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Abstract

Navigation is an important movement process that enables individuals and groups of animals to find targets
in space at different spatio-temporal scales. Earlier studies have shown how being in a group can confer
navigational advantages to individuals, either through following more experienced leaders or through the
pooling of many inaccurate compasses, a process known as the ‘many wrongs principle’. However, the
exact mechanisms for how information is transferred and used within the group in order to improve both
individual- and group-level navigational performance are not fully understood. Here we explore the relative
weighting that should be given to different sources of navigational information by an individual within a
navigating group at each step of the movement process. Specifically, we consider a direct goal-oriented
source of navigational information such as the individual’s own imperfect knowledge of the target (a ‘noisy
compass’) alongside two indirect sources of navigational information: the previous movement directions of
neighbours in the group (social information) and, for the first time in this context, the previous movement
direction of the individual (persistence). We assume all individuals are equal in their abilities and that direct
navigational information is prone to higher errors than indirect information. Using computer simulations, we
show that in such situations giving a high weighting to either type of indirect navigational information can
serve to significantly improve the navigation success of groups. Crucially, we also show that if the quality
of social information is reduced, e.g. by an individual’s limited cognitive abilities, the best navigational
strategy for groups assigns a considerable weighting to persistence, a behaviour that is neither social, nor
directly aimed at navigating.
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1. Introduction1

Navigation towards a target in space is an im-2

portant ecological process for many animals. The3

navigation process can range from short time-scale4

processes such as finding localised food patches5

in foraging (Bell, 1991), to much larger spatial6

and temporal scales such as in seasonal migrations7

(Bergman & Donner, 1964). At the individual8

level, navigation processes can be classified as9

either ‘alliothetic’ or ‘idiothetic’ (Whishaw &10
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Brooks, 1999). An alliothetic navigation process11

uses the relationships between one or more external12

cues (which could be visual, auditory, olfactory, or13

other cues such as geo-magnetic forces) and geo-14

metrical calculations about the observed landscape15

to locate targets in space (Whishaw & Brooks,16

1999). In contrast, an idiothetic navigation process17

relies on cues generated by internal movement18

processes (proprioceptive cues, cues from optic,19

auditory, and olfactory flow, or efference copy of20

motor commands) and subsequent path integration21

(‘dead reckoning’) to locate a target in space given22

the known starting location (Whishaw & Brooks,23

1999). In this context, an alliothetic process can be24

considered to use ‘direct’ (external) goal-oriented25

navigational information about the target, while26

an idiothetic process relies on ‘indirect’ (internal)27
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navigational information.28

29

Alliothetic and idiothetic navigation processes30

for an individual animal can be modelled using31

standard random walk theory (Codling et al.,32

2008). Specifically, an alliothetic movement pro-33

cess is equivalent to a biased random walk (BRW),34

where the animal directly reorientates towards a35

fixed target in space (or a target direction, which36

is equivalent to a target ‘point at infinity’) at each37

step of the random walk process (Benhamou, 2004,38

2006; Codling et al., 2008, 2010). An idiothetic39

movement process is equivalent to a correlated40

random walk (CRW) with an initial facing towards41

the target direction (Cheung et al., 2007). In42

a CRW the animal has a tendency to continue43

moving in the same direction as the previous step,44

and hence exhibits ‘forward persistence’ (Kareiva45

& Shigesada, 1983; Bovet & Benhamou, 1988;46

Benhamou, 2004; Codling et al., 2008). It is47

also possible to combine the external navigation48

(alliothetic) and forward persistence (idiothetic)49

processes together into a single random walk model50

known as a biased and correlated random walk51

(BCRW). In such cases the external navigation52

and forward persistence components are usually53

combined in a simple weighted vectorial sum54

(Benhamou & Bovet, 1992; Benhamou, 2004;55

Codling et al., 2008), but more complicated models56

are also possible (Codling & Hill, 2005a).57

58

It can easily be shown using a mathematical59

argument that relying on idiothetic cues alone is60

a poor navigation strategy in the long term, and61

that an external cue is necessary for long-term62

navigation success (Cheung et al., 2007, 2008).63

This is because without reference to any external64

cues, small errors at each time step in the CRW65

process are not corrected and propagate forwards in66

time such that, in the long-term, the net expected67

movement towards the target in a single time68

step will tend towards zero (Kareiva & Shigesada,69

1983; Bovet & Benhamou, 1988; Benhamou, 2004,70

2006; Codling et al., 2008). In fact it is easy71

to show that the expected long term cumulative72

displacement towards the target direction in a73

CRW that is initially orientated towards the target74

(equivalent to a classic ‘dead reckoning’ task) is75

always bounded and finite unless there is zero76

error in the movement process (Cheung et al.,77

2007, 2008). In contrast, in a BRW there is always78

an external cue available to the random walker79

(albeit with possible error) and hence the expected80

net displacement towards the target direction81

increases linearly with time (Benhamou, 2004,82

2006; Codling et al., 2008, 2010). Given this fact,83

it is perhaps surprising that Benhamou & Bovet84

(1992) were able to show that when combining85

both idiothetic path-integration and alliothetic86

external navigation in a vector-weighted BCRW,87

the most efficient navigation strategy is to give a88

low (c10%) weighting to the alliothetic navigation89

component. It should be noted however, that this90

result is based on the assumption that the only91

source of error in the BCRW is in the external92

alliothetic cue (the ‘noisy compass’) and there is93

no error assumed on the idiothetic path-integration94

element of the movement process.95

96

Many animal species move and make decisions97

as part of a collective group (Krause & Ruxton,98

2002). Group membership is known to confer99

advantages to individuals such as protection from100

predators, sharing of resources, mate availability,101

and fulfilling social need (Krause & Ruxton, 2002).102

In addition, previous theoretical studies have103

shown how navigating as part of a social group104

can improve navigation performance. For example,105

Grünbaum (1998) developed an individual-based106

model for group-level taxis in a noisy environment107

based on individuals modifying their turning108

rates in response to the movements of their109

neighbours. Couzin et al. (2005) demonstrated a110

‘leader-follower’ model for navigation where in-111

formed individuals with high levels of navigational112

knowledge can successfully lead a group where the113

majority of individuals are uninformed. In general,114

group navigation arises when individuals in the115

group directly or indirectly share navigational116

information. The exact mechanisms for how117

information is most effectively transferred and used118

within the group are not well understood, although119

recent empirical and theoretical work has given120

some insights into this problem. For example,121

Berdahl et al. (2013) showed how group taxis can122

occur even without direct navigation behaviour123

at the individual level, while Couzin et al. (2011)124

demonstrated how uninformed individuals within125

the group can help a consensus to form when126

some individuals have conflicting target directions.127

Additionally, Ioannou et al. (2015) found that128

informed leaders in a school of golden shiners129

(Notemigonus crysoleucas) need to carefully bal-130

ance goal-oriented (navigation) cues and social131
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(group cohesion) cues in order to maintain a132

