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Abstract: Analytic alignment is a type of self-alignment for a Strapdown inertial 

navigation system (SINS) that is based solely on two non-collinear vectors, which are the 

gravity and rotational velocity vectors of the Earth at a stationary base on the ground. The 

attitude of the SINS with respect to the Earth can be obtained directly using the TRIAD 

algorithm given two vector measurements. For a traditional analytic coarse alignment, all 

six outputs from the inertial measurement unit (IMU) are used to compute the attitude. In 

this study, a novel analytic alignment method called selective alignment is presented. This 

method uses only three outputs of the IMU and a few properties from the remaining 

outputs such as the sign and the approximate value to calculate the attitude. Simulations 

and experimental results demonstrate the validity of this method, and the precision of yaw 

is improved using the selective alignment method compared to the traditional analytic 

coarse alignment method in the vehicle experiment. The selective alignment principle 

provides an accurate relationship between the outputs and the attitude of the SINS relative 

to the Earth for a stationary base, and it is an extension of the TRIAD algorithm. The 

selective alignment approach has potential uses in applications such as self-alignment, fault 

detection, and self-calibration. 
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1. Introduction 

If the Strapdown inertial navigation system (SINS) remains static on the ground with limited 

vibrations, the attitude of the SINS with respect to the Earth can be obtained directly from the gravity 

and rotational velocity vectors of the Earth if they are not collinear [1–4]. This approach is called 

analytic alignment (AA). The problem is about finding the transformation matrix from one coordinate 

system to the other when the components of two abstract vectors are given in two different coordinate 

systems. TRIAD [5,6] is an algorithm that does just that. A minimum of two non-coplanar vector pairs 

are required for a solution using TRIAD algorithm. The TRIAD algorithm is applied to the AA for a 

SINS, and then it is called the analytic coarse alignment method [1–4]. If the vibrations are so severe 

that the outputs of the gyroscopes are much larger than the rotational velocity of the Earth, AA cannot 

be performed. There are many approaches to the alignment problem including the inertial frame 

alignment method [7,8], Kalman fine alignment [9–11], and compass alignment [12,13]. All of these 

methods require part or all of the inertial navigation process, where the velocity and attitude of the 

SINS update with the time. Because the average velocity of the SINS is at zero for the base in the 

presence of vibrations, the attitude could then be computed. These alignment methods for the base in 

the presence of vibrations can be classified as inertial navigation computational alignment (INCA). 

However, INCA requires more alignment time and involves massive calculation compared to the AA 

method. Self-alignment methods can be divided into AA and INCA based on the principles used.  

Because vibration is common in actual systems, INCA has been widely studied for several  

decades [7–10,12]. There have been few studies on AA, mainly because it has difficulty achieving 

alignment in the presence of vibrations. Reference [1] presents a basic AA method, analytic coarse 

alignment. One additional vector can be generated with the vector cross product between the gravity 

and rotational velocity vectors of the Earth. Then, a 3 × 3 matrix can be formed given the three vectors. 

In a SINS, the attitude information is stored either as a coordinate transformation matrix or as attitude 

angles (roll, pitch and yaw). The coordinate transformation matrix can be obtained directly through a 

one-time matrix calculation. Jiang [2] noted that there are three other vectors that can be generated 

from the cross-product of the gravity and rotational velocity vectors. Among these five vectors, four lie 

in the plane of the meridian and the other is perpendicular to this plane. The analytic coarse alignment 

problem is then to form a 3 × 3 matrix that consists of three linearly independent vectors. There are six 

possible sets that can be used to build a 3 × 3 matrix for the analytic coarse alignment. Two simple and 

significant sets are analyzed in [2] in detail. Although both methods are derived from the same 

measurements of the local gravity and rotational velocity vectors, their error formulations are not 

completely identical. The six analytic coarse alignment methods and a direct method for a SINS on 

stationary base were compared using error analyses in [3]. The error characteristics of the direct 

method can be evaluated because the direct method is equivalent to one of the six analytic coarse 

alignment methods.  

It has been the standard practice for many years to use all six outputs from the IMU for  

self-alignment. A new AA method called selective alignment in ground platforms is proposed which 

requires only three outputs from the IMU and a few properties from the remaining outputs such as the 

sign and the approximate value. The selective alignment method has potential uses in problems such as 

optimal AA, fault detection, and self-calibration.  
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The selective alignment method shows that two non-coplanar vector pairs are redundant for 

determining the transformation matrix, however, a minimum of two non-coplanar vector pairs are 

required for a solution using TRIAD algorithm. The selective alignment may be applied in other 

attitude determination problems such as spacecraft attitude estimation where TRIAD algorithm is a 

basic method [6,14]. The formulas for the selective alignment are given through geometrical analysis 

in this paper. The principle could also be obtained through algebra analysis and we give a brief 

description about this in a recent conference paper [15]. After all, the geometrical analysis for the 

selective alignment shows us a much more intuitive and figurative relationship between the IMU 

outputs and its attitude relative to the Earth on the stationary base.  

The remainder of the paper is organized as follows: We review the analytic coarse alignment 

method in Section 2. The basic principle of selective alignment is presented in Section 3. To prevent a 

zero value in the denominator or a negative value in the radicand at certain extreme attitudes, certain 

adjustments are required, the details of which are presented in Section 4. The results of simulations and 

experiments to test the validity and the use of the selective alignment method are presented in Section 5. 

Section 6 provides concluding remarks. 

