
1

Monte Carlo Tree Search
Applied to Co-operative Problems

Piers R. Williams, Joseph Walton-Rivers, Diego Perez-Liebana, Simon M. Lucas

Abstract—This paper highlights an experiment to see how
standard Monte Carlo Tree Search handles simple co-operative
problems with no prior or provided knowledge. These problems
are formed from a simple grid world that has a set of goals, doors
and buttons as well as walls that cannot be walked through. Two
agents have to reach every goal present on the map. For a door
to be open, an agent must be present on at least one of the
buttons that is linked to it. When laid out correctly, the world
requires each agent to do certain things at certain times in order
to achieve the goal. With no modification to allow communication
between the two agents, Monte Carlo Tress Search performs well
and very “purposefully” when given enough computational time.

I. INTRODUCTION

The research problem studied in this paper consists of how
General Game Playing (GGP) agents perform when trying
to solve a simple co-operative problem without co-operative
abilities, with a focus on Monte Carlo Tree Search (MCTS).
GGP is the field of writing Artificial Intelligence (AI) agents
that can play a multitude of games without being written
specifically for each one individually [1]. GGP in real time
video games has a popular competition [2] run frequently.

Games that feature co-operation of some form between
human players and AI agents are commonplace. Most however
feature very limited forms of co-operation that are typi-
cally scripted such as in most First-Person Shooter (FPS)
games. Typically FPS games give the mere impression of co-
operation, though any player that looks carefully at it will see
the tell tale signs of scripting. Where FPS games typically
excel at co-operation is in online modes that enable teams of
humans to play against each other. Some games even provide
squad structures and communication allowing direct command
for the purpose of better co-ordination as in Battlefield 2142
(EA Digital Illusions CE, 2006). Real-Time Strategy (RTS)
games also often have a small number of features designed
to facilitate communication in a bid to facilitate co-operation.
Two games that stand out for co-operation are Rise of Nations
(Big Huge Games, 2003) and Empire Earth II (Mad Doc
Software, 2005). Rise of Nations allowed a human and AI
player to operate the same set of units and buildings, though
no communication was possible at all. This allowed a form of
co-operation but the AI operated to its own agenda. Empire
Earth 2 allowed for humans and AI agents to co-operate by
letting plans be drawn up between them that could also be
followed by both the human and AI agent. These allowed a

All authors are with the School of Computer Science and Elec-
tronic Engineering, University of Essex, Colchester CO4 3SQ, UK; email:
{pwillic,jwalto,dperez,sml}@essex.ac.uk).

fairly complex set of instructions to be created, despite the
simple interface.

A highly popular game that had an entire mode designed
for co-operation between humans was Portal 2 (Valve, 2011).
This featured human sized lab test mazes with elements
that required players to work together by activating buttons,
moving cubes and using intra-dimensional portals to get to
the end goal. Both players were required to reach the goal in
order to complete the level.

Creating GGP agents that can co-operate with other players
would open the door for more flexible agents in games that
can work together with human players. This experiment tests
how well current techniques can cope without specifically co-
operating with each other.

A. Monte Carlo Tree Search

MCTS is a Tree Search algorithm originally proposed in
2006 [3], [4], [5]. MCTS operates in the action space, building
an asymmetric tree in memory that biases the search towards
the most promising parts of the search space. MCTS estimates
the theoretic value of the visited states by performing self-play
from the state in the node, to the end of the game. The basic
steps for MCTS are:

1) Selection - Selection is the stage where the algorithm
navigates the search tree, selecting optimal nodes (based
on the Tree Policy) until it reaches a leaf node.

2) Expansion - Expansion is the stage whereby the leaf
node is expanded by adding one of the remaining child
states if it is not a terminal node (game end state).

3) Simulation - Simulation is the stage where the algorithm
forwards the model until a result is achieved. Their is
usually a policy that defines how the simulation is made,
with the simplest being random possible moves.

4) Backpropagation - Backpropagation is the stage where
the results of the simulation are propagated up the tree,
so that they can influence the selection phase.

MCTS [6] has been applied to a wealth of domains and is
one of the primary algorithms in use for GGP [7]. Primary
advantages are that, when given a sufficient forward model,
MCTS does not require any strategic knowledge about the
game itself in order to play.

