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Abstract

The deviation of financial returns from normal distribution is a well-documented stylized
fact. Nonetheless, finance professionals and investors alike pay attention to these
deviations almost only when a crisis erases years’ worth of gains. And despite decades’
worth of literature, the culprit for non-normal distribution of financial returns is still not
determined with certainty. In this research, I address the non-normality of return
distributions and financial crashes together. Specifically, I aim to identify the
determinants of non-normality in a high frequency setting and utilize these variables to
forecast financial crashes. To this effect, multiple instruments and time horizons are

considered.

The contribution of this thesis is multifold. The “natural time” approach introduced here,
uses order book variables to achieve normally distributed high frequency returns via
subordination. In its essence, natural time is a two-step procedure which uses high
frequency order book variables as a gauge for variance while sampling in transaction time.
Natural time provides the reader with a new lens to view the financial markets and
underscores two important aspects of the high frequency world; sampling frequency
affects the distributions we observe and order book variables such as liquidity are the key
to heteroscedasticity in asset returns. So much so that subordination with order book
variables under transaction time achieves the normal return distribution which underlies

numerous financial theories we use today.

[ further extend the use of these order book variables by introducing the “market heat”

metric. Market heat generates successful binary flash crash predictions and its success
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adds support to the claim that liquidity concerns may be the primary driver of price
formation processes. Finally, I expand the findings of this research on high frequency
asset returns to a macroeconomic setting by producing currency devaluation predictions
for Gio currencies. The early warning systems produced here demonstrate that not only
debt related macroeconomic variables but also liquidity related market variables are at

play when it comes to currency fluctuations.
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Chapter 1: Introduction

1.1 Motivation

In finance we often make simplifying assumptions to describe the observable data; the
cardinal assumption being normally distributed asset returns. However, empirical data,
especially high frequency returns, often diverge from normal distribution substantially. As
a result, inferences made using the normal distribution assumption become unreliable.
And not so infrequently, we are reminded of this fact when financial crashes wreak havoc
on unsuspecting investors. These “tail” events constitute a problem both for finance
theory and the sustainable growth of economies. Therefore, we need to determine what

makes asset returns behave so erratically.

Is it our choice of sampling frequency that changes an otherwise well behaved series? Or
are there factors that we are not accounting for that might be affecting the return
distributions? If so, can we use these factors to predict the next tulip mania or the Flash
Crash? I posit that the answer to all these questions is a “Yes”. Then using both high and

low frequency datasets, I put to test each one of these assumptions.

I begin by identifying the main contributors to the non-normality of asset returns.
Existing research on asset distributions primarily use calendar time sampling despite solid
evidence that this type of sampling causes distortions in the data, especially in high
frequency settings. Furthermore, the market conditions in which financial crises form are
often neglected. This is particularly important as financial crises cause the very deviations

that undermine the normal distribution assumption. The natural time approach
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introduced in this thesis aims to remedy these shortcomings in the extant literature by
sampling in transaction time and subordinating with respect to order book variables that
capture market conditions. Natural time pinpoints the elements that cause non-normality
of asset returns and uses them to recover the normal distribution, all the while keeping

the data intact from errors due to calendar sampling.

Natural time accounts for the heteroscedasticity in returns using contemporary order
book variables. The next logical step then is to test if these variables can also be used to
predict high frequency crashes. The Flash Crash of May 6™, 2010 is an especially good
example to study given its recency and the haste with which algorithmic traders were
blamed for it. However, no matter who is to blame for the Flash Crash, one fact remains:
the market was caught off guard. Hence, in this thesis, instead of looking for a culprit for
the Flash Crash, I aim to create a warning system that can predict impending flash crashes
both for indices and single stocks. In other words, the market heat metric introduced in
this research is a potential circuit breaker that tracks liquidity conditions in the market
and warns about potential liquidity driven price dips so that the stock exchanges may halt

the markets to give them time to recover the much needed liquidity.

The success of market heat in predicting such episodes proves the predictive power of
liquidity based order book variables. However, market heat’s ability to outperform
alternative warning systems may partly be attributed to perfect classification of trades.
Existing flash crash literature is profuse with methods that classify trades in bulk,
introducing errors into the original data. Although not one of the explicit objectives of

this research, true classification of trades into bid or ask initiated transactions is achieved
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at all times in this thesis. Hence, both market heat and natural time produce accurate

inferences about high frequency asset returns.

A high frequency episode like the Flash Crash is not the only peril that awaits the
unsuspecting investor nor is liquidity just a short term concern. Thus, in order to address
the long term risks of investing in the financial markets, I shift the focus to
macroeconomic crashes, specifically currency crises in developed markets. Decades of
early warning system literature produced several empirical models to predict currency
crises where most models focus solely on macroeconomic variables. However, it takes
time for an economy to reflect the fragilities of the system in macroeconomic variables.
Moreover, typical macroeconomic variables relate to the liability side risks of government
balance sheets. The global financial crisis has shown us that asset side risks are just as
important. In order to address this gap, I include liquidity related market variables as
proxies for asset side problems. The significance of market variables in successfully
determining currency crises suggests that liquidity is the primary determinant of crises
both in the short and the long run. This major role liquidity is found to play in currency

crashes is another novel contribution of this thesis to the existing literature.

All in all, despite the diverse nature of topics covered in this thesis, a twofold motivation
governs the whole research. The first goal of this thesis is to regain normality for financial
return distributions via subordination while the second is to predict financial crashes of

varying time horizons.
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1.2 Structure

Chapter 2 covers several theoretical and empirical market microstructure models to
evaluate the influence of key components that derive asset prices (Easley and O’Hara
(1992); Kyle (1985); Veronesi (1999)). The effects of market microstructure on normality of
asset returns and realized variance is examined (Epps (1979); Zhang, Mykland and Ait-
Sahalia (2005)) and optimum sampling strategies are reviewed (Bandi and Russell (2008);
Ait-Sahalia et al. (2010)). Alternatives to normally distributed asset returns and the

applicability of time changed Brownian motion is assessed.

The subordination approach introduced in Chapter 2 diverges from the literature on
many fronts. For an extensive high frequency dataset, I start by rebuilding the order book
for a selected number of stocks and use the information contained within the order book
to recover the normality of asset returns via subordination under transaction time, a

process I denote as “natural time”.

In Chapter 3, I build upon the lessons learned from Chapter 2. Specifically, order book
information, which was found to be influential in determining volatility, is used to predict
episodes of sudden price dips in a high frequency setting. Consequently, Chapter 3 focuses
on key order book components suggested by information-based market microstructure

models to obtain a robust flash crash identification measure.

Furthermore, a novel nonlinear liquidity based crash prediction metric, “market heat”, is
proposed and tested against a linear and a volume-based crash predictor using linear

discriminant analysis.
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Finally in Chapter 4, crash prediction techniques are extended into early warning systems
in order to predict large scale currency devaluations, which destabilize economies and
depress growth for years. Existing early warning system literature primarily focuses on
emerging markets as developed markets have long since been regarded as not susceptible
to wild currency fluctuations. The global financial crisis of 2008 showed us otherwise. I

aim to fill this gap in the literature by focusing on developed markets.

Both existing binary models such as the signaling approach of Kaminsky, Lizondo and
Reinhart (1998) and the multivariate model of Berg and Patillo (1999), and panel
estimations are employed in this chapter. In addition to an array of macroeconomic
variables, market variables related to the global banking system are also included in all
estimations. Using a crash threshold of 2% loss and a 1-month forecast horizon, several

binary and panel models are estimated.
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Chapter 2: Normally Distributed High Frequency Returns

2.1 Introduction

In this chapter, I aim to find the variables that cause the empirical deviation of financial
returns from normal distribution and use these variables as subordinators to achieve
normal returns. The findings presented in this chapter support the use of subordination
as a method of achieving normality in addition to identifying several order book variables
that can be used to account for heteroscedasticity. As such, the natural time approach
introduced in this chapter achieves normality on several accounts and contributes to the
literature by offering a new way to approach high frequency returns. Thus, Chapter 2
fulfills the first goal of this thesis, by attaining normally distributed returns. Moreover,
Chapter 2 also provides a set of new variables which may be used to predict high
frequency crashes, part of the second objective of this thesis. The ability of these variables

to account for flash crashes is later put to test in Chapter 3.

The normal distribution assumption is central to many financial theories. However,
empirical results, especially for high frequency data, often provide evidence against the
normal distribution assumption (Miller et al. (1990), Dacorogna et al. (2001)). Excess
skewness and kurtosis as well as price jumps cannot be justified within the normal
distribution framework (Merton (1976); Taleb (2008)). Various different distributions
have been suggested in its place but none can practically account for the peculiarities of
financial returns. The additional microstructure effects observed in high frequency
financial series added to these deviations from normality make the consolidation of these

aspects under a unified framework even harder.
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In this chapter, I provide an alternative explanation to the empirical divergence of
financial returns from the normal distribution. The first key observation one needs to
make when evaluating the distribution of asset returns is that most statistical analysis in
this area is conducted using a physical time approach. However, the superimposition of a
time grid on the transactions distorts the actual timing of trades. A second factor that is
often overlooked is how the environment in which the prices are formed, specifically the

order book imbalances, evolves over time.

The “natural time” approach that is detailed in Section 2.3, addresses these two key
observations and aims to test the validity of normal distribution under a high frequency
setting. Under the natural time approach, instead of sampling in physical time,
transaction time® is used to record each trade as it materializes. By moving to the tick
time sampling, the need to force each trade into a time slot is removed as one does not
need to force the trades into predetermined sampling points as in calendar time.
Additionally, when using calendar time sampling, methods of diurnalization is often
employed to remove deterministic intraday patterns. Such deterministic patterns are
usually observed during market open and close where number of trades and volume of
trades spike. Sampling in calendar time cumulates the considerable trade information
observed during these intervals into a handful of data points which then manifests itself

in deterministic intraday patterns.

* Transaction time and tick time are used interchangeably throughout Chapter 2.
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Sampling in transaction time; however, allows the sampling frequency to increase
(decrease) as trades materialize faster (slower) producing variable number of data points.
Thus, instead of removing the information contained in trades via diurnalization,
transaction time retains this information by sampling according to the trading intensity

which in return produces comparable data points.

Natural time approach also addresses the trade “environment”. By focusing on the factors
through which prices are formed, the seemingly erratic behavior of volatility is accounted
for. Variables derived from the limit order book are used to a form a gauge for volatility,
which is used to subordinate raw returns, resulting in normally distributed return series.
Hence, the goal of this chapter can be summarized as finding the best approximation for
the “natural time” that results in normally distributed subordinated returns. The choice of
sampling frequency and variables used in the subordinator function are the key to the

success of this method.

Put simply, subordination based studies take variance related order book information to
create an “instantaneous” volatility gauge, which is used to transform the original time
series. Previous calendar time based subordination studies have found volume and
number of trades to contain volatility related information such that normality could be
recovered under certain periods (Clark (1973); Ané and Geman (2000); Silva and Yakvenko
(2007); Velasco-Fuentes and Ng (2010)). Corresponding variables under the transaction
time sampling, namely volume and duration, are used here as well. However, by using
only these variables, the literature has neglected important information contained in the
order book which can be used to explain the price formation process. For this reason, in

addition to volume and duration, order book variables such as the imbalance in the
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standing order book and the difference in the number of bid and offer initiated trades are
used to augment the models mentioned above. Asymmetric versions of the same

subordination procedure are also tested.

The natural time approach is applied to 10 highly liquid LSE listed stocks for 4 quarters
each. In several cases normality of returns is achieved. Since subordination essentially
accounts for the volatility in the data, the natural time approach is tested against the
standard GARCH(1,1) model. Natural time is found to dominate GARCH results with
respect to normality, with the exception of a single instance. These findings suggest that
volatility can be modeled efficiently under tick time sampling so much that subordination

results in normally distributed returns.

The results in this chapter support the normal distribution assumption that is central to
finance. However, they also point to the changes one needs to make in the standard
model such as the sampling methodology. In addition to providing evidence for the
normal distribution assumption, this research contributes to the literature by focusing on
order book variables which contain relevant information that may be used to forecast
volatility. The variables found to be influential here can be employed by market players to
adjust their leverage or by financial regulators to assess the health of market. Either use

will contribute to the efficiency of financial markets.

In the following sections, I will first take a closer look at how the financial markets
operate and how various market microstructure effects contaminate the price evolution
process (Mandelbrot (1963); Tauchen & Pitts (1983)). Key concepts such as information-

based microstructure models and their implications on the use of duration between trades
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and trade size are examined. Stealth trading hypothesis and Kyle’s A as a measure of
market resiliency are reviewed. The link between trade size and price impact is
established. The effect of liquidity on absorption limits is evaluated. In addition to these
conventional market microstructure models, seasonality and intra-daily patterns
documented in the literature along with studies on the impact of scheduled
macroeconomic announcements on risk premia are presented. The case for the use of a
liquidity measure in accounting for market dynamics is strengthened by findings on post-

announcement drift, overreaction and cascading effects.

Section 2.2.1 focuses key market microstructure models to identify the instrumental
elements of the price process. The effects of homogenization and sampling techniques is
studied via the vast realized variance literature and several calendar time and intrinsic
time sampling techniques used are reviewed in Section 2.2.2. Drawing on the findings of
realized variance literature, the need for dynamic sampling strategies, especially during
high volatility states, becomes apparent. Hence, tick time is established as the sampling

method.

To follow, Section 2.2.3 takes a closer look at time deformation and empirical studies that
have employed subordination techniques to recover normality. Findings of the previous
sections are then combined in Section 2.3 to create an alternative subordination approach,
namely “natural time”. Section 2.3.1 introduces stochastic time changes while Section 2.3.2
describes in detail the subordinators tested in Chapter 2. Section 2.3.3 gives details of the
maximum likelihood estimation procedure while Section 2.3.4 introduces the evaluation
methods assessing the distribution of returns. Section 2.4 introduces the dataset, shows

the effects of sampling on returns and presents a supporting analysis of the variables used
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for subordination. The model results are presented in Section 2.5 and Section 2.6

concludes this chapter with a discussion of the results.
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2.2 Literature Review

This three-part literature review aims to identify the two main components of the natural
time approach introduced in this chapter, namely, the most appropriate sampling
methodology for high frequency returns and a list of variables influential to the price
formation process. Natural time approach draws upon the findings of this literature

review to successfully achieve subordinated returns under tick time sampling.

The first subsection of this literature review focuses on how information is conveyed in
financial markets. Several market microstructure models that explain trading patterns are
reviewed and variables that effect price variance are identified. The natural time approach
combines the variables presented in this subsection while accounting for variance related
information. The second subsection reviews synchronization methods under physical
time and identifies the inherent problems of working in the time domain. Alternate
sampling methodologies are reviewed and the benefits of using tick time sampling, which
forms an integral part of the natural time approach, are discussed. Finally, the last
subsection reviews previous subordination based studies aimed at recovering normality.
Natural time combines the variables identified in the first subsection under a stochastic

subordination setting to recover normality of returns under tick time sampling.
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2.2.1 Market Microstructure

The journey of quantitative finance starts with “Théorie de la Spéculation” where Louis
Bachelier (1900) first applied normally distributed error terms to evaluate French stock
options. This simple yet versatile stochastic process, Brownian motion, was later adapted
to finance by Wiener (1923). The same idea of normally distributed price innovations was
also used to create the infamous Black & Scholes (1973) option pricing formula. Lying at
the heart of numerous financial studies, the assumption of normally distributed financial
returns has been increasingly challenged. The assumptions of the efficient market
hypothesis have been undermined by the microstructure manifestations observed in

equidistantly time-spaced financial time series.

Several reasons emerge as responsible for the inability of the random walk model to
account for empirically observed market dynamics. The lack of arbitrage, cash constraints,
trading frictions and transaction costs, dependence of successive observations and non-
stationarity are some of the key elements that contribute to the non-normality of
empirical series. Transaction costs prevent arbitrageurs from instantaneously removing
price discrepancies from financial markets, undermining the efficient market hypothesis.
Cash constraints, on the other hand, may force market players to initiate stop-loss orders
fueling price overshoots hence causing dependence of successive observations, fat-tails
and non-stationarity, some of the key elements that contribute to the non-normality of
empirical financial time series (Mandelbrot (1963); Fama (1965); Engle (1982); Bollerslev
1986)). Many of these market microstructure effects that underlie return anomalies have

been documented in detail in the extensive microstructure literature (Ait-Sahalia et al.
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(2010); Ait-Sahalia & Yu (2009); Admati & Pfleiderer (1988); Bandi & Russell (2008);
Dacorogna et al. (1993); Glosten & Milgrom (1985)). Much focus has been given to bid-ask
spread with two main strands of models, namely inventory-based and information based
models. Inventory-based models argue market makers adjust their quotes to mirror their
inventory positions, while information-based models focus on the costs associated with

adverse selection.

2.2.1.1 Conventional Market Microstructure Models

Inventory-based models argue that market makers will adjust their quotes so as to mirror
their inventory positions. As compensation for holding excess inventory in the face of
adverse market movements and providing liquidity, the market makers demand the bid-
ask spread (Bagehot (1971); Stoll (1978)). Alternatively, Roll (1984) has focused on order
handling costs, calculating the effective bid-ask spread. He used the first order serial
covariance to compute the average absolute value of price change when no new
information has arrived in the market. Roll’s specification shows that in times of higher
uncertainty and hence wider spread, the effective trading costs increase for market
participants while the market maker’s profits swell as compensation for higher risk. Roll

computed the effective spread as:

Spread = 2+/—cov, (2.1)

where cov is the first order negative autocorrelation.

