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� Emiliania huxleyi was generally more sensitive than Chlorella vulgaris to surrogate NAs.
� Surrogate NAs at 10e50 mg L�1 inhibited FV/FM and growth in E. huxleyi but not C. vulgaris.
� FV/FM in C. vulgaris and E. huxleyi was not inhibited by the AEO fraction of OSPW.
� The AEO fraction of OSPW at �10 mg L�1 stimulated cell growth in E. huxleyi.
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a b s t r a c t

Naphthenic acids (NAs) are among the most toxic organic pollutants present in oil sands process waters
(OSPW) and enter marine and freshwater environments through natural and anthropogenic sources. We
investigated the effects of the acid extractable organic (AEO) fraction of OSPW and individual surrogate
NAs, on maximum photosynthetic efficiency of photosystem II (PSII) (FV/FM) and cell growth in Emiliania
huxleyi and Chlorella vulgaris as representative marine and freshwater phytoplankton. Whilst FV/FM in
E. huxleyi and C. vulgaris was not inhibited by AEO, exposure to two surrogate NAs: (40-n-butylphenyl)-4-
butanoic acid (n-BPBA) and (40-tert-butylphenyl)-4-butanoic acid (tert-BPBA), caused complete inhibition
of FV/FM in E. huxleyi (�10 mg L�1 n-BPBA; �50 mg L�1 tert-BPBA) but not in C. vulgaris. Growth rates and
cell abundances in E. huxleyi were also reduced when exposed to �10 mg L�1 n- and tert-BPBA; however,
higher concentrations of n- and tert-BPBA (100 mg L�1) were required to reduce cell growth in C. vulgaris.
AEO at �10 mg L�1 stimulated E. huxleyi growth rate (p � 0.002), yet had no apparent effect on
C. vulgaris. In conclusion, E. huxleyi was generally more sensitive to NAs than C. vulgaris. This report
provides a better understanding of the physiological responses of phytoplankton to NAs which will
enable improved monitoring of NA pollution in aquatic ecosystems in the future.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The Athabasca oil sands deposit in Alberta, Canada is one of the
largest reservoirs of bitumen in the world, covering an area over
100,000 km2. Oil sands mining operations currently generate 1.9
r Ltd. This is an open access articl
million barrels of oil per day and production is expected to increase
to 4.8 million barrels by 2030 (CAPP, 2011). Such large-scale in-
dustrial operations inevitably have severe environmental impacts.
During oil sands mining, large quantities of oil sands process water
(OSPW) are generated which are stored in vast tailings ponds.
These ponds contribute to the contamination of local aquatic eco-
systems (Headley and McMartin, 2004) and pose a threat to envi-
ronmental and human health (Siddique et al., 2011). The OSPW
hydrocarbons comprise mainly asphaltenes, aromatic compounds
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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(typically high molecular weight), alkanes and naphthenic acids
(Whitby, 2010; Strausz et al., 2011). Naphthenic acids (NAs)
comprise of mixtures of aliphatic, alicyclic and aromatic carboxylic
acids, which demonstrate acute and chronic toxicity to several or-
ganisms including fish (Young et al., 2007), plants (Kamaluddin and
Zwiazek, 2002; Armstrong et al., 2008), bacteria (Frank et al., 2008;
Johnson et al., 2011, 2012) and phytoplankton (Leung et al., 2003).
Establishing the environmental impact of NA contamination pre-
sents a considerable challenge, since NAs may enter marine and
freshwater environments through natural seepages and anthro-
pogenic sources such as discharge from oil refineries and oil
spillage events (Brient et al., 1995; Yergeau et al., 2012).