Standard MCTS plays best when it is able to search far
enough to locate states that provide a reward. MCTS tends
to stumble when the time or search depth limit given to it is
not sufficient to allow it to locate any sequence of actions that
provides a reward in order to differentiate the root’s children
[8]. When MCTS can not find any single state that contained

219



2

a reward, all children of the node will contain identical values
and the algorithm will be forced to make a random choice.

The rest of this paper is structured as follows. Section II
describes the problem and the experiment, including the AI
controllers that were used. Section III describes the results of
the experiment and Section IV provides a discussion of the
results. Section V concludes and introduces avenues of future
research.

II. THE EXPERIMENT

The main premise was to put MCTS in a situation where
it would rely on other AI Agents in order to achieve its
objectives, as well as provide a code base for further work
with communication between Agents. In order to do this, a
problem domain was created.

A. The Problem Domain

We created the following problem domain that is a simple
grid world consisting of various objects:

• Floor - Floors are passable, and are rendered in Grey.
• Walls - Walls are impassable, and are fixed in position.

Walls are rendered in Black.
• Agents - Agents are the moving objects that can activate

buttons and the goal. Agents are rendered in dark Yellow
• Doors - Doors can either be open or closed. When open,

the door is passable. When closed, the door is impassable.
Doors are open whilst an Agent is activating a linked
Button. If the Agent stops activating the Button the Door
will close. Doors are rendered in Blue when closed, and
are invisible when open.

• Buttons - Buttons are passable, and when an Agent is
on the Button it will activate and open the linked Door.
Buttons are rendered in Red

• Goals - Goals are passable and reward all Agents with
a portion of the score. All Goals are worth the same
amount and the maximum score of 1 is achieved when
every Agent has visited every Goal at least once. Re-
visiting a Goal has no effect. All Agents are aware of the
current score achieved, and therefore can calculate if a
Goal is reached. Goals are rendered in Bright Yellow

The Agents are provided with a forward model, that allows
simulation of potential action pairs up to the end of the game.
The Agents are not allowed to directly query any information
about the game state other than the score at any given state
(current or simulated). There is no way to determine the
presence of in-game objects other than potentially the Goal
due to its effect on score.

Each Agent is able to make a single action in each game
tick. Each agent, after receiving the state of the game, must
return a valid action. Once all Agents have returned an action,
the game is updated with these moves.

The actions are implemented sequentially: if two Agents
return actions that result in occupying the same space, the
Agent with the lowest ID number will succeed while the other
Agent will fail and execute a No-Op. The available 5 actions
are:

Fig. 1: Map Single Door 1

• Left - This will move the Agent one grid square to the
left. (-1, 0)

• Right - This will move the Agent one grid square to the
right. (1, 0)

• Up - This will move the Agent one grid square up. (0,
-1)

• Down - This will move the Agent one grid square down.
(0, 1)

• No-Op - This will not move the Agent. It will remain in
the same location as the previous game state.

All levels are defined by a simple text file format.
The problems are designed to require Agents to co-operate

in order to achieve their goals. Unlike other domains where
MCTS can solve tasks at its own pace and by itself, this
domain requires the agents to sometimes sit patiently on a
button for another Agent to do something else.

We feel that this creates a very interesting problem domain,
due to placing each Agent that is typically designed to solve
problems by themselves in an environment where they must
rely on another Agent performing certain sequences of actions
without being able to communicate that sequence or anything
else.

B. Tournament

For the main data collection, we ran a round robin tourna-
ment of maps and Agents. Each Agent was paired with all 7
Agents (including a copy of itself) and played 47 games on
each of the 7 maps.

1) Maps: The 7 maps that were included in the tournament
were as follows:

a) SingleDoor: This map, depicted in Figure 1, is a basic
map with two rooms, a single door and a button on either side.

b) Pathfinding: This map, depicted in Figure 2, is the
same as SingleDoor but without the Doors and Buttons. This
has the aim of testing the Agent’s ability to solve the simplest
problem.

c) SymmetricSingleDoor: This map, shown in Figure 3,
is a modification of the SingleDoor - making the map more
symmetric and the action parts closer together.