Information-based models on the other hand focus on the costs associated with adverse

selection. Glosten and Milgrom (1985) mapped the bid-ask spread as the market maker’s
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tool against traders with insider information. In their heterogeneous expectations model,
a signal ¥ with information on the value of an asset arrives at each time node. A negative
signal arrives with probability § and a positive one with (1 — §). The asset assumes a low
value of V~given a bad signal and a high of V* otherwise. Two types of market agents
constitute the market, namely uninformed traders with only public information and
informed traders with knowledge of the true asset value. A priori percentage of insider
traders present in the market is denoted by u and the probability that an uninformed
trader buys or sells is given by yp and ys, respectively. Finally, every market agent
completes a unit transaction at each time node. Given this setup, the market maker
revises its quotes via Bayesian updating gradually revealing insider information given its

order flow.

Easley and O’Hara made two important extensions to the original Glosten and Milgrom
model. In their Easley & O’Hara (1987) model, they have introduced the possibility of no
information with probability a. Additionally, the uninformed traders were allowed to
trade small and big quantities where X3, X3, X, X2 denote respective probabilities. The
second model introduced in 1992 removed differences in trade quantities while allowing
uninformed traders not to trade with a probability of (1 —¢). For both models,
information signal ¥ arrived once before the trading day. The figure below outlines the

setup of Easley and O’Hara (1992) model:
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Figure 2.1: Easley & O’Hara - 1992 Model
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Despite their shortcomings, such as constant percentage of informed traders determined
a priori, the asymmetric information models of Easley and O’Hara underscore several
important market dynamics, where trade size, duration between consecutive trades and
lack of trades reveal information about the latent price dynamics. Further evidence on
effects of trade size on price evolution can also be found within the stealth trading
hypothesis. The impact of trade durations of return series will again be examined while
looking at alternative procedures for time deformation. Additionally, the Easley and
O’Hara (1992) model will be used in flash crash identification in conjunction with the

subordination variables identified in Section 2.2.
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Information-based models also helped pave the way to disentangle permanent and
transitory components of transactions on price processes (Biais, Glosten and Spatt
(2005)). Kyle (1985), for example, mapped the evolution of asset prices and insider trading
quantity as an equilibrium model. For convenience reasons, notation from Instefjord
(2005) will be used below. In his model, Kyle assumes asset returns and the quantity noise

traders transact to be normally distributed such that:

x ~N(0,%2), (2.2)

y ~N(0,0%), (2.3)

where x and y represent the asset price and the quantity traded by noise traders.

One shortcoming of Kyle's model is the violation of non-negativity constraint for asset
prices, which is infeasible for stocks due to their limited liability nature. However, as the
insiders act on their private information on the true value of the asset; it is not the asset
price but the difference between the market clearing price and the latent price that
determines their profits. Hence, negative asset prices do not undermine the validity of

Kyle’s model given this profit-based perspective.

Both noise and informed traders submit only market orders to a single auctioneer which
observes an aggregate quantity g = y + z, where z is the quantity demanded by informed
traders. The auctioneer then sets a clearing price p with a zero return expectation. The

clearing price the auctioneer sets is given by:

p = E[x |q]. (2.4)
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An equilibrium exists such that:

z = px, (2.5)
P =4q, (2.6)
where 8 and 1 are constants.
Given the insider trader’s profit function:
E[n(x)] = z(x - dz), (2.7)
it can be shown that
z= % x. (2.8)

Equation (2.8) suggests that aggressiveness of insider traders is correlated with the ratio of
noise trading dispersion and asset price standard deviation. These models also gave rise to
the “stealth trading hypothesis”, where market participants with insider information try to
avoid information leakage while submitting orders. Insiders are forced to find a balance
between the risk of effecting prices adversely with block trades - impact risk - and price

risk due to order slicing.

The impact of order size has been studied in a linear setting by Bertsimas and Lo (1998),
Almgren and Chriss (2000). Barclay and Warner (1993), Chakravarty (2001), Cai, Ouyang
and Wong (2011) and Huang (2011) found evidence of stealth trading in stock and option
markets where medium sized trades tend to move the prices the most. Moreover, Anand
et al. (2005) examined the evolution of liquidity and find institutional medium sized
orders to be informed. The authors also find a behavioral difference in the actions of
institutional traders where they use aggressive market orders to exploit their

informational advantage, absorbing liquidity in the morning and acting as liquidity
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providers with unaggressive limit orders in the afternoon. Similarly, Blau (2009) suggests
that stealth traders adjust their order size with respect to the market depth. Malik and Ng
(2009) also find evidence in support of the information-based microstructure theory,
where the bid-ask spreads for FTSE100 stocks tighten during the day. Informed trader
aggression often exhibits itself in the volume of trades. As such volume will later be used
as an essential component in the time deformation process as the stealth trading

hypothesis shows that the volume of trades affect the price formation process.

Kyle (1985) also identifies three major components to liquidity, namely tightness, depth
and resiliency. Given this setup “Kyle’s A” becomes a measure of market sensitivity to
transaction size, where orderbook imbalances can be used to infer impact of order size

(Aldridge (2010)). The price impact of orders can be represented as:

APt =a+ }\OBIt + &, (29)
where OBI; is the orderbook imbalance computed as the difference between the bid and

ask quotations.

Extensions to Kyle’s A have been suggested by Amihud and Mendelson (2000), who find
that illiquidity is priced into return expectations. Large (2007) mapped resiliency of the
limit orderbook for Barclays shares using a continuous multivariate point process and
found that in less than 40% of the cases the orderbook could replenish itself within a half
life of 20 seconds. Ng (2008) tested the absorption limits of financial markets within a
nonlinear ACD framework and reported that markets are incapable of absorbing large
block trades introducing additional “time costs of liquidity”. These findings regarding the

resiliency of financial markets strongly support the stealth trading hypothesis, where
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market participants actively try to balance liquidity and information costs, and necessitate
the need to use some form of liquidity measure in order to account for high frequency

dynamics.

2.2.1.2 Non-Conventional Market Microstructure Models

Additional microstructure effects have surfaced with greater availability of high frequency
data, further revealing the seasonality in returns. Yearly, monthly and weekly
deterministic patterns have been documented by French (1980), Gibbons and Hess (1981),
Apolinario et al. (2006) among others. Similarly, Engle and Russell (1998) developed the
autoregressive conditional duration (ACD) model to account for deterministic diurnal

trading patterns such as consistent high volatility observed at market open and close.

The effects of scheduled macroeconomic announcements on diurnal return and volatility
was another key area of research that flourished. The literature on effects of scheduled

announcements has been deeply influenced by the canonical work of Veronesi (1999).

In his rational expectations model, Veronesi allows investors to hold a risk-free or a risky

asset whose dividend returns are given by:

dD = 6,d; + o dw, (2.10)

where 6; and dw denote the state variable and a Wiener process respectively.

The state variable follows a two-state continuous-time Markov regime-switching process

and can assume values of 6 and 8 with a transition probability matrix between time t and

t+ A:
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(2.12)

1-2A AA
PO = (" a 10 a)

where 6 > 6.

Given this setup Veronesi showed that investors’ overreaction to bad news in good times
and underreaction to good news in bad times stems from state uncertainty, where
investors demand a premium for bearing additional risk. Savor and Wilson (2015) detect
almost an annualized 10% excess returns for announcing stocks compared to non-
announcing ones. Their results confirm the state dependence reasoning for increased risk
premia. Savaser (20m) finds evidence in support of Veronesi’s hypothesis with price
contingent stop-loss and take-profit orders surrounding scheduled announcements. She
also underscores the effects of the orderbook imbalances, which account for a substantial
portion of the news announcement effects. Despite their orthogonality to news, series of
stop-loss/take-profit orders may create a positive-feedback mechanism that moves prices
in a given direction. This cascading effect has also been documented by Osler (2005).

These findings highlight the role of order book imbalances in accounting for news effects.

Similarly, Andersen et al. (2003) find that the mere presence of scheduled announcements
increases volatility independent of the news surprise component. Using a 5-minute
sampling time, Andersen et al. (2003), Andersen et al. (2007) and Harada and Watanabe
(2009) document an almost instantaneous price adjustment to news producing “jumps”
while volatility adjusts gradually to the new information. Studies with a higher rate of
sampling however, produce dissimilar results. Using 1 minute prices of German Bund
futures, Hautsch et al. (2011) show that post announcement drifts continue for minutes

after the news release. The authors dissect volatility into noise and efficient components,
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both of which is found to be significantly affected by “net order flow”. The noise
component of volatility reaches a peak 10 minutes before the announcement due to drying
liquidity and jumps further following big surprise announcements. The reversal of noise
volatility to pre-announcement levels 10 minutes after such releases is also suggestive of

overshooting effects.

Overshooting and counter reactions have also been documented by Entorf et al. (2009) on
a different sampling scale. Using 15 second Xetra DAX returns, the authors identify
counter reaction patterns to ifo> and ZEW* releases which manifest themselves after 30
and 45 seconds following the announcements. Glattfelder, Dupuis and Olsen (2011) on the
other hand, employ an intrinsic time approach to map the overshooting behavior in FX

markets and develop several scaling laws.

? ifo Business Climate Index, reported monthly by the Ifo Institute of Economic Research, is a
seasonally-adjusted leading indicator of German business activity. The index is constructed based
on approximately 7,000 surveys distributed among businesses in manufacturing, construction,
wholesale and retail sectors. Businesses are asked to qualitatively assess the current business
conditions (good/satisfactory/poor) and provide their expectations for the next 6 months (more
favorable/unchanged/less favorable). The surveys are weighted according to industry importance
and the balance value is calculated by taking the percentage difference between the positive and
negative responses. The index is formed by the seasonally-adjusted geometric mean of balances

normed to the base year. For further details please refer to http://www.cesifo-group.de.

* ZEW Indicator of Economic Sentiment is a monthly economic survey that reflects the
expectations of up to 350 financial analysts. Contributing experts are asked to evaluate the state of
the German economy within the next 6 months on a qualitative scale (optimistic/no
change/pessimistic). ZEW is then computed as the percentage difference between optimistic and

pessimistic responses. For further details please refer to http://www.zew.de.
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The existence of scaling laws hints at systematic microstructure effects and provides
insights into duration and number of transactions’ effects on the price processes. On the
whole, studies on scheduled macroeconomic announcements suggest that the
incorporation of order book imbalances and market liquidity is of paramount importance

in understanding the volume and price tides observed before and after news releases.

The theoretical and empirical market microstructure models presented in this section
underscore the importance of several parameters which are essential in accounting for
market movements. The scheduled macroeconomic announcement studies show the
drying of liquidity and a sudden spike right before and after new releases respectively in

addition to occasional price jumps.

Moreover, the stealth trading hypothesis shows that volume of trades determine their
market impact. Kyle’s measure of resiliency and the time it takes a market to recovery
from a large block trade shows that several frequent block trades could put a market out
of balance. Thus, not only the volume of trades but also the market’s absorption limit or

in other words the prevailing liquidity conditions affect the evolution of prices.

Announcement reactions, scheduled or unscheduled, bring another dimension to the
price process. The intensity of trades following sudden changes of sentiment reflects an
inevitable herding behavior following important news. The number of transactions spike
and important adjustments to asset prices are realized during these short time intervals.
This inherent correlation between number of transactions and return variance has been
previously tested in a physical time setting (Ané and Geman (2000)). I will follow a similar

approach here that will allow me to move to an alternate time frame. Instead of
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cumulating the number of transactions during a given time interval, I will cumulate the
number of time units between a given number of transaction. Then, for a given time
interval, a high (low) number of transaction will be the equivalent of short (long) trade

durations.

Hence, three important components affecting price evolution emerge from this section,
namely volume, market liquidity-imbalance and duration between trades. The use of
these key components under a unified framework will be the key contribution of this
work forming a comprehensive approach accounting for most if not all market dynamics.
The specific format in which these market variables will be used to recover normality of

asset returns will be clearer in the following sections.

2.2.2 Realized Volatility & Optimal Sampling

In this subsection, the price evolution of financial assets will be mapped within a
Brownian motion framework. The market microstructure effects that were outlined
Section 2.2.1 are introduced into the observed financial time series data and the effects of
market microstructure on optimum sampling frequency from a realized variance
standpoint are examined. Several calendar time sampling and homogenization techniques
along with methods for removing deterministic seasonality in financial series equally
spaced in calendar time are presented. Finally, the use of tick time and its ability to

account for market speed and seasonality is considered.

The statistical theory suggests that sum of the squared errors sampled at increasingly high

frequencies should in probability converge to the realized variance (RV) of the latent
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quadratic variation. In a continuous stochastic setting let S; denote the efficient price of a

security which follows a geometric Brownian motion as below:

dS; = uSidy + 0SedW,, (2.12)
where S; represents the asset price at time t, p is the drift component which is often set to
o since drift is negligible at high frequencies, o is the volatility of diffusion process, a

strictly positive cadlag process, and dW, is a Wiener process.

Alternatively the price evolution process for the log-price can be summarized as an

arithmetic Brownian motion:

X¢ = udy + adWs, (2.13)

The integrated variance of the latent price process can then be approximated by:

(X, X]r = Zti(xti - Xti_l)z» (2.14)

since

[X,X]TngTGEdt, (2.15)

as the sampling interval d; approaches 0 (Zhang, Mykland and Ait-Sahalia (2005)).

However, sampling at higher frequencies comes at a cost. In reality the price process one
observes in the market is heavily contaminated by various types of market microstructure
effects. Thus, the realized variance calculated using high frequency data diverges from its
true value. Epps (1979) first documented the substantial decrease in cross-correlations

between stocks at increasing sampling frequencies. His findings were later complemented
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by Lundin, Dacorogna and Miiller (1998) and To6th and Kertész (2009). Factors that
contribute to the Epps effect include bid-ask spread, price discreteness, jumps,
asynchronous trading, infrequent trading, decimalization, informed trading among
others. Miinnix, Schafer and Guhr (2010) for example find that discretization can account

up to 40% of Epps effect, especially for lower valued stocks.

Now let us assume that the observed price process, Xy,, is the sum of the latent efficient
price process, Yy, plus an error term, g;, which incorporates all microstructure based

effects. The observed price process is then:

Xti = Yti + sti’ (2.16)

where g, is an i.i.d. white noise process.

Given the above setup, the realized variance of the observed process then becomes:

[X' X]T = [Y' Y]T + [E' S]T’ (2"17)
since the cross product term, 2[Y, €], cancels out due to independent noise assumption.

Several studies in the realized variance literature relax the i.i.d. assumption as well.

The reason why the sum of the squared returns for the observed price process is an
inconsistent estimator of true volatility becomes clear in Equation (2.17). The orders of
magnitude for the two components differ with [V,Y]; = 0, (\/d_t) and [g, €]y = 0,(1). In
simpler terms, the variance of the error term dominates the variance of the latent price

process at high frequencies.
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Realized variance literature exclusively focused on this behavior of financial series in
order to find an optimum sampling frequency that balances the adverse effects of
microstructure noise with the gains of frequent sampling. Various parametric and
nonparametric approaches have been employed in the literature along with different time
sampling schemes. Zhang, Mykland and Ait-Sahalia (2005) modeled the first
nonparametric consistent estimator of realized volatility. They combined a sparsely
sampled RV estimator with one that uses all available data to come up with an efficient
two-scale estimator. Zhang (2006) expanded their findings into the multi-scale
dimension. While Barndorff et al. (20na) and Huang and Lee (2013) used subsampling to
overcome microstructure effects, Barndorff-Nielsen et al. (201b) employed a kernel-based
parametric approach to attain the same convergence rate as the multi-scale estimator.
Ait-Sahalia, Mykland and Zhang (2005) also showed that their parametric estimator is

robust to Gaussian error misspecification.

Similarly, Bandi and Russell (2008) used calendar time and mid-quotes to evaluate the
utility of optimal sampling in their bias correction framework. They find that the
optimum sampling interval in physical time varies within their dataset and the ad hoc 5
minute sampling employed often in the literature, Andersen et al. (2001), actually
conforms with the their optimum sampling interval. In their study they also advocate the
use of mid-quotes as they would be less prone to bid-ask bounce effects. However,
Hansen and Lunde (2006) suggest both in calendar time and tick time the mid-quotes are
subject to further contamination due to non-synchronous updating of the bid and ask
prices when prices move in a given direction. They also document noise-efficient price

dependence in both time scales and find that its takes approximately 10 ticks for
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dependence effects to subside. Parallel to the findings of Bandi and Russell (2008),
Oomen (2006) finds that the optimum sampling interval both for calendar based and tick
based sampling to be dynamic in a pure jump setting. Oomen also underscores the fact
that compared to calendar time sampling (CTS), transaction time sampling (TTS) is a
better estimator of quadratic variation in the absence of noise. The results do not vary
greatly with the introduction of noise as the loss function of CTS is heightened for high

levels of intensity as well as increased volatility in the arrival intensity.

Let us now take a closer look at the sampling schemes employed in the above studies.
Whether it is the calculation of covariance among different stocks or computation of
realized variance for a single asset, synchronization requires data to be fit into some form
of a grid. Especially, for high frequency time series, which are almost always unevenly

spaced in physical time, synchronization is essential for statistical inference.

The RV literature has exclusively focused on such homogenization techniques due to their
immediate effect on the optimum sampling frequency. Two major synchronization
methods emerge in the literature for homogenizing high frequency series of a single asset

in calendar time.

