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A motor imagery (MI)-based brain–computer interface (BCI) is a system that enables 
humans to interact with their environment by translating their brain signals into control 
commands for a target device. In particular, synchronous BCI systems make use of cues 
to trigger the motor activity of interest. So far, it has been shown that electroencepha-
lographic (EEG) patterns before and after cue onset can reveal the user cognitive state 
and enhance the discrimination of MI-related control tasks. However, there has been 
no detailed investigation of the nature of those EEG patterns. We, therefore, propose 
to study the cue effects on MI-related control tasks by selecting EEG patterns that best 
discriminate such control tasks, and analyzing where those patterns are coming from. 
The study was carried out using two methods: standard and all-embracing. The stan-
dard method was based on sources (recording sites, frequency bands, and time win-
dows), where the modulation of EEG signals due to motor activity is typically detected. 
The all-embracing method included a wider variety of sources, where not only motor 
activity is reflected. The findings of this study showed that the classification accuracy 
(CA) of MI-related control tasks did not depend on the type of cue in use. However, 
EEG patterns that best differentiated those control tasks emerged from sources well 
defined by the perception and cognition of the cue in use. An implication of this study 
is the possibility of obtaining different control commands that could be detected with 
the same accuracy. Since different cues trigger control tasks that yield similar CAs, and 
those control tasks produce EEG patterns differentiated by the cue nature, this leads to 
accelerate the brain–computer communication by having a wider variety of detectable 
control commands. This is an important issue for Neuroergonomics research because 
neural activity could not only be used to monitor the human mental state as is typically 
done, but this activity might be also employed to control the system of interest.

Keywords: brain–computer interface, motor imagery, classification accuracy, electroencephalographic patterns, 
human factors
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inTrODUcTiOn

A brain–computer interface (BCI) is a system that enables 
humans to interact with their environment by translating their 
brain signals into control commands for a device of interest 
(Graimann et  al., 2010). The mechanism of a BCI system fun-
damentally consists of two steps: (1) detecting and decoding the 
user intentions for controlling the system and (2) maintaining a 
continuous user-system communication. The user intentions of 
controlling a BCI system are changes in the user brain signals 
that are regulated through control tasks. A control task can be 
based on exogenous or endogenous paradigms (Jackson and 
Mappus, 2010). Particularly, the endogenous paradigm is based 
on the quantification of brain oscillations that are modulated 
via cognitive tasks such as motor imagery (MI). The user-system 
communication is established by a control interface. A control 
interface can be synchronous or asynchronous (Hassanien and 
Azar, 2015). In a synchronous interface, the user-system com-
munication is allowed only in fixed time windows; whereas in 
an asynchronous interface, the user initiates the communication 
with the system at will. Both synchronous (Obermaier et al., 2003; 
Leeb et  al., 2006; Maeder et  al., 2012; Bamdadian et  al., 2014) 
and asynchronous (Scherer et al., 2007; Galán et al., 2008; Lotte 
et al., 2008; Tseng et al., 2015) systems have been developed over 
the past few years. For real-world applications, the prototyping 
of asynchronous systems is preferred because these allow users 
to interact naturally with their environment. The relevance of 
synchronous systems cannot, however, be ignored, even in real 
applications. The cueing process facilitates the early and accurate 
detection of the user control tasks, despite the user ability for 
modulating his/her brain signals. This, in turn, raises confidence, 
persistency, and autonomy in the users toward the mastery of 
BCI skills. Furthermore, the identification of MI onset allows to 
analyze prior and post periods, which have been associated with 
the improvement of BCI performance and the recognition of the 
user cognitive state (Maeder et al., 2012; Bamdadian et al., 2014; 
Gutierrez et al., 2015).

As brain signals are modulated by neural networks that modify 
their degree of synchronization according to the sensory–cogni-
tive input, it is not surprising that control tasks (particularly those 
based on MI) contain much more information than only that 
related to the user intention of controlling the system (Kropotov, 
2010). MI-related control tasks are a source of information that 
has been exploited not only to generate control commands for a 
target device, but also to enhance BCI performance, to predict 
classification accuracy (CA), or to determine the user mental 
state. For example, Pfurtscheller and Neuper (2001), and then 
Obermaier et al. (2003), reported that left- and right-hand MIs 
were correctly discriminated as early as 250 ms after the onset of a 
specific visual cue. They attributed the early discrimination to the 
cue properties, concluding that the control tasks were the result 
of conscious (MI) and unconscious (visual stimulation) processes 
over the sensory–motor area of the brain. Furthermore, in a later 
and more detailed study, Pfurtscheller et  al. (2008) found that 
distinct short-lasting brain patterns appeared within a time win-
dow of about 500–750 ms after cue onset. Those brain patterns 
produced different features for different imaginary movements 

(hands and feet), facilitating and accelerating the discrimination 
of MI-related control tasks in naïve subjects. Another example is 
the study carried out by Grosse-Wentrup and Scholkopf (2012) 
in which high gamma range (55–85  Hz) between two fronto-
parietal networks were used to predict BCI performance on a 
trial-to-trial basis. Additional and important examples are two 
studies, respectively, undertaken by Maeder et  al. (2012) and 
Bamdadian et al. (2014). Those researchers demonstrated that the 
user performance in classical synchronous BCIs can be predicted 
by quantifying the modulation of the brain signals on pre-cue 
stages because they reflected somehow the user cognitive state. 
Finally, and more recently, Scheel et al. (2015) found that visual 
and auditory cues provoked significant differences of the peak 
amplitude of movement-related cortical potentials in synchro-
nous BCIs. They also found that potentials from the auditory-cue 
paradigm had a wider spatial distribution than those from the 
visual cue.