1Displayed numbers are the ID numbers - Button ID 0 will open Door ID
0 but not Door ID 1

220



3

Fig. 2: Map Pathfinding

Fig. 3: Map Symmetric Single Door

Fig. 4: Map Extended Side

d) ExtendedSide: This map, shown in Figure 4, is an
extension of SingleDoor with a second Goal and some extra
walls in the game. Spreading the action parts away from the
door and buttons is the design after this one.

e) SideBySide: This map, illustrated in Figure 5, is a
modification of SingleDoor, including a second Goal and
making the map partly mirrored. Each Agent begins in a
separate room to each other instead of together.

f) Airlock: This map (see Figure 6) is designed to give
wildly different roles to each AI: the top Agent would have
to travel through two doors (like an airlock) that the bottom
agent had access to the linked Buttons. Then the top Agent
could collect the reward and allow the bottom Agent access to
the Goal.

Fig. 5: Map Side By Side

Fig. 6: Map Airlock

Fig. 7: Map Butterfly

g) Butterfly: This map (see Figure 7) is a map with two
rooms each, with a Goal and a door. This was designed to
force each Agent to be let into the Goal room, and out of it
again.

2) AI Controllers: A set of AI Controllers were created
in order to attempt to solve the problem domain. None of the
agents have the ability to communicate with another agent and
each agent is managed by a single controller.

a) Random: The random controller simply chooses one
of the possible 5 actions. This is one of the simplest to
implement and run.

b) MCTS: The MCTS controller is a simple implemen-
tation of Upper Confidence bound applied to Trees (UCT),
with a fixed number of rollouts, UCT tree search depth limit
and rollout border. The rollout border is how far in total
the forward model will be allowed to progress before the

221



4

Budget Rollouts
UCT
Search
Limit

Rollout
Border

Small 75 3 15
Medium 200 5 30
High 500 10 45

TABLE I: Table of parameters for the 3 MCTS players

game state is evaluated. No knowledge about the game is
provided and the assumption is made that the other player will
play randomly. The fixed rollout border makes a significant
improvement in iterations per decision (from 1-3 to 500-600
in 40ms 2). This greatly improves the ability of MCTS to make
informed decisions. The score at the end of a rollout is taken
from the game state - so if MCTS does not see any player reach
a goal, all branches will be equal. For the tournament, three
parameter sets were chosen for comparison and are shown in
Table I.

c) Macro Action Genetic Algorithm (GAController):
The Genetic Algorithm (GA) algorithm was selected for its
simplicity and had Macro Actions added in order to improve
the forward search capability as well as the amount of com-
putation time per decision available to it. The Macro Action
Genetic Algorithm (MAGA) used a population size of 10 and
tournament selection of 3. Each candidate was a string of
15 actions - with each action performed 3 times in a row.
This meant the MAGA could ”see” 45 ticks in the future. The
design of the MAGA algorithm was inspired by Perez et al
[9].

d) Variable Macro Action Genetic Algorithm (VarGA):
The Variable Macro Action GA was created to try to solve the
shortcomings of MAGA. The primary premise was to allow
the GA to evolve the individual macro action lengths and the
length of the overall sequence (number of macro actions). The
main technique used was a 1 + 1 Evolutionary Strategy (ES)
[10]. A 1 + 1 ES is a very simple GA that maintains a single
candidate. On each iteration, the mutation operator is applied
to this individual, and it is saved as the new best candidate in
case of an improvement in fitness (and discarded otherwise).
This kind of ES is much simpler than a full GA, requires much
less memory and due to a small computational cost within each
iteration, is able to use more of the available time budget.

The algorithm was bounded by a number of parameters
(shown in Table II), and a further tuning of these is a source
of possible future work in order to explore the potential of
this algorithm.

III. RESULTS

Figure 8 shows the ability of each Agent to solve a simple
path finding problem. The GAcontroller, with its macro ac-
tions, is hindered by its inability to make single step moves
and has trouble actually walking straight to the target. The
VariGA does significantly better, due to its ability to perform
single step moves. Figure 9 shows that most of the controllers
really struggle when the Door and Buttons are added. This

2Intel Core i5-3570, 8GB RAM, Windows 7 Enterprise 64bit

Param Controls Value
minNum Number of Macro Actions 3
MaxNum Number of Macro Actions 10
minLength Length of Macro Actions 1
maxLength Length of Macro Actions 5
numChance Chance of altering Number 0.25
lengthChance Chance of altering each length 0.8
actionChance Chance of altering each action 0.75

TABLE II: Table of parameters for the Variable Macro Action
Genetic Algorithm

Fig. 8: Average ticks taken to complete Pathfinding when
paired only with identical Agents

Fig. 9: Average ticks taken to complete SingleDoor when
paired only with identical Agents

indicates that the challenge of the task is high, although
perhaps remarkable that MCTS is able to solve the task.