2. Analytic Coarse Alignment 

The analytic coarse alignment is an application of the TRIAD algorithm to the AA for a SINS [2,6]. 
The process of finding the matrix using TRIAD is as follows [2,6,16]. Let 1u  and 2u  denote the 

column vectors whose elements are, respectively, the components of the two abstract vectors when 
resolved in one coordinate system (typically a body frame), and let 1v  and 2v  denote the column 

vectors whose elements are, respectively, the components of the abstract vectors when resolved in the 

other coordinate system (typically a reference frame). The reference-to-body coordinate transformation 

matrix A satisfies: 

1 1A=u v , 2 2A=u v  (1) 

The algorithm calls for the computation of the following column vectors in the body frame: 

1 1 1=r u u , 2 2 2=r u u , ( )3 1 2 1 2= × ×r u u u u , 4 3 1= ×r r r , 5 3 2= ×r r r  (2) 

and the following corresponding column vectors in the reference frame: 

1 1 1=s v v , 2 2 2=s v v , ( )3 1 2 1 2= × ×s v v v v , 4 3 1= ×s s s , 5 3 2= ×s s s  (3) 

of which four vectors are at the same plane except 3s  which is perpendicular to the plane. The 

coordinate matrix A can be obtained by 
1

3 3, , , ,i j i jA
−

   =    r r r s s s  (4) 

where , 1, 2,4,5i j = , and i j< . There are six different sets to yield A . 

When the SINS is static with respect to the Earth, there are only two inputs for the IMU: the gravity 
and rotational velocity vectors of the Earth, which are denoted by g  and iew , respectively, and are 

shown in Figure 1. A local ENU (East-North-Up) frame is used as the reference frame, or navigation 
frame, denoted by n n nO x y z− . The body frame of the SINS is denoted by b b bO x y z− .  
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Figure 1. The gravity and rotational velocity vectors in the navigation frame. 

Neglecting sensor errors and base vibrations, the following measurements are available:  

b b n
n

b b n
n ie

C

C

 =
 =

f g

w w
 (5) 

where bf  contains the outputs of a three-axis accelerometer with 
Tb

x y zf f f 
  

= , ,f , bw  contains the 

outputs of a three-axis gyroscope with 
Tb

x y zw w w 
  

= , ,w , [ ]T
0 0n g= , ,g  and g  is the gravitational 

acceleration, [ ]T
0 cos sinn

ie ie iew L w L= , ,w  with iew  and L denoting the rotation rate of the Earth and the 

latitude, respectively, and b
nC  is the navigation-to-body coordinate transformation matrix. From 

Equations (4) and (5), the following two equations can be obtained, and these are typically used in 

analytic coarse alignment methods [2,3].  
1

, , , ,b b b b b n n n n
n ie ieC

−
   = × ×   f w f w g w g w  (6a) 

1
, , ( ) , , ( )b b b b b b b n n n n n n

n ie ieC
−

   = × × × × × ×   f f w f w f g g w g w g  (6b) 

3. Selective Alignment 

If one of the IMU outputs, yf  for example, is known, the angle between the by -axis and g  can be 

computed. If yw  is also given, the angle between the by -axis and iew  can be determined. As shown in 

Figure 2a, there are two possible solutions for the by -axis because usually there will be two lines of 

intersection between the two conical surfaces.  
After the by -axis is obtained, the b b bO x y z−  frame can be obtained if one more axis is computed. 

For example, if zw  is also known, the bz -axis will be on the conical surface with its center at iew .  

In addition, because the bz -axis is normal to the by -axis, the bz -axis must be in the plane that is 

normal to the by -axis. There are usually two lines of intersection of a plane and a conical surface that 

represent the bz -axis, as shown in Figure 2b.  

Given these facts, there are usually four possible results for the b b bO x y z−  frame given yf , yw ,  

and zw .  
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Figure 2. Existence of the selective alignment solution: (a) Two lines that represent the 

by -axis will be formed by the intersections of the two conical surfaces; (b) Two lines that 

represent the bz -axis will be formed by the intersection of a plane and a conical surface. 

3.1. Derivation  

Now let us derive mathematical expressions for the four solutions of b b bO x y z− . As shown in 

Figure 3a, n n nO x y z−  denotes the navigation coordinates, as indicated by the subscript n , and 

b b bO x y z−  denotes the body coordinates, as indicated by the subscript b . Let ( )x x xOA x y z= , ,


, 

( )y y yOB x y z= , ,


, and ( )z z zOC x y z= , ,


 be coordinates in the navigation frame, and let (1 0 0)OA = , ,


, 

(0 1 0)OB = , ,


, and (0 0 1)OC = , ,


 be coordinates in the body frame. After ascertaining b b bO x y z− , b
nC  

can be obtained by  

x x x
b
n y y y

z z z

x y z

C x y z

x y z

 
 
 
 
 
 
 
 

=  (7) 

O 1OA =
1OB =
1OC =

nz
bz

nx
bx

by

ny
A

BC

  
nx

ny

nz

L

B

D iew

O

by
1OB =
1OD =g

 
(a)     (b) 

Figure 3. (a) The definitions of OA


, OB


, and OC


; (b) OB


, namely, the by -axis, can be 

determined given yw  and yf . Here, the by -axis is not usually in the O yz−  plane. 

Assume three outputs of the IMU are given, which are yf , yw , and zw . If yw  is given, as shown in 

Figure 3b, we have  

cos y

ie

w
BOD

w
∠ =  (8) 
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Referring to Figure 3b, in the navigation frame the following equation holds:  

cosOB OD OB OD BOD⋅ = ⋅ ⋅ ∠
 

 (9) 

Because OB


 and OD


 are unit vectors and 
n
ie

iewOD = w


, substituting Equation (8) into Equation (9) gives  

cos sin y
y y

ie

w
y L z L

w
+ =  (10) 

If yf  is given, the angle between OB


 and the z -axis is known, which implies  

y
y

f
z

g
=  (11) 

Combining Equations (10) and (11), and 1OB =  yields  

2 2 2

cos sin

1

y
y y

ie

y
y

y y y

w
y L z L

w

f
z

g

x y z


+ =


 =

 + + =


 (12) 

Solving Equation (12) yields two sets of solutions:  

2 21

tan
cos

y y y

y
y y

ie

y
y

x y z

w
y z L

w L

f
z

g


 = ± − −

 = −


 =


 (13) 

Similarly, if zw  is given, we have  

cos sin z
z z

ie

w
y L z L

w
+ =  (14) 