Overall, all aforementioned studies support the view that 
brain patterns extracted from MI-related control tasks can 
provide much more information than that used to control a 
target device. In particular, the cue effects on MI-related control 
tasks have been studied. Researchers in the field have shown 
that both perception (e.g., sensory–cognitive processing of the 
cue) and cognition (e.g., imaginary motor activity) are reflected 
on the brain signals wherefrom BCI control tasks are extracted. 
Studying the influence of human factors on BCI control tasks 
may help to design a more versatile human–machine interaction 
for this type of systems because of the active (e.g., extraction of 
control commands for manipulating a target device) and passive 
(e.g., monitoring of the level of attention of an individual) use of 
the brain signals. This work could have further applications in 
Neuroergonomics, where neural activity is registered in order to 
monitor human mental state. Making use of neural activity in an 
active and passive way may be much more fruitful.

So far, it has been shown that brain patterns before and after 
cue onset can reveal the user cognitive state and enhance the dis-
crimination of MI-related control tasks. However, there has been 
no detailed investigation of the nature of those brain patterns. We, 
therefore, propose to study the cue effects on MI-related control 
tasks by selecting the brain patterns that best discriminate such 
control tasks, and analyzing where those patterns are coming 
from in order to answer two questions:

 (1) If different cues provoke significant changes on MI-related 
control tasks, can different cues improve BCI performance 
as Scheel et al. (2015) suggested in their research? and

 (2) If MI-related control tasks are defined by motor activity per se 
and the cue in use, do brain patterns proceed from sources 
(recording sites, frequency bands, and time intervals) not 
only associated with motor activity, but also related to the 
sensory–cognitive processing of the cue?

The present study was conducted as follows. First, brain activ-
ity was registered by means of electroencephalography (EEG). 
Second, the frequently used stimulation modalities (SMs) for 
cueing in training sessions were applied. These were auditory 
(Nijboer et al., 2008) and visual (Boostani et al., 2007) stimuli. 
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In addition, a bimodal cue (combination of auditory and visual 
stimuli) was included in the study because previous investigations 
in sensory encoding (Basar et al., 1999; Isoğlu-Alkaç et al., 2007) 
have shown that simultaneous presentation of auditory, visual, and 
somatosensory stimuli significantly enhances sensory responses. 
Third, as preparation and imagination of movements evoke 
similar neural desynchronization events over the sensory–motor 
areas (Neuper et al., 2006) and both of them are widely used as 
control task, the two motor activities were included in the study. 
Finally, given that brain oscillations occur in a wide range of EEG 
recording sites, frequency bands, and time intervals (Kropotov, 
2010); brain patterns were analyzed using two methods: stand-
ard and all-embracing. The standard method was restricted to 
the well-established motor activity sources (Pfurtscheller et al., 
2007), while the all-embracing method involved all the available 
EEG information.

MaTerials anD MeThODs

experimental Procedure
Participant Recruitment and General Instructions
Nine participants (four females and five males) took part in this 
study, which was previously authorized by the Ethics Committee 
of the University of Essex. All of them were aged between 28 and 
41  years. None of them reported auditory impairments, seven 
of them had normal vision, and two of them had corrected-to-
normal vision. Eight of the nine reported to be right-handed and 
only one was left-handed.

The participants were informed about the experimental 
procedure and signed a consent form. Only two of the nine had 
previously engaged in cognitive tasks related to imagination of 
movements. At the beginning of the experiment, every partici-
pant was carefully instructed as follows:

• Get ready to imagine the movement of the hand that indicates 
a track playing “left” or “right” (audio), an arrow pointing to 
left or right (visual), or both of them (bimodal).

• Imagine yourself opening and closing your formerly pointed 
hand as soon as you listen to an increasing tone, see a green 
bulb, or perceive both of them.

• Stop the MI process and relax as soon as you listen to a 
decreasing tone, see a red bulb, or perceive both of them.

Organization of the Experiment
In order to collect sufficient EEG data, the participants attended 
two sessions. The sessions lasted 48  min each and followed an 
identical procedure. Every session consisted of six runs and one 
run had 50 trials. One trial took from 8500 to 9500 ms (Figure 1), 
resulting in runs of ~8 min. Within each trial, there were three 
phases: MP (0–2500  ms), MI (2500–6000  ms), and relaxing 
(6000–8500 ± 1000 ms). In the latter phase, a random variation 
of 1000 ms was included to reduce expectation effects.

As there were three SMs (audio, visual, and bimodal) and both 
hands (left and right) were involved, there were six categories of 
trials: audio-left, audio-right, visual-left, visual-right, bimodal-
left, and bimodal-right. Each of these categories was randomly 
presented 50 times and distributed over the six runs. We thereby 

obtained 12 conditions (six categories of trials  ×  two control 
tasks) and one condition had 100 trials (2 sessions × 50 trials).