Over the last decade, measurements of chlorophyll fluorescence
have become a routine technique for monitoring photosynthetic
performance in both higher plants and algae (Baker, 2008). The
dark-adapted parameter FV/FM is a measure of the maximum effi-
ciency of photosystem II (PSII) photochemistry. Changes in the
value of FV/FM provide a simple and rapid way to monitor abiotic
and biotic stress in photosynthetic organisms (Baker, 2008;
Murchie and Lawson, 2013). Chlorophyll fluorescence measure-
ments (e.g. FV/FM) have previously been used in several plant and
algal studies investigating the toxicity of heavy metals (Lu et al.,
2000) and polycyclic aromatic hydrocarbons (PAHs) (Huang et al.,
1997). However, to our knowledge there are no studies that have
investigated the effects of OSPW and NAs on FV/FM.

In the present study, the marine alga Emiliania huxleyi and the
freshwater alga Chlorella vulgaris were selected as representative
phytoplanktonic organisms, since both are biogeographically
widespread in their respective environments. The present study
aimed to investigate the effects of the acid extractable organic
fraction (AEO) of OSPWand individual surrogate NAs, on maximum
photosynthetic efficiency of PSII (FV/FM) and cell growth in
E. huxleyi and C. vulgaris. Such information is crucial, as it will
provide a better understanding of the physiological responses of
phytoplankton to OSPW and NAs, thus enabling improved moni-
toring of NA pollution in aquatic ecosystems.

2. Materials and methods

2.1. Sources of OSPW and NAs

Experiments were conducted with surrogate NAs associated
with petroleum acids or OSPW and the AEO fraction of OSPW. Two
surrogate NAs used in this study were (40-n-butylphenyl)-4-
butanoic acid (n-BPBA) and (40-tert-butylphenyl)-4-butanoic acid
(tert-BPBA) and were synthesized using a modified Haworth syn-
thesis (Smith et al., 2008). OSPWwas collected at a 2 m depth from
a Suncor tailings pond (courtesy of L. Gieg, University of Calgary,
Canada). The AEO fraction of OSPW was extracted from 1 L OSPW
using an ethyl acetate liquideliquid extraction procedure and the
total acid concentration determined by GCeMS as described pre-
viously (Johnson et al., 2011). NA and AEO stock solutions were
prepared using 0.1 M NaOH to final concentrations of 1, 10, 50 or
100 mg L�1 (media pH was adjusted to 7.5 for enrichment solution
with artificial water (ESAW)media or 7.1 for BG11 freshwatermedia
immediately following addition). NA concentrations were selected
to include the highest concentration generally observed in OSPW
(Holowenko et al., 2002).

2.2. Media and growth conditions

Stock cultures of E. huxleyi (strain CCMP 370 e a non-coccolith
producing strain) and C. vulgaris (strain CCAP/211/12) were ob-
tained from the University of Essex culture collection. Both strains
were cultured using axenic practices in low light using cool white
fluorescent tubes with a light dark cycle of 14:10 at a photon flux
density of 150 mmol m2 s�1 in a controlled environment growth
room (Fitotron PG660, Sanyo). E. huxleyi cultures were grown in 1 L
of 0.2 mm filtered ESAW media, pH 7.5 (Berges et al., 2001, 2004),
and C. vulgaris cultures were grown in 1 L of 0.2 mm filtered BG11
freshwater media, pH 7.1 (Berges et al., 2004). Cultures were
incubated at 16 �C (within the range for growth of E. huxleyi
(https://NCMA.bigelow.org) and C. vulgaris (Nowack et al., 2005;
Schluter et al., 2006), for a total of eight days and harvested for
experimental treatments during exponential growth. Triplicate
100 mL sterile serum bottles (SigmaeAldrich) containing 75 mL
filtered media were inoculated simultaneously with either
E. huxleyi or C. vulgaris at an initial cell density of 6� 104 cells mL�1.
Cells were acclimated to experimental conditions for 24 h prior to
the addition of NAs. Day zero measurements were taken immedi-
ately prior to NA addition. Control cultures of E. huxleyi and
C. vulgaris were inoculated into filtered EASW or BG11 media
respectively, containing no NAs. Procedural controls containing
75 mL of 0.1 M NaOH (Fisher Scientific) were also established (with
media pH adjusted to 7.5 for ESAWor 7.1 for BG11 immediately after
addition). Killed controls for all treatments were prepared by
heating cultures of E. huxleyi and C. vulgaris to 60 �C for 1 h before
NA addition and incubation.