cohesive group that confers a navigational benefit133

to all individuals.134

135

The composition of a navigating animal group136

can range from a majority of naive or uninformed137

individuals directly following a few ‘leaders’ who138

have relatively strong navigational knowledge139

(e.g. Couzin et al., 2005; Mirabet et al., 2008),140

through to a group where all individuals are141

effectively homogeneous (there are no leaders) and142

are equally well (or poorly) informed about the143

location of the target. It is this ‘leaderless’ case144

that we investigate here. Simons (2004) termed145

this strategy the ‘many wrongs principle’ where146

group navigation performance is improved through147

‘the pooling of many inaccurate compasses’ and148

group cohesion acts to suppress navigation errors.149

The many wrongs principle has been confirmed150

empirically in both birds and humans (Bergman151

& Donner, 1964; Dell’Ariccia et al., 2008; Faria et152

al., 2009). In reality, it is likely that many animal153

groups will not be entirely homogeneous (as the154

simplest interpretation of the many wrongs prin-155

ciple assumes) and individuals may have different156

levels of experience and motivation resulting in157

leaders emerging within the group. In such cases158

the many wrongs principle may still act as an159

effective navigation method at the group level.160

Nevertheless, there are certain animal groups that161

do fit the basic assumption of group homogeneity,162

an example being cohorts of recruiting juvenile163

coral reef fish larvae that have been hypothesised164

to navigate in groups and use the many wrongs165

principle to reach a target reef to settle upon166

(Codling et al., 2004; Simpson et al., 2013).167

168

The many wrongs principle has been explored169

theoretically using computational models. For ex-170

ample, Hancock et al. (2006) considered a localised171

search problem and explored how the many wrongs172

principle might evolve in a population of foraging173

mammals. Guttal & Couzin (2010) and Torney174

et al. (2010) used simulations to conceptually175

demonstrate how both the ‘leader-follower’ and176

the ‘many-wrongs’ model for group navigation177

can evolve in animal populations where individual178

fitness is obtained by balancing navigation success179

against costs of investment into navigation or180

social abilities. Bode et al. (2012a) illustrated181

how leaderless group navigation can be improved182

through an internal social network structure within183

the group. Codling et al. (2007) demonstrated a184

basic mechanism for information transfer within a185

group navigating using the many wrongs principle186

but assumed an equal weighting between individ-187

uals using their individual (noisy) compass and188

copying the directions of movement of their nearest189

neighbours at each step of the movement process.190

Codling & Bode (2014) generalised this model191

and explored the optimal weighting given to the192

(direct) navigational information provided by the193

individual compass and the (indirect) information194

provided by copying the movements of group195

neighbours. In particular, they demonstrated the196

somewhat counter-intuitive result that the best197

navigation performance is obtained by giving only198

a low (c10− 20%) weighting to direct navigational199

cues. This can be compared to the finding of200

Benhamou & Bovet (1992) who showed that201

alliothetic cues should be given a similar weighting202

when balanced with idiothetic cues (persistence) in203

a BCRW model of navigation for individual animal204

movement. However, Codling & Bode (2014) did205

not directly include persistence in their group206

navigation model.207

208

It is possible to create forward persistence in a209

movement path by restricting the turns of indi-210

viduals at each step using a maximimum turning211

angle (sometimes termed rotational or directional212

inertia). At the most basic level, this process213

is essentially a variation of a CRW where the214

introduction of a maximum turning angle means215

one is effectively drawing turns from a truncated216

(uniform) circular distribution, rather than a217

unimodal continuous circular distribution (such as218

the von Mises or wrapped normal) as is typically219

used in a standard CRW (Codling et al., 2008). In220

the context of collective animal group movement,221

a maximum turning angle has typically only been222

included for purposes of biological realism, so that223

individuals do not turn unrealistically quickly.224

Couzin et al. (2002) considered a range of maxi-225

mum turning angles (between 10 and 100 degrees226

per time step) but only in the context of exploring227

the form and structure of a non-navigating animal228

group. Couzin et al. (2005) and Mirabet et al.229

(2008) both used a maximum turning angle in the230

context of an ‘informed leader’ navigation problem,231

but neither study explored how the maximum232

turning angle affected navigational efficiency, or233

considered the role of forward persistence as an234

indirect navigational cue that could be balanced235

3



against other cues.236

237

In this study we explore the relative weighting238

that should be given to different sources of naviga-239

tional information by an individual within a homo-240

geneous navigating animal group at each step of the241

movement process in order to achieve the maximum242

group-level navigational efficiency. Specifically, we243

consider a direct (alliothetic) source of navigational244

information such as the individual’s own imperfect245

knowledge of the target (a ‘noisy compass’) along-246

side two indirect sources of navigational informa-247

tion: the movement directions of neighbours in the248

group (social information) and the previous move-249

ment direction of the individual (persistence). In a250

similar manner to Benhamou & Bovet (1992) and251

Codling & Bode (2014), we assume that the error in252

the noisy compass is the main source of directional253

uncertainty. Introducing individual persistence (an254

idiothetic cue and a non-social behaviour) within255

the group navigation context is the key novelty of256

this work.257

2. Methods258

We use a discrete time individual-based group259

movement model based closely on the models given260

in Codling et al. (2007) and Codling & Bode (2014),261

which are themselves modified versions of more262

general collective movement models (Aoki, 1982;263

Couzin et al., 2002; Gregoire et al., 2003; Couzin et264

al., 2005; Viscido et al., 2005). In the model, move-265

ment is governed by a hierarchy of behavioural rules266

applied at the individual level. We are specifically267

interested in the case where there are no ‘leaders’268

in the group and all individuals are equally good269

(or poor) at navigation. Time steps and distances270

in the simulations are given in arbitrary units, have271

no physical meaning, and are used for comparative272

purposes only. Simulations were coded in the Java273

programming language (https://www.java.com/).274

2.1. Simulation framework and model structure275

At the start of the simulation individuals in our276

navigating group are placed uniformly at random277

within a square of side length 100 units centred278

at (x, y) = (0, 0). The initial movement direction279

of individuals is randomly chosen from a uniform280

circular distribution. The virtual two-dimensional281

environment is assumed to be homogeneous and282

empty except for a single target site situated at283

(xT , yT ) = (0, 1000). We assume that the group are284

required to navigate towards this target while also285

(in general) maintaining group cohesion. Based on286

the findings of Codling & Bode (2014), we assume287

a group size of N = 40 individuals. Codling &288

Bode (2014) showed that, in this type of virtual289

navigation experiment, the overall size of the group290

has little effect once a minimum viable group size is291

reached (e.g. N > 10). Instead, it is the number of292

influential neighbours (k) that individuals interact293

with when copying directional movements that are294

important (Codling & Bode, 2014).295

296

At each unit time step every individual in the297

group simultaneously updates its position and298

movement direction according to the hierarchical299

rules of movement as described in Section 2.2;300

the exact movement behaviour of each individual301

is determined by the distance of the nearest302

influential neighbours in the previous time step.303

For simplicity, the group is assumed to be homoge-304

neous and all individuals use the same movement305

parameters and follow the same hierarchical rules.306

Hence, in contrast to studies where one or more307

of the group act as ‘leaders’ (Couzin et al., 2002,308

2005; Conradt et al., 2009), we assume the group309

is ‘leaderless’ and all individuals have the same310

navigational knowledge, motivation and experience311

(as in Codling et al., 2007; Codling & Bode, 2014).312

Each individual moves with an average speed of313

1 distance unit per time step; the exact distance314

moved is subject to the addition of a random noise315

term and hence the realised speed at each time316

step can be slightly higher or lower than 1, see317

Section 2.3).318

319

Each simulation is run for 500 time steps. This320

implies that the theoretical maximum distance that321

the group can reach on average is 500 distance units322

away from the centre of the target (this is on av-323

erage since fluctuations in speed can be introduced324

through the additive random noise term mentioned325

previously). We do not model movement within the326

local vicinity of the target and hence concentrate on327

the large scale navigation stage of the movement328

process. Similar to Codling & Bode (2014), we de-329

fine the group-level navigational efficiency as330

E =
1000− dT

500
, (1)331

where dT is the distance from the centre of mass332

of the group to the centre of the target after 500333
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time steps of the simulation. Using this definition334