Timing Protocol
The duration of the cues was standardized to 500 ms in accordance 
with sensory recognition and reaction time studies (Teichner, 
1954; Shelton and Kumar, 2010). The movement preparation 
(MP) was adjusted to 2000 ms, which is the necessary period to 
achieve readiness in the neural networks over the sensory–motor 
area (Jeannerod, 2006; Neuper et al., 2006). The MI was limited to 
3000 ms, as is commonly done in synchronous BCIs. The relaxa-
tion span varied from 2000 to 3000 ms, guaranteeing a proper 
recovery of the longest desynchronization process, i.e., the alpha 
one (Pfurtscheller et al., 1996). See Figure 1.

EEG Data Collection
The EEG signals were recorded by means of Biosemi equipment 
(Amsterdam, The Netherlands), the integration of ActiveTwo 
system and ActiView software (Honsbeek et  al., 1998). The 
ActiveTwo system was configured to acquire the signals within a 
bandwidth between DC and 400 Hz, and at a sampling frequency 
of 2048 Hz. The ActiView software was programed to decimate 
the signals at 512  Hz. Such configuration limited the effective 
digital bandwidth to 104 Hz by default.

The EEG signals were sensed via 61 active electrodes, plus 
driven-right-leg and common-mode-sense electrodes. The 61 
active electrodes were mounted on a head-cap labeled as stated 
in the 10/10 system. The other two electrodes were only used for 
referencing electrically the ActiveTwo system, but they were not 
recorded. In addition, three external electrodes were included 
for recording the eye movements (EOG). Two of them (EOGL 
and EOGR) were placed 1 cm below and above the lateral canthus 
of the left and right eyes, respectively. The third one was placed 
on the right mastoid (MR) for referencing EEG and EOG signals 
(Figure 2). At the end of the experiments, we gathered 18 datasets 
(9 participants × 2 sessions).

Data analysis
The datasets of one participant were excluded from the study. 
Those showed electrode-pop artifacts over the occipital area of 
the scalp. There were then 16 datasets for the study purposes.

Processing of Continuous EEG Data
To attenuate the interference in the EEG channels, these were pro-
cessed by using the open-access toolbox for electrophysiological 
signal processing, EEGLAB (Delorme and Makeig, 2004). First, 
every channel from each of the 16 datasets was processed as fol-
lows: (1) referencing against MR, (2) high-pass filtering at 0.1 Hz 
using a Butterworth filter of order 4, (3) low-pass filtering at 41 Hz 
using a Butterworth filter of order 7, and (4) down-sampling from 
512 to 256 Hz. Second, every dataset was scanned to eliminate 
discontinuities and detect high-impedance electrodes. Up to three 
electrodes under this condition were detected per dataset. Third, 
independent component analysis was applied to each dataset for 
rejecting artifacts such as EOG and electrocardiography. Only 
EEG channels without high-impedance difficulties were involved 
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FigUre 2 | 10/10 eeg layout of 61 channels, along with three external 
electrodes. All the EEG channels (■, ) were used for the all-embracing 
method, 15 of them ( ) were used for the standard method, EOGL/EOGR 
were used for recording eye movements, and MR was used for referencing 
EEG and EOG signals.
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in such analysis. EOGL and EOGR channels were used to identify 
all the independent components related to EOG activity. Finally, 
the EEG channels with high-impedance difficulties were replaced 
by interpolating their nearest neighboring channels as reported 
by Gargiulo et al. (2010). See Figure 3.

Processing of the Control Tasks (MP and MI)
The processing of the control tasks was carried out through 
the miBCI software1, package published by Alonso-Valerdi and 

1 Available at https://github.com/LuzAlondra/BrainComputerInterfaces/tree/
master/MI-based_BCIsystem

FigUre 1 | Timing protocol: audio, visual, and bimodal stimuli for cueing MP and Mi.

Sepulveda (2015). From every EEG channel of the 16 datasets, the 
control tasks were extracted in line with the cue onset (Figure 1). 
The MP and MI were thus 2500 and 3500 ms long, respectively. 
Having obtained the EEG signals of interest, they were spatially 
filtered via large Laplacian in order to obtain more localized 
electrical activity (Dornhege et al., 2007).

Feature Extraction
It is well-established that MP and MI provoke neural desynchro-
nization with peak power around 10 and 20 Hz (Neuper et al., 
2009). As band power (BP) estimation has been validated as a 
stable and consistent method for quantifying EEG power changes 
due to motor activity (Neuper et al., 2005), this was selected as 
feature extractor. BP estimation was applied in line with the 
methods described below.

Standard Method
Previous investigations have empirically established the follow-
ing criteria to effectively discriminate hand imaginary move-
ments. First, 18 central recording sites have been validated as the 
maximum number of EEG channels for satisfactory classification 
(Ramoser et al., 2000). Second, narrow frequency bands around 
the maxima 10 and 20 Hz have been widely used in synchronous 
BCI systems (Pfurtscheller et  al., 2007; Neuper et  al., 2009). 
Third, it has become common practice to discard 1 s post-cue, 
wherein evoked potentials are typically detected (Boostani et al., 
2007). With these criteria in mind, we laid down the standard 
method. This method was based on 15 central recording sites 
(Figure  2), four frequency bands, and EEG segments taking 
place 1 s post-cue. The frequency bands were established as fol-
lows: lower alpha (αL) from 8 to 10 Hz, upper alpha (αU) from 10 
to 12 Hz, lower beta (βL) from 16 to 20 Hz, and upper beta (βU) 
from 20 to 24 Hz.