As shown in Figure 3a, because OC


 is the unit vector of the positive bz -axis and OC OB⊥
 

, the 

following equations hold  

2 2 2 1

0

cos sin

z z z

y z y z y z

z
z z

ie

x y z

x x y y z z

w
y L z L

w


 + + = + + =

 + =


 (15) 

Solving Equation (15) yields two sets of solutions  
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2

tan
cos

4

2

y z y z
z

y

z
z z

ie

z

y y z z
x

x

w
y z L

w L

b b ac
z

a

+
= −


 = −

 − ± − =


 (16) 

where 

2 2 2 2 2

2

2 2

2

2 2 2

2 2 2 2 2

tan 2 tan

2 tan 2

cos

1
cos cos

y y y y y y

y

z y y z y y

ie y

y z z

y ie ie

x y L y z L x z
a

x

w x y L w y z
b

w x L

y w w
c

x w L w L

 
 
 

 
 
 

 + − + +
 =



− + + =


 = + −



. 

Then, OA


 can be obtained as shown in Equation (17)  

OA OB OC= ×
  

 (17) 

Hence, from Equation (7), b
nC  can be obtained. There are four sets of solutions for b

nC  given yf , yw  

and zw .  

Next, we consider the case where yf , yw  and xf  are given. Likewise, given xf  rather than zw ,  

we have  

x
x

f
z

g
=  (18) 

Because OA


 is the unit vector of the positive bx -axis and OA OB⊥
 

, the following equations hold  

2 2 2 1

0
x x x

y x y x y x

x
x

x y z

x x y y z z

f
z

g


 + + =
 + + =

 =


 (19) 

Solving Equation (19) yields two sets of solutions  

2 4

2x

y x y x
x

y

x
x

b b ac
x

a
x x z z

y
y

f
z

g

 − ± −=

 + = −


 =


 (20) 
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where 

2 2

2
2 2 2

2

2

y y

x
y y

x
y y y

a x y

f
b x z

g

f
c y z y

g















 
   

= +

=

= + −

. 

Therefore, OC


 is given by  

OC OA OB= ×
  

 (21) 

Hence, b
nC  can be obtained from Equation (7). There are four sets of solutions for b

nC  given yf , yw , 

and xf .  

The coordinate transformation matrix b
nC  has been derived in two typical cases. For both cases, one 

output of the three-axis accelerator and one output of the three-axis gyroscope, both in the same axis, 

should be selected. The case where the remaining measurement is another output of the three-axis 
gyroscope is denoted by FWW, e.g., yf , yw , and zw , and the case where the remaining measurement 

is another output of the three-axis accelerator is denoted by FWF, e.g., yf , yw , and xf .  

There are six possible sets for FWW and six possible sets for FWF, as shown in Table 1.  

Table 1. The six possible sets for FWW and FWF. 

  1 2 3 4 5 6 

 Output 1 xf  xf  yf  yf  zf  zf  

 Output 2 xw  xw  yw  yw  zw  zw  

FWW Output 3 yw  zw  zw  xw  xw  yw  

FWF Output 3 yf  zf  zf  xf  xf  yf  

For FWW, the three selected outputs are denoted as fα , wα  and wβ , where the subscripts α , β  

and γ  represent x , y  or z  and should be different. The body frame is given by 

2 21

tan
cosie

x y z

w
y z L

w L

f
z

g

α α α

α
α α

α
α


 = ± − −


= −



=


 (22) 

2

tan
cos

4

2

ie

y y z z
x

x

w
y z L

w L

b b ac
z

a

α β α β
β

α

β
β β

β

+
= −


 = −

 − ± − =


 (23) 
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T T

[ ] [ ] if M

[ ] [ ] if N

x
x y z x y z

y
x y z x y z

z

γ
α α α β β β

γ
β β β α α α

γ

 
 
 
 
 
 
 
  

 , , × , , ,=  , , × , , ,
 (24) 

where a, b and c in Equation (23) are 

2 2 2 2 2

2

2 2

2

2 2 2

2 2 2 2 2

tan 2 tan

2 tan 2

cos

1
cos cos

ie

ie ie

x y L y z L x z
a

x

w x y L w y z
b

w x L

y w w
c

x w L w L

α α α α α α

α

β α α β α α

α

α β β

α

 
 
 

 
 
 

 + − + +
 =

 − + + =


 = + −



, M  in Equation (24) 

denotes 
x

y

α
β

=
 =

 or 
y

z

α
β

=
 =

 or 
z

x

α
β

=
 =

 and N  in Equation (24) denotes 
y

x

α
β

=
 =

 or 
z

y

α
β

=
 =

 or 
x

z

α
β

=
 =

.  

For FWF, the three selected outputs are denoted as fα , wα  and fβ . The subscripts α , β  and γ  

denote x , y  or z  and should be different. The body frame is given by Equations (22), (24), and (25):  

2 4

2

b b ac
x

a
x x z z

y
y

f
z

g

β

α β α β
β

α

β
β

 − ± −=

 + = −


 =


 (25) 

where a , b , and c  in Equation (25) are 

2 2

2
2 2 2

2

2

a x y

f
b x z

g

f
c y z y

g

α α

β
α α

β
α α α














  
  

 


= +

=

= + −

. 

3.2. Choice of Solutions  

After ascertaining b b bO x y z− , b
nC  can be obtained from Equation (7). There are four possible 

solutions, but only one is appropriate. Given the four possible solutions of b
nC , the vectors bf  and bw  

can be computed from Equation (5). Comparing the calculated values of bf  and bw  with the original 

six outputs of the IMU, the appropriate solution can be easily ascertained amongst the four  

possible solutions.  

To demonstrate the method for choosing the correct solution among the four possible solutions,  
one group of simulated outputs are used with 32 026372L = . ° , 29 8 m/sg = . , and 

57 2921158 10  rad/siew −= . × . yf , yw , and zw  are selected to compute the attitude through the selective 

alignment method. Given the four possible solutions of the attitude (namely, b
nC ), the four possible 

sets of the six outputs can be computed from Equation (5), which are shown in Table 2.  
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Table 2. The four possible sets of six inertial measurement unit (IMU) outputs calculated 
with yf , yw , and zw  used for selective alignment according to Equations (22)–(24). 