the group navigational efficiency, E, ranges in335

value from 1 (movement in a straight line directly336

towards the target), through 0 (no net movement337

towards or away from the target), to −1 (movement338

in a straight line directly away from the target).339

Note that because of the random noise term added340

to the movement of each individual (Section 2.3), it341

is theoretically possible for E to lie slightly outside342

the range (−1, 1) but in practice we found this did343

not occur in our simulations.344

345

An alternative individual-based definition of346

navigational efficiency is also possible. In this347

case, the distance between the final position of348

each individual and the target is calculated, and349

these values are then averaged over the group. In350

the case of navigation towards a target direction351

(equivalent to the target being a ‘point at infinity’)352

the two definitions are exactly equivalent. How-353

ever, close to a fixed target the two definitions can354

give different results, particularly if individuals355

are not cohesive and are widely dispersed about356

the centre of mass of the group. In general,357

because our simulations are based on the initial358

navigation stage where the target is far away,359

the two defintions give very similar results (for360

mean navigational efficiency) and hence we present361

results for the group-level efficiency only. However,362

it should be noted that the variance in navigational363

efficiency is obviously higher when considering the364

individual-based definition.365

366

As we are interested in group-level navigation,367

it is important to also consider the relative cohe-368

siveness of the group during the navigation process.369

To determine cohesiveness we consider the relative370

dispersal (spread) of individuals within the group371

in both the x (non-navigation) and y (navigation)372

directions. We consider dispersal in each direction373

separately as it is not immediately obvious whether374

the dispersal within the group will be symmetric375

(see for example Codling et al., 2010). The relative376

dispersal within the group is measured by calculat-377

ing the mean squared displacement (MSD) about378

the group centre for each individual and averaging379

over the group:380

MSDx =
1

N

(
N∑
i=1

(xi − x̄)2

)
,

MSDy =
1

N

(
N∑
i=1

(yi − ȳ)2

)
, (2)

where N = 40, and (xi, yi) and (x̄, ȳ) are respec-381

tively the positions of the i-th individual and the382

centre of mass of the group at the end of 500383

simulation time-steps.384

385

A description of the parameters and the typical386

values used in the simulations are given in Table 1.387

For each simulation scenario and parameter com-388

bination 100 replicate simulations were completed389

and the mean and variance in group navigation ef-390

ficiency calculated.391

2.2. Hierarchical individual rules of movement392

Similar to standard models in the literature (e.g.393

Aoki, 1982; Couzin et al., 2002; Gregoire et al.,394

2003; Couzin et al., 2005; Viscido et al., 2005;395

Codling et al., 2007; Guttal & Couzin, 2010) we as-396

sume that individual-level interactions and move-397

ment decisions are based on a hierarchy of be-398

havioural rules based on the distance to the nearest399

influential neighbours. We assume each individual400

in the group has a radius of collision avoidance, RC ,401

and a radius of orientation interaction, RO, which402

are assumed to be the same for all individuals in the403

group (Table 1). At any given time step the move-404

ment behaviour of individual i at position (xi, yi)405

is dependent on the distance, d, between itself and406

its nearest neighbour j at position (xj , yj), where407

d = ‖(xi − xj , yi − yj)‖.408

2.2.1. Collision avoidance409

If d < RC , then collision avoidance is assumed410

to take priority and hence individual i will attempt411

to move directly away from individual j. The pre-412

ferred movement direction is then given by the unit413

vector414

r =
(xi − xj , yi − yj)
‖(xi − xj , yi − yj)‖

. (3)415

Note that no noise or error term is added to the416

collision avoidance direction vector at this stage.417

2.2.2. Navigation, persistence, and neighbour-418

copying419

If RC < d < RO, then navigation takes priority420

and individual i will attempt to navigate towards421

the target based on a weighted vectorial sum of i)422

the movement directions of its k nearest neighbours,423
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Parameter Description Value(s) or range

N Total group size 40
k Number of influential neighbours 1, 3, 5, 7, 15
RC Radius of collision avoidance 2
RO Radius of orientation / navigation 15
wnav Weighting given to individual navigation (0, 1)
wsoc Weighting given to copying neighbours’ direc-

tions
(0, 1)

wper Weighting given to individual persistence (0, 1)
ε Standard deviation of individual navigation

error
0, 0.1, 0.2, 0.5, 1, 1.5, 2, 3, 5, 10

ξ Standard deviation of added environmental
movement noise / error

0.1

Table 1: Parameter values used in the simulations of group navigation. Simulations were run across 201 equally spaced values
of wnav and wsoc between 0 and 1 (where wper = 1−wnav −wsoc). Five values for k and ten values for ε were also considered.
All other parameter values were fixed for all simulations at the values shown.

ii) a target vector based on its own navigational424

knowledge, and iii) a persistence vector given by425

the direction of movement of the individual in the426

previous time step. The preferred movement direc-427

tion is then given by the unit vector428

r =
wnavrnav + wsocrsoc + wperrper
‖wnavrnav + wsocrsoc + wperrper‖

, (4)429

where wnav is the weighting given to individual430

navigation, wsoc is the weighting given to the431

movement directions of the k nearest neighbours,432

wper is the weighting given to the previous433

direction of movement of the individual, and434

wnav + wsoc + wper = 1. Note that this model435

can be considered as a more generalised version of436

the weighted vectorial sum used within both Ben-437

hamou & Bovet (1992) and Codling & Bode (2014).438

439

The direction vector corresponding to individual440

navigation is given by441

rnav =
(xT − xi + ex, yT − yi + ey)

