0004*** P < 0.02* P < 0.005** P <  0.0005*** P < 0.05* 

Ωarg mean F 3,36 = 60.31 

P  < 0.0005*** 

P < 0.015* N/S P < 0.0005*** P < 0.0001*** P <  0.0005*** P < 0.0005*** 

Temperature CV F 3,5 = 0.56 

P  = N/S 

P < 0.05* N/S N/S N/S P < 0.05* N/S 

Temperature mean 

(°C) 

F 3,36 = 1.48 

P  = N/S 

N/S N/S N/S N/S N/S N/S 

Light CV F 3,5 = 0.81 

P  = N/S 

N/S N/S N/S N/S N/S N/S 

Light DLI 

 

F 3,36 = 0.24 

P  = N/S 

N/S N/S N/S N/S N/S N/S 

Salinity CV F 3,5 = 1.51 

P  = N/S 

N/S N/S N/S N/S N/S N/S 

Salinity mean 

(ppm) 

F 3,36 = 32.44 

P < 0.0005*** 

N/S N/S P < 0.0005*** N/S P < 0.005** P< 0.0004*** 

Nitrates CV F 3,5 = 0.10 

P  = N/S 

N/S N/S N/S N/S N/S N/S 

Nitrates mean 

(M) 

F 3,36 = 68.51 

P  < 0.0005*** 

P < 0.005** N/S N/S P < 0.05* P < 0 .0005*** N/S 

N/S indicates a non-significant statistical difference with P > 0.05, *** indicates a significant statistical test with P < 0.001, ** indicates a 

significant statistical test with P < 0.01, * indicates a significant statistical test with P < 0.05. SG = Seagrass, OR = Outer-reef, BR = Back-reef 

and M = Mangrove. 
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Appendix 9| Exploration of changes in calcification associated with mean or Cv of pH, 

temperature and light.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S.4| Gross calcification in relation to temperature (a & b), light (c & d) and pH (e & 

f). All data plotted are mean values ± standard error (SE, n=5), except for pHCV (see main text) 

for the dominant coral species examined across non-reef habitats (seagrass, back-reef and 

mangrove) and outer-reef habitat for all bioregion sites. Regression is shown with 95 % 

confidence interval. 
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Appendix 10| Statistical results coral metabolic activity, bioregion site comparison.  

 

 

 

 

 

 

 

 

 

 

 

Table S.7| Model parameters to estimate daily net Photosynthesis (P) and Respiration (R) as a function of 

habitat (back-reef, outer reef control, seagrass, mangrove). Bioregion (Indian, Pacific and Atlantic Ocean sites) 

was modelled as a random effect.  

 

Metabolic 

Parameter 

Model terms Estimate SE t-value P-value 

P Intercept (Back-reef) 33.4788 3.5655 9.40 0.0001 

Habitat: Outer-reef 8.3802 4.0844 2.05 0.0408 

Habitat: Mangrove -5.1939 4.8633 -1.07 0.0257 

Habitat: Seagrass 

 

-9.5026 4.1681 -2.28 0.0314 

Intercept: (Seagrass) 23.9762 2.6463 9.06 0.0001 

Habitat: Outer-reef 17.8828 3.2096 5.57 0.0001 

Habitat: Mangrove 

 

4.3087 3.8931 1.11 0.0278 

Intercept: (Mangrove) 28.2849 3.4687 8.15 0.0001 

Habitat: Outer-reef 13.5741 

 

3.8553 3.52 0.0017 

R Intercept (Back-reef) 37.4524 2.6506 14.13 0.0001 

Habitat: Outer-reef 0.3681 2.5423 0.15 N/S 

Habitat: Mangrove -0.1021 3.1653 -0.03 N/S 

Habitat: Seagrass 

 

3.7217 2.6167 1.42 N/S 

Intercept: (Seagrass) 41.1742 2.1925 18.78 0.0001 

Habitat: Outer-reef -3.3536 1.9395 -1.72 N/S 

Habitat: Mangrove 

 

-3.8238 2.3961 -1.60 N/S 

Intercept: (Mangrove) 37.3504 2.6578 14.05 0.0010 

Habitat: Outer-reef 0.4702 2.3859 0.20 N/S 
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Appendix 11| Non-linear models used to analyse the lab manipulation data  

The results were analysed using an ANOVA in R software (R 237 Development Core Team, 

2011), and by multi-model selection framework 

 