2.3. Maximum photosynthetic efficiency (FV/FM) measurements

Sub-samples (2 mL) were removed daily over the eight day
exposure period and dark adapted for 30 min before measuring FV/
FM, using a Fasttracka II Fast Repetition Rate Fluorometer with a
Fastact system (Chelsea Instruments, Molesey, UK).

2.4. Cell abundance and light microscopy

Cell density and cell volume measurements were calculated
daily using a Z2 Coulter Particle and Size Analyser (Beckman
Coulter, CA, USA). Media blanks were used to account for non-
biological particles in the media. Cell fragments were excluded
from coulter counter analysis by including a lower size limit for
detection. Growth rates were calculated between days zero and
three, during the exponential growth phase of both algae. All cul-
tures were examined by light microscopy on day six using an
Olympus BX41 brightfield microscope fitted with a Colorview
camera and imaging system (Colorview II).

2.5. NA extraction and gas chromatography mass spectrometry
analysis

The cultures that demonstrated significant growth were ana-
lysed further for NA degradation as follows: sub-samples (15 mL)
were removed at day eight and replicates were pooled together in
order to obtain sufficient volume for NA extraction. Killed controls
were also extracted for comparison. NAs were extracted using ethyl
acetate as described previously (Johnson et al., 2011). Samples were
analysed on a 7890A GC system connected to a 5975 VL MS (triple
axis detector) and a 120 model autosampler (Agilent Technologies).
Samples (1 ml) were injected by splitless injection (270 �C injection
temperature) onto a 50 m� 320 m� 0.52 mm 19091Z-115E column
(Agilent Technologies) using helium as the carrier gas. Oven tem-
perature was set at 50 �C for 5 min with an increase to 250 �C at a
rate of 8 �C min�1 and a final hold for 15 min. Data was analysed
using Chemstation software (Agilent Technologies).

2.6. Statistical analysis

Statistical analysis was performed using PASW statistics version

https://NCMA.bigelow.org
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18.0.0. Repeated measures ANOVA was used to determine if sig-
nificant differences in FV/FM occurred throughout the time course of
the experiment. If the assumption of sphericity of the data was
violated, a Greenhouse-Geisser correctionwas applied to produce a
more conservative F-statistic by reducing the degrees of freedom.
Growth parameters and degradation datawere analysed using one-
way ANOVA with post hoc Tukey test.

3. Results

3.1. Effect of the AEO fraction of OSPW and surrogate NAs on
maximum photosynthetic efficiency (FV/FM)

The FV/FM of E. huxleyi was reduced to zero by day six when
incubated with n-BPBA at �10 mg L�1 (Fig. 1a). When incubated
with tert-BPBA, greater concentrations (�50 mg L�1) were required
to cause complete reduction of FV/FM in E. huxleyi (Fig. 1c). In
contrast to the surrogate NAs, the AEO fraction did not inhibit FV/FM
in E. huxleyi and the FV/FM remained between 0.39 and 0.45
Fig. 1. Effect of acid extractable organic (AEO) fraction of OSPW and surrogate NAs on ma
vulgaris (b, d and f) over eight days with (aeb) n-BPBA, (ced) tert-BPBA and (eef) AEO fractio
controls ( ). Error bars represent standard deviation of the mean (n ¼ 3).
throughout the eight-day incubation period (Fig. 1e). When
C. vulgaris cells were incubated with n-BPBA, tert-BPBA or AEO, no
significant differences in FV/FM were found in comparison to con-
trols (F13, 41 ¼ 2.32, p¼ 0.22). The FV/FM parameter remained within
the range of 0.43e0.67 for all treatments. This indicates that the
surrogate NAs and the AEO fraction of OSPW had no effect on the
maximum photosynthetic efficiency of C. vulgaris up to 100 mg L�1

(Fig.1b, d and f). The FV/FM for all procedural and killed controls also
remained constant throughout (Fig. 1), suggesting that any effects
observed were not due to the addition of sodium hydroxide.