‖(xT − xi + ex, yT − yi + ey)‖
, (5)442

where (xT , yT ) is the centre of the navigation443

target, and ex ∼ N(0, ε2) and ey ∼ N(0, ε2) are444

normally distributed error terms. Note that the445

form of this ‘noisy compass’ is similar to Codling446

& Bode (2014) but we have directly included the447

noise term before normalising the direction vector.448

Hence in this model large levels of navigational449

noise / error will have less of a disruptive effect than450

in Codling & Bode (2014), who applied the noise451

term after the normalisation of the direction vector.452

453

The direction vector corresponding to copying454

the movement directions of neighbours is given by455

rsoc =

∑k
j=1 vj

‖
∑k

j=1 vj‖
, (6)456

where vj gives the movement directions of the k457

nearest neighbours to individual i in the previous458

time step. In equation (6) we assume for simplicity459

and consistency across simulations that there460

is no restriction on the distance to the nearest461

neighbour in order for it to influence the movement462

of individual i. Hence, when copying the movement463

directions of neighbours we assume topological464

rather than metric interactions (Ballerini et al.,465

2008). Note that no noise or error term is added466

to the rsoc vector at this stage, so we assume that467

individuals are able to determine the average of the468

movement directions of their k nearest neighbours469

perfectly. However, we do vary the quality of this470

social information in a biologically relevant way471

by adjusting the number of nearest neighbours,472

k, that individuals respond to. Low values of k473

imply individuals only have imperfect information474

of the movement of the group as a whole, while475

high values of k imply more complete information476

about the group movement. We have previously477

argued that k should not be interpreted literally478

(Codling & Bode, 2014), but that it instead479

provides a simple way for implementing different480
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levels of social information about the movement of481

the group which could be linked to the cognitive482

abilities of each individual.483

484

The direction vector corresponding to persis-485

tence, rper, is simply given by the final movement486

direction of individual i in the previous time487

step. No noise or error term is added directly to488

the rper vector at this stage. Note however that489

an individual moving purely through persistence490

(wnav = wsoc = 0) will still have errors in their491

movement due to the addition of a final external492

(non-navigational) movement error term (see493

below).494

495

Note that the form of Equation (4) means that496

we are able to directly control the relative bal-497

ance between forward persistence (directional iner-498

tia) and other navigational cues in order to explore499

the relative efficiency of different combinations of500

cue weightings. In principle, one would obtain qual-501

itatively similar results by using a maximum turn-502

ing angle at each step (Couzin et al., 2002, 2005;503

Mirabet et al., 2008) to constrain turns and intro-504

duce some level of forward persistence to the move-505

ment. At the extremes, the two approaches of mod-506

elling forward persistence are exactly equivalent: a507

maximum turning angle of 0 rads directly corre-508

sponds to wper = 1 and wnav = wsoc = 0 (straight509

line movement); a maximum turning angle of 2π510

rads directly corresponds to wper = 0 (no restric-511

tion on turns, but no additional forward persistence512

contribution to each move). However, for interme-513

diate values it is not clear how the maximum turn-514

ing angle would relate to wper (and hence to wnav515

and wsoc), making it difficult to directly compare516

navigational efficiency across different combinations517

of weightings within the study and with results else-518

where (Benhamou & Bovet, 1992; Codling & Bode,519

2014).520

2.2.3. Group cohesion521

If d > RO, then group cohesion takes priority522

and individual i will attempt to rejoin the group by523

moving directly towards the centre of mass of the524

group. The preferred movement direction is given525

by the unit vector526

r =
(xC − xi, yC − yi)
‖(xC − xi, yC − yi)‖

, (7)527

where (xC , yC) = 1
N

∑N
j=1(xj , yj) is the centre of528

mass of the group at the end of the previous time529

step (calculated including the position of individual530

i for consistency across simulations). Note that no531

noise or error term is added to the group cohesion532

direction vector at this stage.533

534

2.3. Implementing movement535

As with Codling & Bode (2014) (and in contrast536

to Codling et al. (2007)) we do not include an537

additional radius of cohesion outside which indi-538

viduals are assumed to have left the group (and as539

such would navigate and move independently). In540

addition we have not assumed any ‘blind regions’541

(e.g. Couzin et al., 2005). Essentially we are542

assuming that all individuals stay within sight of543

the rest of the group at all times. We use values544

of RC = 2 and RO = 15 (Table 1) that are similar545

to earlier studies (Codling et al., 2007; Codling546

& Bode, 2014), although this choice is arbitrary.547

As with Codling & Bode (2014), our aim is to use548

values for the interaction radii that ensure globally549

polarised and cohesive group movement in the550

absence of navigation.551

552

We assume that individuals are subject to an ad-553

ditional noise/error term (corresponding to short-554

scale information processing or movement errors, or555

environmental turbulence) when they attempt to556

move in their chosen preferred direction. If, after557

the hierarchical interaction rules have been applied,558

the preferred movement direction is r (correspond-559

ing to either Eqs. (3), (4) or (7), depending on the560

nearest neighbour distance) then we calculate the561

actual movement direction implemented as follows562

vi = r + (mx,my), (8)563

where mx ∼ N(0, ξ2) and my ∼ N(0, ξ2) are nor-564

mally distributed error terms. The standard devi-565

ation, ξ = 0.1, is fixed and represents the (low)566

level of error present due to short time-scale in-567

formation processing errors or environmental tur-568

bulence (Codling et al., 2007). Finally, the new569

spatial position of individual i is updated to be570

(x′i, y
′
i) = (xi, yi)+vi (and hence the speed of move-571

ment is variable due to the introduced movement572

error/noise).573

3. Results574

Figure 1 illustrates how the mean group navi-575

gational efficiency relates to the weighting given576
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Figure 1: Group-level navigational efficiency against weighting towards individual navigation, wnav for different levels of
navigational noise/error, ε, after 500 simulation time-steps. In A and B, we set wsoc + wnav = 1 and thus wper = 0 (as in
Codling & Bode, 2014). In C and D, we set wnav + wper = 1 and thus wsoc = 0. Individuals in A and C maintain group
cohesion (attraction) and avoid collisions (repulsion), while individuals in B copy group neighbours but do not maintain group
cohesion or avoid collisions, and individuals in D move entirely independently from each other (no copying of neighbours,
cohesion or collision avoidance, as in Benhamou & Bovet, 1992). The mean group level navigation efficiency over 100 replicate
simulations is given as solid lines, while the shaded regions show one standard deviation above and below the mean. The
number of influential neighbours is set to seven (k = 7). Results for other non-trivial values of k are qualitatively very similar
and are not shown here. Simulations were performed for 201 equally spaced values of wnav between 0 and 1.