The “previous tick” method (Wasserfallen and Zimmerman (1985)) is perhaps the most
frequently used method of transforming inhomogeneous tick data into evenly time-
spaced homogenous data (Pagel, Jongh & Venter (2007); Zhang (2011)). One major
shortcoming of this method; however, is spurious jumps observed in case of extended
periods of missing data (Dacarogna, Gengay, Miiller, Olsen and Pictet (2001)). The

previous tick method can be summarized as below:
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Let t; be the successive homogeneous sampling intervals such that:

ti =t + iA;. (2.18)

Then the associated prices are according to previous tick method are:

Zi =12y =1y, (2.19)

where subscript j and j’ represent original and adjusted inhomogeneous time series.

As an alternative, “linear interpolation” forms the homogenous time series by
interpolating between the nearest tick data observed just before and after the grid time
(Miller et al. (1990); Andersen and Bollerslev (1997); Velasco-Fuentes and Ng (2010)).
Although the difference between the two methods might be negligible, linear
interpolation violates causality. As pointed out by Hansen and Lunde (2006) in a realized
variance setting this interpolation scheme is not suitable since the quadratic variation of a

straight line is zero in the limit. The linear interpolation scheme is outlined below:

to+ibt—t
Z; =2, =Zy+—L
t J t. . —tu

Jt+1 ]

(Ziyy — Zpr). (2.20)
Alternative approaches to the above major models which take into account multiple
assets exhibiting asynchronous transaction data do also exist. Looking at co-integration in
IBM stocks listed in different exchanges, deB. Harris et al. (1995) uses “replace all” -
sometimes referred to as “refresh time” as in Barndorff-Nielsen et al. (zoub) - and

“minspan” schemes. The procedures for both methods are similar. A price vector is

formed by looking at successive time windows where each asset has traded at least once
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and adds the nearest previous transaction price for more frequently traded instruments.

Figure 2.2 illustrates a stock traded in three difference stock exchanges asynchronously.

Figure 2.2:°

NYSE —— | —|—| |—|— =~ [—— ===~ —|——
a, a, by, Cn
Pacific | | | | | |
ap a b Cp
Midwest | | | |
am bm Cm

Tuple Replace All  Minspan

1 (ap, ny Q) (@, Am, ap)
2 (bp, b, b)) (by, by, b))
3 (Cnr Cp, Cm) (Cp' Cms Cr*l)

The replace all method forms a new tuple once the stock has traded in either one of the
three stocks and adds one trade each from the other stocks as soon as they are formed.
Hence, the replace all method cannot adjust tuples by using information from the future.
On the other hand, the minspan method creates its tuples by minimizing the time
between trades included in the vector by allowing for trades that occur after the limiting
trade. Hence, while the replace all method would form its first vector by sampling the
trades (a,, a,, a,,), minspan replaces the trade that occurred at time a, with a;, forming
the vector (an, am,ap). A shortcoming of both sampling schemes; however, is their
dependence on the frequency of the least traded asset which results in throwing away of a

major portion of the available data.

> Figure adopted from deB. Harris et al. (1995), page 6.
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Additionally, Ait-Sahalia et al. (2010) proposed the “generalized sampling time”, where an
arbitrary tick data point is selected for each asset within a given time interval. The authors
advocate such a procedure would also be robust to data misplacement errors given that

misplacement occurs within each time interval.

As mentioned earlier, although the literature predominantly focuses on sampling in
physical time, this is not the only option. Dacorogna, Miiller, Nagler, Olsen and Pictet
(1993) proposed the use of O-scale, which accounts for intraday and intraweek
deterministic patterns. Essentially the 0-scale removes seasonality of volatility due to the
operating hours of the 3 main trading regions via a subordination process, Dacorogna,

Gauvreau, Miiller, Olsen and Pictet (1996). The 6-scale can be summarized as follows:

0(t) = ag(t — to) + Ty f,, @ (£)dt, (2.21)

where a is the minimum market activity and a; represents the effects of the three main

markets to market activity, namely Europe, USA and Asia.

Akin to intrinsic time, the business time sampling scheme used in Oomen (2006) removes
both deterministic and stochastic components of volatility in a pure jump setting by
sampling based on the expected number of trades. Oomen applied the idea of constant
jump intensity in business time to transaction time sampling which he finds to be
superior to business time. Generally referred to as tick time, transaction time, accounts
for trades as they materialize. Contrary to calendar time where trades are irregularly
spaced, in tick time each transaction falls nicely on the tick grid. This property of tick

time is quite advantageous as it inherently removes the effects of asynchronicity.
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Further advantages of using tick time come afore given the intraday and intraweek
behavior of volume and volatility of asset returns. Sampling in physical time often
requires data to be adjusted for deterministic market patterns. Mostly in realized volatility
or duration studies conducted, market volatility or volume are de-seasonalized with the
“diurnalization” process where data is adjusted for the deterministic market patterns via
the utilization of splines, Fourier transforms or kernel based estimators. Fourier
transforms employed in Andersen et al. (2003) are very smooth process, which may not be
able account for “ump” effects observed around scheduled macroeconomic
announcement, whereas spline methods such as cubic spline employed in Engle and
Russell (1998) are much more flexible. However, the choice of nodes for spline may yet
present problems. Ng (2008) addresses the choice of kernel bandwidth with cross
validation. Empirically diurnalization may produce satisfactory results but its exact effects

on the object of interest is little explored (Martens et al. (2002); Allen et al. (2009)).

Despite the fact that the literature predominantly focuses on sampling in physical time,
this is not the only option. Synchronization and diurnalization essentially aim to produce
data points which are comparable. Sampling in tick time inherently eliminates the need
for synchronization since the data points determine the sampling grid itself. Furthermore,
by sampling at a fixed number of ticks, one completely avoids the processes of

diurnalization as the clock moves faster (slower) when market activity is high (low).

Given its advantages in adjusting for market seasonality (Oomen (2006); Dacorogna et al.
(1993)), tick time will be used in this chapter while evaluating the distribution of stock
prices in the high frequency setting. The importance of tick time will be much more

apparent in the next section while normalizing financial time series via subordination.
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Unlike other sampling schemes presented in this section, tick time will not require
diurnalization, hence will not introduce any additional calendar time related errors into

the time series.

2.2.3 Alternate Distributions & Time Deformation

This section will briefly look at the alternative distributions suggested for financial time
series which often diverge from normality. Most importantly, subordinated Brownian
motions will be considered and their application to the financial returns will be examined.
Then main drivers of microstructure effects detailed in Section 2.2.1 and tick time
sampling methodology explained in Section 2.2.2 will be joint under a subordination
structure that will be used recover normality of asset returns. Finally, an empirical
application of the subordination scheme will be outlined for spillover effects observed in

the stock market.

The empirical divergence of asset returns from normality, excess skewness and fat tails,
has long spurred interest in alternate distributions such as the exponential and t-
distribution. Merton (1976) proposed the addition of jumps to the original continuous
stochastic diffusion process in Black and Scholes (1973) to account for fat tailed asset
returns. Tauchen and Pitts (1983) explored the possibility of normal mixture distribution,
while Mandelbrot (1963) examined the stable distribution. Mandelbrot posited that
although asset returns were approximately independent they were characterized by
unbounded second moments and advocated the use of stable Paretian distribution. One
empirical shortcoming of the stable Paretian distribution from a practitioner’s

perspective; however, is the lack of closed form distributions which necessitates
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numerical estimation via the characteristic function. Mandelbrot and Taylor (1967) later
suggested that the stock price distribution could also be normal under subordination,
where the subordinator has an infinite mean and variance stable distribution. However,
substantial evidence against unbounded first and second moments undermines the
applicability of stable processes to financial return series. Perry (1983) and Cont (2001)
find that variance of returns do converge to a finite value for US and French stocks. Perry
further concludes that it might be the “complex fashion” volatility evolves that causes the
fat-tailed distribution we observe in financial return series, the usual suspects being

nonlinearity, time and state dependence.

The notion of subordination can be captured by first looking at the no arbitrage
assumption and Girsanov’s change of measure often used in the derivation of Black-
Scholes option pricing formula. In a no-arbitrage setting, the discounted asset prices form
a martingale under the risk neutral Q-measure. It follows directly from this result that
asset prices are semimartingales under the equivalent P-measure. Given Monroe’s (1978)
extension of Dubins-Schwartz theorem, any semimartingale can then be expressed as a
“time-changed” Brownian motion. For a study on the evolution of time changes and

subordination see Geman (2005).

Clark (1973) was the first to apply the subordination process to assets prices to recover
normality of asset returns. He conjectured that financial return series, which are

semimartingales, could be defined as subordinated Brownian motions such that:

Xe =W(z) ~ N 0), (2.22)

where process 7; is the directing process or subordinator.
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In Equation (2.22), the process W (z;) is subordinated to the original price process X; and
the subordinator 7, is a cadlag process that measures market’s intrinsic time which
apparently flows at variable rates. Clark (1973) tested the applicability of trade volume as a
subordinator for cotton futures and found evidence in favor of the Gaussian distributed
asset returns within an i.i.d. subordinator increments setting using cumulative trade
volume. Karpoff (1987) also documented the connection between large trades and large
price swings and conjectured that it might be linked to both factors’ shared link to the
underlying information process. Do et al. (2014) also found evidence of a strong link

between trading volume and heteroscedasticity in asset returns.

Ané and Geman (2000) generalized the subordination framework by relaxing Clark’s i.i.d.
assumption in a finite variance jump setting. Using 1,510 and 15 minute sampling
frequencies, Ané and Geman (2000), find transaction frequency to be a better
subordinator compared to volume for S&P future contracts. Geman (2002) has also shown
that the directing process can also be interpreted as the “mixing factor” within a normal
mixture distribution setting, an often used distribution to account for excess skewness
and kurtosis in stock returns. Murphy and Izzeldin (2006); however, questioned the
reliability of moment estimation methods in Ané and Geman (2000) and presented
counter evidence on recovery of normality using re-centered number of trades or volume.
Silva and Yakovenko (2007) also used the number of trades as a subordinator using
intraday tick data for Intel stock. Silva and Yakovenko (2007) find that an approximately
Gaussian return distribution can be obtained using sampling frequencies that range from
over 30 minutes to almost 3 hours. However, sampling at such sparse intervals makes the

contribution of subordination over aggregation questionable.
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Similar to Ané and Geman (2000), Huth and Abergel (2012) used the number of
transactions to subordinate the returns for multiple assets. In a multivariate framework,
Huth and Abergel (2012) chose to sample each time a trade occurs in any one of the assets
creating a “common stochastic clock”. Then by subordinating with an event time N, which
represents the total number of trades in all assets under consideration, they obtained
results that support normally distributed returns for 4 asset pairs. However, the large
number of trades Huth and Abergel (2012) have used to obtain normality, which in one
case reached almost 6,000, and the fact that the joint stochastic clock used only produces
reliable results if the asset pairs have similar trading patterns suggest that their findings

may be mostly attributed to aggregation.

Velasco-Fuentes and Ng (2010) further investigated the use of volume and number of
trades as stochastic time changers. In a study using FTSE-100 futures tick data they have
tested cumulative volume, total number of trades and their linear and quadratic
combinations to recover normality. They have also explored the possibility of asymmetric
market response to the sign of returns in order to reduce skewness. Using first and second
order functions of volume and number of trades Velasco-Fuentes and Ng recover

normality in two of the four sub-periods.

First part of my thesis will be closely related to the works of Clark (1973); Ané and Geman
(2000) and Velasco-Fuentes and Ng (2010), aiming to recover normality of asset returns
via the use of stochastic subordination. The contribution of this research is twofold. First,
it extends the arsenal of possible factors that are most closely related with information
arrival and intrinsic time. Second, tick time is used for the first time in subordination

literature to test the assumption of normally distribution of financial asset returns.
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23  Methodology

In this chapter, I take an atypical approach to stochastic subordination. Unlike its
predecessors in subordination literature, which sample data in calendar time, this
research is conducted under tick time. Hence, the applicability of the normal distribution
assumption is tested for the first time under transaction time sampling, a major
contribution of this chapter. When sampling in tick time, daily deterministic patterns
present under physical time need not to be removed via diurnalization. Moreover,
additional errors introduced while conforming to a calendar time grid is no longer present

under tick time as comparable data points will fall onto the tick grid perfectly.

Furthermore, by using transaction prices and their returns, I also avoid using quotes
which may react asymmetrically during unidirectional market swings. Asymmetric quote
updates occur when market participants fail to update their bid (ask) orders when there is
a rapid price increase (decrease). Such rapid price changes leave little time to market
players to revise their orders. In return, market players tend to update the orders on the
most “urgent” side of the order book. Thus, during a rapid price decrease, a market player
would be more concerned to update his bid orders rather than any ask order. This

phenomenon then manifests itself in the data as non-synchronous updating of quotes.

When compared with bid, ask or mid quotes, actual transaction prices, which are prices
both the buyers and the sellers have already agreed upon, are better indicators of financial
value of assets. Hence, log-returns calculated from transaction prices are not subject to

microstructure contaminations such as non-synchronous updating of quotes.
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Four important components affecting price evolution emerged from previous sections,
namely volume, duration, market liquidity and order imbalance. The ability of these
variables to successfully subordinate high frequency returns under tick time to achieve
normality will be put to test. I will account for various market dynamics by extending the
arsenal of possible factors that are most closely related with information arrival and

intrinsic time.

Volume, as per its impact to push prices in a given direction is the first of these factors.
such as Clark (1973) and Ané and Geman (2000) have found support for volume as a
subordinator while sampling in calendar time. Similarly, Huth and Abergel (2012) and
Velasco-Fuentes and Ng (2010) used the number of transaction to subordinate returns.
However, as shown in Gillemot, Farmer and Lillo (2006), volume and number of trades
cannot totally account for the volatility observed in the stock markets. This may be caused
by the imperfect correlation these variables have with the latent process which drives
volume, number of trades and volatility. Hence, as per the findings of information-based
models, duration between trades is also added to the subordination framework to account

for the speed with which market participants act in physical time.

The use of duration is new to the subordination literature and augments the model in two
respects. Given the stealth trading reasoning presented in the previous sections, and the
information-based market microstructure models, the duration between trades not only
helps capture the speed of the market in real-time, but also reveals the private
information content. By including duration between trades I allow physical time related

information to be included while sampling in tick time.
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In addition to the explanatory variables volume and duration, proxies for the liquidity
component of the market are included in my model, namely, net traded volume
imbalance and net initiator imbalance. Net traded volume imbalance is the volume
difference between bid and ask initiated trades - denoted as Volume Imbalance or

Vol Imb - can be expressed as:

Vollmb = Volg;g — Vol , (2.23)

where Volg;; and Volygy, is the volume of bid and ask initiated trades, respectively.

Net initiator imbalance, on the other hand is the difference between the number of
aggressors on buy and sell sides - denoted as Initiator Imbalance or Init Imb can be

defined as:

InitImb = Numg;q — Numygy, , (2.24)
where Numpg;; and Numyg, is the number of unique bid and ask initiated trades,

respectively.

Huang (201u1) previously found evidence for a contemporaneous relationship between
order imbalances and asset returns while looking at stealth trading in NASDAQ stocks.
However, the bulk classification of trades using Lee and Ready (1991) algorithm and
consistent buying pressure within their dataset renders Huang (201u1)’s findings open to
question. In this chapter, the explanatory power of order book imbalances will be put to
test using high frequency trades that are perfectly classified into buyer or seller initiated
trades via corresponding stock exchange codes. Furthermore, the effect of imbalances in
the limit order book is also tested via the Imbalance variable (the difference between

standing bid and ask orders).
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The addition of liquidity variables sets the scene in which the trades occur and adjusts for
the impact of block or frequent trades given market depth or resiliency. However, it is
highly unlikely for liquidity conditions to affect prices like volume of trades, where one
consistently drives prices while the other acts as a determinant (multiplier) of price
impact for a given trade. For this reason, the effects of order book imbalance on the price
process is likely to be nonlinear. I will test this assumption during the subordination

process.

By including these possibly omitted variables in the subordinator, I aim to regain
normality of asset returns during all states of the world, without any need of additional
adjustment to the data such as diurnalization. The use of an asymmetric response
function similar to the one in Velasco-Fuentes and Ng (2010) is also examined. Thus, in
addition to linear combinations of the three factors identified, the importance of
nonlinear models will also be tested, given the inability of linear models in explaining

asset price fluctuations.

23.1  Stochastic Time Change

The stochastic time change that will be applied to the raw return series can be described

as follows. Define the price series of an asset sampled in calendar time as:

Peai(c) = (P(cy), P(c3), P(c2), .., P(cn1), P(ch)) (2.25)

where c¢; present sampling in calendar time.
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Similarly define a stochastic (parent) process:

W(q) = (W(qu), W(gz), W(gs), . W (@m-1), W (qm)), (2.26)
where q denotes market’s intrinsic time, the variable rate at which market activity flows.

The stochastic parent process, W, is Brownian Motion in my case.

If a strictly increasing stochastic process:

S(C) = (S(Cl)r S(Cz), S(C3)v RRED S(Cn—l)' S(Cn)); (2"2‘7)

where s(c;44) is further in time than s(c;) exists, such that :

q = s(c), (2.28)
where q is a shorthand for the subordinator s(c), the price process can then be

summarized as:

Pear(c) = W(s(0)). (2.29)
In Equation (2.29), the price series P,4;(c), is said to be subordinated to the parent process
W(s(c)) and the subordinator s(c) is a cadlag process that measures market’s intrinsic

time which flows at variable rates (Velasco-Fuentes and Ng (2010)).