3.2. Effect of AEO fraction of OSPW and surrogate NAs on cell
growth

Whilst E. huxleyi growth was unaffected by 1 mg L�1 n- and tert-
BPBA (Fig. 2, Table 1), greater concentrations (�10 mg L�1) caused
significant inhibition of growth. Specifically, growth rates were
significantly reduced compared to controls (m ¼ 0.48) when
E. huxleyi was exposed to 10 mg L�1 n- and tert-BPBA (m ¼ 0.07 and
ximum photosynthetic efficiency (FV/FM) in Emiliania huxleyi (a, c and e) and Chlorella
n of OSPW at 1 ( ), 10 ( ), 50 ( ) and 100 ( ) mg L�1, no-NA control ( ) and procedural



Fig. 2. The effect of acid extractable organic (AEO) fraction of OSPW and surrogate NAs on particle (cell) counts of Emiliania huxleyi (a, c and e) and Chlorella vulgaris (b, d and f).
Particle (cell) counts of E. huxleyi and C. vulgaris over eight days with (aeb) n-BPBA, (ced) tert-BPBA and (eef) the AEO fraction of OSPW at 1 ( ), 10 ( ), 50 ( ) and 100 ( ) mg L�1.
No-NA controls ( ) and procedural controls ( ) are also shown. Error bars represent standard deviation of the mean (n ¼ 3).

Table 1
Growth rates and cell volumes of Emiliana huxleyi cultures incubated for eight days with NAs. Values represent means of triplicate samples with standard deviation in pa-
rentheses. Growth rates (m) were calculated over days 0e3. Stars (*) represent results that are statistically different from no-NA controls (p < 0.05).

Substrate (mg L�1) Growth rate (m) calculated over days 0e3 Cell volume day 0 (mm3) Cell volume day 8 (mm3)

Control 0.48 (0.01) 70.56 (1.12) 82.51 (4.02)
NaOH control 0.47 (0.02) 70.87 (6.25) 82.52 (3.17)
n-BPBA (1) 0.48 (0.03) 69.29 (5.24) 85.16 (1.57)
n-BPBA (10) 0.07 (0.05)* 71.19 (6.28) 85.32 (4.94)
n-BPBA (50) �0.49 (0.02)* 73.36 (3.87) 94.89 (0.52)*
n-BPBA (100) �0.34 (0.02)* 68.20 (2.98) 90.15 (2.19)
tert-BPBA (1) 0.44 (0.02) 67.87 (2.12) 88.06 (6.96)
tert-BPBA (10) 0.31 (0.01) 67.25 (2.12) 101.56 (3.56)*
tert-BPBA (50) �0.52 (0.10)* 69.14 (2.63) 94.06 (1.70)*
tert-BPBA (100) �0.40 (0.07)* 73.09 (7.69) 90.29 (0.87)
AEO OSPW (1) 0.46 (0.03) 67.35 (3.40) 76.31 (2.59)
AEO OSPW(10) 0.64 (0.01)* 65.94 (2.14) 57.35 (1.56)*
AEO OSPW (50) 0.73 (0.01)* 71.83 (5.35) 46.08 (2.00)*
AEO OSPW (100) 0.77 (0.02)* 65.36 (5.80) 40.95 (0.75)*

J. Beddow et al. / Chemosphere 145 (2016) 416e423 419
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0.31, respectively) (p � 0.001 in both cases) (Table 1). This resulted
inmuch lower cell abundances at day eight for E. huxleyi exposed to
10 mg L�1 n- and tert-BPBA (7.94 � 103 and 9.01 � 105 cells mL�1,
respectively) compared to controls (1.97 � 106 cells mL�1) (Fig. 2a
and c). When E. huxleyiwas incubated with�50 mg L�1 n- and tert-
BPBA, growth rates were negative (Table 1, Fig. 2a and c).