8



0.0 0.2 0.4 0.6 0.8 1.0

2
4

6
8

10

wnav

lo
g(

M
S

D
x)

, l
og

(M
S

D
y)

MSDx ε = 5.0 ε = 1.0 ε = 0.1

MSDy ε = 5.0 ε = 1.0 ε = 0.1

A

0.0 0.2 0.4 0.6 0.8 1.0

2
4

6
8

10

wnav

lo
g(

M
S

D
x)

, l
og

(M
S

D
y)

MSDx ε = 5.0 ε = 1.0 ε = 0.1

MSDy ε = 5.0 ε = 1.0 ε = 0.1

B

0.0 0.2 0.4 0.6 0.8 1.0

2
4

6
8

10

wnav

lo
g(

M
S

D
x)

, l
og

(M
S

D
y)

MSDx ε = 5.0 ε = 1.0 ε = 0.1

MSDy ε = 5.0 ε = 1.0 ε = 0.1

C

0.0 0.2 0.4 0.6 0.8 1.0

2
4

6
8

10

wnav

lo
g(

M
S

D
x)

, l
og

(M
S

D
y)

MSDx ε = 5.0 ε = 1.0 ε = 0.1

MSDy ε = 5.0 ε = 1.0 ε = 0.1

D

Figure 2: Log of mean-squared displacement (log(MSD)) about the group centre of mass in the x (non-navigation, solid lines)
and y (navigation, dashed lines) directions after 500 simulation time-steps. The MSD gives a measure of the level of cohesion
of the group with lower values corresponding to higher cohesion. As with Figure 1, the labels A and B refer to simulations
with wsoc +wnav = 1, while in C and D, wnav +wper = 1. Similarly, A and C include group cohesion and collision avoidance
rules, while B and D do not include these rules. The number of influential neighbours is set to seven (k = 7) and simulations
were performed for 201 equally spaced values of wnav between 0 and 1.
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to individual navigation, wnav. In Figure 1:A,577

wper = 0, so that there is no weighting given to578

persistence (and hence wsoc + wnav = 1). This579

is essentially the same scenario as Codling &580

Bode (2014) and qualitatively similar results are581

obtained. The highest navigational efficiency is582

achieved when using a low weighting for individual583

navigation (wnav ≈ 0.2 for all levels of navigation584

uncertainty. The value of wnav ≈ 0.2 is slightly585

higher than that found in Codling & Bode (2014)586

(who observed wnav ≈ 0.1 to give the highest587

navigational efficiency), but this can be explained588

by the fact that, in contrast to Codling & Bode589

(2014), we normalise the navigational error term590

in Equation (5) which results in the additive error591

term having less of an impact on navigation per-592

formance. Figure 1:B also has wper = 0 and shows593

very similar results, but in this case we do not594

include the collision avoidance and group cohesion595

social interaction rules. The collision avoidance596

and group cohesion rules can be considered as597

potential sources of navigation error (since the598

directions specified by these rules may not be599

towards the target). However, comparing Figure600

1:A and Figure 1:B, it is clear that there is very601

little difference in terms of group-level navigation602

performance between the two cases. This result603

could be interpreted as the collision avoidance604

and group cohesion rules having little or no effect.605

For the collision avoidance rule this may be true,606

but with the group cohesion rule there is also the607

possiblity that group cohesion gives the group608

some navigational benefits by keeping individuals609

close to neighbours (the closer an individual is to610

a neighbour, the more likely they are to share the611

same direction vector towards the target since our612

target is not a point at infinity), but this benefit613

is then cancelled out by the potential source of614

additional navigational error for the steps when615

the collision and cohesion rules are implemented.616

617

Figure 2:A and Figure 2:B show how the log618

of the mean squared displacement (MSD) about619

the group centre of mass in the x (non-navigation)620

and y (navigation) directions varies for the same621

scenarios and range of parameters as Figure 1:A622

and Figure 1:B. The MSD is a suitable measure623

for determining the group cohesion, with low values624

of MSD corresponding to a highly cohesive group.625

Comparing Figure 2:A and Figure 2:B, it is clear626

that (unlike the results for navigational efficiency)627

the simulation results differ with, as expected,628

groups that include the cohesion rule having a629

lower MSD (Figure 2:A) than when the cohesion630

rule is dropped (Figure 2:B). However, there are631

also some additional results worth commenting on.632

For high values of navigational error (ε = 5) it is633

clear that there is very little difference between634

MSDx and MSDy in both Figure 2:A and Figure635

2:B, and hence the spread around the group centre636

of mass is effectively isotropic (the group has a637

circular shape with no elongation). In contrast638

as the navigational error decreases there is a639

clear pattern where MSDy > MSDx (for both640

Figure 2:A and 2:B), and hence the group has641

a more elliptical shape and is more elongated642

in the navigation direction (anisotropic spread).643

This result is related to the additional observation644

that MSDy seems to approach approximately645

the same value as wnav increases for all values646

of ε. In contrast, MSDx, appears to decrease as647

ε decreases. This result is not surprising, as it648

simply indicates that for lower navigational error649

the group is less dispersed perpendicular to the650

navigation direction. These results are consistent651

with the observations of anisotropic diffusion in a652

BCRW with no group interactions in Codling et653

al. (2010).654

655

In Figure 1:C and 1:D we consider two scenarios656

involving wsoc = 0 (so that wper + wnav = 1).657

Firstly, in Figure 1:C individuals in the group follow658

the rules for collision avoidance and group cohesion659

but do not give any weighting to the movement660

directions of neighbours when navigating (since661

wsoc = 0). In contrast, in Figure 1:D individuals662

in the group move entirely independently of each663

other and there are no social interactions or664

collision avoidance at all. The scenario in Figure665

1:D is directly equivalent to the BCRW model666

explored by Benhamou & Bovet (1992) and our667

results closely match Figure 1 from Benhamou668

& Bovet (1992). Comparing Figure 1:C and 1:D669

(where wsoc = 0 in both cases), including the670

collision avoidance and group cohesion rules has a671

detrimental effect on the group-level navigational672

efficiency. This is explained by the fact that in673

1:C, individuals in the group are effectively paying674

a navigational cost through the implementation675

of the collision and cohesion rules but gain no676

navigational benefit from being in the group as677

they do not copy directional information from678

group neighbours (wsoc = 0). This is in contrast679

to the results in Figures 1:A and B where wsoc 6= 0680
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and the cost of the collision avoidance and cohesion681