All-Embracing Method
EEG signals are regulated by brain oscillators that adjust their 
state of synchrony according to sensory (e.g., cue decoding) 
and cognitive (e.g., MP and MI) events. These oscillators are 
neural networks that enter into synchrony in a wide range 
of resonant frequencies (from 0 up to about 80  Hz) and over 
specific periods of time (Krause, 2003). In view of this fact, we 
extended the scope of the standard method by establishing the 
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FigUre 3 | eeg signal analysis: from raw signals to feature extraction. At the end of the analysis, feature vectors for 12 cases of study resulted. Note that 
the term “All” refers to all-embracing method, and the term “Std” refers to standard method.
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all-embracing method. This method was based on 61 recording 
sites (Figure 2), seven frequency bands, and whole trace of MP 
and MI. In addition to the previously mentioned bands, the 
following ones were also considered: lower theta (θL) from 4 to 
6 Hz, upper theta (θU) from 6 to 8 Hz, and gamma (γ) from 39 
to 41 Hz. These bands were included in the analysis on the basis 
of the following evidence. Theta band rhythms resonate at the 
frequency band 4–8 Hz and emanate from the frontal midline 
due to audio–visual information encoding, attention demands, 
memory retrieval, and cognitive load. Moreover, these rhythms 
enhance after practice on the cognitive tasks at hand. They are 
more prevalent when the subject is focused and relaxed, and pro-
longed activity is related to selective attention (Basar et al., 1999; 
Krause, 2003; Kropotov, 2010). The upper theta band (6–8 Hz) 
generally reflects levels of alertness (Pineda, 2005). On the other 
side, gamma band rhythms oscillate near 40 Hz during sensory 
encoding, perceptual–cognitive functions, and motor behaviors. 
These rhythms are phase-locked to the stimulus and short-
lasting, and appear 100 ms post-stimulus in sensory–motor tasks 
(Pfurtscheller and Lopes da Silva, 1999; Ward, 2003; Altermaller 
et al., 2005).

Bearing in mind the criteria of standard and all-embracing 
methods, we can now briefly describe the feature extraction based 
on BP. The MP/MI signals were first filtered through Butterworth 
band-pass filters of order 7, with cut-off frequencies defined by 
the afore-stated bands. Afterwards, the signals were squared per 
sample and segmented by using time windows of 500 ms length 
with 50% overlapping rate. Finally, the resulting time segments 
(herein denoted by δn) were averaged and logarithmically 
transformed (refer to Figure 3), obtaining nine features per 
MP signal and 13 features per MI signal.

By the standard method, there were 15 channels and 4 frequency 
bands under consideration. In addition, three time segments 
[δ1 (0–500  ms), δ2 (250–750  ms), and δ3 (500–1000  ms)] were 
discarded. Hence, vectors of 300 features for MP and vectors of 
540 features for MI were obtained. By the all-embracing method, 

vectors of 3843 features for MP and vectors of 5551 features for 
MI were similarly obtained.

Feature Selection and Classification
After the feature extraction, there were 24 types of feature vectors 
that proceeded from three SMs, two control tasks, two hands, 
and two methods. These feature vectors were grouped by merging 
left and right MIs. Having obtained 12 different cases of study 
(Figure  3), Davies–Bouldin indexes (DBIs) were determined 
in each case to increasingly sort the corresponding features 
(Sepulveda et al., 2004; Kovács et al., 2005). DBI is a method for 
measuring the linear separability among m classes (Equation 1). 
This metric is based on comparing the similarity (R) among 
classes. Such similarity is determined by the class dispersion (s) 
and the distance (d) between centroids (Eq. 2). The class disper-
sion is the average distance between every element (τ) in the class 
and the centroid of the class (v). See Eq. 3. Thereby, the features 
within each vector were ranked from the most to the least suitable 
feature in terms of linear separability between two classes: left and 
right (Kovács et al., 2005). Note that smaller DBIs correspond to 
major linear separability.
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where Ti is the number of features in class i.
After ranking the features, a classification process took place 

in order to select the appropriate number of features that best 
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FigUre 4 | Feature selection and classification: obtaining the highest quality feature vectors (hQFVs). For each case of study, a HQFV was obtained. A 
HQFV was the feature vector that reached the maximum CA and wherein each feature (f) was ranked according to DBI.
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discriminated between left and right. If there were two classes 
and κ denoted the total number of features in each vector, K 
classifications were run for each case of study (Figure 4). From 
the K resulting CAs, the feature vector yielding the maximum 
performance was selected from each case of study. Thereby, we 
obtained 12 feature vectors for every participant. They were 
called the highest quality feature vectors (HQFVs). Note that 
the term “maximum performance” refers to 1.5 times the inter-
quartile range plus the upper quartile of the general distribution 
of all the CAs obtained at the end of the process. As a result, 
any peak value that was beyond the 99% of the distribution was 
discarded.