Whilst 1 mg L�1 of the AEO fraction of OSPW had no significant
impact on E. huxleyi growth, greater concentrations (i.e.
�10 mg L�1) resulted in significantly increased growth rates (in the
range of m ¼ 0.64e0.77) compared to controls (p � 0.002 in all
cases) (Table 1). Cell abundances for E. huxleyi exposed to
�10 mg L�1 of the AEO fraction of OSPW
(3.62e5.56 � 106 cells mL�1) were also significantly greater at day
eight than for controls (p < 0.001 in all cases) (Fig. 2e). The growth
of the procedural controls was consistent with the no-NA controls
throughout, suggesting that any observed effect was not due to
addition of sodium hydroxide (Table 1, Fig. 2a, c and e).

Although concentrations of �50 mg L�1 n-BPBA had no signifi-
cant effect on the growth rate of C. vulgaris, cell densities were
significantly reduced (to 9.06 � 106 cells mL�1) by day eight with
50 mg L�1 n-BPBA, compared to controls (1.42 � 107 cells mL�1)
(p � 0.002). The growth rate for C. vulgaris cultures incubated with
100 mg L�1 n-BPBA was significantly reduced (m ¼ 0.73) compared
to controls (m ¼ 1.15), and cell abundance was almost four-fold
lower than controls by day eight (3.60 � 106 cells mL�1,
p < 0.001) (Fig. 2b, Table 2). Whilst the growth rate of C. vulgaris did
not appear to be significantly affected by tert-BPBA up to
100 mg L�1 compared to controls, by day eight, cell densities were
significantly lower in the cultures incubated with 50 and
100 mg L�1 tert-BPBA, (8.95 � 106 and 5.85 � 106 cells mL�1

respectively, p � 0.001 in both cases) (Fig. 2b and d). Exposure to
the AEO fraction of OSPW (up to 100 mg L�1) had no significant
effect on C. vulgaris growth rate or cell density (Fig. 2f, Table 2).
Growth from procedural controls was consistent with no-NA con-
trols throughout, suggesting that there was no effect of sodium
hydroxide addition (Table 2, Fig. 2b, d and f).

By day eight, E. huxleyi cell volumes differed significantly be-
tween treatments (F 13, 41¼104.69, p < 0.001) (Table 1). Specifically,
cells incubated with 50 mg L�1 n-BPBA were significantly larger
(94.89 mm3) than controls (82.51 mm3) (p ¼ 0.003) as were cells
incubated with 10 and 50 mg L�1 tert-BPBA (94.06e101.56 mm3)
(p ¼ 0.003). In contrast to n- and tert-BPBA, when E. huxleyi cells
were incubated with the AEO fraction of OSPW at �10 mg L�1, cells
were significantly reduced in size (40.95e57.35 mm3, p < 0.001 in all
cases) compared to controls (Table 1). The cell volume of procedural
controls was consistent with no-NA controls at day eight, con-
firming that there was no effect of sodium hydroxide addition on
Table 2
Growth rates and cell volumes of Chlorella vulgaris cultures incubated for eight days wit
rentheses. Growth rates (m) were calculated over days 0e3. Stars (*) represent results th

Substrate (mg L�1) Growth rate days 0e3 (m) calculated over days 0e

Control 1.15 (0.06)
NaOH control 1.15 (0.09)
n-BPBA (1) 1.18 (0.01)
n-BPBA (10) 1.15 (0.07)
n-BPBA (50) 1.05 (0.08)
n-BPBA (100) 0.73 (0.05)*
tert-BPBA (1) 1.24 (0.03)
tert-BPBA (10) 1.16 (0.02)
tert-BPBA (50) 1.06 (0.06)
tert-BPBA (100) 1.00 (0.11)
AEO of OSPW NAs (1) 1.14 (0.03)
AEO of OSPW (10) 1.16 (0.04)
AEO of OSPW (50) 1.09 (0.03)
AEO of OSPW (100) 1.12 (0.02)
cell volume (Table 1). C. vulgaris cells incubated with�50mg L�1 n-
BPBA, and 100 mg L�1 tert-BPBA had significantly larger cell vol-
umes (between 57.29 and 79.41 mm3) compared to controls
(50.57 mm3) (p < 0.010 in all cases) (Table 2). The cell volume of
C. vulgaris cells was not significantly affected by the AEO fraction of
OSPW, (up to 100 mg L�1) (Table 2). The cell volume of procedural
controls was consistent with no-NA controls at day eight, con-
firming that there was no effect of NaOH on cell volume (Table 2).