rules is balanced by a gain in navigation perfor-682

mance through copying directional information683

from neighbours.684

685

In Figure 1:C and Figure 1:D we show the686

mean and variance of the group-level navigational687

efficiency. If we consider the individual-level688

navigation performance (results not shown) then689

the mean individual-level navigational efficiency is690

very similar to the group-level efficiency. However,691

the variance in navigational efficiency is different692

for the individual- and group-level cases. For693

the same levels of individual navigation error, ε,694

the inclusion of basic (non-navigational) social695

interactions such as collision avoidance and group696

cohesion reduces the variance of the individual-697

level navigational efficiency (as well as reducing the698

mean individual-level efficiency, similar to Figure699

1:C and Figure 1:D for the group-level results).700

Hence, at the individual-level, the inclusion of701

social interactions results in a reduced navigational702

efficiency but a more consistent navigational703

performance, which could be important depending704

on the ecological context. This result matches with705

the results in Figure 2:C and Figure 2:D, where the706

group cohesion is much lower when the collision707

and cohesion social rules are not included (Figure708

2:D), particularly for low values of wnav. When709

the group is much more spread out (low cohesion),710

one would expect the navigational efficiency at the711

individual-level to have higher variance.712

713

It is worth noting that for wnav > 0.5 the714

results for MSDx and MSDy are qualitatively715

and quantitatively similar for all plots in Figure 2.716

In other words, for larger values of wnav, groups717

navigating entirely non-socially but sharing a718

common target (as in Figure 2:D) do not appear719

to split and are just as cohesive as a group moving720

fully socially (as in Figure 2:A). This is in contrast721

to empirical results in Ioannou et al. (2015), where722

a careful balance between individual navigation723

and cohesion was required in order to avoid the724

group splitting. However, the key difference725

between these studies is that in our simulations all726

individuals in the group are actively navigating to727

a common target. In contrast, in Ioannou et al.728

(2015) it is only the informed leaders that actively729

navigate, meaning the group is more likely to split730

when cohesion is low as the leaders leave naive731

individuals behind. The problem of distinguishing732

between a social and non-social group in the733

context of navigation towards a common target is734

very much an open one and is explored in more735

detail in Bode et al. (2012b).736

737

Figure 3 illustrates the average group navi-738

gational efficiency across the parameter space739

wsoc + wnav + wper = 1 for low, medium and high740

social information quality (k = 1, 7, 15, respec-741

tively) and low, medium and high navigational742

error (ε = 0.1, 1.0, 5.0, respectively). We also743

completed simulations for additional values of k744

and ε (see Table 1), but results were qualitatively745

similar and are only shown in summarised form746

in Figure 4. In each plot in Figure 3 the main747

diagonal corresponds to wsoc + wnav = 1 (i.e.748

wper = 0) and is hence equivalent to the results749

shown in Figure 1:A. Similarly, results shown750

on the lower horizontal edge of the triangular751

region (where wsoc = 0) directly correspond to752

the results shown in Figure 1:C; the results inside753

the triangular region correspond to both wper > 0754

and wsoc > 0. If wnav = 0 (results shown on the755

left-hand vertical edge of the triangular region),756

then navigational efficiency is always zero. In each757

plot we show the location in parameter space and758

the value for the maximal navigational efficiency759

across these simulations, as well as the contour line760

at 95% of the maximal navigational efficiency.761

762

The results in Figure 3 show that as the nav-763

igational error, ε, increases (top to bottom), the764

highest achievable group navigation performance765

is reduced and the peak in group navigation766

performance for low values of wnav becomes more767

pronounced and narrower (see also Figure 4:A and768

4:B). As the quality of social information decreases769

(decreasing k, right to left), the contour line at770

95% of the maximal level for group navigation771

performance moves away from the leading diagonal,772

suggesting that non-zero persistence weightings,773

wper, are required to achieve the highest levels of774

group navigation efficiency (see Figures 3:B1 and775

3:C1, in particular).776

777

Figure 3 also shows that, aside from the sce-778

narios with very low levels of navigational error779

(where navigational efficiency is consistently high780

as long as wnav > 0.1), the group navigation781

performance is more robust to changes in the782

balance between the two indirect sources of783

information (wsoc v wper) than to variation in784
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Figure 3: Group-level navigational efficiency across the parameter space wsoc +wnav +wper = 1 for different group sizes (left-
to-right k = 1, 7, 15) and navigational noise/error (top-to-bottom ε = 0.1, 1.0, 5.0) after 500 simulation time-steps. Parameter
combinations underneath the leading diagonal, wsoc + wnav = 1, include values of wper > 0. Values of the navigational
efficiency are colour-coded according to the scale shown in the top right hand corner of A1. We simulated values for the
weighting parameters on a regular 201×201 grid in wnav×wsoc space and interpolated the results between adjacent parameter
combinations to obtain a smooth plot. We show the mean navigational efficiency over 100 replicate simulations. The maximal
value for navigational efficiency across our simulations, Em, is indicated with a triangle and the dashed line shows the contour
line at 95% of this maximal value. Note that when wnav � 1 it is possible for the navigational efficiency to be negative
(corresponding to movement away from the target on average).
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Figure 4: Summary plots illustrating the relationship between navigational efficiency, the number of influential group neighbours
(k), the individual navigation error (ε), and the relative weightings wnav , wsoc, and (indirectly) wper. In A we show how the
relative area contained within the 95% maximal efficiency contour line in (wnav , wsoc) space (as shown in the plots in Figure 3)
changes as ε increases for k = 1, 3, 5, 7, 15. In B we show how the maximal group-level navigational efficiency, Em, changes
as ε increases for the same values of k. Plot C shows trajectories corresponding to the position of the centre of mass of the area
contained within the 95% maximal efficiency contour line in (wnav , wsoc) space as ε increases from 0.1 to 10 (the starting point
for all trajectories is at approximately (0.38, 0.35); all trajectories initially move up and to the left with the final direction at
ε = 10 indicated with the arrows). Since wper = 1 − (wnav+ wsoc), any points below the diagonal correspond to wper > 0
(note that the plot is shown ‘zoomed-in’ to the area of interest for clarity). In all plots, the data points represent information
extracted from 100 replicate simulations for each parameter combination on a regular 51 × 51 grid in (wnav , wsoc) space.

the balance between direct and indirect sources785

of navigation information (wsoc or wper v wnav;786

the 95% contour level extends further along the787

y-axis than it does along the x-axis). Equivalently,788

for a given value of wnav, there is very little789

difference in navigation performance as wsoc and790

wper are changed, until wsoc gets smaller than791

approximately 0.2 at which point the navigation792

perfomance starts to be impaired. This suggests793

that as long as wsoc is sufficiently large, then the794

weighting given to wper does not negatively affect795

navigational performance and may in fact improve796

it slightly in some cases (Figures 3:B1 and 3:C1).797

However, if wsoc is too low then a large value of798

wper does not give as efficient navigation. One799

explanation for this result could be the fact that800

the value of the information contained in individual801

persistence will be less useful over longer time-802

scales, whereas the information contained within803

the movement directions of neighbours is more804

dynamic and is continually updated from a num-805

ber of group neighbours rather than one individual.806

807

Figure 4 summarises some of the more general808

trends that can be extrapolated from Figure 3 and809

includes results from simulations with additional810

values of k and ε (Table 1). In Figure 4:A we811

show how the proportion of the area within the812

triangular region that is bounded by the contour813

line corresponding to 95% of the maximal naviga-814

tional efficiency (as shown in Figure 3) decreases815

as ε increases. This measurement is essentially a816

proxy for the sensitivity of a particular scenario817

to different navigation strategies (weightings given818

to wnav, wsoc and wper). In other words, when819

the area bounded by the 95% contour line is large820

(as in Figure 3:A1 - A3), nearly all combinations821

of wnav, wsoc and wper (with the exception of822

very low values of wnav) produce navigational823

performance close to the maximal value. This is in824

contrast to Figure 3:C1, where the region inside825

the 95% contour line is much smaller and only a826

narrow range of wnav, wsoc and wper values give827

navigational efficiency values close to maximal. In828

general in 4:A, the results for k ≥ 3 are very similar829

with little quantitative difference in the size of the830

bounded region for each value of k as ε increases;831

only the results for k = 1 give a significantly lower832

bounded region for all ε.833

834

Figure 4:B illustrates how the value of the835

maximal navigational efficiency, Em, decreases as836

the individual navigational error, ε, increases for837

different values of k. It is clear that for larger838

values of k there is an increase in navigational839

performance but a limit is quickly reached after840
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which the gains are minimal. I.e. the difference841