Alternatively, the return series, 7.4;(c) can be expressed as:

reat(€) = AW (s()), (2.30)

where AW(s(ci)) = W(s(ci)) — W(s(ci_l)).

Sampling under tick time, where t represents transaction time, asset returns, ry;., (t) can

then be expressed as:
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Trick () = AW (s(D)) (2.31)

where AW(s(ti)) = W(s(ti)) — W(s(ti_l)) .

Then, given that subordinated parent process AW (s(t)) in Equation (2.31) is a Brownian

Motion, normally distributed returns should be obtained by using the transformation:

Ttick(t)
Ryjer () = ts—\/lz—t) ~ N (Utickr Oick), (2.32)

where ;0 and 0, are the mean and the variance of the subordinated tick time series,
Riick () and 1y (t) represent time deformed and raw returns respectively, and s(t) is the

subordination vector. All variables are sampled under tick time.

2.3.2  Subordinators

Let “natural time” be defined as the unique subordinator sy(t), with which the return
series achieve perfect “normality” under tick-time sampling. Then the goal of this chapter
is to find the best approximation for natural time via the choice of sampling frequency
and subordinator s(t), using various linear and nonlinear combinations of volume,
duration and order book imbalance parameters.

The linear subordinator utilized in this study can be summarized as:

s(t) = BX(t) (2.33)

where X (t) is the vector of variables® that is used to form the subordinator s(t) and f8 is

corresponding vector of coefficients for the variables in X (t).

® For transaction sampling sizes larger than 1 tick, X (t) variables are computed by taking into

account all available information at each transaction.
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Consequently, one of the major contributions of this chapter is finding the vector of
variables, X (t), that can be used to achieve subordinated normal returns. The exact forms

of the subordinations function are presented in Equations (2.34) - (2.37).
The linear subordinator is of the form:

s(t) = B, volume(t) + B3 duration(t) + B, Init Imb2(t) + fs Vol Imb?(¢). (2.34)
However, to better assess the value of proposed subordinators, additional structural
changes to the subordinator function itself was made. An asymmetric subordination
function is formed to check for possible differences in the behavior of the subordinator to

the sign of returns.

The returns and their corresponding subordinators are classified according to the sign of
returns. The positive and negative return series are then used to estimate the coefficients
for the subordinators. The corresponding results are combined with the two original
return series, classified according to the sign of returns, to produce the subordinated

return distribution.
The asymmetric subordinator is of the form”:

BT volume™ (t) + B;* duration™ (t) + B+ (Init Imb*)2(t) + Bs* (Vol Imb*)2(t), r =0

8, volume~(t) + B~ duration(t) + B, (Init Imb—2(6) + Bo~ (Vol Imb—2(0), 1 < 0 >3

s(t) = {

Additionally, given the existing literature on the autoregressive nature of variance, the
past values of squared returns were used to augment the subordinator. AR(1) terms are

used to test this hypothesis.

" The + and - signs indicate the respective series for positive and negative returns.
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The autoregressive subordinator function includes past values of the squared returns:

S(t) = By Trci2(t — 1) + B, volume(t) + f5 duration(t) + B, Init Imb%(t) + s Vol Imb?(t). (2.36)

Finally, the asymmetric and autoregressive models are combined to produce the fourth

structural model for the subordinator.

The autoregressive asymmetric subordinator function can be expressed as:

s(t) = {ﬁf (e )2t — 1) + B, volume™ (t) + B5* duration® (t) + B,* (Init Imb*)2(t) + Bs* (Vol Imb*)%(t), r = 0.(2.37)

B (raer )?(t = 1) + B, volume™(t) + B3~ duration™(t) + B~ (Init Imb™)?(t) + Bs~ Vol Imb™)2(t), r <0

Subordination essentially aims to account for the heteroscedasticity in asset returns, by
utilizing volatility related information. Thus, in many respects, subordination could be
classified as a volatility-based approach. The use of past square returns then naturally
brings to mind the GARCH model (Bollerslev (1986)). Hence, to make an accurate
comparison, a GARCH(1,1) model is separately estimated. Returns are then subordinated

using these estimated GARCH parameters to construct a benchmark model.

The GARCH(1,1)) model used in estimations can be summarized as follows:

Let error term €, represent the mean-adjusted returns, which can be decomposed into a

time-varying standard deviation oy;., and a stochastic component Z;;., ~ N(0,1).

Etick (t) = Otick (t) Zgick (0. (2.38)

Then the conditional variance under a GARCH(1,1) specification can be expressed as:

Otick>(t) = @o + @164 > (t — 1) + w1042 (t — 1), (2.39)

where ¢, > 0, ¢; =0, w; = 0and ¢, + w; < 1.
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2.3.3 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) methodology is used to estimate the coefficient
vector  where a (subordination-adjusted) normal distribution is specified as the resulting
distribution. The subordination-adjusted log likelihood function that is employed in MLE
estimations takes into account the fact that this subordinated return series follow a
normal distribution with unknown but finite mean and variance. Additionally, the use of

100-tick sampling frequency dampens autocorrelations within the tick data.

Given this structure, the joint probability distribution function for the subordinated tick

time series can be expressed as:

f(Rtl’th’ 'Rtnl S(t)'ﬂtick'atzick) (2.40)

where R;, represent elements of the time deformed return series, Ry;c,(t), described in

Equation (2.32).

Equation (2.40) can also be expressed as:

(T”Ck(t)—utick)z
1 1 Js(®
Ri ,Ri , .. ,Re |S(E), Utickr Otick) = ————= €xP{— = Xgicke1 —————¢-(2.41
f( ty Ity tnl (®) Mtick twk) O'tickn(\/E)n p ZZtlck—l Zr (2.41)
Then the log-likelihood function is:
Teick® f
n 2 n 1 ( G) Utick
InLF (s(6), Heickes Otici) = =5 Otire = 321 = 2 Vticpmn —— 2 (2.42)
Lc

Similarly, the log-likelihood function for GARCH(1,1) estimation is:

1 Etickz(ti))

1 1
InLF (ﬂtick' Utick) = Z?:l (_ Eln 2m — 2 Gtickz(ti) ) orick2(tD)

(2.43)
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2.3.4 Evaluation

To evaluate the ability of the linear subordinators to transform the tick returns into a
normally distributed series, time deformed return series are tested with Kolmogorov-
Smirnov (KS) and Jarque-Bera (JB) tests. The use of KS test is justified by the large number
of observations present in the dataset. Additionally, unlike its successor Anderson-Darling
test or the Jarque-Bera statistics, KS test is known to be sensitive to the location
parameter due to its focus on the maximum difference between two distributions. Given

this setup, optimization procedure for the KS test can be expressed as:

min KS (@, Reick (t)). (2.44)

The Kolmogorov-Smirnov statistic KS shown in Equation (2.44) is calculated as:

KS = sup |F(Ryick (1)) — Fg(R) (2.45)
where F (R, (t)) is the empirical distribution function and F(R) is the Gaussian

cumulative distribution function.

The JB test statistic measures the deviation from normality in skewness and kurtosis
parameters, a fit choice for financial return series as they exhibit most severe deviations
from normality in their higher moments. However, unlike Velasco-Fuentes and Ng (2010),
JB test is used to validate the results of the MLE procedure rather than estimate the

coefficients for the parameters used in the subordinator.

The Jarque-Bera statistic can be calculated as:

1
JB =2 (Skew? + 3 (Kurt — 3)?), (2.46)
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where n is the number of observations, Skew and Kurt are sample skewness and kurtosis

respectively.
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2.4 Data & Analysis

The high frequency dataset utilized in this chapter uses Level 2 SETS data from the
London Stock Exchange (LSE), where stocks are traded in a continuous-time double
auction system. The LSE sorts and matches orders first by their price competitiveness and
then by their time of submission. The Level 2 dataset includes the whole order book depth
at any given point in time as well as the actual trade times and prices for realized trades.
The order book data includes “public” orders that appear on the order book and excludes
order types such as non-persistent or Iceberg orders. Hence, the bulk of the information

contained in the order book stems from limit and market orders®.

The period under study spans from July 2007 to June 2008. Taking into account the large
market swings during this time, the whole dataset is split into four 3-month periods,
where the first period (P1) spans from July 2007 to September 2007. Similarly, P2 covers
October 2007 - December 2007, P3 January 2008 - March 2008 and P4 April 2008 - June
2008. Top ten stocks with highest liquidity are selected for the purpose of this study’.
Each stock is analyzed on a period by period basis so as to not include irrelevant past data.
This partitioning of data is warranted by the wild swings that dominated financial

markets during the sample period.

® The details of the order book reconstruction can be found in Appendix A.

° The list of stocks used is presented in Appendix B.

Page |52



2.4.1  Sampling Frequency

The sampling frequency, whether one is using calendar or transaction time, has a
substantial impact on the raw returns one observes. Hence, in order to determine an
optimal frequency, the effects of sampling frequency on autocorrelation and the

distribution of the returns were examined.

2.4.1.1 Sampling Effects on Autocorrelation

The first obstacle one needs to address when working with financial series is
autocorrelation, as it may undermine the inferences made. This phenomenon becomes
even worse as the sampling frequency is increased. The fourth period for HSBC stock was
chosen for exemplification purposes and Ljung-Box test was applied to several sampling
tick sizes using a lag size of 20. Autocorrelation was present up to a sampling frequency of
100 ticks. Autocorrelation and partial autocorrelation functions for HSBC P4 with a
sampling frequency of 100 ticks were also mapped via a correlogram and ACF and PACF
decay rate did not converge albeit being small. Similar results were obtained for other
stocks. ACF functions and Ljung-Box (LB) test statistics for HSBC are presented in Table

2.1 and Figure 2.3 respectively.

Table 2.1: Ljung-Box Test (Lag=20)

Sampling Tick | LB Test | p-value
5 226.8479 0
10 105.6981 | < 0.0001
20 56.3034 | < 0.0001
50 33.5604 | 0.02092
100 16.1198 0.7092
200 17.0837 0.6475
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Figure 2.3: Autocorrelation Function for Returns of HSBC Stock Prices in Period 4
Sampled at 100 Ticks

T T T T T T T T T

[F=] ........ ......... SO ........ ........ ........ ........ TR ....... _
5 OB Fio ......... ......... TR ........ DR ........ ........ e
%__j : : : : : : : :
= :
B0 S 4
= :
2 5
o :
5 oafo ; _________ ; ________ é ________ ; _________ ; ________ ; ________ ; _________ é ________ ; _______ ]

0 — L ‘ s ? ® 4 T —— % . P
02 | | | i 1 i | | i
0 2 4 g g 10 12 14 16 18 20

Lag in 100 Ticks

2.4.1.2 Sampling Effects on Distribution of Returns

Due to the nature of ultra-high frequency data, additional measures to deal with price
discreteness were necessary. Figure 2.4 shows the return histogram fitted on a normal

distribution curve for tick returns.

Figure 2.4: Histogram for Tick Returns for HSBC Stock Prices in Period 4
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As is apparent from Figure 2.4, raw returns at the single-tick sampling frequency are
dominated by price discreteness. Hence, several sampling frequencies were tested to
ascertain the exact effects of sparse sampling on the distribution of returns. The graphs in

Figure 2.5 illustrate the relationship between decreasing sampling frequency and return

distribution.

Figure 2.5: Distribution vs. Sampling Frequency: HSBC Stock Returns in Period 4
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Figure 2.5 shows that at sparser sampling frequencies™ the return distribution approaches

normality. However, simple aggregation of returns to produce normality is neither new to

"> The sampling frequencies shown throughout Chapter 2 use non-overlapping sections of the data.

Hence, at no point in time past information is used twice in this analysis.
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the literature, nor would it be feasible in a subordination study which tests the limits of
the sampling frequency under which subordination still produces normality. Thus, to
assess the exact effects of sampling frequency on price discreteness and the distribution of
returns and to determine an optimal sampling frequency for natural time, the first four

moments are computed. Table 2.2 contains the results.

Table 2.2: Sampling Frequency vs. Moments: HSBC Stock Returns in Period 4

Sampling Frequency Mean Variance | Skewness | Kurtosis
1-Tick -2.41e-7 9.34 e-8 0.0154 4.4958
5 Ticks -1.30 e-6 3.09 e-7 0.0103 4.1357
10 Ticks -2.67 e-6 5.77 €-7 0.0636 4.1606
20 Ticks -3.71 e-6 1.08 e-6 0.0345 4.2115
30 Ticks -6.97 e-6 1.55 e-6 0.0672 41877
40 Ticks -6.12 e-6 2.07 e-6 0.0327 4.1762
50 Ticks -4.70 e-6 2.52e-6 0.0488 4.0486
60 Ticks -9.25 e-6 2.93 e-6 0.0989 4.0019
70 Ticks -6.56 e-6 3.45 e-6 -0.0017 3.6552
8o Ticks -9.57 e-7 3.83 e-6 0.0067 3.3744
9o Ticks -1.12 e-5 4.37 €-6 0.0056 3.6115
100 Ticks -1.37 e-5 4.67 e-6 -0.0020 3.2000
200 Ticks -1.86 e-5 5.96 e-6 0.0108 3.2685
300 Ticks -3.24 e-5 6.94 e-6 -0.0046 3.2953
400 Ticks 4.17 e-6 7.93 e-6 0.0663 3.0219
500 Ticks -4.66 e-5 8.85 e-6 0.1828 3.1304
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Table 2.2 suggests the use of 100 ticks as the sampling frequency is appropriate, as
sampling at lower frequencies after 500 ticks causes further negative skewness and
abnormally low kurtosis values for a high frequency return series. The results presented in
Table 2.2 were reproduced for all stocks and periods but they are not included here to
conserve space. However, the effects of sampling frequency do not vary much from stock
to stock. Thus, a sampling frequency of 100 ticks is used for all stocks and periods unless
mentioned otherwise. In cases where different sampling frequencies have been used, the
moments of the resulting raw distribution were utilized to determine the new sampling
frequency"”. A sampling frequency of 100 ticks generally resulted in 1,500 data points per

period.

2.4.2 Subordination Variables

Upon selection of the sampling frequency, the influential variables discussed in the
previous sections can now be tested for validity. Trade volume, cumulated across the
selected number ticks, and its log transformation are used to find the impact of trade size
on price formation. Duration between each sampling point is also used to assess the
urgency with which orders have been filled. In order to assess how the liquidity state of
the market influences price movements, the imbalance in the order book is computed in
various different ways. The Imbalance term cumulates the volume difference between bid

and ask sides for the whole depth of the order book and averages this number for across

" Figure 2.5 shows that at a sampling frequency of 100 ticks, returns are not normally distributed.
Before each subordination procedure, the raw distribution of returns is checked and the sampling

frequency is increased if raw returns are normally distributed.
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the selected sampling frequency. Similarly, Level 1 Imbalance and Level 3 Imbalance
apply the same procedure to the first 1 and 3 levels from the top of the order book,

respectively.

The number of transactions has been previously used by Ané and Geman (2000) to
subordinate the price processes. This measure provides partial information on the
number of entities involved, but does not make any distinction between the direction of
trades. Thus, a more transparent measure is needed, which can be obtained by looking at
the difference in the number of unique trades in a given interval. At each tick, which may

include multiple buy and sell orders, the number of initiators for each side is found and
the difference is recorded. This number is then cumulated for the span of sampling
frequency and divided by the number ticks to form Initiator Imbalance variable. The
same process is repeated for Volume Imbalance taking into account the volume of trades.
A negative number means excess sell side orders, where as a positive number denotes buy
side for these two variables. Finally, log transformations of squared Initiator Imbalance
and Volume Imbalance are added into the list of possible variables. Although the squared
order book variables lose information on whether it was the buy or the sell side orders
that were in excess, this transformation is dictated by the non-negativity constraint
presented in Equation (2.32). Additionally, squared order book variables are expected to

be a better gauge for market volatility given their construction.
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Table 2.3: Regression Analysis™: Mean Adjusted Squared Returns for HSBC in P4

Sampled at 100 Ticks

Subordinator Regression Statistics
constant | coefficients R*
Volume 1.8288 e-6 2.54?;3) e | L ou
Duration (sec) 6.0325 -6 _1'27(?)7) €9 0.0099
Imbalance 4.6929 e-6 | -7.3210 e-14 o
(0.8409)
Level 1 Imbalance 4.6660 e-6 | 65167 e-12 0.0003
(0.5088)
4.6626 e-6 | 3.6090 e-12
Level 3 Imbalance (0.2688) 0.0007
Initiator Imbalance 468726 | -2.8378 e7 0.0004
(0.3850)
Volume Imbalance 4.6357¢-6 | 71408 e 0.0008
(0.2607)
Log-Volume 3717485 3'01(705) e-6 0.0221
Log-InitImb® 4.0356 -6 3'07(509) e-8 0.0121
Log-Vollmb* 18930 e-6 4'62(?)7) €7 0.0251

Table 2.3 shows a peculiar outcome. None of the standing order book variables that
describe market liquidity conditions, namely Imbalance, Level1Imbalance and
Level 3 Imbalance are found to be significant in explaining squared returns. This is an
unexpected finding, which suggests that variables related to the active trading
environment already contain the necessary liquidity information. For this reason, all

standing order book variables are dropped from further study.