3.3. Effect of the AEO fraction of OSPW and surrogate NAs on cell
morphology

The effect of the AEO fraction of OSPWand surrogate NAs on cell
morphology of E. huxleyi and C. vulgariswas investigated using light
microscopy (Fig. 3). When E. huxleyi cells were exposed to 1 mg L�1

n- or tert-BPBA, there was little difference in cell morphology
compared to controls (Fig. 3c and e). However, when E. huxleyi cells
were exposed to 10 mg L�1 tert-BPBA, cells underwent extensive
changes in morphology, becoming irregular in appearance. Cell
wall damage was apparent and the appearance of several small,
round inclusions inside and around cells was noted (Fig. 3d). It was
not possible to image cells incubated with �10 mg L�1 n-BPBA or
�50mg L�1 tert-BPBA due to the toxicity of the NAs resulting in low
cell abundances. Image analysis confirmed the observed reduction
in the cell size of E. huxleyi when exposed to 100 mg L�1 AEO
fraction of OSPW (Fig. 3f). Microscopy analysis also confirmed the
presence of larger C. vulgaris cells when incubated with 100 mg L�1

n- and tert-BPBA compared to controls, although no dark inclusions
were observed in C. vulgaris cells incubated with n- and tert-BPBA
as seen in E. huxleyi (Fig. 3j and k).

3.4. Biodegradation of the AEO fraction of OSPW and surrogate NAs

Since there were observed differences in NA sensitivity between
E. huxleyi and C. vulgaris, it was hypothesised that this was due to
differential biodegradation of the BPBA isomers by the two algae.
Therefore, the algal cultures that clearly demonstrated growth
were further analysed against killed and abiotic controls to deter-
mine whether NA biodegradation had occurred (Supplementary
Fig. S1). It was found that whilst C. vulgaris cultures partially
degraded n-BPBA (at 1 and 10 mg L�1) and tert-BPBA (at 1 mg L�1),
tert-BPBA (at 10mg L�1) and the AEO fraction of OSPW remained. In
contrast, E. huxleyi cultures almost completely removed tert-BPBA
(at 1 mg L�1) and partially degraded tert-BPBA (at 10 mg L�1) but
were unable to degrade either n-BPBA (at 1 mg L�1) or the AEO
fraction of OSPW (Supplementary Fig. S1). All controls demon-
strated no abiotic loss of NAs by photodegradation (data not
h NAs. Values represent means of triplicate samples with standard deviation in pa-
at are statistically different from no-NA controls (p < 0.05).

3 Cell volume day 0 (mm3) Cell volume day 8 (mm3)

72.39 (5.36) 50.57 (0.47)
68.36 (1.63) 50.86 (2.14)
67.12 (0.53) 50.98 (1.80)
66.18 (0.83) 51.52 (1.40)
67.40 (2.12) 57.29 (2.06)*
64.50 (0.66) 79.41 (2.66)*
62.91 (0.73) 48.47 (0.72)
61.94 (0.97) 45.656 (0.47)
61.70 (1.21) 60.28 (3.80)
60.71 (0.63) 77.42 (17.44)*
60.09 (0.18) 47.95 (0.43)
59.92 (0.38) 47.21 (0.63)
62.47 (0.29) 48.41 (1.05)
61.15 (0.33) 48.59 (1.01)