 Angular Velocity ( 410  rad/s− ) Specific Force ( 2m/s ) 

 xw  yw  zw  xf  yf  zf  

1 −0.2550 0.6782 0.0824 −3.1497 3.3518 8.6536 
2 0.2550 0.6782 0.0824 7.6192 3.3518 −5.1724 
3 0.2550 0.6782 0.0824 3.1497 3.3518 8.6536 
4 −0.2550 0.6782 0.0824 −7.6192 3.3518 −5.1724 

Original outputs −0.2550 0.6782 0.0824 −3.1497 3.3518 8.6536 

It is easy to discern that the attitude for Set 1 in Table 2 is the correct solution by comparing the 

calculated and measured values of the outputs using one of the following sets of criteria:  

 The signs of xf  and zf   

 The signs of xw  and zf  

 The approximate value of xf . 

The values compared will depend on the outputs selected. Through the selective alignment method, 

the attitude can be determined from any three outputs of the IMU in Table 1 in addition to at least one 

force component and one angular velocity component in the same axis. Some limited information from 

the remaining three outputs such as the signs and approximate value is also essential. Furthermore, if, 
for example, xf , yf , and zw  are known, zf  can be calculated from Equation (26). Then, the attitude 

by the selective alignment method can be obtained.  

2 2 2 2

2 2 2 2
x y z

x y z ie

f f f g

w w w w







+ + =
+ + =

 (26) 

4. Exception in Selective Alignment 

In practice, there are errors in the IMU outputs such as bias, and vibrations in the base will  
also affect the IMU outputs and thus the alignment. So, it is possible that xα  in Equation (22) will  

have an imaginary value, and thus there is no solution. Furthermore, there are singularities in 
Equations (23) and (25) when xα  and yα  equal zero, respectively. Thus, the problems are divided into 

two classes, those in which the denominator should be nonzero and those in which the radicand should 

be nonnegative. We consider the denominator problem first. 

4.1. Nonzero Denominator 

For FWW, if xα  equals zero, from Equation (15) we have  

2 2 2 1

0

cos sin z

ie

x y z

y y z z

w
y L z L

w

β β β

α β α β

β β


 + + =
 + =

 + =


 (27) 
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Solving Equation (27) yields  

2 21

tan
cos

( sin cos )

z

ie

ie

x y z

w
y z L

w L

y w
z

w y L z L

β β β

β β

α β
β

α α


 = ± − −
 = −


 =

−

 (28) 

In Equation (28), ( sin cos )y L z Lα α−  must be nonzero. If ( sin cos ) 0y L z Lα α− = , then because 

0xα =  we have T T[ ] [0 cos sin ]x y z L Lα α α, , = , ,  or T T[ ] [0 cos sin ]x y z L Lα α α, , = ,− ,− , which indicates 

that the bα -axis coincides with iew . Thus, the β -axis should be in the plane that is perpendicular to 

iew . Because wβ  was also selected and must be zero, the β -axis must also be in the plane that is 

perpendicular to iew . Two coincident planes have an infinite number of lines of intersection, so only 

the bα -axis can be obtained in this particular case.  

For FWF, if yα  is equal to zero, from Equation (19) we have  

2 2 2 1

0

x y z

x x z z

f
z

g

β β β

α β α β

β
β


 + + =
 + =

 =


 (29) 

Solving Equation (29) yields  

2 21

z z
x

x

y x z

f
z

g

α β
β

α

β β β

β
β


= −


 = ± − −

 =


 (30) 

In Equation (30), xα  should be non-zero. If 0xα = , then we have T T[ ] [0 0 1]x y zα α α, , = , ,  or 
T T[ ] [0 0 1]x y zα α α, , = , ,− , which indicates that the α -axis coincides with g . Thus, the β -axis should 

be in the plane that is perpendicular to g . Because fβ  was selected and must be zero, the β -axis must 

also be in the plane that is perpendicular to g . Two coincident planes have an infinite number of lines 

of intersection, so only the ba -axis can be obtained in this particular case.  

4.2. Nonnegative Radicand  

To ensure that the value of xα  in Equation (22) is not imaginary, ( )2 2y zα α+  should be less than 1. 

However, it is possible that fα  can be slightly greater than g  because of sensor errors or base 

vibrations. And, errors in wα  may also result in a negative radicand. Constructing algebraic rules to 

prevent a negative value of the radicand is complicated and abstract. Graphically, a negative value in 
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the radicand occurs when the two conical surfaces in Figure 2a do not intersect or the plane and the 

conical surface in Figure 2b do not intersect. Therefore, negative values in the radicand can be avoided 

if these surfaces intersect.  

If the angle between the bα -axis and g  is η , then cos f
g
αη = . Given wα  and denoting the angle 

between the bα -axis and iew  as θ , we have cos
ie

w
w

αθ = . Assuming η  is accurate, θ  must lie in a 

certain range that depends on η , or the two conical surfaces shown in Figure 2a cannot intersect. 

Referring to Figure 4, given η , let iAOP η∠ = . Then, θ  must satisfy 'i iBOP BOPθ∠ ≤ ≤ ∠ , 1 2 3i = , , . 

The range of θ  based on η  is given by  

0
2 2 2

2 2 2 2
3

2 2 2

L L L

L L L L

L L L

π π πη θ η η

π π π πη θ η η

π π πη θ η η π

 − − ≤ ≤ − + ≤ < −

− + + ≤ ≤ − + − ≤ < +

− + + ≤ ≤ + − + ≤ ≤

 (31) 

ny

nz

L

iew

bα

η θ

O

g

1 'P 1P

2P2 'P

3P3 'P

bα

bα

η

  

Figure 4. The critical point for the intersection of the two conical surfaces, where 'iP  is 

the reflection of iP  about the nz -axis and OC  is the reflection of OB  about the ny -axis. 

