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A method for accurate multivariate local mean estimation in the multi-
variate empirical mode decomposition algorithm by using a statistical
data-driven approach based on the Menger curvature measure and
normal-to-anything variate-generation method is proposed. This is
achieved by aligning the projection vectors in the direction of the
maximum ‘activity’ of the input signal by considering the local curva-
ture of the signal in multidimensional spaces, resulting in accurate
mean estimation even for a very small number of projection vectors.

Introduction: Empirical mode decomposition (EMD) [1] decomposes
an input signal x(t) into a finite number M of multiple scales cm(t),
also known as intrinsic mode functions, based on its intrinsic oscil-
lations. In its original formulation, EMD can only process signals con-
taining a single channel (univariate data). Its important extensions for
multichannel data include: (i) bivariate EMD (BEMD) [2] and (ii) multi-
variate EMD (MEMD) [3]. A critical task in these extensions is the
estimation of the multivariate local mean of the input signal based on
its extrema. This is not a trivial task, however, since the concept of
extrema for multidimensional spaces, such as complex space ℂ and qua-
ternion space ℍ, is not defined. Therefore, these extensions operate by
projecting the multivariate signal along different static but uniform
directions in multidimensional space to obtain real-valued projections;
interpolating the extrema locations of projected real-valued signals;
and, finally, calculating their mean mp(t) as follows:
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where the vector {V1, V2, …, Vp−1} and e{fv1
,fv2

,...,fv p−1
}, respectively,

denote the number of direction vectors and the envelopes taken along
the directions f = {fv1 , fv2 , . . . , fvp−1

}, for a multivariate signal s(t)

with p > 2 number of channels [3]. For a very large number of projection
vectors, V, the approximation in (1) holds; that is, convergence to the
‘true’ local mean is achieved. However, in practical cases, a small
number of direction vectors should be used due to computational con-
straints, requiring an effective choice of those vectors as their distri-
bution is critical to the accuracy of the local mean.

To this end, we present a method to generate projection vectors in
multidimensional space in the directions where the input signal exhibits
maximum dynamics (variations). These critical directions are obtained
by first calculating the empirical distribution function (EDF) of the
direction vectors that exhibit higher dynamics based on the local
Menger curvature values of the signal. Subsequently, samples (of direc-
tion vectors) are drawn from the above calculated EDF using the
normal-to-anything (NORTA) multivariate random vector generation
method, resulting in a set of vectors where the signal dynamics is large.

Previous attempts for dynamically selecting the projection vectors in
EMD include: (i) a global sampling strategy [4] which is only suited to
stationary data, and (ii) the local dynamically sampled BEMD
(DS-BEMD) scheme to generate direction vectors for bivariate data
only [5]. Our proposed method is the first general extension of
DS-BEMD for multivariate signals (containing any number of
channels).

Measuring signal curvature in multidimensional space: The dynamics
of a multivariate signal (containing p channels) can easily be visualised
in a (p-dimensional) phase space, where the axes correspond to the input
channels of the signal. Each multivariate signal, therefore, traces a
unique curve in such a space.

In the proposed method, the first step involves estimating the local
dynamics of an input multivariate signal in its multidimensional
space. In mathematics, the curvature of a function can be used to quan-
tify its deviation from a straight line and can therefore provide a useful
measure to describe the local dynamics of such signals. A convenient
means to measure the local curvature of a signal is through the
Menger curvature κ, computed for a set of three points x, y and z on
the curve and is equal to the reciprocal of the radius R of the circle

passing through those points

k = 1

R
(2)

Another way to compute κ is through the area A of the triangle xyz
passing through those three points, with side lengths |xy|, |yz| and |zx|

k = 1/R = 4A

|xy||yz||zx| (3)

The definition of the Menger curvature in terms of the reciprocal of the
radius of a circle passing through three points on a curve, as in (2), pro-
vides a useful interpretation of local signal dynamics: Fig. 1 illustrates
this further where two osculating circles are drawn at points P and Q
on the curve. At point P, the signal dynamics is slow as compared
with the point Q and, therefore, the corresponding radius R1 is greater
than R2 yielding a higher Menger curvature measure at Q, i.e. κQ > κP.
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Fig. 1 Menger curvature estimation at points P and Q on curve via their
respective radii (R1 and R2)
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Fig. 2 NORTA-generated multivariate sample (blue squares) from input
bivariate t-distribution (left) and normal distribution (right) data (shown
in black cross)

In the proposed scheme, κ is computed at each point of a curve cor-
responding to the input signal; subsequently, only L number of points
exhibiting the highest κ values are chosen and their angles {fi}Li=1 are
calculated. For a p-dimensional phase space, fi = {fi

1,

fi
2, . . . , f

i
p−1} is a set of p− 1 angles, which are required to locate a

point on a curve (signal) in a p-dimensional space. The empirical cumu-
lative distribution function (CDF) of the resulting angles {fi

j}
L
i=1 is

estimated, denoted by F(ϕ), which is to be used as a reference for select-
ing the finite number of angles (direction vectors) via the NORTA
approach.

Generating vectors with arbitrarily specified marginal CDFs and corre-
lations: Given the reference CDF F(ϕ) of angles (direction vectors)
exhibiting high dynamics, the next stage is to generate the desired
finite number of angles from the reference CDF F(ϕ). This problem is
relatively simple for bivariate data, where a single angle ϕ1 is sufficient
to specify a point on a curve (signal) in a two-dimensional (2D) space:
the inverse transform sampling (ITS) method was used to obtain desired
angles from a given distribution function F(ϕ1) in [5]. For a general
multivariate case, it is not only the joint reference CDF that is important,
the correlation among individual variates must also be considered, while
choosing a finite number of direction vectors for the MEMD operation.