Every classification process2 was based on Fisher discrimi-
nant analysis (FDA) and consisted of two phases: training and 
testing. The 100 available trials per cluster were distributed half 
and half; that is, 50 trials (session 1) for training and 50 trials 
(session 2) for testing. The classifier was trained via 10-fold cross 
validation. That is, 50 training trials were split into a training set 
and a validation set. Through the validation set, the model was 
optimized by adjusting the regularization term that generally 
avoids overfitting problems due to the large number of features 
in use (Bishop, 2006). Once the classifier had been trained, this 
was tested by the rest of the trials and the percentage of the total 
number of correct predictions was estimated. The resulting CA 
in the testing phase was the parameter for acquiring the HQFVs. 
See Figure 4.

2 Before undertaking the classification process, note that the features were nor-
malized using normalization and standardization methods developed by mlpy 
(high-performance Python package for predictive modelling avaliable at http://
mlpy.sourceforge.net/) developers, to avoid BP estimates in greater numeric ranges 
dominate those in smaller numeric ranges. 

In this study, all statistical analyses were performed using the 
non-parametric method Kruskal–Wallis one-way ANOVA, and 
significance levels were set at 5%.

statistical evaluation of the hQFVs
The features of the HQFVs proceeded from specific recording 
sites (e.g., C3, Cz, or C4), frequency bands (e.g., αL, αU, βL, or βU) 
and time windows (δn). The origin of a feature in any of these three 
domains (location, frequency, and time) was referred as to feature 
source. On this basis, the HQFVs were statistically evaluated in 
accordance with those three domains and under two parameters: 
index of dispersion (ID) and mode.

The ID was calculated by using Eq. 4 and was an approach 
to quantify how spread a HQFV was over the feature sources 
in each domain. In Eq.  4, k is the number of feature sources 
in the domain of interest, fi is the number of occurrences of 
each feature source, and N is the total number of features in 
the HQFV under analysis (Norman and Streiner, 2008). Note 
that ID is 0 when all the features fall into one feature source. By 
contrast, it is 1 when the features are equally divided among the 
k feature sources.

 
ID =

−( )
−( )
∑k N f

N k
i

2 2

2 1
 (4)

The mode was the central tendency of a HQFV, i.e., the 
most frequently occurring feature source in the domain at 
hand. Having gathered the modes of all the HQFVs, these were 
graphically represented via a 2D-histogram (modal distribu-
tion) for each domain. In every 2D-histogram, the number of 
occurrences of each mode (fmode) was normalized by diving fmode 
by N.
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FigUre 5 | ca of the hQFVs. MP and MI analyzed using the standard method are illustrated in (a,B), respectively. MP and MI analyzed using the standard 
method are shown in (c,D), respectively.
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resUlTs

classification accuracy of the hQFVs
The CAs reached by the HQFVs are arranged in Figure 5. This 
figure indicates that there is no significant difference of CAs 
among SMs (p = 0.935). The figure also indicates that there is a 
significant increase of CAs (p = 1.11 × 10−16) between standard 
and all-embracing methods for both control tasks (MP and MI) 
and the three SMs (audio, visual, and bimodal). Finally, the figure 
shows that CAs (p = 0.707) between MP and MI are comparable 
for the three SMs and the two methods in use.

index of Dispersion of the hQFVs in 
location, Frequency, and Time
The IDs of the HQFVs, which were obtained from the standard 
method, are presented in Figures  6A–C. In location and time, 
the HQFVs are generally spread over all the feature sources 
showing IDs above 0.52 and 0.7, respectively. By contrast, IDs 
range between 0 and 1 in frequency. The IDs of the HQFVs, 
which resulted from the all-embracing method, are provided in 
Figures 6D–F. These IDs are above 0.85, 0.5, and 0.87 in loca-
tion, frequency, and time, respectively. The statistical comparison 
of the IDs between both methods in location, frequency, and 
time resulted in the following p-values: 1.461 × 10−9, 0.049, and 
4.767 × 10−7. Note that all the remarks mentioned in this section 
apply to MP and MI.

Modal Distribution of the hQFVs in 
location, Frequency, and Time
Standard Method
Figure 7 presents the modal distribution of the HQFVs over the 
following feature sources: (a) 15 recording sites, (b) 4 frequency 
bands, and (c) 5/9 time windows for MP/MI. With regard to 
the location domain, Figure 7A shows that modes from audio 
cues mainly tend toward FC3 and C3, while those from visual 

cues mostly tend to FC2, FC4 (only applicable for MI), and C4. 
Modes from bimodal cues are essentially distributed among FC3, 
C3, FC4, and C4. In all the cases, MI displays greater tendencies 
than MP.

We can see from Figure 7B that the overriding band for the 
three SMs is αU. In this case, the highest and the lowest tendencies 
are reached by modes from visual and bimodal cues, respectively. 
The MI control task shows a second dominant band. Such domi-
nant band for modes from audio and visual cues is βL, while that for 
modes from bimodal cues is βU. The MP control task only shows 
a second dominant band for modes from bimodal cues, which is 
βL. As in the location domain, MI reveals stronger tendencies in 
comparison with MP.