Figure 5a shows the range of θ  for various values of η  from 0 to π  according to Equation (31).  

( )η °

(
)

θ
°
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0
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(
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a
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1

 
(a) (b) 

Figure 5. (a) The range of θ  as a function of η , where the point ( )η θ,  must be within the 

rectangle; (b) The range of wα  as a function of fα , where the point ( )f wα α,  must be 

within the ellipse. 
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fα  and wα  can be obtained through cosf gα η=  and cosiew wα θ= . In this case, g  and iew  can be 

considered constants. Given η  and θ , we can plot the range of wα  as a function of fα . It follows that 

( )f wα α,  must be within the ellipse shown in Figure 5b to ensure that the two conical surfaces in 

Figure 2a intersect and the radicand in Equation (22) will not be negative.  
After ascertaining the bα -axis, given another wβ  or fβ , the bβ -axis can be obtained. As shown in 

Figure 2b, the bβ -axis is formed by the intersection of the conical surface and the plane. As shown in 

Figure 6, MN  is a plane normal to the bα -axis. The conical surfaces AOA′  and COC′  do not intersect 

the plane MN , but the conical surface BOB′  does. It follows that only if B  is in the area between 

OM  and ON ′  will the conical surface BOB′  intersect the MN  plane. In other words, the conical 
surface BOB′  is defined by wβ  or fβ , which should satisfy  

2 2 2

2 2 2

FWF

FWW ie

f f g

w w w
α β

α β

 : + ≤
 : + ≤

 (32) 

If Equation (32) holds, the conical surface resulting from fβ  or wβ  intersects the plane normal to 

the bα -axis and the radicand in Equations (23) and (25) will not be negative.  

 C 'C

A 'A

O

M

N

'M

B 'B

'N

( )ieg w
bα

 

Figure 6. Intersection with the plane normal to the bα -axis and ( )ieg w . The conical 

surfaces AOA′ , BOB′ , COC′  are centered about ( )ieg w  and the points M ′ , N ′  are 

reflections of M , N , respectively, about ( )ieg w .  

4.3. Exception Handling in the Algorithm 

To ensure that the selective alignment method performs robustly, various exceptions must be 
addressed. In the first stage, where the α -axis is determined, if fα  is slightly greater than g  because 

of bias in the accelerometer or base vibrations when the α -axis is nearly parallel to g , fα  should be 

substituted with f

f
gα

α
. Similarly, if wα  is slightly greater than iew  because of drift in the gyroscope or 

base vibrations when the α -axis is nearly parallel to iew , wα  should be substituted with w
iew

wα

α
. In 

addition, ( )f wα α,  should be within the area shown in Figure 5b; otherwise, fα  is substituted with 

f fα α+ Δ  or wα  is substituted with w wα α+ Δ  to make that ( )f wα α,  lie in the boundary of the ellipse 

shown in Figure 5b. In the second stage, where β -axis is obtained, fβ  or wβ  must satisfy Equation (32); 

if not, the algorithm substitutes for fβ  or wβ  so that the equality holds.  
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In practice, the algebraic operations may not result in values that are identically zero because of the 

limits of floating-point operations on the computer, so values within a certain tolerance around zero 

should be considered zero in the algorithm. We use 12 1210 10x− −− < <  to judge if x  is equal to zero.  

Usually, four results can be obtained from the three selective outputs based on the selective 

alignment. There might be only two results or one result when there is only one intersection in Figure 2. 

If no intersection occurs because of bias errors or vibration, the value of the relevant selected output is 

changed to ensure an intersection. Because all six original outputs are given, the correct value of the 

attitude is picked out by minimizing the following cost function for ease of computer programming, 

although two signs or one approximate value from the remaining outputs could be enough to obtain the 

right result, as explained in Section 3.2.  

0xα → - ieaxisα → w

iew wα >

f gα >
f

f g
f
α

α
α

=

ie

w
w w

w
α

α
α

=
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f w

g w
α αΔ Δ

> f f fα α α← + Δ

w w wα α α← + Δ

2 2 2
iew w wα β+ >

2 2
ie

w
w w w

w
β

β α
β

← −

0yα →-axisα → g

-  is uncertainaxisβ

2 2 2f f gα β+ >2 2f
f g f

f
β

β α
β

← −

-  obtainedaxisα

-  obtainedaxisβ

-  obtainedaxisγ

several  obtainedb
nC

b
nC

' '  is the assignment symbol.

' '  denotes 'approximate to'.

←

→  

Figure 7. Flowchart for the selective alignment algorithm.  
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δ − −= +w w f g
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where bw  and bf  are the original outputs of the IMU, b
nC  is computed from Equation (7), which may 

have four different values, and ⋅  is the norm operator.  

To handle exceptions, a binary number with five bits, 5 4 3 2 1b b b b b , is used. If there are no exceptions, 

5 4 3 2 1 00000b b b b b = ; otherwise,  

 1 1b =  if f gα >  

 2 1b =  if iew wα >  

 3 1b =  if there is no intersection with the bα -axis 

 4 1b =  if in FWW, 2 2 2
iew w wα β+ > , or if in FWF, 2 2 2f f gα β+ >  

 5 1b =  if in FWW, bα -axis ie→ w , or if in FWF, bα -axis → g  (The symbol “ → ” denotes 

“approximate to”) 

The exceptions rarely happen unless the SINS is level (one of the body axes is along the direction of 
the gravity) or one of the body axes is parallel to the axis of rotation of the Earth. If 5 1b = , the attitude 

cannot be obtained. The other four exceptions arise because of measurement errors or base vibrations, 

which do not significantly affect the selective alignment after corresponding exception handling. 

Figure 7 shows a flowchart for the selective alignment algorithm.  

5. Simulations and Experiments 

Simulations and experiments were conducted to validate the performance of the proposed selective 

alignment method.  