Fig. 3. Microscopic analysis of Emiliana huxleyi and Chlorella vulgaris cells exposed to the acid extractable organic (AEO) fraction of OSPW and surrogate NAs over six days (NAs).
Images aef represent E. huxleyi cells incubated with (a) no-NAs, (b) procedural (NaOH) control, (c) 1 mg L�1 tert-BPBA, (d) 10 mg L�1 tert-BPBA, (e) 1 mg L�1 n-BPBA and (f)
100 mg L�1 AEO fraction of OSPW. Images gel represent C. vulgaris cells incubated with (g) no-NAs, (h) procedural (NaOH) control, (i) 50 mg L�1 tert-BPBA, (j) 100 mg L�1 tert-BPBA,
(k) 100 mg L�1 n-BPBA and (l) 100 mg L�1 AEO fraction of OSPW. Scale bars ¼ 10 mm.

J. Beddow et al. / Chemosphere 145 (2016) 416e423 421
shown).
4. Discussion

This is the first report to describe the effects of the AEO fraction
of OSPW and surrogate NA compounds on maximum photosyn-
thetic efficiency of PSII (FV/FM) and cell growth in E. huxleyi and C.
vulgaris. Such information is important as it provides a better un-
derstanding of the physiological responses of photosynthetic mi-
croorganisms to NAs and may enable improved monitoring of NA
pollution in aquatic ecosystems.

Here, we demonstrated that the marine alga E. huxleyi was
highly sensitive to the surrogate NAs n- and tert-BPBA at
�10 mg L�1, in terms of photosynthetic efficiency, cell growth and
morphology, compared to the freshwater alga C. vulgaris, which
was more tolerant. Differential sensitivity to the two surrogate
BPBA isomers was also observed, whereby n-BPBA was generally
more toxic than tert-BPBA. Similar findings were previously ob-
tained with n- and tert-butylcyclohexylbutanoic acid isomers using
oyster embryos (Smith et al., 2008). In contrast to the results of our
study, tert-BPBA was previously shown to be more toxic to a bac-
terial enrichment culture than n-BPBA (Johnson et al., 2011). It is
well known that NA toxicity can be structure specific, with lower
molecular weight acids often demonstrating acute toxicity
(Holowenko et al., 2002; Frank et al., 2008). Although the exact
mechanism of NA toxicity to algae is unknown, NAs are anionic
surfactants (Roberts, 1991) and their acute toxicity is thought to be
related to these properties. More specifically, NAs acting as sur-
factants can disrupt the lipid bilayer of membranes and change
membrane properties via polar narcosis (Roberts, 1991; Frank et al.,
2008). There is also evidence to suggest surfactants interact with
and denature cell wall proteins in algae, altering cell permeability
and the potential to take in other nutrients and chemicals (Lewis,
1990; Goff et al., 2013).

Although differential sensitivity between algal species may be
expected (Fairchild et al., 2009), one may hypothesise that the
difference observed herein was due to the ability of C. vulgaris
cultures to more readily biodegrade the BPBA isomers to less toxic
metabolites compared to E. huxleyi. Indeed, it has been previously
shown that biodegradation of the BPBA isomers by a bacterial
culture produces ethanoic acid metabolites that are less toxic than
the butanoic acid parent compounds (Johnson et al., 2011). In the
present study, C. vulgaris partially degraded both n- and tert-BPBA,
whilst only tert-BPBAwas partially degraded by E. huxleyi. Previous
studies have shown that phytoplankton such as Selenastrum sp.,
Navicula sp. and Dunaliella sp. may also degrade certain NAs
(Headley and McMartin, 2004; Quesnel et al., 2011). It was also
possible that the surrogate NAs were susceptible to photo-
degradation under UV light, thus reducing their toxicity (McMartin
et al., 2004; Mishra et al., 2010). However, in the present study,
relatively low levels of artificial light were usedwith no UV element
and abiotic controls showed that photodegradation had not
occurred (data not shown).