" The values in parentheses in Table 2.3 and all of the tables that follow show respective p-values

for each variable.
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Additionally, Initiator Imbalance and Volume Imbalance are also removed from further
analysis, as per the non-negativity constraint®. Although the remaining five subordinators
are significant in normalizing the return series at the 5% significance level, confirming the
findings of Clark (1973) and Ané and Geman (2000), volume is also dropped from further

subordination runs as similar results can be produced by the log-volume.
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2.5 Results

The subordination methodology employed in this chapter entails maximum likelihood
estimation. As with any optimization problem, local minima and maxima may constitute
a problem. Although this was not the case in this study, I start with reporting single run
results for subordination and then move on to the global procedure used for the whole of

the dataset to overcome any possible local extrema problems.

2.5.1 Subordination Results: Single Run

The single run multiple subordination results presented in this section use a single
starting point to estimate the coefficients for the subordinator. The coefficients, p-values,
log-likelihood function value as well as KS and ]B test statistics for the subordinated

returns using the produce described in Equations (2.34)-(2.37) are presented in Table 2.4:

B Logarithms of squared initiator and volume imbalance are referred to as initiator imbalance and
volume imbalance from this point on.
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Table 2.4: Multiple Subordination* Results for HSBC Returns in P4 Sampled at 100 Ticks

Single Run
. . . s Autoregressive
Subordinator Linear Autoregressive Asymmetric )
Asymmetric
1.2869 e-14 -9.7291 e-11 -3.5890 e-10 1.4613 e-11
u
(1) (0.1538) (0.0332) (0.0591)
2.6896 e-10 6.3386 e-10 7.9000 e-9 3.1514 e-10
o
(1) (o) (o) (o)
.2 i 7.3386 e+4 i i 3.7485 e+5 | 2.5673 e+5
ekt (o) (o) (o)
1.9926 e+6 1.7613 e+5 1.7673 e+3 | 1.7660 e+3 | 9.2414 e+5 | 7.0897 e+5
Volume
(o) (o) (o) (o) (o) (o)
) 2.4668 e+6 1.8243 e+5 17373 e+3 | L7701 e+3 | 9.6022 e+5 | 7.4304 e+5
Duration
(o) (o) (o) (o) (o) (o)
) N 7.5385 e+4 1.2095 e+3 2.4497 e+1 | 2.5722e+1 | 6.6751e+3 | 4.7491 e+3
Log-InitImb
(o) (o) (o) (o) (o) (o)
) 1.9315 e+6 1.7633 e+5 1.4189 e+3 | 1.4644 e+3 | 9.0276 e+5 | 7.318 e+5
Log-Vollmb
(0) (0) (o) (0) (o) (0)
Log-likelihood -11,803 -9,904 -6,034 -11,203
0.0437 0.0442 0.0474 0.0443
KS Test
- (0.0031) (0.0026) (9.9740 e-4) (0.0026)
18 15 52
B Test
JB Tes (0.0010) (0.0018) (0.0010) (0.0014)

* The subordination results reported here and henceforth multiplies tick returns with 1e+6 and

divides Log — Initimb? term by 100 as not to compromise floating point calculations in Matlab.

Likewise, results for the duration term are reported for duration measured in minutes.

" For the autoregressive and asymmetric autoregressive models, estimated mean and standard

deviation is the same with respect to the sign of returns since subordinated returns are expected to

come from a single normal distribution. Separate coefficient estimates has been reported for other

variables in each column. The estimates for positive returns can be found on the left hand side

while the estimates for negative returns are reported on the right hand side.
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The multiple subordination results presented in Table 2.4 points to a striking conclusion:
neither asymmetric or autoregressive asymmetric models produce significantly different
results from the remaining models. The functional values for asymmetric or
autoregressive asymmetric models and their corresponding p-values for both KS and ]JB
tests are no better than those obtained with the linear or autoregressive approaches. The
results presented in Table 2.4 extend to other stocks and periods.® Contrary to the
asymmetric approach, the autoregressive model is found to augment the linear model,
further supporting the use of past squared returns. Moreover, the significance of
imbalance terms in addition to volume and duration parameters seems to solidify the
notion that order book information is important in subordination, hence variance

estimation.

Another interesting finding present in Table 2.4 is that the coefficient for the duration
term is positive. Although one would expect volatility to be high during rapid trading
periods, the findings point to the opposite. This is possibly due to the use of transaction
time sampling, which inherently accounts for the market’s intrinsic time. For example, if
one were to look at the market opening hours, the high frequency of trades would trigger
numerous sampling points within a short time interval. Thus, for a given sampling
frequency, although many trades would come to pass, one would not observe a substantial
price change in the value of the asset. By the same token, one would also observe larger
price changes during the rest of the trading day using the same tick sampling frequency,

as the time between trades would be substantially larger.

' Asymmetric approaches are omitted from further reporting as findings extend to other stocks.
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2.5.2 Subordination Results: Global Procedure

The single run multiple subordination The findings presented in Table 2.4 may however
be subject to the ubiquitous local extrema problem as the findings are produced on a
single-run. To address this possible shortcoming, the gradient-based optimization
algorithm is augmented with 10° different starting points to cover a vast search space.”
The results for HSBC stock in each period using this procedure (Global) are reported in
Table 2.5. Further details of subordination results for all stocks and periods are presented

in Appendix C.

Table 2.5: Multiple Subordination Results using Global Procedure

HSBC
. P1 P2 P3 P4
Normality (100Ticks) (100Ticks) (100Ticks) (100Ticks)
Linear Autoregressive Linear Autoregressive Linear Autoregressive Linear Autoregressive
0.0748 0.0663 0.0474 0.0481 0.0503 0.0477 0.0456 0.0448
KS Test
(1.2026 e-7) (4.2692 e-6) (8.2207 e-4) (6.5517 e-4) (2.4969 e-5) (7.7809 e-5) (0.0018) (0.0022)
JB Test 77 139 642 238 554 1,248 2 o
(0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.2947) (0.5000)
KS 0.0529 0.0539 0.0395 0.0415
GARCH LTt (4.9487 e-4) (8.3033 e-5) (0.0019) (0.0059)
JB 6 59 57 2
Test (0.0430) (0.0010) (0.0010) (0.4278)

Table 2.5 shows that findings regarding asymmetric subordination of HSBC in P4 using
single-run method can be extended to all periods and stocks. One possible reason for the
failure of asymmetric models could be an inherent stability of information flow through
the selected subordinators. Hence, it can be argued that volume, duration, initiator
imbalance and volume imbalance variables effect returns much in the same way whether
the market is moving upward or downward. As such, asymmetric models could not

produce superior results by treating returns of opposite signs differently.

7 All further results reported use 10’ starting points.
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Furthermore, as is apparent from Table 2.2, the choice of sampling frequency, which
constitutes an important part of the natural time approach, has a dominant effect on the
distribution of raw returns. While sparse sampling mitigates price discreteness, it
eventually reduces the relevance of past order book data. For this reason, a sampling
frequency of 100 ticks was used for all stocks except for second and fourth periods of SAB
Miller. In these periods, normally distributed returns were obtained without the need for
subordination at 100 ticks. Hence, higher sampling frequencies were chosen to produce

comparable raw distributions in terms of their first four moments.

Closer examination of the results in Appendix C reveals an interchangeability between
log-volume and volume imbalance terms.” Either one of two subordinators, when used in
conjunction with others, is significant but they fail to be significant together on several
occasions. While volume imbalance is significant for SAB Miller and Shell in the second
period, the reverse holds for HSBC. In contrast, both variables are significant for all
periods for Vodafone. Nonetheless, a combination of volume and initiator imbalance
seems to be the better choice in general. This interchangeability can be caused by the
structural changes in the way variance related information is conveyed in the market. It
might be the case that in some periods, a combination of volume and initiator imbalance
captures variance related information while in others volume imbalance proves to be a

better gauge.

*® Further details of the subordination results can be found in Appendix C.
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Furthermore, convergence of volume and volume imbalance terms, which would convey
similar information when orders are one-sided, can also render the volume imbalance
term redundant. One or both of these factors may be at work in a given period as they are

by no means mutually exclusive.

The autoregressive subordination model, which uses past squared returns, was also found
to perform generally better than the linear model for all stocks. Although similar results
could be obtained using the linear model in several of the periods where normally
distributed subordinated returns were produced with the autoregressive model, this was

not possible for the second period of SAB Miller and Diageo and third period of Shell.

In comparison with autoregressive subordination, GARCH(1,1) model does a marginally
better job in periods where subordination fails to produce normally distributed returns.
However, in cases where normally distributed returns were obtained via subordination,
GARCH not only produced worse results but also failed to achieve normality with the
exception of three instances, second and fourth periods of British American Tobacco and
first period of BG Group. These three cases where GARCH produced better results
compared to subordination could very well be due to a local minima problem in the

subordination procedure.

All in all, for a total of forty periods and 10 stocks, subordination resulted in normally
distributed returns in nine periods, while GARCH based subordination could only

produce normal returns in the five periods.”

¥ The resulting distributions from multiple subordination and GARCH(1,1) were assumed to be

normally distributed, if they have passed either one of the KS or JB tests.
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In two of these five periods where GARCH based subordination was successful, normality
was also achieved with linear and autoregressive subordination. On the other hand, none
of the linear, autoregressive or GARCH subordination methodologies could produce
normally distributed returns for British Petroleum, GlaxoSmith Kline and Rio Tinto in any

period.

The results presented in this section diverge from the existing subordination literature in
many fronts. First of all, one of the most turbulent periods for single stocks was examined
in this chapter which renders the effort to produce normally distributed returns

inherently much harder.

Both subordination studies that utilized single stocks, Ané and Geman (2000); Silva and
Yakvenko (2007), use data dating before year 2000. In contrast, I use a much recent
dataset which reflects the conditions of today’s financial markets better. Clark (1973) and
Velasco-Fuentes and Ng (2010), on the other hand focused on cotton and FTSE-100
futures that are not even subject to the idiosyncrasies of single stocks. Furthermore,
unlike extant studies in the literature, this chapter samples the data in tick time while
presenting the results for an unmatched total number of stocks, periods and models,

including a GARCH based subordination procedure as well.
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2.6 Discussion of Results

The work presented in this chapter focuses on the application of stochastic subordination
to high-frequency returns sampled under transaction time. Several previous
subordination based studies have been performed using calendar time (Clark (1973); Ané
and Geman (2000); Silva and Yakvenko (2007); Velasco-Fuentes and Ng (2010)).
Furthermore, only a subset of the variables used in this research were employed in the
above mentioned studies. Order book variables, which contain information on both
market liquidity and the initiator of trades, have been added into the subordination
procedure, which is another novel contribution of this paper to the literature. This
subordination procedure, which operates under tick time and uses order book variables to
transform the return series into a normally distributed one, is referred to as “natural time”

in this chapter.

Previous studies have found volume and number of trades to carry relevant information to
price formation under physical time (Clark (1973); Ané and Geman (2000); Silva and
Yakovenko (2007); Velasco-Fuentes and Ng (2010); Huth and Abergel (2012)). Their
counterparts in transaction time, volume and duration, are also found to be significant in
stochastic subordination. The results show that order book variables and past squared
returns also carry important variance-related information. The addition of these variables
into the subordinator augments the model such that subordinated returns are normally

distributed in most cases.

The GARCH terms for the exogenous GARCH(1,1) model with the order book variables,

were insignificant in all periods for all stocks. This consistent superiority of natural time
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approach to the benchmark GARCH model has profound implications. The success of the
natural time approach not only supports the normal distribution assumption but also
indicates that transaction time might be the right sampling methodology when using high
frequency data. Furthermore, as the ability to successfully normalize returns via
subordination essentially hinges on accounting for heteroscedasticity, the order book
variables used to subordinate returns can also be used to forecast volatility given the clear

information advantage they provide over GARCH.

The research in this chapter introduces a novel way to view financial returns while also
giving the reader a set of possible variables that are effective in accounting for volatility.
In this respect, Chapter 2 not only fulfills the first goal of this thesis by achieving normally
distributed subordinated returns but also offers an unconventional volatility forecasting
strategy. Chapter 2 makes three major contributions to the literature. First, by successfully
recovering normality of high frequency returns via subordination, this chapter presents
evidence in support of the normal distribution assumption behind numerous finance
theories. Second, by successfully achieving subordinated normal distributions, Chapter 2
also demonstrates that transaction time sampling is a better alternative to calendar
sampling, especially when using high frequency data. Third, by creating a volatility gauge
from order book variables, Chapter 2 also contributes to the volatility literature by

providing evidence for order book based volatility forecasting methodologies.

Market players that have access to the type of order book data used in this chapter may be
able to foretell imminent excess volatility episodes and adjust their positions and leverage
accordingly. Financial authorities which oversee stock markets could also use the

information contained within the order book to prevent a disorderly collapse of the
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system. Either use of this information will contribute to the efficiency of financial

markets.

In Chapter 3, I build upon the findings of Chapter 2 and test the validity of the influential
variables used in natural time approach as crash predictors. Using both futures and single
stock data, I combine these variables under a linear discriminant analysis framework to
successfully forecast high frequency crashes. To follow, Chapter 4 focuses on
macroeconomic crashes which manifest themselves as currency devaluations. Several
binary and panel models are tested and results indicate that successful crash prediction is

possible.
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Chapter 3: Flash Crash, Liquidity Dynamics and Market Heat

3.1 Introduction

The primary focus of this chapter is to predict flash crashes, sudden price movements in
high frequency returns. While the scope and the methods employed in this chapter are
dissimilar to the ones used in the previous chapter, Chapter 3 builds upon the findings of
Chapter 2. Given the ability of order book variables to successfully subordinate returns
and achieve normality, the next logical step is to use these variables to predict high
frequency crashes. To this effect, I combine the variables found to be significant in
Chapter 2 with linear discriminant analysis to predict flash crashes in two very different
financial markets, namely E-Mini S&P500 futures and selected LSE stocks. Furthermore,
contrary to imperfect classification methodologies used in all existing flash crash
literature, high frequency trades are classified perfectly into buyer or seller initiated trades

in this research.

“Market heat” introduced in this chapter is a prediction tool for sudden asset price
depreciations. It measures the increased activity in the order book in order to make its
predictions. Much like the way we measure the excited movements of particles as “heat”
in thermodynamics, market heat measures the state of urgency in the market via the use
of order book data. Market heat is based on market microstructure literature and
accounts for the short term dynamics observed in today’s financial markets. Market heat
outperforms all alternatives tested here and successfully predicts flash crashes in both

markets studied. Market heat’s 5-minute ahead forecasts provide ample supply of time to
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stock exchanges and investors to protect themselves against impending price fluctuations.
In this respect, Chapter 3 not only contributes to the growing flash crash literature by
presenting a solid method to predict high frequency crashes but also offers stock
exchanges a potential circuit breaker to avoid future flash crashes. Hence, Chapter 3
covers part of the second goal of this thesis, namely, prediction of financial crashes with

varying time horizons.

Despite their infrequent occurrence the financial arena is plagued by crashes that erase
years’ worth of capital earnings. The notorious stock market crash of October 1929 is
perhaps the best known among these, marking the beginning of the Great Depression
despite joint efforts to sustain the stock market and the economy. Similar significant stock
market crashes include the Black Monday (October 19", 1987) caused by the “soft-landing”
of the U.S. economy and the Black Wednesday (September 16™, 1992) where sterling
pound was forced out of the European Exchange Rate Mechanism. One common
characteristic of all of the above described crashes, except for the fact that they all
occurred in autumn, is that the financial losses incurred could only be recovered after

several years.

Increasingly the changes in the structure of global markets usher in a new breed of
financial crashes, namely flash crashes. The mini crash of October z7th, 1997 where the
market pared over 60% of its losses the following day or The Flash Crash of May 6™, 2010
are ostensibly acute forms of these flash crashes in which sudden order imbalances cause

abrupt price changes.
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In this chapter, the predictability of sudden price dips in asset prices is investigated and a
new metric to signal impending crashes is proposed. The proposed metric, “market heat”
takes a liquidity based approach to forecasting mini crashes since as in a high frequency
setting it is often the liquidity conditions rather than sudden changes in the fundamentals
that dictate price moves. As shown in Ng (2008), additional time costs are attached to
block trades as financial markets are unable to absorb large orders in short time intervals.
Market heat (MH) takes into account not only the order imbalances, but also the amount
of liquidity available and the speed with which trades are being initiated. By combining
these three important elements in a nonlinear fashion, MH tackles the elusive problem of

crash prediction.

To the best of my knowledge, a nonlinear signaling metric which explicitly includes
liquidity to predict mini crashes has not been suggested before. Using tick data for E-Mini
S&Ps500 futures and LSE stocks, I test MH against a linear and a time-bucketed market
microstructure based metric - similar to the one introduced in Easley, Lopez de Prado and
O’Hara (2012). MH outperforms its counterparts in both markets across a set of binary
classification measures. The robustness of results across markets and different time
frames supports the case for a nonlinear liquidity based approach to crash prediction. In
addition to the general success of MH, the ability of all three metrics used here to capture
the Flash Crash underscores a simple fact: the Flash Crash of May 6" 2010 could have been
avoided if MH metric proposed in this study were employed by the Chicago Mercantile

Exchange (CME) as a circuit breaker.

Section 3.2 reviews the relevant high frequency crash literature and introduces findings of

previous work on the Flash Crash. In Section 3.3, the methodology used to construct MH
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is explained while Section 3.4 details the two different datasets used. The results are

presented in Section 3.5 and Section 3.6 concludes.
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3.2  Literature Review

Similar to the case of program trading becoming the culprit for Black Monday, high
frequency trading instantly became the culprit for the sudden dip in the E-Mini S&P 500
futures during the Flash Crash. However, the findings of the 2010 SEC Report and
Kirilenko et al. (2014) regarding the Flash Crash suggest otherwise. Kirilenko et al. (2014)
report the main cause to be the automated execution of a large sell order by a
fundamental trader 20 minutes prior to the crash, which drained the market liquidity and

forced a number of liquidity providers out of the market.