5.1. Static Alignment Example  

Similar to the coordinate transformation matrix b
nC , the Euler angles, i.e., roll, pitch, and yaw, can 

also be used to express the attitude [4].  

Simulations were conducted to test the selective alignment method. Because the alignment is 

usually performed in a short period of time, only the bias and noise in the IMU were considered. With 

the SINS remaining static on the ground, the AA methods including the selective alignment method 

and the analytic coarse alignment method were used to obtain the attitude angles. The values of the 

various parameters were chosen as follows:  

Simulation conditions for the static alignment: 
32L = ° , 29 8 m/sg = . , 57 2921158 10  rad/siew −= . ×  , T T[roll pitch yaw] [10 10 10 ], , = °, °, ° ,  

T 4 4 4 T[ ] [10 10 10 ]x y z g− − −∇ ,∇ ,∇ = , , ×  , T T[ ] [0 01 0 01 0 01]  /hx y zε ε ε, , = . , . , . °  ,  
T 5 5 5 T[ ] [5 10 5 10 5 10 ]

x y yf f f gσ σ σ − − −, , = × , × , × ×  , T T[ ] [0 005 0 005 0 005]  /h
x y zw w wσ σ σ, , = . , . , . °  

where i∇  is the bias for the i -axis accelerometer, iε  is the drift (assumed constant) for the i -axis 

gyroscope, 
if

σ  is the standard deviation of the white noise for the i -axis accelerometer, and 
iwσ  is the 

standard deviation of the white noise for the i -axis gyroscope. The sampling rate was 100 Hz, and the 

IMU outputs were sampled for one minute. The average values were computed and used to test the AA 

method. There were twelve sets as a result of the various possibilities in the selective alignment 

method. The alignment results are shown in Table 3.  
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Table 3. The attitude angles obtained using analytic alignment (AA) methods in the simulation. 

 xf xw yf yw zf zw Roll ( ° ) Pitch ( ° ) Yaw ( ° ) 5 4 3 2 1b b b b b  

Selective 
Alignment 

 

      9.9943 10.0058 9.9572 00000 

 

      9.9970 10.0910 9.9725 00000 

 

      9.9933 9.9732 9.9514 00000 

 

      9.9931 9.9664 9.9502 00000 

 

      9.9943 10.0058 9.7485 00000 

 

      10.4947 10.0058 9.7485 00000 

 

      9.9606 10.0058 9.7485 00000 

 

      9.9386 10.0058 9.7485 00000 

 

      9.9933 9.9732 9.8989 00000 

 

      10.0015 9.9649 9.9464 00000 

 

      9.9606 10.0058 9.7106 00000 

 

      9.9651 10.0013 9.7365 00000 

Analytic Coarse 
Alignment 

Equation (6a) 9.9933 10.0058 9.9451 - 

Equation (6b) 9.9933 10.0058 9.9445 - 

 True attitude 10 10 10 - 

where the contents from left to right in the six grids denote xf , xw , yf , yw , zf , and zw , respectively. 

The corresponding contents are selected when being painted. 
Next, assume T T[roll pitch yaw] [0 0 0 ], , = °, °, ° , which is more likely to occur in practice, and the 

values of the other parameters were left unchanged. The results are shown in Table 4.  

Table 4. The attitude angles obtained using AA methods in the simulation. 

 xf xw yf yw zf zw Roll (° ) Pitch ( ° ) Yaw ( ° ) 5 4 3 2 1b b b b b  

Selective 
Alignment 

 

      −0.0058 0.0058 359.9588 00000 

 

      −0.0058 0.0715 359.9588 00000 

 

      −0.0058 0 359.9588 01000 

 

      −0.0058 −0.0451 359.9588 00000 

 

      −0.0058 0.0058 0 00100 

 

      −0.0717 0.0058 0 00100 

 

      0 0.0058 0 01100 

 

      0 0.0058 0 01100 

 

      −0.0058 −0.0447 7.3397 10101 

 

      0 −0.0451 359.9552 00101 

 

      0.0447 0.0058 262.5998 10101 

 

      0 −0.0451 0 01101 

Analytic Coarse 
Alignment 

Equation (6a) −0.0058 0.0058 359.9588 - 

Equation (6b) −0.0058 0.0058 359.9588 - 

 True attitude 0 0 0 - 
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From Table 4, it can be observed that intolerant errors of the yaw angle occur due to the 5 1b =  

exception in ( )z z xf w f, ,  and ( )z z yf w f, ,  for the selective alignment because they are quite close to the 

extreme state bα -axis → g  in the FWF mode where the β − axis is uncertain when the SINS is level, 

as explained in Section 4.1. The other exceptions except the 5 1b =  exception do not significantly affect 

the selective alignment. From Table 3, no exception occurs, which indicates that the exceptions rarely 

happen unless the SINS is level or one of the body axes is parallel to the axis of rotation of the Earth. 

In general, the selective alignment and the analytic coarse alignment could achieve consistent 

alignment accuracy, and the alignment accuracy would be decreased when two gyroscope outputs are 

selected for the selective alignment. 

5.2. Fault Detection Example  

The selective alignment method may be potentially an effective approach for sensor fault detection 

such as that prior to take-off in aircraft. That is, by determining the alignment with independent 

sensors, individual sensor failures could be identified on the ground. A simulation was performed with 

self-alignment and assuming a 0 1%. -level IMU. The accuracy of the z -axis gyroscope was assumed 

to be degraded.  

Simulation conditions for fault detection:  
T 4 4 4 T[ ] [10 10 10 ]x y z g− − −∇ ,∇ ,∇ = , , × , T T[ ] [0 01 0 01 1]  /hx y zε ε ε, , = . , . , ° ,  

T 5 5 5 T[ ] [5 10 5 10 5 10 ]
x y yf f f gσ σ σ − − −, , = × , × , × × , T T[ ] [0 005 0 005 0 005]  /h

x y zw w wσ σ σ, , = . , . , . ° , 
T T[roll pitch yaw] [0 0 30 ], , = °, °, °   
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Figure 8. The alignment results using selective alignment for fault detection. 