Figure 10 shows the average score that each AI Agent
achieved over all the maps. The two more powerful MCTS
Agents performed the best, doing much better than the com-
petition. Figure 11 shows a similar result, with the more
powerful Agents typically completing the maps in fewer ticks.
RandomController is the only deviant here - it outperformed
the GA’s in score but was worse in average ticks. Comparing
the AI Agents when paired only with themselves in Figure
12 and Figure 13. The good results for RandomController are
potentially due to the fact that the 3 MCTS controllers and 2
GA algorithms all based their decisions on having Random as
an accomplice.

222



5

Fig. 10: Average score of each AI Agent over all pairings over
all the Maps

Fig. 11: Average Ticks taken for each AI Agent over all
pairings over all the Maps

Fig. 12: Average Scores for each AI Agent paired with itself
over all the Maps

Airlock - shown in Figure 6 - poses a particular problem for
many of the agents (see Figure 14). The asymmetric nature of
the level, and the delayed reward caused great difficulty for
the Agents. Relying on two button presses and the other agent
to get through the open doors - in order - greatly reduced
performance. The top agent, High MCTS, only managed an
average score of 0.44 compared to its total average of just
over 0.8.

Fig. 13: Average Ticks taken for each AI Agent paired with
itself over all the Maps

Fig. 14: Average Score for each AI Agent paired with itself
over Airlock

IV. DISCUSSION

A. Random Assumptions

The MCTS and AI algorithms are required to run simula-
tions of the game state in order to function. Even just a single
look ahead of this problem domain requires the algorithm to
make a selection of what the other player would do. In all
cases, the assumption of a random strategy was chosen due to
the availability only of agents that could play generally. Whilst
nesting these could enhance play, as explored by Tristan
Cazenave [11], it comes at a significant computational cost
and must in the case of GGP feature a very simple or Random
player at the base of the stack. Random is exceedingly fast to
calculate, and provides the ability for techniques like MCTS
to sample how its behaviour works almost regardless of what
the other agent does. This gives MCTS the ability to make
moves that it believes would help a worst case scenario player
- something that in this problem domain is likely to also help
a more intelligent player. When MCTS is sitting on the button,
an intelligent player would go through the open door and a
random player would eventually go through it. MCTS even
has the option of locking the random player on the other side,
forcing it to eventually complete some other task.

223



6

B. MCTS

MCTS performed very well in this problem domain. As
seen above, in Figure 13, the medium and high budget
implementations provided the two quickest completion times
across all maps. The differences shown were significant as
well as being the only two agents to complete on average
in under 1000 ticks. Figure 12 showed that the medium and
high budget implementations scored significantly better than
all other agents.

One possible reason for MCTS scoring so well in this
problem domain is its use of statistics over hundreds and
thousands of simulations to provide it with the ability to act
in such a way that it handles all eventualities. Statistically,
in certain situations MCTS would only see rewards in the
tree when it was situated on a Button. This tended to cause
the MCTS to travel towards Buttons, increasing the possibility
that its own simulations would cause it to be situated on the
button. Eventually, most other AI Agents would cross through
the open door.

C. GA

The two GA algorithms did not perform very well in this
problem domain. As seen in Figure 12 and Figure 13, when
tasked with solving the problem domain with another identical
agent, neither the GAController or VariGA performed well
at all. The VariGA only performed significantly better than
either RandomController or GAController in Pathfinding. In
all other cases, VariGA performed similarly to the standard
GAController. The ability to mutate the lengths of individual
action sequences made the VariGA a more flexible pathfinder
that the GAController but did not aid its ability to solve the
co-operative problems present elsewhere in the experiment.

The GA algorithms do not have the stored tree structure
of MCTS with which to gain the statistical model for what
happens when they pursue certain actions. This leads to a
seemingly poor performance for the GA despite GA and
MCTS typically performing equally well in other domains.