in navigational efficiency between k = 1 and842

k = 3 is substantial (particularly for large error843

levels), but the difference in navigational efficiency844

between k = 7 and k = 15 is negligible for all ε.845

This result is also observed by Codling & Bode846

(2014) and suggests an upper limit for how many847

neighbours it is worth trying to copy information848

from (particularly given the fact that animals are849

likely to have cognitive limitations to the number850

of other individuals they can respond to which851

we have not accounted for in our simulation model).852

853

Figure 4:C shows trajectories in parameter space854

for the location of the centre of mass of the region855

bounded by the contour line corresponding to 95%856

of the maximal navigational efficiency. We plot857

the location of the centre of mass of the bounded858

region rather than the location of the maximal859

navigational efficiency itself, as the latter is more860

noisy and the pattern of movement within the861

trajectories is not clear (see results in Figure 3 for862

example). It should be noted that the centre of863

mass of the bounded region always corresponds to864

a navigational efficiency that is within a few per-865

cent of the maximal navigational efficiency value866

and hence this approach is valid. When ε = 0.1867

results for all values of k are similar with the initial868

centre of mass being located at approximately869

(wnav, wsoc) = (0.4, 0.3) (and hence wper ≈ 0.3).870

As ε initially increases, the trajectories for all871

values of k initially move upwards and to the left.872

This indicates that for slightly larger individual873

navigation error, the centre of mass of the maximal874

efficiency region moves towards both a higher875

value of wsoc and a lower value of wnav, while876

the value of wper appears to be approximately877

constant (as the distance from the diagonal of the878

triangle stays approximately constant). However,879

for increasingly larger values of ε the trajectories880

for k > 1 start to move upwards and right towards881

the diagonal (indicating a lower value of wper and882

higher values of wnav and wsoc). The trajectory883

for k = 1 is slightly different; for the largest ε884

the trajectory moves down and (very) slightly885

to the left (indicating a decreased value of wsoc886

and an increased value of wper). Although the887

exact position of this point could be interpreted888

as something of an outlier, it is certainly the889

case that the k = 1 trajectory does not move890

closer to the diagonal for increasing ε as with891

the other trajectories. A general interpretation892

of these results is that when the quality of social893

information is high (k > 1) and the individual894

navigation error increases initally (i.e. low ε), the895

best strategy is to give an increasing weighting to896

social information (wsoc) at the expense of wnav,897

and then at larger values of ε at the expense of898

wper. The rate at which the weighting moves899

towards wsoc also appears to depend on k: for900

higher k it seems that a lower value of wsoc is901

sufficient, while if k is small, a higher weighting902

needs to be given to wsoc. This suggests that there903

is in effect a tuning of the mechanisms of social904

information transfer (either copy more neighbours905

or give more weighting to the information from the906

neighbours who you do copy) in order maximise907

the navigational efficiency; this is an outcome908

that was also observed by Codling & Bode (2014).909

Finally, when the quality of social information is910

low (k = 1), it is less useful to rely on this as a911

navigational cue and the potential navigational912

information that can be obtained from persistence913

comes into play (see also Figure 3:C1).914

915

4. Discussion916

We have used an individual-based simulation917

model to explore the most efficient movement918

strategy for individuals within a leaderless social919

animal group navigating towards a fixed target.920

We assume individuals balance three different921

sources of information when navigating. In922

common with previous work (Codling & Bode,923

2014), we consider the balance between individual924

navigational knowledge of the target location and925

socially mediated information about the target926

(via copying the movement directions of k nearest927

neighbours). The key novelty of our work is the928

introduction of individual forward persistence as a929

third source of (indirect) navigational information.930

Persistence behaviour is intrinsically non-social931

and, on its own, does not lead to efficient navi-932

gation (Benhamou & Bovet, 1992; Cheung et al.,933

2007). However, in the context of leaderless animal934

group navigation we have shown that persistence935

could play an important role in how individuals936

in groups should collectively navigate towards a937

target in the most efficient way.938

939

Specifically, we find that when the quality of940

social information is likely to be lower (k=1) and941

the error in individual navigation is high (high942
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ε) then the inclusion of persistence behaviour at943