The IMU outputs were sampled for ten seconds. The average values were computed, and these are 
denoted as bw  and bf . The difference between the norm of bw  and iew  was 0 556 /h. ° , and the 

difference between the norm of bf  and g  was 41 0121 10 g−. × . It is obvious that several of the outputs 

of the three-axis gyroscope are faulty. The selective alignment method can be further used to identify 
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the erroneous output. The alignment results are shown in Figure 8. Because the platform was level, the 

two sets of outputs ( )z z xf w f, ,  and ( )z z yf w f, ,  were not selected for use in the selective alignment 

method in case of the 5 1b =  exception. 

Because the outputs of the three-axis accelerometer are correct, the roll and pitch angles obtained 
through the analytic coarse alignment method are rational. From Figure 8, once zw  is selected for the 

selective alignment method, the roll angle or the pitch angle will have obvious errors. It can be 

observed that the z -axis output of the three-axis gyroscope is severely affected.  

5.3. Self-Calibration Example  

An error in the z -axis gyroscope will cause errors mainly in the yaw angle in the inertial navigation 

process. To reach a balance between cost and accuracy, an IMU may include one high-accuracy  

z -axis gyroscope and two other less accurate gyroscopes. Using the selective alignment method with 

the outputs of the higher-accuracy z -axis gyroscope and the accelerometers, the attitude can be 

obtained. Then, the errors in the other, lower-accuracy gyroscopes can be compensated.  

A simulation was performed to test the validity of the self-calibration procedure. The SINS was 

assumed to be static on the ground, and the SINS was assumed not to be level to avoid the  

5 1b =  exception.  

Simulation conditions for the self-calibration:  
T 4 4 4 T[ ] [10 10 10 ]x y z g− − −∇ ,∇ ,∇ = , , × , T T[ ] [0 1 0 1 0 01]  /hx y zε ε ε, , = . , . , . ° , 

T 5 5 5 T[ ] [5 10 5 10 5 10 ]
x y yf f f gσ σ σ − − −, , = × , × , × × , T T[ ] [0 05 0 05 0 005]  /h

x y zw w wσ σ σ, , = . , . , . °   
T T[roll pitch yaw] [20 20 20 ], , = °, °, °   

Table 5. The AA results for the self-calibration test. 

 xf xw yf yw zf zw Roll ( ° ) Pitch ( ° ) Yaw ( ° ) 

Selective 
Alignment 

      19.9943 20.0061 19.5203 

      20.3557 22.5326 20.5163 

      19.9922 19.9900 19.5140 

      20.0003 20.0516 19.5379 

      19.9943 20.0061 18.5666 

      27.9823 20.0061 18.5666 

      19.9760 20.0061 18.5666 

      20.6650 20.0061 18.5666 

      19.9922 19.9900 19.8515 

      19.8948 20.0868 19.5674 

      19.9760 20.0061 19.8044 

      19.6457 20.3300 18.8464 

Analytic Coarse 
Alignment 

Equation (6a) 19.9922 20.0061 19.4363 

Equation (6b) 19.9922 20.0061 19.4388 

 True attitude 20 20 20 



Sensors 2015, 15 27948 

 

 

The IMU outputs were sampled for one minute. The average values were computed and then used 

for the compensation. The alignment results are given in Table 5. It can be observed that the attitude 
for the selective alignment method using ( )z z xf w f, ,  produced the best result. Having computed b

nC  

through the ( )z z xf w f, ,  option of selective alignment, the constant drifts of the two lower-accuracy 

gyroscopes were obtained from Equation (34). The drift rates were ˆ 0 0694 /hxε = . °  and 

ˆ 0 0894 /hyε = . ° , and the drift errors of the two lower-accuracy gyroscopes are well compensated 

without multi-position. 

ˆ b n
b n ieC= −w wε  (34) 

5.4. Alignment in the Static Vehicle  

The experiment was performed at the National University of Defense Technology (NUDT). The 

SINS used in the tests, shown in Figure 9, was built by NUDT and includes three 90-type mechanically 
dithered ring laser gyroscopes. The accuracy of the gyroscope is 0.01 /h° ，and the accuracy of the 

accelerometer is 100 ug. 

 

Figure 9. The vehicular experiment scene and the related equipment. 

First, the vehicle remained static and the engine was not working. The outputs of the IMU were 

sampled for ten minutes. The average of the last two minutes’ data was computed and then used for the 

AA. The alignment results using fine alignment method given the data of ten minutes were considered 

as the true attitude. The alignment results are shown in Table 6. The errors of the attitude for the  
14 AA methods are shown in Figure 10, where γδ , θδ  and ψδ  denote the errors of the roll angle, pitch 

angle and yaw angle, respectively. 

From Table 6 and Figure 10, when ( ), ,x z zf f w  or ( ), ,y z zf f w  are selected to conduct the selective 

alignment. The error of the yaw angle is worse. That is because they are close to the 5 1b =  exception 

as described in Section 4.3. Besides, if yf  is selected for the selective alignment, the pitch angles are 

the same. If the three selections from the six IMU outputs for the selective alignment include two 
gyroscope outputs or exclude xf  or yf , the accuracy of the roll or pitch is worse, as shown in Table 6. 
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Table 6. The attitude angles obtained using AA methods. 

  xf xw yf yw zf zw Roll (° ) Pitch ( ° ) Yaw ( ° ) 

Selective 
Alignment 

1       −0.0744 1.6172 292.8975 

2       −0.0744 1.6537 292.8974 

3       −0.0744 1.7247 292.8973 

4       −0.0744 1.6760 292.8974 

5       −0.0744 1.6172 292.9183 

6       −0.0899 1.6172 292.9183 

7       −0.6041 1.6172 292.9183 

8       −0.0997 1.6172 292.9183 

9       −0.0744 1.7247 292.1757 

10       −0.0536 1.7255 292.8692 

11       −0.6041 1.6172 274.1607 

12       −0.0539 1.7255 292.8565 

Analytic Coarse 
Alignment 

13 Equation (6a) −0.0744 1.6172 292.9162 

14 Equation (6b) −0.0744 1.6172 292.9145 

  True attitude −0.0745 1.6173 292.9206 
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Figure 10. The errors of the attitude obtained using AA methods. 