ANOVA Linear models – Three ANOVA analyses were performed, main effects, second order 

interactions, and with third order interactions. As the experiment could not be fully factorial it 

was necessary to eliminate species-habitation interaction terms from the ANOVA.  In R this was 

written as: 

v ~1+ s+ h+ v+T + pH          [S4] 

v ~1+ (s+ h+ v+T + pH)2 - s :h          [S5] 

v ~1+ (s+ h+ v+T + pH)3 - s :h : (1+ v+T + pH)      [S6] 

 

Non-linear models – A series of non-linear models were applied (NL1-NL6, see Table S.8). The 

model used had the following structure: 

V =V0 ´ 1+ ass + ahh[ ]´

1+   T      bT     + bT ,v     v +   bT ,h  h( )

 +   pH    cpH   + cpH ,v   v +   cT ,h   h( )
 +T × pH dT ,pH + dT ,pH ,vv + dT ,pH ,hh( )

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

    [S7] 
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Table S.8| The parameters in the non-linear models (NL1-NL6).  

 

Variable NL1 NL2 NL4 NL6 

V0
 • • • • 

as  • • • • 

ah  • • • • 

bT  • • • • 

bT ,v
   • • 

bT ,h
    • 

cpH  • • • • 

cpH ,v
   • • 

cpH ,h
    • 

dpH ,T
  • • • 

dpH ,T ,v
   • • 

dpH ,T ,h
    • 

Further details: 

NL1 – control conditions depend on species & habitat stress terms for T and pH 

 

NL2 – control conditions depend on species & habitat stress terms for T,  pH and 

the interaction between T&pH 

 

NL4 – control conditions depend on species & habitat stress terms for T,  pH and 

the interaction between T&pH and each stress term depends on variability 

 

NL6 – control conditions depend on species & habitat stress terms for T,  pH and 

the interaction between T&pH and each stress term depends on variability and 

habitat 

 

T is temperature, pH is the pH treatment, h is the habitat where the colonies 

originated, v is the level of variability the corals were exposed to within the 

treatment (e.g. high or low variability conditions representative of the seagrass or 

outer-reef respectively). 
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Linear versus non-linear model comparison – By expanding the non-linear model as a power 

series and collecting like terms, the parameters of the non-linear can be related to the parameters 

of the linear model. For example, expanding equation 2 and collecting terms that involve only 

h ×T  yields:  

V0 ahbT + bT ,h( )  T ×h.         [S8] 

The term evaluates to 10.17, which falls into the confidence interval of the habitat interaction 

term in the linear model AN3 (Table S.9; 12.48 [3.8, 21.1]).  This demonstrates how the non-

linear is able to organise the terms differently. In this case, the temperature habitat interaction in 

a linear mode can be separated into two parts: one from differences in the ‘base-line’ due to 

habitat ( ahbT ) and one from differences in the stress response due to habitat (b T ,h
).   
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Table S.9| Resolution of linear (AN3) and non-linear (NL6) model outputs. 

        Maximum likihood   

 

 

 NL6 

expansion 

AN3     

 Variable     Est CI lower CI upper sig 

1st order (Intercept) 299.10 Y 297.19 291.1 303.3 * 

spc 19.44 Y 23.11 17.0 29.2 * 

hab -1.20 Y -2.85 -9.0 6.9   

var     -0.01 -5.9 0.0   

temp 24.83 Y 31.03 22.4 39.7 * 

pH -51.74 Y -50.66 -59.3 -42.0 * 

spc:var     2.07 -5.0 7.4   

spc:temp 1.61 N -9.81 -18.5 -1.1 * 

2nd order spc:pH -3.36 Y -4.70 -13.4 11.3   

hab:var     -0.23 -5.5 0.6   

hab:temp 10.07 Y 8.92 0.3 17.6 * 

hab:pH 11.57 Y 12.48 3.8 21.1 * 

var:temp 10.17 Y 12.02 4.1 19.9 * 

var:pH -18.84 Y -24.64 -32.6 -16.7 * 

temp:pH -79.26 Y -86.38 -98.6 -74.1 * 

spc:var:temp 0.66 Y -4.19 -10.3 1.9   

spc:var:pH -1.22 N 7.44 1.3 13.6 * 

3rd order spc:temp:pH -5.43 N 8.28 -4.0 20.5   

 hab:var:temp -0.04 Y 2.85 -6.9 9.0   

 hab:var:pH 0.08 Y -5.04 -11.2 1.1   

 hab:temp:pH 1.83 Y -4.58 -16.8 11.0   

 var:temp:pH 11.07 Y 12.57 2.6 22.6 * 
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