Lastly, Figure  7C provides the modal distribution in time. 
Keeping in mind that MP only involved five time windows 
(from δ5 to δ9), we can see that modes from the three SMs are 
evenly distributed along most of them. Although MI involved the 
nine time windows, the modes from the three SMs are mostly 
distributed across δ5 and δ9 as well. In both cases, the major modal 
tendencies for audio, visual, and bimodal cues are, respectively, 
the following: δ7/δ8 (1500–2000  ms), δ6/δ8/δ9 (1250–2500  ms), 
and δ5/δ9 (1000–1500 ms and 2000–2500 ms). There is addition-
ally a relevant modal distribution over δ13 for the three SMs in MI, 
regardless of the decreasing trend of the foregoing time windows.

All-Embracing Method
Figure 8 provides the modal distribution of the HQFVs over the 
following feature sources: (a) 61 recording sites, (b) 7 frequency 
bands, and (c) 9/13 time windows for MP/MI. With respect to the 
location domain, Figure 8A indicates that modes from the three 
SMs are distributed over about 40% of the feature sources in both 
control tasks. Specifically, modes from audio cues are distributed 
among 24 of the 61 recording sites. From those, 62% are on central 
areas, 25% are on parieto-occipital areas, and 13% are on frontal 
areas. Modes from visual cues are also distributed among 24 of 
the 61 recording sites. However, those are differently spread. Over 
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FigUre 7 | Modal distribution of the hQFVs that resulted from the standard method. The modal distribution is illustrated in three domains: (a) 15 recoding 
sites, (B) 4 frequency bands, and (c) 5/9 time windows for MP/MI.

FigUre 6 | iDs of the hQFVs. For the standard method, the indexes of the HQFVs over feature sources in location, frequency, and time are depicted in (a–c), 
respectively. For the all-embracing method, the indexes of the HQFVs over feature sources in location, frequency, and time are presented in (D–F), respectively.
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half of them are distributed between frontal and parieto-occipital 
areas (33% and 21%, respectively), while less than half of them 
are related to central areas (46%). Modes from bimodal cues are 
distributed among 27 of the 61 recording sites. From those, 56% 
are on central areas, 37% are on parieto-occipital areas, and 7% 
are on frontal areas.

Figure 8B illustrates the prevalence of αU band in the modes 
from the three SMs in both MP and MI. The figure also reveals 
the secondary but not insignificant role of βL band. The modal 
distribution between θL and αL bands is moderate for the three 
SMs, whereas that between θU and βU bands is negligible for the 
three SMs. Furthermore, the modal distribution over γ band is 

considerable for bimodal cues. In all these cases, MI shows much 
higher tendencies than MP.

Last but not least, Figure 8C depicts the modal distribution 
in time, considering that MP only involved 9 of the 13 time win-
dows. It can be seen from this figure that the modes from audio 
cues are spread across δ1 and δ9 (0–2500 ms), while those from 
visual and bimodal cues are spread across δ1 and δ7 (0–2000 ms). 
Particularly for MI control tasks, the modes from audio, visual, 
and bimodal cues strongly tend toward δ3 (500–1000  ms), δ4 
(750–1250 ms), and δ2/δ3 (250–1000 ms), respectively. In addi-
tion, there is an unexpected modal tendency to δ13 for the three 
SMs in MI.
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FigUre 8 | Modal distribution of the hQFVs that resulted from the all-embracing method. The modal distribution is illustrated in three domains: (a) 61 
recording sites, (B) 7 frequency bands, and (c) 9/13 time windows for MP/MI.
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DiscUssiOn

This paper set out with the aim of analyzing the cue effects on 
the discriminability of MP and MI control tasks. The analysis 
was carried out using two methods: standard and all-embracing. 
The standard method was based on feature sources, where the 
modulation of brain signals due to MP/MI is typically detected. 
For the all-embracing method, the scope of the standard 
method was extended by including a wider variety of feature 
sources, where not only motor activity is reflected. The analysis 
was limited to the HQFVs, i.e., the feature vectors that yielded 
the highest CAs during a DBI-FDA process. The following is a 
discussion of the most relevant results of the analysis.

classification accuracy of the hQFVs
On the question of improving CA by using different cues, we found 
that there was no significant difference in the discrimination of 
MI-related control tasks triggered by three SMs: audio, visual, 
and bimodal. However, there was a significant increase in the CA 
of control tasks analyzed under the all-embracing method over 
those analyzed using the standard method. These findings dem-
onstrated that an unbiased approach in location, frequency, and 
time leads to a better performance, but different cues do not make 
a difference. Although Scheel et al. (2015) suggested that different 
stimuli might improve the CA of the control tasks at hand, this 
study has been unable to demonstrate that. Nevertheless, it is a 
fact that more distinguishable EEG patterns are extracted from no 
MI-related sources. Possibly, other type of stimuli could improve 
the differentiation of MI-related control tasks. In accordance with 
the findings of Pfurtscheller and Neuper (2001) and Obermaier 
et al. (2003), control tasks are result of conscious and unconscious 
processes. As different stimuli may evoke different unconscious 

processes, more differentiable EEG patterns could be found. 
However, this needs further investigation.