In contrast to the toxic effects of surrogate NAs observed herein,
the AEO fraction of OSPW at concentrations up to 100 mg L�1 (i.e.
within the top range found in tailings ponds) had no impact on FV/
FM in either algae species studied. Furthermore, the AEO fraction
appeared to have a stimulatory effect on the growth of E. huxleyi
(but no apparent effect on C. vulgaris). Whilst ESAW media is well
known to support high growth rates in E. huxleyi (Berges et al.,
2001, 2004), the apparent stimulation of E. huxleyi cells incubated
with the AEO fraction of OSPW herein may have been due to the
presence of other acid-extractable constituents (Grewer et al.,
2010) such as metals and salts, which provided additional
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nutrients or co-factors for E. huxleyi, but not for C. vulgaris. NAs have
previously been shown to have a stimulatory effect on root and
shoot growth in Arabidopsis thaliana, which may be due to the
broad structural similarity of some NAs to plant growth regulators
such as auxins (Leishman et al., 2013). In addition, NAs from OSPW
have been shown to stimulate plant growth (as measured by CO2
uptake) in cattails (Typha latifolia) (Wort,1976; Bendell-Young et al.,
2000). Further work is required to determine whether a direct
stimulatory effect of the AEO of OSPW occurs in photosynthetic
organisms such as the algae studied herein, or whether other, in-
direct factors such as increased CO2 uptake also play a role.

In single celled microorganisms it is not uncommon for changes
in cell size to occur in response to stress (Li, 1979; Fisher et al., 1981;
Goff et al., 2013). In this study, the presence of both n- and tert-
BPBA resulted in an increased cell size for both E. huxleyi and
C. vulgaris, compared to controls. It is likely that this increase in cell
size was in response to toxic stress, whereby a decrease in surface
area to volume ratio reduced NA uptake into the cell. Indeed, pre-
vious studies have shown that phytoplankton species with a
smaller cell size accumulate higher amounts of contaminants such
as atrazine (Tang, 1997) and dichlorodiphenyltrichloroethane (Rice
and Sitka, 1973) relative to species with a larger cell size, due in part
to their larger surface area to volume ratio. Alternatively, increased
cell sizes could be due to arrested cell growth cycle prior to cell
division or the cells have increased vacuolization, following NA
exposure. A similar increase in cell size to that observed in this
study has also been noted in other phytoplankton species in the
presence of NAs (Goff et al., 2013) andmetal contaminants (Li, 1979;
Fisher et al., 1981).

In addition to changes in cell size, E. huxleyi also underwent
changes in morphology following exposure to tert-BPBA. Specif-
ically, cells changed from rounded to irregular shape; showed signs
of cell wall damage and there was the appearance of several small,
round inclusions inside and surrounding cells which may be nu-
clear fragments resulting from apoptosis. Goff et al. (2013) reported
changes to algae morphology following exposure to the NA fraction
of OSPW. Specifically, Goff et al. (2013) noted that Chlamydomonas
reinhardtii cells experienced increased roundness and increased
diameter with exposure to NAs. In addition, Goff et al. (2013)
described the formation of palmelloids (groups of cells remaining
in the remnants of the mother cell wall) when C. reinhardtii were
exposed to OSPW NAs.

Overall, there was a clear and opposite difference in the sensi-
tivity of the two algae towards surrogate NAs (a toxic response was
observed) compared to the AEO fraction of OSPW (a stimulatory
response was observed), highlighting a need for caution when
extrapolating toxicity data from surrogate NAs, as theymay be poor
predictors of the response to NAs found in OSPW. The marine alga
E. huxleyi was highly sensitive to the surrogate NAs, in terms of
photosynthetic efficiency, cell growth and morphology, compared
to the freshwater alga C. vulgaris, which was more tolerant. This
report provides a better understanding of the physiological re-
sponses of marine and freshwater phytoplankton to surrogate NAs
and the AEO fraction of OSPWandwill enable improvedmonitoring
of NA pollution in aquatic ecosystems in the future.
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