5.5. Alignment in the Vehicle with Vibration  

Because vibration is common in actual systems, the alignment in the base with vibration is studied. 

The vehicle remained static for ten minutes, then fire the engine and let the engine idle. The outputs of 

the three-axis gyroscope were greatly affected because of vibration caused by the idle engine. And the 

yaw angle obtained through AA could be greatly influenced. The outputs from the IMU for two 

minutes during the time when the engine was idling were used for the application of the AA. And the 

alignment results using fine alignment method given the outputs of the whole time were considered as 

the true attitude. 

Since the six outputs from the IMU have a redundancy for the AA. The accuracy of the alignment 

could be increased compared to other AA methods by using two or more sets of selections for the 
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selective alignment and grouping the alignment results in a certain way. The roll and pitch angles can 

be determined due to the outputs of the three-axis accelerometer, while outputs from the three-axis 

gyroscope are required to obtain the yaw angle. The outputs of the three-axis gyroscope are much more 

easily influenced than the three-axis accelerometer in the base with vibration. The following AA 

method based on the selective alignment is presented. The yaw angle obtained through the selective 

alignment with the selection of ( ), ,x y xf f w  is denoted by ( )x x xh wψ = . The yaw angle obtained 

through the selective alignment with the selection of ( ), ,x y yf f w  is denoted by ( )y y yh wψ = . 

Approximatively, ( )2~ ,x x xw N u σ , ( )2~ ,y y yw N u σ , where ( )2,t tN u σ  denotes the normal distribution 

with the mean tu  and the standard deviation tσ , ,t x y= . tu  was estimated as the average value of the 

data for two minutes from the output in t -axis gyroscope, and 2
tσ  was estimated as the computed 

variance value from the same data divided by the number of the samples. The variance of the yaw 

angle could be decreased using 

( )1xy x yk kψ ψ ψ= − +  (35) 

where 
( )

( ) ( )
x

x y

D
k

D D

ψ
ψ ψ

=
+

, and it results in ( ) ( ) ( )
( ) ( )

x y

xy

x y

D D
D

D D

ψ ψ
ψ

ψ ψ
=

+
. ( )D ⋅  is the variance operator. 

( )iD ψ  was computed using a simple method by constructing three-element array. The principle of 

the method is described as follows. If ( )2~ ,w N u σ , then 

( )E w u= , ( ) 2D w σ= , ( )2 2 2E w u σ= + , ( )3 3 23E w u uσ= +  (36) 

where ( )E ⋅  is the expect operator. Construct 

T

3 3
, ,

2 2
u u uσ σ
 

= − + 
 

w , which satisfies 

( )E w u= , ( ) 2D w σ= , ( )2 2 2E w u σ= + , ( )3 3 23E w u uσ= +  (37) 

It can be observed that the estimation accuracy using the three-element array can reach the third order. 

Similarly, in order to compute the variance of the yaw angle due to the influenced gyroscope output, 

construct 

T

3 3
, ,

2 2t t t t t tu u uσ σ
 

= − + 
 

w as the outputs from one-axis gyroscope, the variance of the 

yaw angle using the selective alignment method can be estimated by 

( ) ( ){ }
3

1

1

3t t t t
i

D h iψ ψ
=

= −   w  (38) 

where ( )
3

1

1

3t t t
i

h iψ
=

=    w , ,t x y= . 

The experiment was conducted for fifty times. Assume the yaw angle using the i -th method shown 
in Figure 11 for the j -th experiment is ˆ

ijψ , and the corresponding true value using fine alignment 

method is jψ . iδ  and iσ  are used to test the average alignment error and the stability, respectively, 

for the i -th method shown in Figure 11. They are given by 
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50

1

1

50i ij
j

δ ψ
=

=   , ( )
50 2

1

1

50 1i ij i
j

σ ψ ψ
=

= −
−     (39) 

where ˆij ij jψ ψ ψ= − , 
50

1

1

50i ij
j

ψ ψ
=

=   . 

The results are shown in Figure 11. It can be observed that the yaw angle using Equation (35) based 

on the selective alignment achieves the best accuracy and stability among the AA methods. However, 

it has to be noted that AA could usually not achieve better alignment result in the base with obvious 

vibration than INCA presented in the introduction section. Nevertheless, AA has its vitality for the 

self-alignment of the SINS on the ground, especially in the base with limited vibration, where both AA 

and INCA could achieve consistent alignment precision and AA requires less alignment time and has 

much lower computational complexity. Moreover, the principle of the selective alignment shows that 

two vectors are redundant to determine the coordinate transformation matrix, while at least two  

vectors are required for the TRIAD algorithm. Given the idea, some more improvement may be 

achieved in some other applications where TRIAD algorithm is used such as the spacecraft attitude  

determination problem. 
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Figure 11. The errors of the yaw angle obtained using AA methods. 

6. Conclusions 

A new AA method called selective alignment is proposed, which uses only three outputs of the IMU 

and a few properties from the remaining outputs such as the sign and the approximate value to obtain 

the attitude of the SINS relative to the Earth in the static base on the ground. Simulations and 

experiments were conducted, and the results demonstrate that the selective alignment can be used for 

self-alignment, fault detection and self-calibration, and the selective alignment could achieve better 

alignment result than the analytic coarse alignment which is based on the TRIAD algorithm. Selective 

alignment algorithm, as an extension of the TRIAD algorithm, implies that two non-coplanar vectors 
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are redundant for determining the transformation matrix, which could be studied further in other attitude 

determination problems where TRIAD algorithm is applied such as spacecraft attitude estimation. 
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