Another important result was the analogous performances of 
MP and MI for the three SMs and the two methods. It is well 
established that both control tasks generate similar event-related 
oscillations, but the “no-go” signal accompanying MI is frequently 
overlooked (Krepki et  al., 2007). An imaginary movement 
activates motor areas of the brain almost to the same extent as a 
real one, except for the visible contractions. This means that the 
neural commands for muscular contractions are blocked at some 
level of the motor system by an active inhibitory mechanism. 
This questions whether MI in motor-disabled people takes place 
like that in healthy ones, or it is rather a real movement process 
(Jeannerod, 2006). In addition, the use of MI as control task 
involves the development of an electromyographic detector so 
as to eliminate undesirable muscular activity un- or consciously 
triggered by healthy BCI users. Based on these two factors and 
given that both control tasks achieved analogous performances, 
MP may be a better option for BCI systems.

index of Dispersion of the hQFVs in 
location, Frequency, and Time
For both methods, the distribution of the HQFVs over the avail-
able feature sources was much more even in location and time 
than in frequency. This indicates that the most gainful features 
for discriminating between left and right MIs mainly proceeded 
from the entire set of recording sites and the total duration of the 
control task, but only from a specific frequency band (αU). The 
finding is in agreement with that of other studies (Pfurtscheller 
and Neuper, 2001; Neuper et  al., 2009) which showed that the 
correct discrimination between left and right started 250–500 ms 
after cue onset and where the most discriminating frequency band 
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was the αU. With reference to the location domain, although this 
finding differs from some published studies (Ramoser et al., 2000; 
Leeb et al., 2006), it is consistent with those of Meckes et al. (2004) 
and Sepulveda et al. (2004). They suggested giving attention to 
non-motor locations, even when the mental task of interest was 
movement related.

The current study also found that the HQFVs tended to be 
more widely spread over the feature sources in the all-embracing 
method than in the standard method. It is worth mentioning 
that the inclusion of more feature sources increased the diversity 
of HQFVs. This result corroborate the ideas of Pfurtscheller 
and Neuper (2001) and Obermaier et al. (2003), who suggested 
that control tasks are result of the mental effort demanded by 
the control task (conscious process) and the sensory–cognitive 
processing of the cue (unconscious process).

Modal Distribution of the hQFVs in 
location, Frequency, and Time
The modes of the HQFVs fundamentally tended toward the 
expected sources (Pineda, 2005). These were the C3/C4 recoding 
sites and the αU/βL frequency bands. The modes also revealed clear 
tendencies toward feature sources that reflected the nature of the 
cue in use. Before going on to discuss this further, it is necessary 
to mention that the modal tendencies were much greater in MI 
than in MP. The reason for this is not clear, but it may be due to 
the mental effort involved in each control task. MP is such an 
intention, whereas MI is a dynamic process that goes through 
many of the central phases of actual movements.

Standard Method
The modes from audio cues tended to the left hemisphere, where 
some language-related functions take place, whereas those from 
visual cues tended to the right hemisphere, where visual percep-
tion is processed (Kropotov, 2010). Being the bimodal cue, a 
composition of audio and visual cues, the corresponding modal 
tendency was to both hemispheres. This result suggests that the 
most discriminating features were defined not only by the MP/
MI mechanisms but also by the sensory–cognitive processing of 
the cue in use. With respect to the frequency domain, the involve-
ment of high frequency bands took importance successively in 
modes from audio, visual, and bimodal cues. This result may be 
related to previous work of Giannitrapani [whose work is cited in 
Kropotov (2010)], who found that high beta activity (21–33 Hz) 
increased when the stimulus structure complexity also increased. 
It is possible, therefore, that the cue complexity had played a 
significant role in the discrimination process of features as well. 
Regarding the time domain, the highest tendencies took more 
time (after the cue onset) to appear in modes from audio than 
from bimodal cues. Hence, it is also possible to hypothesize that 
more informative features were found earlier when a more direct 
cue was employed.

All-Embracing Method
The modes from audio cues mostly tended to central recording 
sites, where auditory evoked potentials are typically recorded 

(Proverbio and Zani, 2003), and to δ3 (500–1000 ms) time win-
dow, where brain rhythms normally respond to the recognition 
and/or retrieval of acoustic stimuli (Krause, 2006). On the other 
hand, the visual stimulation is registered around 200  ms post-
stimulus as a response to modulations of alpha band rhythms 
over parieto-occipital areas and beta band rhythms over fronto-
parieto-occipital areas (Kropotov, 2010; Andreassi, 2013). This 
may be a reason why modes from visual cues tended to fronto-
parieto-occipital recording sites, αU band, and δ2 (250–750 ms) 
time window. Finally, the modes from bimodal cues displayed a 
well-balanced distribution between central and fronto-parieto-
occipital recording sites and between δ2 (250–750  ms) and δ3 
(500–1000  ms). This finding confirms that bimodal stimuli 
require feature sources that are also required by audio and visual 
stimuli separately (Isoğlu-Alkaç et  al., 2007). In the frequency 
domain, the remarkable tendency of these modes toward γ band 
accords with previous findings of Ward (2003), who found that 
the sensory decoding around 250 ms post-stimulus is reflected in 
modulation of γ band rhythms.