D. Random

The RandomController performed poorly in this problem
domain. On average, the RandomController finished under the
2000 tick limit and scored less than half the maximum on
average.

E. A* Search

A* search was considered to be unsuitable for this domain,
as searching across the action space of two Agents was far too
high a branching factor.

V. CONCLUSIONS

In this paper, we found that a strong MCTS player can solve
simple cooperative problems without requiring communication
between agents. We also found that a number of other AI
techniques experienced difficulty when the problem became
cooperative. We hypothesised that MCTS’s use of a stored tree
guiding its explorations (something that genetic algorithms

lack) was a major advantage in solving problems that rely on
the other agent. Genetic algorithms were found to perform
poorly in the experiment, despite being capable of finding
the goal without the co-operative obstacles. Further work is
required in this area to determine exactly why MCTS performs
well.

A. Further Work

There is scope for more work in a number of areas.
1) Communication: More work can be conducted in the

writing of AI’s to use communication in order to complete
these challenges better amongst themselves. A framework for
communication would be devised - with the requirement for
fairly GGP like restrictions in mind. Use of the communication
framework would need to likely be learned by the Agents
during play, posing a particular challenge for the future.

2) Optimisations: Future work should also include some
work to ensure that the AI Agents have their parameters
set correctly. The High MCTS performed well - showing the
power of having the correct parameters compared to the Low
MCTS. The VariGA has 7 parameters, and it is possible that by
fine tuning their values, a higher performance could be found.

3) Problem Domain: More work can also be done on
experimenting with the problem domain itself. Expanding the
object types to include different techniques such as pickup-
able objects that can be placed on Buttons, Buttons that remain
active for a period of time after vacating them, as well as
Doors that will be open permanently if all (or a subset of)
Buttons are activated. The achievable scope modifying the
problem domain is fairly limitless.

REFERENCES

[1] M. Genesereth, N. Love, and B. Pell, “General game playing: Overview
of the AAAI competition,” AI magazine, vol. 26, no. 2, p. 62, 2005.

[2] D. Perez, S. Samothrakis, J. Togelius, T. Schaul, S. Lucas, A. Couëtoux,
J. Lee, C.-U. Lim, and T. Thompson, “The 2014 General Video Game
Playing Competition,” IEEE Transactions on Computational Intelligence
and AI in Games, p. (to appear) DOI: 10.1109/TCIAIG.2015.2402393,
2015.

[3] R. Coulom, “Efficient Selectivity and Backup Operators in Monte-Carlo
Tree Search,” in Computers and games. Springer, 2007, pp. 72–83.

[4] L. Kocsis and C. Szepesvári, “Bandit Based Monte-Carlo Planning,” in
Machine Learning: ECML 2006. Springer, 2006, pp. 282–293.

[5] L. Kocsis, C. Szepesvári, and J. Willemson, “Improved Monte-Carlo
Search,” Univ. Tartu, Estonia, Tech. Rep, vol. 1, 2006.

[6] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, S. Colton et al.,
“A Survey of Monte Carlo Tree Search Methods,” Computational
Intelligence and AI in Games, IEEE Transactions on, vol. 4, no. 1,
pp. 1–43, 2012.

[7] H. Finnsson and Y. Björnsson, “Simulation-Based Approach to General
Game Playing,” in AAAI, vol. 8, 2008, pp. 259–264.

[8] D. Perez, P. Rohlfshagen, and S. M. Lucas, “Monte Carlo Tree Search:
Long-term versus Short-term Planning,” in Computational Intelligence
and Games (CIG), 2012 IEEE Conference on. IEEE, 2012, pp. 219–
226.

[9] D. Perez, S. Samothrakis, S. Lucas, and P. Rohlfshagen, “Rolling
Horizon Evolution versus Tree Search for Navigation in Single-Player
Real-Time Games,” in Proceedings of the 15th annual conference on
Genetic and evolutionary computation. ACM, 2013, pp. 351–358.

[10] T. Bäck, D. Fogel, and Z. Michalewicz, Eds., Evolutionary Computation
1: Basic Algorithms and Operators. Institute of Physics Publishing,
Bristol, 2000.

[11] T. Cazenave, “Reflexive Monte-Carlo Search,” in Proc. Comput. Games
Workshop, 2007, pp. 165–173.

224