Kirilenko et al. (2014) define 6 market participant categories in their study, namely high
frequency traders, intermediaries, fundamental buyers, fundamental sellers, small traders
and opportunistic traders. Within this setup, they found high frequency traders’ positions
to be not large enough to induce the dramatic movements of May 6. However, this result
ties directly with the way Kirilenko et al. (2014) define high frequency traders and may
need further investigation. Additionally, the stop loss orders of several liquidity providers
combined with the reversal of long high frequency traders’ positions at the outset of the
crash which removed liquidity from the market are found to exacerbate the fall on May

6.

Easley, Lopez de Prado and O’Hara (2012) examine the behavior of order imbalances
before the crash and develop a volume based flow toxicity measure to make inferences
about an impending flash crash, which they dub “Volume-Synchronized Probability of
Informed Trading” or VPIN. Easley, Lopez de Prado and O’Hara (20ua, 201b) compare

VPIN to VIX and argue a tradable VPIN contract (FVPIN) could have allowed market
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makers to condition themselves better against the order flow. The VPIN measure is
closely related to the microstructure model of Easley and O’Hara (1992). However, despite
its theoretical background, the VPIN measure suffers from artificially introduced errors.
The bulk classification methodology employed in Easley, Lopez de Prado and O’Hara
(2012, 2015) first cumulates trades within a given time bar and then classify them as buys
or sells using a normal or Student’s t-distribution respectively. Easley, Lopez de Prado and
O’Hara (2015) also argue the classifying trades with the tick rule fails to capture the

information within the order flow.

Andersen and Bondarenko (2014a) question the applicability of the VPIN measure and its
properties. Andersen and Bondarenko (2014a) use a slightly different data set and
compare three different variations of the original VPIN introduced in Easley, Lopez de
Prado and O’Hara (2012). The tick-rule VPIN (TR-VPIN) assigns all trades within a given
time bar as either buys or sells while bulk volume VPIN (BV-VPIN), which is identical to
the original VPIN, assigns trades probabilistically. Andersen and Bondarenko (2014a) also
introduce a third measure, namely the fixed bin VPIN (FB-VPIN), which uses volume bars
instead of time bars to classify trades. They argue this method is a much more compatible
approach given Easley, Lopez de Prado and O’Hara (2012)’s reasoning that financial
markets operate under a volume clock. Although the bulk of Andersen and Bondarenko
(2014a)’s findings relate to TR-VPIN and FB-VPIN, several findings do carry over to the
original VPIN. Andersen and Bondarenko (2014a, 2014b) argue VPIN is highly sensitive to
trading intensity and sequencing of trades as such VPIN levels are noticeably affected by

the length of the time bars. Andersen and Bondarenko (2014a) also test their VPIN’s
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predictive power and argue that the value of VPIN before the Flash Crash did not provide

a clear signal.

Easley, Lopez de Prado and O’Hara (2014) address the concerns raised in Andersen and
Bondarenko (2014a) by arguing that bulk classification provides superior results when
compared to the tick rule and it is designed to forecast toxic order flow rather than
volatility. Easley, Lopez de Prado and O’Hara (2014) and Andersen and Bondarenko
(2014b, 2015) provide contrasting studies with respect to the trade classification accuracy.
Wu et al. (2013), which uses maximum intermediate return in between two sampling
points as a realized volatility measure, find VPIN to be a superior liquidity-induced
volatility forecaster “with false positive rates as low as 7%”. While Chakrabarty et al. (2013)

find the tick rule to be more accurate.

As can be observed from the literature, the focus of many recent studies about the Flash
Crash have shifted from developing an actual crash metric that works to determining
which method produces a better trade classification accuracy. The advent of detailed high

frequency data; however, enables us to easily overcome such trade classification issues.

In this thesis, trades are categorized as bid or ask initiated either by the tags provided by
the exchange or by the time of order submission. Hence, unlike any of its predecessors in
the flash crash literature, perfect classification is achieved in this chapter, where
inferences made about the crash predictors are not subject to any classification error.
Perfect classification allows me to capture the true values of these order book variables
instead of the distorted approximations we see in the extant literature. Any information

carried by the order flow is directly reflected on the variables used for crash prediction.
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Thus, the integrity of the data used to form MH and the inferences made with it are
beyond reproach; which is another novel contribution of this chapter to the flash crash

literature.
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3.3 Methodology

The VPIN measure is closely related to market microstructure model of Easley and O’'Hara
(1992), details of which were presented in Section 2.2.1.1. In this model, the initial spread

of equally probable good or bad events is given by:

av

Y= (Pt —P7), (3.1)

av+2¢&

where ¥ is the bid-ask spread, « is the probability of an information event, v is the arrival
rate of informed trades, ¢ is the arrival rate of uninformed trades, P* is the value of the

asset given positive news and P~ is the value of the asset given negative news.

Similarly the probability of an informed trade (PIN) is defined as:

av

PIN = —— (3.2)

av+2&’

which is the ratio of informed orders to total orders.

As shown in Easley, Engle, O'Hara and Wu (2008), order imbalance can be used as a proxy

for informed trading such that VPIN then becomes:

n |yS_uB
VPIN =L—Q=W, (3.3)

av+2¢& Ty
VE and V; are buy and sell volume per bucket (which is denoted by subscript b) and n
represents number of buckets used for averaging. For exact derivation of VPIN, see Easley,

Lopez de Prado and O’Hara (2012).

The calculation of VPIN depends on the length of the time bar used to calculate order

imbalance and the number of buckets over which the value is averaged. Stating that there
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is en masse order misclassification in E-Mini futures using standard classification
algorithms in a high frequency setting, Easley, Lopez de Prado and O’Hara (2012) suggest
using bulk classification to determine buy and sell sides of trades in a given time bar. The
bulk algorithm determines the trade imbalance by:

=S Ve ¢ (F52) (3.4)

vy =1-V),

where j(b) represents the index for the last time bar in the b™ volume bucket, P is the
price of asset, ¢ is the CDF of standard normal distribution and o0,p is an estimate of

return volatility.

This bulk procedure depends on the normal distribution of asset returns in physical time,
which may not hold under the extreme conditions of a flash crash where trades are
expected to be one-sided. The aggregation and averaging of the VPIN measures over an
interval also might cause this toxicity measure to lag behind the real-time market

dynamics of a flash crash in addition to introducing serial correlation to the series.

MH utilizes order book and trade variables found to be significant in Chapter 2, namely
volume imbalance, duration and bid or ask depth. By combining these variables with the
implications of the information-based market microstructure theory, the issue of
forecasting liquidity based mini crashes will be addressed. However, the structure of the
model is flexible enough to accommodate its use for “flash dashes” not so infrequently

observed for single stocks (Golub, Keane and Poon (2012)).
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MH takes into account the joint effects of volume, liquidity, order imbalance and duration
on the evolution of financial time series. The proposed MH equation can also be linked to
signed probability of informed trading presented in Equation (3.3) by the following

equation:

1 1
Vol Imb Volume ) /Duration _ (Vol Imb ) /Duration (3 6)

X
Volume Liquidity

MH = ( i
Liquidity

where Vol Imb is the volume difference between bid and ask initiated trades expressed in
number of shares (VB — V%), Volume is cumulative trade volume, Liquidity is the number
of units standing on the bid side of the book waiting to be traded and finally Duration

represents average tick or order book update duration between two sampling points.

The above setup produces a simple way of interpreting MH in a high frequency setting.
The total volume of trades ceases to be explicitly included in the equation. Instead it is the
total available liquidity against the order imbalance between each k minutes that
determines the flash crash probability. This is a much more intuitive gauge of impending
sudden moves as price cascades are often caused by insufficient liquidity or open interest
against a sustained order imbalance. As MH focuses on high frequency crashes, bid depth
was selected to represent the liquidity conditions since the standing orders on the buy
side of the order book would give an indication of the market participants’ willingness to
defend the asset price against sudden sell orders. Furthermore, unlike VPIN, MH captures
time related information by explicitly making use of calendar time rather than using
volume buckets. The inclusion of the duration term ensures MH accounts for the

absorption limits of the market in physical time.
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A total of 1 variables are formed using the trade and order book data. Ask depth and bid
depth refers to the total volume standing on the order book at any given point. Order
book imbalance refers to the difference between bid and ask depth. The incline variable is
constructed using the cumulative volume on the order book in a step-wise fashion to
estimate the slope of a best-fit line. For a detailed explanation of the construction of the
incline variable, the reader may refer to Deuskar & Johnson (2011). The mean value for
these order book variables are used for 5 minute estimates. Additionally, a 5-minute mean

spread value is calculated as well.

In addition to volume, a volume imbalance term is formed by taking the volume
difference between bid and ask initiated trades. Similarly, initiator imbalance is computed
by taking the difference between the number of aggressors on buy and sell sides. The total

number of trades is also computed as a separate measure.

The order book is updated each time a new order arrives, a standing order is altered or
deleted or when a trade is realized. To reflect the dynamic nature of the order book, two
duration parameters are created. “Duration” refers to the average order book update
duration, whereas “trade duration” refers to the average time between realized trades in

the 5 minute window.

The return series computed over 5-minute intervals are then transformed into one of the

“crash” or “no crash” categories for a number of different crash thresholds.

Three different alternatives for predicting future crashes are used to assess the

explanatory power of the proposed MH equation. The first alternative entails a simple
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linear combination of the variables formed via trade or order book information. To be

specific, the linear estimator is of the form:

LinF = By (Y pyration) + Bz Vol Imb + Bs Liquidity (37)

A measure similar to the VPIN measure outlined in Easley, Lopez de Prado and O’Hara
(2012) is used as the second alternative. However, there are subtle changes to the
construction of this measure compared to the original VPIN. Instead of employing the
widely used Lee & Ready (1991) algorithm or the bulk classification described in Easley,
Lopez de Prado and O’Hara (2012) to classify trades, trades are classified via the tags
provided by CME. The use of 1-min time bars and volume bucketing are also rendered
redundant by this approach since VPIN computed in this study uses time buckets to make
a fair comparison with other metrics. These changes essentially remove artificially
introduced errors and help construct a comparable VPIN measure. Finally, the third

method that is put to test is the MH equation.

The ability of each of the three measures described above is put to test using a linear
discriminant analysis (LDA). The general form of the discriminant equation used in LDA

is:
D=Bo+p1 X1+ B2 Xo+ -+ Ppno1Xn-1+ PnXn (3.8)

where D is discriminant value, X; represent variable vectors and f; are the associated

weights of each corresponding variable and £, is a constant.
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LDA maximizes the following objective function:

J(D) = ]j,"jlﬁj; (3.9)

where D is the direction that maximizes class separability and M; and M,, represent
between-class and within-class scatter matrices respectively (Fisher (1936)). The scatter

matrices can be expressed explicitly as:

My = ¥l — D (e — D' (3.10)

My, = Zi(xi - .uc)(xi - .uc)T (3-11)

where p. represents class mean, fi represents pooled mean and x; represents individual

data points for a given class.

Put in simpler terms, LDA is a dimensionality reduction technique. It aims to classify
individual data points into classes by projecting them on a scalar. Thus, when the
objective function in Equation (3.9) is maximized, what one essentially does is to find a
projection vector that will put observations within the same class close together while

keeping class means as distant from each other as possible.

LDA functions for the linear, VPIN and MH methods respectively can then be expressed

as:

Dpinear = Bo + B1 1/dur + Bz VolImb + fs lig (3.12)
|Vol Imb|
Dypiy = Bo + B2 % (1)
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1
( Bo + By (V"ii’qm”) W Yollmb >0
Dyu = 1 . (3.14)
Bo + B [—1 () d‘”], Vol Imb < 0

In each of the three cases, upon finding the weights, trades are classified into one of the
two possible outcomes using LDA and compared with the actual results. The binary
classification produces the following confusion matrix:

Table 3.1: Confusion Matrix

Crisis No Crisis
Sienal True Positive | False Positive
gna TP FP
. False Negative | True Negative
No Signal FN TN

An ideal classifier with perfect foresight would only produce results along the TP-TN
diagonal. To assess the success of each methodology, “classification accuracy” is chosen as
the primary performance measure. Classification accuracy (CA), which is the ratio of

correctly specified observations to total number of observations, can be expressed as:

CA = (TP+TN) _
(TP+FP+FN+TN)

(3.15)

Precision (PR) and recall (RE) are used as additional measures of binary classification. The

two performance measures can be expressed as:

TP

PR = (TP+FP)’ (516)
TP

RE = s (3.17)
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Finally, an in-sample linear discriminant analysis, using a range of crash thresholds, is
conducted to test the robustness of results. To further examine the performance of the

proposed methods, an out-of-sample LDA is performed using a rolling window approach.
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3.4 Data

Two different high frequency datasets are used in this chapter. The first dataset on the
Flash Crash is provided by the Chicago Mercantile Exchange (CME). CME uses a
continuous-time double auction system where the e-Mini future contracts on the S&P500
stocks are traded. At any given point in time during the trading day, the Level 2 data
provided by CME will entail orders 10-deep in the order book with information of volume
and price of standing orders ranked first by price competitiveness and then by time of
submission. Additionally, realized trades with volume and time information are also
available in the same dataset. This data is used to assess both in-sample and out-of-
sample accuracy of MH. The in-sample CME analysis takes into account two full trading
weeks surrounding the Flash Crash, specifically the sample runs from May 3™ to 14™ of
May 2010. The out-of-sample CME analysis uses these 2 weeks as the training set. To keep
the total number of observations used in estimations constant in the out-of-sample
approach, the oldest observation is dropped each time a new one is added. Thus, the
trailing window approach used in the out-of-sample analysis forms the forecast vector
sequentially with single period ahead forecasts and runs to 30™ of May 2010. The 31* of

May 2010 is not included in the dataset due to the Memorial Day.

For both in-sample and out-of-sample analysis only data points that were realized during
S&Ps500 trading hours, 9:30 - 16:00, were included in this research. Since the futures
market is open almost around the clock, this truncation was necessary as trading volume
falls dramatically after market close. Since liquidity is a key component of MH, using data
from illiquid off-market hours would impair inferences drawn from this analysis. Hence,

only normal trading hours data is used in this research.
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The second high frequency dataset includes SETS data provided from the London Stock
Exchange (LSE) where single stocks are traded in a similar fashion to CME. The Level 2
dataset includes the whole order book depth at any given point in time which may vary
considerably with the time of the day. The order book data includes only “public” orders
that appear on the order book and excludes order types such as non-persistent or iceberg
orders as well as OTC trades. Similar to CME, only the trading hours for LSE, 08:00 -
16:30, are used for this analysis. Four liquid stocks, namely HSBC, BG Group, British
Petroleum and British American Tobacco are selected. To make a fair comparison with
CME results and not to include irrelevant data in the estimation procedures, a 2-week
moving window is selected as the training period to form the flash crash estimates for the
rest of the month. Out-of-sample analysis for each stock is conducted separately on a
monthly basis using a range of crash thresholds to test for robustness. The time period for

LSE stocks runs from July 2007 to June 2008.
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3.5 Results

The Flash Crash is characterized by a rapid plunge of e-Mini futures which was followed
by a similar trend in the spot market and a recovery following the trigger of circuit
breakers. The S&P500 future prices had lost approximately 3% of its value in less than 5
minutes. This fact is clearly observable in the five minute returns plot depicted in Figure

3.1

Figure 3.1: e-Mini S&P 500 Futures Returns Sampled Every 5-Minutes

(May 3" to May 14™ 2010)
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As a preliminary check for any explanatory power of the proposed variables, two separate
regression analyses are conducted using contemporary and lagged variables. The results

for this descriptive analysis are presented in Table 3.2 and Table 3.3 respectively.
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Table 3.2: Simple Linear Regression of Contemporary Variables on e-Mini S&P500

Futures Returns - Sampled Every 5-Minutes (May 3" to May 14™ 2010)

variable constant coefficient R*

ask depth -2.2009 e-4 1.3926 e-8 0.0009
bid depth 3.1267 e-4 -3.6566 e-8  0.0046
order book imbalance -2.5475 e-4 -1.1168 e-7 0.0214
incline 1.7131 e-5 1.6195 e-6 0.0002
initiator imbalance 3.8417 e-5 4.5353 e-7 0.1717
inverse duration 2.3682 e-4 -4.9540 e-6  0.0042
trade duration -2.1931 e-5 -6.4981e-6  0.0002
number of trades -3.8622 e-j5 -1.0920 e-9 0.0017
spread -0.0106 41985 e-4 0.0290
volume imbalance -7.9440 e-6 8.6517 e-8 0.1955
volume -3.7207e-5 -2.8054€-10  0.0017

Table 3.3: Simple Linear Regression of Lagged Variables on e-Mini S&P500 Futures

Returns Sampled Every 5-Minutes (May 3™ to May 14™ 2010)

variable constant coefficient R*

ask depth 2.6407 e-4 -2.7086 e-8  0.0035
bid depth -7.8079 e-6  -4.8478 e-9  0.0001
order book imbalance 6.1611 e-5 6.6240 e-8 0.0075
incline 1.5308 e-4 4.7019 e-6 0.0014
initiator imbalance -4.8079 e-5 41231 e-8 0.0014
inverse duration 2.4848 e-6 -1.0022 e-6 0.0002
trade duration -2.8216 e-4 44254 e-5 0.0083
number of trades -4.8849 e-5  -5.0929 €-10  0.0004
spread -0.0205 8.1384 e-4 0.1089
volume imbalance -5.2073 €-5 8.0172 e-9 0.0017
volume -4.9398 e-5  -1.1203 €-10  0.0003
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As expected, there is a considerable loss of explanatory power in most of the variables.