the individual level can serve to improve group944

navigation (Figures 3:C1 and 4:C). In general, the945

precise weightings of the three different sources of946

direct and indirect navigational information that947

lead to the highest group navigation performance948

depend on their relative quality (size of error). If949

the direct navigation error at the individual level950

is high (high ε; Figures 3B:1-3 and 3C:1-3), then951

the most efficient group navigation performance952

occurs when individuals assign high weights to953

indirect sources of navigation information (wper or954

wsoc). The converse is not true however. When the955

individual navigation error is low (low ε; Figures956

3A:1-3), there is no disadvantage to having a high957

weighting on wper or wsoc (see also Figure 4:A).958

Once the weighting for direct navigation behaviour959

exceeds a minimum threshold (wnav ≈ 0.3 for our960

simulations), little is gained from investing more961

into this behaviour, as the information about the962

target is more efficiently distributed across the963

group via indirect mechanisms (social information964

or persistence). This leads to the rather counter-965

intuitive conclusion that improved navigation at966

the group level is achieved by individuals within967

the group giving a low (but non-zero) weighting968

to direct navigational cues when making decisions969

about which direction to move (Benhamou &970

Bovet, 1992; Codling & Bode, 2014). Of course,971

these results should be considered in the context972

of the relative errors assigned to the different973

sources of information, but our results suggest that974

individuals in the group may use behaviours that975

are not goal-directed in order to improve overall976

group navigation performance (Ioannou et al.,977

2015).978

979

Ultimately, group navigation is a problem of980

how information should be transferred between981

individuals and how individuals should balance982

different types of information. Although we983

don’t directly explore how an optimal navigation984

strategy for leaderless group navigation may have985

evolved, it would be possible to do so in a future986

study using techniques similar to Wood & Ackland987

(2007), Guttal & Couzin (2010) and Torney et al.988

(2010). One can hypothesise that, in this context,989

a sensible strategy may be for individuals to invest990

some time in using both of the indirect sources of991

navigational information (persistence and social)992

in order to ‘hedge their bets’ against high levels of993

error in either. This is particularly true since simu-994

lation results show that, as highlighted by Codling995

& Bode (2014), there is little disadvantage in using996

indirect cues when individual navigation error is997

low (Figure 3A:1-3 and Figure 4) and potentially998

strong advantages in doing so when navigation999

error is high (Figures 3B:1-3, 3C:1-3 and Figure 4),1000

and that social information and persistence appear1001

to be exchangeable across a wide range of relative1002

weightings without reducing group navigation effi-1003

ciency. These conclusions are supported by Figure1004

4:A where it is clear that there are a wide range of1005

navigation strategies (meaning parameter combina-1006

tions of wnav, wsoc, and wper) that get close to the1007

maximal navigational efficiency if the error is low,1008

but when the error increases the range of naviga-1009

tion strategies near the maximal efficiency narrows.1010

1011

In our simulation model we make a number of1012

assumptions considering the specific implementa-1013

tion of individual movement behaviour. It is likely1014

that adjusting these assumptions will produce1015

results that differ quantitatively from those shown1016

here. A key model assumption is that a direct error1017

term is only added to the rnav vector in Equation1018

(5) and hence individuals have ‘perfect’ knowledge1019

of the movement directions of neighbours and of1020

their own previous movement direction. This is1021

a parsimonious assumption that simplifies this1022

explorative study and allows us to compare our1023

results directly to Benhamou & Bovet (1992)1024

and Codling & Bode (2014) who also made the1025

same assumption, but this may not be realistic1026

in general. Future studies should explore the1027

effect of direct errors on the persistence or social1028

information used within individual navigation.1029

Although no error is directly applied to persistence1030

in the first instance, the addition of the external1031

movement error (as described in Section 2.3) means1032

that relying on persistence alone with no further1033

navigation cues is not an efficient strategy within1034

our model. It would be possible to implement1035

peristence through a maximum turning angle1036

(Couzin et al., 2002, 2005; Mirabet et al., 2008)1037

and similar results would be obtained, although1038

it would be much more difficult to directly relate1039

the weightings given to each navigaitional cue1040

within the study and when comparing to earlier1041

results (Benhamou & Bovet, 1992; Codling &1042

Bode, 2014). Although we don’t apply a direct1043

error to the social navigation information, we1044

have indirectly explored the relative quality of the1045

information available to an individual through the1046
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number of neighbours that individuals interact1047

with, k (where a higher value of k is likely to lead1048

to a more accurate estimate of the target direction1049

from a larger proportion of the group). However,1050

using a different approach for implementing social1051

interactions, e.g. based on individuals’ visual1052

perception (Strandburg-Peshkin et al., 2013),1053

may well change the relative quality of this social1054

information, possibly making it more robust. We1055

have assumed that the preferred direction of each1056

individual is computed via a weighted vectorial1057

sum. In an alternative approach individuals could1058

undertake a single behaviour, such as navigation1059

or interacting with others, at each time step in a1060

probabilistic way by selecting one behaviour at a1061

time with a certain, possibly dynamically varying1062

probability (Bode et al., 2012a).1063

1064

In order to test our predictions about the most1065

efficient navigation strategies for leaderless animal1066

groups it is important that the models used are1067

critically evaluated in relation to empirically ob-1068

served movement data, although we do not try to1069

do this here. Arguably the key open question in the1070

study of empirical navigation and collective motion1071

is how to determine the underlying movement and1072

decision-making processes in observed data. In the1073

context of individual animal navigation we now1074

have a better understanding of how the sampling1075

and observation process used by the observer1076

may affect the apparent properties of a CRW1077

or BCRW movement path (Bovet & Benhamou,1078

1988; Codling & Hill, 2005b). An additional key1079

open problem is how to distinguish between the1080

localised directional bias in a CRW and the global1081

directional bias towards a target in a BRW, par-1082

ticularly when the target may be different across1083

a group of individuals and only a short movement1084

path is available. Benhamou (2006) proposed a1085

path-analysis method to address this problem but1086

the approach has a reasonably high potential for1087

misclassification. The problem of identifying the1088

underlying movement process used by individuals1089

is arguably even harder in the context of group1090

navigation. For example, Bode et al. (2012b)1091

explored the difficult problem of distinguishing1092

between a social and non-social navigating group in1093

empirical data when there is a common target (e.g.1094

the social and non-social groups in Figure 2 appear1095

very similar for wnav > 0.5). Bode et al. (2012b)1096

proposed a method based on the components of the1097

directions of movement of each individual through-1098

out the movement. By comparing the components1099

of movement towards the target and towards other1100

group members it is possible to determine the1101

relative level of sociality of a group as a whole, as1102

well as the relative sociality of individuals within1103

the group (so that ‘leaders’ and ‘followers’ could be1104

distinguished). Similar statistically based methods1105

(e.g. Del Mar et al., 2014) may offer the potential1106

to make progress with identifying the underlying1107

movement and decision-making processes observed1108

in empirical data. Nevertheless, further research in1109

this area is clearly needed, particularly if we are to1110

determine the weightings that real animals give to1111

cues such as goal-oriented navigation, persistence,1112

or social information, as in our model.1113

1114

Carefully controlled experiments completed in1115

the laboratory are one promising way to explore1116

the role of individual behaviour in collective animal1117

groups while avoiding many of the problems1118

inherent in trying to track or observe complete1119

animal groups undergoing collective movement1120

and navigation in the wild (e.g. Dell’Ariccia et1121

al., 2008). For example, Faria et al. (2009) used1122

instruction cards to control the information and1123

target preference in a group of humans when1124

testing predictions of the ‘many wrongs principle’1125

from Codling et al. (2007). One of the observations1126

from this study was that individual humans did1127

not always interpret the instructions in the same1128

way and hence the group was not as homogeneous1129

as perhaps was required in order to match the1130

assumptions of the theoretical model (and this is1131

possibly why only weak evidence for the many1132

wrongs principle was found). Rather than using1133

humans, Berdahl et al. (2013), Strandburg-Peshkin1134

et al. (2013) and Ioannou et al. (2015) used schools1135

of golden shiners (Notemigonus crysoleucas) to1136

explore group decision-making. In particular, in1137

Strandburg-Peshkin et al. (2013) and Ioannou et1138

al. (2015) ‘informed’ individuals were those trained1139

to associate a target with a food source, and hence1140

acted as leaders when placed within a larger group1141

of uninformed individuals. Meanwhile, Berdahl et1142

al. (2013) explored the mechanisms for group-level1143

taxis through the natural tendency of golden1144

shiners to avoid light and seek refuge in dark areas.1145

Similar experimental approaches may provide a1146

way to gain further empirically-based insights into1147

the group navigation problem we have considered1148

here.1149

1150
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Theoretical navigation studies of individual an-1151

imals have typically considered the interplay be-1152

tween alliothetic (external direct goal-oriented1153

cues) and idiothetic (internal indirect cues such as1154

persistence) (Benhamou & Bovet, 1992; Codling1155

& Hill, 2005b; Cheung et al., 2007, 2008), while1156

group navigation studies have typically only con-1157

sidered the balance between goal-oriented direct1158

navigation and social information or interactions1159

(Couzin et al., 2005; Codling et al., 2007; Gut-1160

tal & Couzin, 2010; Codling & Bode, 2014). In1161

this study we have brought together important con-1162

cepts from both individual-level navigation (persis-1163

tence) and collective group navigation (social infor-1164

mation) and illustrated how leaderless group navi-1165

gation can reach maximal efficiency when both fac-1166

tors are included in the movement decisions made at1167

the individual-level. Our results suggest one possi-1168

ble way in which real animals may transfer informa-1169

tion within groups in order to gain navigational ad-1170

vantages through the ‘many wrongs principle’ (Si-1171

mons, 2004). Our findings should now be explored1172

and tested in more detail through further theoreti-1173

cal and empirical studies.1174
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Highlights 

 Individual-based simulations are used to explore leaderless animal group navigation. 

 We consider the balance between indirect and direct navigational cues. 

 Indirect cues include individual persistence and social information. 

 Giving a high weighting to indirect cues gives the maximal navigation efficiency. 

 Including persistence may improve leaderless group navigation.  

*Highlights (for review)