In the three SMs, one unanticipated finding was the minor 
role occupied by βU band that is well-known as one of the major 
contributors in the discrimination process of MI activity. A pos-
sible explanation for the small contribution of this band is that 
neural desynchronization around 20 Hz has been considered as a 
harmonic response of desynchronization around 10 Hz, whereas 
the one around 16 Hz is an authentic response to motor activity 
(Pfurtscheller et al., 1996). Moreover, Pfurtscheller et al. (1999) 
found that the most discriminating frequency components 
throughout MI-related tasks were found within the αU band in 
three of four subjects, while those were found within the βU band 
only in one subject.

Lastly, it is worth noting the underlying tendency of modes 
from visual and bimodal cues toward the δ9 (2000–2500 ms) time 
window in the standard method. There was also another clear ten-
dency of modes from the three SMs toward the δ13 (3000–3500 ms) 
time window in both methods. For visual and bimodal stimula-
tion, we believe that gaze fixation at the screen center provoked by 
cues “left”/“right” could have driven the participants to anticipate 
the upcoming cue “start.” Similarly, the cue “start” appearance 
caused the cue “stop” expectation. For audio stimulation, once the 
participants had received the cue “start,” and owing to the likeness 
between increasing and decreasing tones (cues “start” and “stop,” 
respectively), the anticipation of the audio cue “stop” was likely 
to have arisen. This speculation is supported by the findings of 
Scherer et al. (2008), who found that the involuntary expectations 
for the approaching cues provoked false control commands dur-
ing virtual navigation. Another interesting tendency of modes of 
the three SMs is toward δ2 (250–750 ms) and δ3 (500–1000 ms) 
time windows in the all-embracing method. These results are in 
agreement with the findings of Pfurtscheller et  al. (2008), who 
showed that distinct short-lasting brain patterns appeared within 
a time window of about 500–750 ms after cue onset.

All these interpretations must be, however, taken with caution. 
More research on this topic need to be undertaken because these 
findings can only be conclusive in early training sessions. The 
effects observed in this study could diminish or vanish, either 
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in further training sessions or in online applications. Another 
source of uncertainty is associated with the ambiguity of multi-
variate classifiers (such as FDA) to determine the brain regions, 
frequency, and time intervals where cognitive processes are 
reflected. Haufe et al. (2014) demonstrated that backward models 
(e.g., multivariate classifiers) combine information from different 
channels to separate the brain patterns of different classes. These 
models may, however, give significant weight to channels unre-
lated to brain processes of interest. By contrast, forward models 
(e.g., blind source separation) explain how the measure data are 
generated from the neural sources, providing a neurophysiologi-
cal meaning of the outcomes. Furthermore, Haufe et al. showed 
that brain patterns were much smoother and covered more diverse 
cognitive-related areas, when those patterns were obtained via 
forward methods. These findings are of particular interest due the 
nature of our study. It seems that the present results are limited 
by the methods applied to select the features vectors. Possibly, by 
transforming the backward model in use (DBI-FDA process) into 
a forward model such as proposed Haufe et al. (selection of brain 
patterns according to the neurophysiological contribution of each 
EEG channel), a clearer feature distribution over unrelated MI 
sources could have been achieved.

implications on neuroergonomics 
research
This is a key issue for Neuroergonomics research because neural 
activity could not only be used to monitor the human mental 
state, but this might be also employed to control a system of inter-
est. In fact, Myrden and Chau (2015) have suggested to develop 
a BCI system on the basis of an overt adaptation to keep user 
mental within the optimal region, and a covert adaptation that 
automatically adjusts BCI parameters according to such mental 
state.

An important application may be on driver modeling and 
vehicle simulation environments (Xu et  al., 2015). These two 
areas of research have been of interest to develop driver assis-
tance systems for safer driving and intelligent transportation. For 
example, EEG signals of a driver can be used to model the driver 
neuromuscular dynamics (Bi et al., 2015) and, thus, improving 
the performance of a driver simulator. Such EEG signals can also 

be employed to detect the fatigue (Wang et al., 2014) and level of 
attention (Wang et al., 2015) of the driver to activate the driver 
simulator and, hence, preventing driving accidents. Furthermore, 
the performance of the driver simulator can be improved by 
analyzing the human reaction to traffic cues such as car horn, 
direction indicators, and traffic lights. All of these cues produce 
specific EEG patterns on the driver brain signals as has been 
shown in this study.

cOnclUsiOn

The findings of this study have provided a new understanding of 
how MI-related control tasks used to control a BCI system may 
become modified by their preceding cues. Although previous 
investigations have somehow studied the cue effects on MI-related 
control tasks; in this study, we have shown that the CA of those 
control tasks does not depend on the type of cue in use. Moreover, 
we found that the EEG patterns that best differentiate MI-related 
control tasks emerge from recording sites, frequency bands, and 
time windows well defined by the perception and cognition of 
the cue in use. An implication of this study is the possibility of 
obtaining different control commands that could be detected 
with the same accuracy. Since different cues trigger control tasks 
that yield similar CAs, and those control tasks produce EEG 
patterns differentiated by the cue nature, this leads to accelerate 
the brain–computer communication by having a wider variety 
of detectable control commands. This is an important issue for 
Neuroergonomics research because neural activity could not only 
be used to monitor the human mental state, but this might be also 
employed to control the system of interest.
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