Table 3.2 shows that volume imbalance and initiator imbalance terms, with respective R*

values of 0.1717 and 0.1955, explain almost 20% of contemporary returns. When lagged,

these variables lose most of their explanatory power and only achieve R* values of 0.0014

and o0.0017, respectively. Trade duration terms, on the other hand, now has a higher R*

value, 0.0083 compared to the previous 0.0002. This finding further supports the case for

using duration terms in the MH equation. Additionally, the bid-ask spread achieves very

high R* values in both contemporary and lagged regressions, 0.0290 and 0.1089

respectively. However, the spread variable is not included in further analysis as it is non-

stationary.

In the next stage, by using LDA, the three alternatives detailed in Equations (3.12) - (3.14)

are compared with respect to their classification accuracy, precision and recall. Tables 3.4

- 3.7 represent CME in-sample and out-of-sample results.*

Table 3.4: Linear Crash Estimator LDA Results for E-Mini S&P500 Futures™

Crash Accuracy Precision Recall
Threshold | In-Sample Out-Sample | In-Sample Out-Sample | In-Sample Out-Sample
-0.25% 78.7% 66.8% 16.8% 10.3% 63.8% 441%
-0.50% 89.2% 86.0% 9.7% 1.9% 100.0% 33.3%
-0.75% 88.4% 93.5% 3.2% 0.0% 100.0% 0.0%
-1.00% 90.0% 97.7% 2.5% 0.0% 100.0% N/A

*The confusion matrices used to prepare Tables 3.6 - 3.9 are presented in Appendix D.

* N/A values for recall indicate that there were no crashes registered in the actual data

using chosen crash threshold.
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Table 3.5: VPIN LDA Results for E-Mini S&Ps500 Futures*

Crash Accuracy Precision Recall
Threshold | In-Sample Out-Sample | In-Sample Out-Sample | In-Sample Out-Sample
-0.25% 55.6% 49.2% 9.0% 8.2% 70.2% 55.9%
-0.50% 52.0% 54.4% 1.6% 1.1% 66.7% 66.7%
-0.75% 54.2% 79.0% 0.6% 0.0% 66.7% 0.0%
-1.00% 48.8% 80.6% 0.5% 0.0% 100.0% N/A
Table 3.6: Market Heat LDA Results for E-Mini S&P500 Futures
Crash Accuracy Precision Recall
Threshold | In-Sample Out-Sample | In-Sample Out-Sample | In-Sample Out-Sample
-0.25% 93.1% 71.2% 31.6% 3.9% 12.8% 11.9%
-0.50% 08.3% 87.8% 25.0% 1.1% 22.2% 16.7%
-0.75% 97.4% 96.2% 5.3% 0.0% 33.3% 0.0%
-1.00% 98.2% 100.0% 7.1% N/A 50.0% N/A

Table 3.7: Market Heat LDA Results for E-Mini S&P500 Futures Using Trade Duration

Crash Accuracy Precision Recall
Threshold | In-Sample Out-Sample | In-Sample Out-Sample | In-Sample Out-Sample
-0.25% 81.0% 61.9% 12.0% 6.3% 34.0% 28.8%
-0.50% 97.0% 84.0% 18.2% 1.6% 44.4% 33.3%
-0.75% 93.6% 96.0% 2.0% 0.0% 33.3% 0.0%
-1.00% 97.3% 99.5% 4.8% 0.0% 50.0% N/A

The analysis for both in-sample and out-of-sample S&Ps500 futures point to a general

increase in classification accuracy and a decrease in precision and recall for all

methodologies as crash threshold is increased. Furthermore, in-sample CME results point

to a striking conclusion. Linear, VPIN and MH all signaled for the Flash Crash ex-ante,

using in-sample estimated f’s and data 5 minutes prior to the Flash Crash. This predictive

ability of all three models is attributable to the high recall values registered despite low

2 The dramatic increase in VPIN’s classification accuracy in the out-of-sample data is

mostly due to the reduced number of crashes registered in the actual data.
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precision. However, low precision values are to be expected in a heavily unbalanced

dataset such as the one used here, where the binary classifier is not set to give more

weight to false positives.

Although all three models were similar in predicting the Flash Crash, there were stark
differences in the functional values obtained by each methodology. Although VPIN
signals for the Flash Crash, the functional value attained by this measure at the time of
the event, 14:45, is not radically higher than the average for the series. On the other hand,
LDA values for linear and MH methods surge significantly during this timeframe. Figure
3.2 shows the LDA values obtained by the three approaches on the day of the Flash Crash.
Figure 3.2: LDA Values for 3 Alternatives on May 6™ 2010

(Using Lagged Independent Variables)
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Additionally, among the three approaches studied here, VPIN consistently produced the
lowest classification accuracy with respect to different crash thresholds. This could
essentially be due to two reasons. Table 3.2 and Table 3.3 show little explanatory power for
volume of trades both in contemporary and lagged analysis. Hence, including it in a crisis
measure may not bring any additional value to crash prediction. Furthermore, taking the
absolute value of the volume imbalance term, which loses a considerable part of its
explanatory power when lagged, might further dilute the information carried by this
component. However, comparison between MH computed using signed vs. absolute value
of volume imbalance term shows almost no loss of information. In fact, CME in-sample
analysis represents the only occasion where there is a difference between the results for
absolute and signed volume imbalance. Hence, only the results using absolute value of

volume imbalance is reported.

Contrary to VPIN, MH produces the highest classification scores for all three crash
definitions. Its advantages in CA become starker as lower thresholds are applied to the
data. Moreover, the number of false positives produced by MH is dramatically lower
compared to both the linear and VPIN models. While VPIN classified almost half the

trades as “crashes”, the number of crash predictions made by MH stood at a mere 2%.

A separate MH measure is also constructed using average trade duration instead of order
book update duration to compare the effects of different duration gauges. The results for
this new MH measure are presented in Table 3.7. The performance difference between the
two MH equations is stark. Classification accuracy falls dramatically while the number of
crash predictions increases multifold. This large difference in between two MH

approaches shows that it is the average order book update duration that carries the bulk
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of the information needed to predict crashes. The patterns observed using in-sample data
extend directly to the out-of-sample analysis. Naturally, all three methodologies have
lower values for classification accuracy, precision and recall. However, this is an

anticipated outcome given the use of an extended set of data points.

What is remarkable however, is the consistency of results across different markets. The
findings in the US futures market also extend to all selected single stocks traded on the
London Stock Exchange, though there is one methodological difference. In certain
months there were instances where all trade volume was initiated by the bid or ask side of
the order book. This did not constitute a problem for linear and MH methods, but on
such occasions the discriminant analysis was unable to classify these data points for VPIN
as by construction VPIN allows values to appear within the range of o-1. These data points
were removed for all three types of analysis in such cases. The amount of data removed in
a given month ranged from 1-10% of the whole dataset, which could amount to a

significant loss of information if one were to use VPIN.

Figures 3.3 - 3.5 show summary results for classification accuracy with respect to different
crash thresholds in the out-of-sample analysis for the LSE stocks. Complete set of results
for classification accuracy, precision and recall values for LSE stocks are presented in
Appendices E - G. The out-of-sample performance for LSE stocks is very similar to that of
E-Mini futures. Although the overall variability of results across months and different
stocks is higher for single stocks compared to S&P500 futures data, VPIN continued to
consistently yield the lowest CA scores. Similarly, MH continued to result in the highest
classification accuracy most of the time although its benefits compared to the linear

approach was not as stark as in the case of CME. At times the linear approach yielded
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better results, the difference between the linear and MH methods were slight. These
incidents where the linear method produced the better results could be due to the
idiosyncratic nature of single stocks or perhaps it could be directly caused by lower
market activity in single stocks compared to S&Ps00 futures. Thus, using 5-minute
sampling interval for single stocks may have resulted in loss of information. However, the
effect of sparse sampling on single stock crash identification is beyond the scope of this

study.
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Figure 3.3: Classification Accuracy for LSE Stocks (Crash Threshold: -0.25%)
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Figure 3.4: Classification Accuracy for LSE Stocks (Crash Threshold: -0.25%)
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Figure 3.5: Classification Accuracy for LSE Stocks (Crash Threshold: -0.25%)
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3.6  Discussion of Results

This chapter focuses on sudden price moves in two technically and geographically
different financial markets, namely E-Mini S&P500 futures and selected LSE stocks.
Despite numerous differences in market structures, the findings regarding the

predictability of “flash crashes” extend to both markets under consideration.

The preliminary analysis shows variables used in the construction of VPIN lose
considerable explanatory power when lagged. But even then, prediction of large scale
events such as the Flash Crash remains an undemanding task. The ability of a naive linear
function in predicting the Flash Crash underscores a simple fact: the Flash Crash could

have been avoided if the necessary warning systems were in place.

Comparison between MH using signed vs. absolute value of the volume imbalance term
shows results are almost identical. This close similarity in outcomes points to the
necessity of explicitly including a liquidity gauge in any crash metric as volume imbalance
alone provides only part of the essential information. Additional analysis on a different
version of MH, namely one that uses average trade duration instead of average order book
update duration, yields an interesting result. The difference between these two MH
methods shows that the bulk of the information on an imminent crash is being carried by
the average order book update duration, hence the poor performance of this secondary

method using trade duration.

The market heat measure presented here, which takes into account both order
imbalances in the volume of trades and the frequency with which the order book is

updated, produces vastly superior results compared to all its counterparts. The ability of
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MH to consistently outperform VPIN persists across different thresholds and markets. In
fact, VPIN is almost always the worst performer with respect to the three performance
measures used here. The original VPIN measure used in Easley, Lopez de Prado and
O’Hara (2012) introduces artificial errors with the use of time bars and volume buckets, a
practice which was averted here with the use of trade initiator tags. Nonetheless, the use
of VPIN still remains problematic, as it requires additional data cleaning before

conducting the final discriminant analysis.

MH outperforms the linear approach as well. However, the out-of-sample performance of
MH depends on the economic climate and the asset class. Hence, the differences in
between MH and the linear approach using LSE single stock data are not as pronounced
as they are when using CME data. This could possibly be due to the idiosyncratic nature
of single stocks or the notable lack of confidence in financial markets during the sampling

period for the single stocks.

In conclusion, MH offers a new way of predicting episodes as dramatic as the Flash Crash.
By utilizing the findings of Chapter 2 while determining the variables influencing price
formation, MH successfully predicted most of the short term financial crashes, a primary
goal of this thesis. Hence, Chapter 3 contributes to the literature by not only introducing a
flash crash prediction tool that is more accurate than all other methods reported in the
literature but also by adding further support to the use of order book variables in

determining short term price movements in high frequency data.

The results point to a robust measure that is capable of outperforming its alternatives

across different markets and crash thresholds. MH could have prevented the Flash Crash
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if it were employed as a circuit breaker at the time and given its excellent out-of-sample
performance, MH may also prevent similar future episodes if it were to be incorporated

into stock market warning systems.

A shortcoming of MH however, is its low precision despite its high recall. Thus, stock
markets that are concerned with too many false alarms may instead use MH not to halt
trading but to start watching the markets for additional crash indicators. Alternatively,

MH could also be used to warn the designated market makers to supply further liquidity.

In the next chapter, I extend the crash prediction techniques to the macroeconomic level.
By creating early warning systems for currency crashes, Chapter 4 augments the short-
term nature of the predictions made in Chapter 3 and completes the thesis objective of

crash prediction with different time horizons.
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Chapter 4: The Missing Link in Early Warning Systems

41  Introduction

Chapter 3 focused on flash crashes that can be explained by market microstructure effects
and order book imbalances. However, the various forms of financial crises that we observe
in today’s financial markets are not primarily composed of these short-term price
movements. In fact, much of the problems that economies face in the long run are caused
by macroeconomic imbalances that manifest themselves as rapid currency devaluations.
Hence, in order to create a complete gauge of financial crashes, Chapter 4 shifts the focus
of crash prediction to the macroeconomic level by focusing on currency crashes.
Specifically, this chapter aims to forecast these rapid currency devaluations in Gio
countries by focusing on both macroeconomic imbalances and market liquidity

conditions.

In this final chapter of the thesis, prediction of crises that surpass flash crashes by both
the magnitude of losses and the period of recovery will be the primary objective. The
occurrence of financial crises is not rare by all standards and the failure of developed
economies to fully recover from the sovereign debt crisis that has engulfed Europe and
the United States proves that the recent bid for financial liberalization and globalization
must be taken with heed. The colossal destruction of value in the developed nations
under adverse market conditions only hints at the possible turmoil for smaller open
economies. Hence, it is ever more essential for investors to predict these turbulent periods

in financial markets.
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In order to predict currency crashes, several binary and panel estimation models are used
in this chapter. A key contribution of this chapter lies in the addition of market variables,
such as VIX and TED-Spread to the set explanatory variables used to create the models.
The results provide a key insight: market variables are strong determinants of future
currency devaluations. While almost all macroeconomic variables are found to be
insignificant for binary models, market variables hold predictive power for both binary
and panel estimations. Panel estimations formed with debt related macroeconomic
variables and liquidity related market variables produce profitable currency strategies.
Hence, Chapter 4 not only provides a comparison between alternative crash prediction
models using new market variables, but also fulfills the second goal of this thesis by

producing successful early warning systems for Gio currencies.

Despite the various manifestations of macroeconomic crisis, all forms share a common
trigger; the sudden realization that the balance sheet of an entity, large enough to impact
an economy, is in fact not balanced. Whether it is debt accumulation or a sudden dip in
the value of the assets, the apparent inability of this financial entity to service its debts
manifests itself as a financial crisis. In the end, the cost is borne by the “real” owner of the

obligations, the government.

Given that the main cause behind financial crises is balance sheet problems, we can
classify crises into two main categories namely; debt crisis and asset crisis. Sovereign and
private entities alike may be subject to both types of crises. Although the characteristic
causes for each type are different, they are not entirely independent of each other as it is

often the case that one induces another.
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For instance, excessive borrowing by governments may constitute a currency crash hazard
in an open economy where the government sustains borrowing via a high interest rate
regime which in turn reduces the economy’s competitiveness and output (Reinhart,
Reinhart and Rogoff (2012)). In this setting, expectations of a currency crash could create a
self-fulfilling mechanism and cause a sovereign debt crisis which would instantaneously
increase the government’s foreign liabilities. However, the increase in the output levels
would also cause future tax income to increase and the benefits for the economy may
outweigh the cost of the crisis. On the other hand, if excessive foreign debt is
accumulated by the private sector, the debt overhang may adversely affect the firms’
(households’) ability to invest (consume) further, cooling the economy (Lo and Rogoff
(2014); Mian and Sufi (2014)). Similarly, hidden borrowing by the banks and financial
intermediaries could result in a banking crisis and the slowing down of the economy via
reduced available funding. The re-capitalization of banks by the government puts
sovereign balance sheets under stress and may cause debt-crisis if sovereign debt stock is

large enough (Reinhart and Rogoff (2011)).

As outlined by Krugman (2002; 2010), asset-side problems may also cause currency
crashes. In this type of crisis, deleveraging due to an asset bubble may cause assets to
substantially decrease in value which might bring private firms as well as banks to
insolvency. Wide spread economic contraction and government guarantees on bank
deposits may force the government to step in and provide emergency credit lines to one
or both parties to ensure stability. What follows is an increase in government debt, the
expansion of the money supply and reduced interest rates, all of which inevitably result in

currency devaluation. The credibility of the government plays an important role in
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securing the necessary funds to contain such wide spread balance sheet induced crisis and
the cost of this procedure can be excessive for smaller open economies. This is due to the
inability of emerging markets to erode their debt stock via inflation as they heavily

depend on foreign denominated debt.

Much like the bank runs of the early 20™ century, the 2008 mortgage crisis is a grim
reminder of economic contraction that will follow wide-spread asset-side problems in
banks’ balance sheets. Currency crashes that are caused by asset-side problems are the
most destructive (Krugman (2010)), which justifies the use of fundamentals to predict
economic fragilities and currency crashes. Additionally, the self-fulfilling nature of

currency crashes must also be factored in via global market variables.

On the whole, despite the long list of divergent causes behind different types of crises,
most often each is immediately followed by a strong depreciation of the domestic
currency against its counterparts. This is the main motivation behind mapping of
currency crashes which has occupied academics and policy makers alike for decades. Over
the decades several promising empirical models have been developed to predict these
large scale devaluations (Kaminsky, Lizondo and Reinhart (1998); Berg and Patillo (BP)
(1999)). However, successful prediction of currency crashes still remains an elusive

objective.

In this chapter, I diverge from the crash literature on several fronts. First, I take an
indirect approach to contagion, the spread of a currency crash among countries of similar
dynamics. The banking system, which commands the currency markets, essentially works

as a liquidity provision mechanism. When financial institutions start to charge higher
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premiums over the no-risk sovereign alternative, it alerts market players to possible short-
term balance sheet or debt problems within the banking system. This in return reflects
the downturn in the global economy. Thus, any shock to the banking system resonates
with the FX markets more than any macroeconomic indicator. Hence, TED-Spread and
VIX, which by construction measure the stability of the banking system and market
confidence respectively, capture crisis events. For this reason, VIX and TED-Spread are

utilized as global variables which account for the changes in investor sentiment.