Hence, we employ the NORTA method to generate direction vectors
(projection angles) for MEMD from the reference CDF F(ϕ) and the cor-
relation structure between multiple variate ϕj. Fig. 2 (left to right) shows
samples generated employing NORTA (blue squares) for input bivariate
t-distribution and bivariate white Gaussian noise (WGN) (black dots),
respectively. Note that the generated samples follow their respective
desired distributions.

Let Ff1
, Ff2

, . . . , Ff p−1
denote the desired marginal CDF of angles

in a p-dimensional space, and ρkm represent the correlation among ϕk



and ϕm. Then, the NORTA method operates as follows: (i) generate
multivariate normal vector Z = {Z1, Z2, …, Zp−1} with Zj [ N (0, 1)
and correlations ρkm(Z) = Corr(Zk, Zm); (ii) compute Xj = F−1{Ψ(Zj)},
for j = 1, 2, …, p− 1; where Ψ denotes the standard normal CDF func-
tion. Note that C(Zj) [ U(0, 1) and, therefore, Xj = F−1{Ψ(Zj)} is
similar to the ITS method for the generation of variates from Ffj

. The
resulting Xj follow the desired marginal CDFs Ffj

, and also retain the
original correlation structure ρkm. It must be highlighted, however,
that in the case of very small number of projection vectors V≤ 6,
similar to the dynamically sampled BEMD method for bivariate data
[5], it is preferable to use the first V number of angles corresponding
to the maximum values in the histogram of ϕ, since the NORTA
method may not be very accurate for such cases.
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Fig. 3 Projection vectors (shown in bottom row) within DS-MEMD method
for input circular WGN and synthetic trivariate data (shown in top row from
left to right). Corresponding histograms are shown, respectively, in (middle
left) and (middle right).

The key tasks involved in the NORTA method are evaluation of Ψ
and F−1, both of which are typically performed via numerical
methods. The steps involved in the proposed method, referred to as
dynamically sampled MEMD, are listed in Algorithm 1. A MATLAB
implementation of NORTA along with its different variations is avail-
able in [6] and has been used in the implementation of our method.

Algorithm 1 Dynamically sampled MEMD (DS-MEMD)

1: Estimate the curvature κ of input multivariate signal of dimension p,
using (3), for all points on the curve in the p-dimensional space.

2: Select the first L points exhibiting top curvature values.
3: Find L set of angles {fi}Li=1 corresponding to the selected data

points exhibiting high dynamics.
4: if V≤ 6 then
5: Generate (p− 1)-dimensional histogram hϕ with H number of bins

of the angles {fi}Li=1.
6: Select the first V≤H angle set, {fv}Vv=1 corresponding to the peak

values of hϕ.
7: else
8: Find the marginal CDFs Ffj

for j = 1, 2, …, p− 1 from F(ϕ).
9: Use NORTA method (as detailed above) to generate desired angle

set {Xi}
V
i=1.

10: end if

Simulation results: Fig. 3 illustrates the operation of DS-MEMD for
both the trivariate WGN and the non-circular synthetic combination of
sinusoids; their scatter plots are shown, respectively, in Fig. 3 (top
left) and (top right). The 2D histograms of the angles exhibiting fast
dynamics in both cases (WGN and synthetic data) are shown in Fig. 3
(middle left) and (middle right), respectively. Observe that the WGN
histogram is mostly random, whereas the one corresponding to the

synthetic data is concentrated at some specific angles. As a result, in
both cases the proposed method selects angle set X, which follows the
respective reference distributions shown by their 2D histograms; the
resulting angles plotted as points on the surface of a unit sphere are
shown in Fig. 3 (lower left) and (lower right).

To demonstrate the ability of the proposed method to improve the
accuracy of local mean estimation in standard MEMD, we performed
simulations on a trivariate data set as shown in Fig. 4 (visible in black
solid line). Fig. 4 shows local mean estimates obtained from standard
MEMD (dotted green lines) and the proposed DS-MEMD (dashed red
lines) by using V = 4 projection vectors, using a single sifting iteration.
The plots of the estimates of true local mean or ground truth (dashed-
dotted blue lines) are also shown, which were obtained by taking a
very large number of direction vectors (V = 1024) in standard MEMD.
It can be noticed that the DS-MEMD provided more accurate estimates
of the local mean compared with standard MEMD, as evident from the
close proximity of its local mean to the ground truth, especially at points
A and B which exhibit high dynamics.
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Fig. 4 Comparison of local mean estimation between MEMD (dashed green
line) and proposed DS-MEMD (dotted blue line) for natural input trivariate
signal (solid black line) for V= 4.

Conclusion: We have presented a general data-driven scheme for
choosing suitable direction vectors (angles) in multidimensional
spaces for the computation of local mean within MEMD, by employing
the Menger curvature measure and the NORTA variate-generation
method. The proposed DS-MEMD method has been shown to yield
more accurate local mean estimates than those obtained using MEMD,
for a very small number of projection vectors. Given that the MEMD
is computationally very expensive, which restricts its real-world appli-
cation, the proposed method with its lower computational needs is
expected to alleviate this problem and find new real-world and real-time
applications.
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