Second, unlike most early warning system (EWS) studies, which predominantly
concentrate on long-term crash predictions for emerging markets, I focus on the currency
movements for developed markets combining macroeconomic indicators with market
variables. The 1-month forecast horizon used in this chapter also has the advantage of
making market variables relevant. In fact, both VIX and TED-Spread are found to contain

important information for binary and panel data estimations.

Third, I utilize several binary crash prediction methodologies as well as panel models to
forecast the changes currency markets. A through sensitivity analysis accompanies each of
the estimated models. The sensitivity of signals approach to changes in the number of
signals required to indicate a crash is tested for different thresholds. In order to assess the
effects of pooling, country-by-country predictions using logit and probit models are
compared to their pooled counterparts, which treat all data as if it were coming from a
single country. Each binary estimation is accompanied by a ROC curve, which provides a
visual performance measure of the estimates for each FX pair. Adjusted ROC curves along
with area under the curve (AUC) measures are present for panel estimations as well,

which directly gauges the profitability of investment strategies.
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The results indicate the need to increase the number of signals required for the signaling
approach to perform well. Furthermore, logit and probit estimations demonstrate that
single FX pair crisis predictions yield good results for only a few of the countries. I also
include lagged crash indicators and lagged returns in binary and panel estimations to test
for any dynamic behavior in currency returns. However, no evidence is found to support
the use of lagged binary indicators. As such, dynamic binary estimators seem
unwarranted. Panel estimations; on the other hand, show that by using market variables

and a short forecast horizon of 1-month, one can generate excess financial returns.

Section 4.2 reviews key crisis prediction models that appear in the literature. In Section
4.3, the crash prediction methodologies are discussed. Section 4.4 describes the dataset
and the results are presented in Section 4.5. A discussion of the results is presented in

Section 4.6.
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4.2  Literature Review

The currency crash literature has produced three generations of theoretical models. The
first generation models are based on the speculative attack model of Salant and
Henderson (1978) and assume perfect foresight where balance of payments crises occur
deterministically. The governments run persistent fiscal deficits and rising debt concerns
push investors to attack the domestic currency en masse. The heavily indebted
government is then left to choose between depleting its foreign reserves in defense of the
currency or forego the fixed exchange rate regime (Krugman (1979)). The second
generation models ushered by Obstfeld (1986) add multiple equilibria to its predecessor
within a self-fulfilling prophecy framework. Obstfeld (1996) further extends second
generation models where the government minimizes a quadratic loss function of inflation

and deviation from natural output level.

The inability of the first and second generation models to account for the 1997 Asian crisis
brought about the third generation models which focus on the balance sheet risks of the
financial sector. Corsetti, Pesenti and Roubini (1999) and Chang and Velasco (2000)
examine the role of foreign debt and excessive borrowing in the banking sector. Excessive
foreign bank borrowing can constitute a hidden form of sovereign external debt under
blanket guarantees to banks which sustain government borrowing via domestic bond
purchases. This type of debt crisis induces currency crashes which increase the foreign
liabilities on the balance sheets of banks and adversely affect their ability to lend,
prolonging the recession. This is in sharp contrast with the fast recovery period following

currency devaluations predicted in the first and second generation models. Krugman
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(1999) also focused on the effects of devaluation on private sector balance sheets and later
extended the liability side balance sheet drawdown to the asset-side in Krugman (2002)
where deleveraging of assets cause wide-spread insolvency and eventually an economic

recession.

The first well-known attempt to model currency crashes was undertaken by Kaminsky,
Lizondo and Reinhart (KLR) (1998). KLR developed a nonparametric signals approach in
which a list of economic indicators that diverge from their “normal” levels prior to a crash
were used to form an EWS. KLR’s definition of a currency crisis includes both successful
and unsuccessful speculative attacks and account for these components by utilizing an
index of “exchange market pressure” which is a weighted average of monthly percentage
exchange rate and foreign reserve changes. In the KLR setting, a crisis is said to occur
when the exchange market pressure index crosses an arbitrary threshold value, in the KLR
case 3 standard deviations. Then for a signaling horizon of 24 months, each indicator is
set to issue a signal beyond a certain threshold whose value is determined by minimizing
its signal-to-noise ratio. KLR found support for a number of indicators including foreign
exchange reserves, real exchange rate, inflation, credit growth, trade balance and fiscal

deficit.

KLR’s indicators approach has found much support in the literature and several
extensions to the original model were proposed to address its shortcomings. Change in
the interest rates was included into the market pressure index by Hawkins and Klau
(2000) whereas others changed the threshold value for the market pressure index (Aziz,
Caramazza and Salgado (2000) and Edison (2000)). Edison (2000) also documented the

inherent problem in this type of crisis definition, where sample dependence of standard
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deviation may “erase” past episodes of currency crashes. Alternative crisis definitions as a
percentage of exchange rate depreciation has also been offered by Esquivel and Larrain

(1998), Bruggemann and Linne (2002) and Kumar, Moorthy and Perraudin (2003).

A major shortcoming of KLR model was addressed by Berg and Patillo (BP) (1999). BP
model extended KLR’s signals approach into a multivariate framework by using a
composite index of indicators. This way, loss of information due to conversion of
indicators into binary variables was avoided and assessment of individual indicator
performance became possible. The composite index approach was used within a probit
setting and a linear combination of indicators expressed as percentiles produced

marginally better results compared to KLR approach.

Similar to the KLR model, BP model is much celebrated and extensions have been
proposed. To account for the post crisis bias, exclusion windows have been proposed by
Eichengreen and Rose (1996) and Demirgilic-Kunt and Detragiache (1998). However,
removal of data during the recovery period results in loss of information and introduction
of artificial serial correlation Abiad (2003). To remedy this shortcoming, multinomial logit
and probit models have been proposed. Bussiere and Fratzscher (2006) and Ciarlone and
Trebeschi (2005) employ a three state crisis definition with tranquil, crisis and post-crisis
periods and find encouraging improvements in the forecast results. Nonetheless, the
arbitrary determination of the exclusion window of the post-crisis period still remains a
concern. Therefore, the gains in utilizing a multinomial model should be considered

carefully since recoveries often do not take place as suddenly as currency crashes.
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The pooling of various country specific data was later questioned by Berg et al. (2008).
Bussiere and Fratzscher (2006) found mixed results for fixed vs. random effect logit
models using findings of a core “groupable” country dataset with an all-inclusive set.
Similarly, the effect of pooling on crisis thresholds in the KLR model was put to test by
Davis and Karim (2008) and country specific thresholds were found to perform better in
crisis prediction at the cost of higher Type II errors. On the other hand, pooled thresholds

produced much reduced noise-to-signal ratios.

As an alternative solution to the transformation of indicators into binary signals in the
KLR model, Peria (1999), Abiad (2003) and Bussiere and Fratzscher (2006) used Markov
regime-switching models. Abiad found the overall performance of regime-switching
models with non-constant probabilities to be similar to the BP model with Markov
models estimating a higher percentage of the crisis periods. However, direct
comparability is not possible since Abiad uses country specific time series data with a

short out-of-sample period.

The failure of fundamental variables to predict currency crashes has been addressed by
the use of extreme value theorem (EVT) as well. Cumperayot and Kouwenberg (2013)
tested a large number of fundamental indicators and found that only the real interest rate
was able to account for crises asymptotically. Nag and Mitra (1999) and Marghescu, Sarlin
and Liu (2010) use of artificial neural networks (ANN) to predict currency crashes. The in-
sample fit of ANN models are high, but results of Marghescu, Sarlin and Liu (2010)
indicate that they only occasionally outperform the static probit models in predicting

crises. ANN models are not without their drawback however. The number of hidden
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layers and neurons render them prone to overfitting and their “blackbox” nature makes

identification of marginal effects of each indicator inscrutable.

As mentioned earlier, Kumar, Moorthy and Perraudin (2003) uses a different crisis
definition, namely percentage exchange rate deprecation within a logit framework. This
crisis definition is similar to a different strand of the literature that focuses on the link
between carry trades and currency crashes. While examining the failure of uncovered
interest rate parity (UIP) foe developed markets, Brunnermeier, Nagel and Pedersen
(2008) document significant correlation between weekly carry trade positions and market
variables, VIX* and TED-Spread**. Additionally, the authors find strong contemporaneous
correlation between VIX and excess FX returns for quarterly forecasts. Jurek (2014) also
finds that the crash neutral carry returns for dollar-neutral portfolios are statistically zero
which implies that the options market account for the skewness risk in its entirety, a

finding which supports further use of market variables such as VIX.

Kauppi and Saikonnen (2008) account for the autoregressive nature of currency crashes
by including lagged binary and lagged index variables. Candelon, Dumitrescu and Hurlin
(2014) extend the autoregressive approach to a dynamic logit setting using a rolling

window procedure. They also address the country clustering problem with the use of

» VIX, short for Chicago Board Options Exchange Volatility Index, is a real-time volatility measure
of S&P 500 stocks. Quoted in annualized percentage points, VIX is a weighted estimator of 1-month
implied volatility using a range of index options.

** TED-Spread is a proxy for credit risk calculated as the interest rate difference between the 3-
month US T-Bill and 3-month Eurodollar contract (LIBOR). Since T-Bills are dollar risk free, the
TED-Spread measures the credit risk in the unsecured lending market. It can also be interpreted as

commercial banks’ need for liquidity.
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methods in Kapetanios (2003). In their model, Candelon, Dumitrescu and Hurlin (2014)
find that dynamic specifications outperform both static logit and Markov regime-
switching models within sample and though single period ahead forecasts are not
satisfactory, multiple period predictions are outstanding for out-of-sample forecasts. The
autoregressive structure employed in above described models inherently account for the
findings of Tudela (2004) where the probability of recovery increases as the crisis period

prolongs.

Contagion, the spread of a currency crash to neighboring countries in a given region,
presents a major drawback for EWS and impairs fundamentals’ ability to predict currency
crashes. Various types of contagion, namely regional, trade partner and common creditor
contagion, has been found to hold explanatory power to account for market participants’
varying reactions to fragilities in different countries, Briiggemann and Linne (2002),
Beckmann, Menkhoff and Sawischlewski (2006), Eichengreen et al. (1996), Reinhart et al.
(2000) and Moreno and Trehen (2000). For this reason, a successful EWS needs to
account for contagion by either direct inclusion of a regional contagion parameter or a

global variable that will gauge the changes in investor sentiment.

Existing crash prediction models in the literature predominantly use long-term forecast
horizons and focus on emerging markets which are already prone to currency crashes.
Furthermore, most studies in the literature lack any short-term market variables. This is a
significant shortcoming since market variables relate highly to the conditions in the
market. A downturn in financial markets may reduce liquidity for market players and

render currencies prone to crashes, supporting the case for multiple equilibria.
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In order to address these shortcomings, I build several binary and panel models for 9
developed markets. A 1-month forecast horizon is used for each model combining
macroeconomic and market variables. Furthermore, the data used in this chapter includes
both a boom period and the global meltdown of 2008. All models are trained using the
boom period which enables me to test whether or not the models introduced here would
be able to predict the currency movements during the mortgage crisis. In addition to
binary crash predictions, estimates for 1-month ahead FX returns are evaluated and found

to produce excess returns.
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4.3 Methodology

In this section, both binary and panel models are used to forecast currency crashes. EWS
introduced in this section incorporate dynamic and autoregressive specifications as well
using both fundamental and market variables. The ability of these models to predict
currency crashes is tested via binary classification performance measures as well as ROC

curves.

Both macroeconomic and market variables are used to predict the movements in the FX
rates. Macroeconomic variables include the change in the interest rate premium for each
country above the US interest rates, the change in inflation (CPI), the change in
unemployment, the change in the current account/GDP, the change in the reserves/GDP,
the change in the money supply M2/GDP and GDP growth. Several of these
macroeconomic variables were found to hold explanatory power in studies such as KLR,
BP, Kumar, Moorthy and Perraudin (2003) and Burnside, Eichenbaum and Rebelo (2008).
Market variables include the change in VIX, TED-Spread and the main stock market index
returns. Market variables, VIX and TED-Spread account for the “heat” of the market and
are intended as global gauges of investor sentiment. Hence, they can be used to explain
the elevated sensitivity of market players to balance sheet problems and capital flight,

manifestations often described with contagion parameters.

Additionally, lagged binary and index variables as in Candelon, Dumitrescu and Hurlin
(2014) are used to check for any persistence in currency movements. All explanatory

variables are tested for stationarity and lagged one period to predict crashes.
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To test how the chosen macroeconomic and market variables determine the changes in
FX rates, I start with a multiple linear regression run on each FX pair separately. The
multiple linear regression containing a constant and all explanatory variables can be

expressed as:

rij = o+ BiXi; + €ij (4.1)

where a;, 73, X, Bij, €;j represent the constant, the FX returns, the vector of explanatory
variables, the coefficients vector, and the error term for the i observation of the jth FX

pair, respectively.

Ordinary least squares approach is used to estimate a; and f; values for the in-sample

period. The estimated a; and f; values are then used to predict the FX returns in the out-

of-sample data. Both the in-sample and the out-of-sample estimates are accompanied by
2

their corresponding adjusted coefficients of determination, Rg,;, indicating how well the

estimates explain the variation in each FX pair.

4.31 Binary Models

Given the importance of both market and fundamental variables the following setup is
appropriate. A single crash definition, a loss of 2% in the FX rate, is employed for all
binary models since the inclusion of non-crisis countries in the dataset produces
“phantom” crises using the KLR approach, Kindman (2010). The cut-off point for currency
crashes is also warranted by the shorter forecast horizon of 1-month. The use of a short
term forecast horizon also validates the use of market variables as their effects will be

considerable.
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The signaling approach used in this study is similar to the one used in KLR. However,
several changes have been made to the basic model. As previously stated, the crash
definition is kept the same for all competing models tested here. Hence, the KLR
definition for a crash, which also includes the changes in reserves, does not apply here.
Furthermore, the set of indicator variables used to predict future crashes are different

including market variables.

The first step when using the signaling method is to identify the crash periods for the in-
sample data. Then, each indicator is tested separately to find the country-specific quantile
which minimizes the signal-to-noise ratio. The signal-to-noise ratios are calculated using
the confusion matrix presented in Table 3.1 where Type I and Type II errors can be

interpreted as false and missed alarms respectively.

FP

KLR actually minimized an adjusted signal-to-noise ratio, £&5* which is the ratio of false

TP+FN

alarms as a percentage of all no crisis instances to the correct signals as a percentage of all
crisis instances. KLR’s adjusted signal-to-noise ratio is used to determine the percentiles
used in this chapter. The percentiles range used in the search algorithm goes from o.70 to

0.95 (0.05 to 0.30) for positively (negatively) correlated explanatory variables.

Then, unlike KLR, a trailing window approach is used to adjust the levels at which each
indicator will signal a crash. Although the quantile for each indicator stays the same, the
trailing window approach adjusts “levels” for the major changes seen during crash periods.
Then, each time any one of the indicators signal a crash, it is assumed that a crash in the

next month will occur. Yet, a single signal may not be the best way to indicate a crash and
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may often produce false positives. For this reason, different thresholds for the number of
signals required to indicate a crash has been tested. Specifically, thresholds of above o, 1, 2
and 3 were used. The results have been reported in three different measures of success,

namely classification accuracy, precision and recall.

In addition to the signals approach, two other binary models, namely logit and probit,
have been used to test binary models’ predictive capabilities. Both of these models have
similar functional forms and can easily be applied to any binary classification study. Given
a binary crash indicator, C, which takes a vector of variables X as inputs, can be expressed

as:
Ci=a+pX;+¢, (4.2)

where «a is the constant and X;, C;, ¢, represent the crash predictor, the vector of
explanatory variables and the error term for the i™ observation. The binary predictor C;

would signal a crash above a predetermined threshold t such that:

(1, >t
C; = {0’ C<t (43)

The threshold can be assumed to be o since the constant « is present in the model. Then

probability of having an event can be expressed as:
Prob(C =1) = Prob(C > 0) (4-4)

It is trivial to show that Equation (4.3) is equivalent to the cumulative distribution

function F(SX), for a symmetric distribution.
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The probit and logit models differ in their selected cumulative distribution functions.

While probit uses the standard normal cumulative distribution function, logit uses:

oC
eC+1 °

F(O) = (4.5)

Unlike the signals approach, the logit and probit models do not employ a trailing window
approach. In addition to classification accuracy, precision and recall, the results for logit

and probit models include a receiver operator characteristic (ROC) curve.

The ROC curve is a graphical representation of the performance of a binary classifier.
Specifically, it focuses on the ratio of the true positive rate (sensitivity) and the false
positive rate (1-specificity). TP and FP rates are mapped on the vertical and horizontal
axes, respectively. The ROC curve is then constructed piecewise by varying the probability
threshold. Since both TP and FP rates can go only up to 100%, the maximum attainable
area is a unit square for a ROC curve. An ideal classifier, that sorts all data points into true
positives and true negatives, would produce an inverted “L-shaped” curve covering the
whole unit square, resulting in an area under the curve of 1. A 45° line also companies the

curve for comparison, designating a random classifier with an AUC of o.5.

4.3.2 Panel Models

Although currency crash prediction is of importance, this is not the only way to predict
the movements in exchange rates. Panel models not only produce point estimations but
also allow for more comprehensive analysis of the data. For this reason, fixed-effects and

random-effects models were used to predict the percentage change in the FX rates. The
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random effects model, which assumes explanatory variables are orthogonal to a country’s

characteristic crash risk, can be expressed as:

where u is mean return for whole sample, RE; is the country-specific random effect and

&;j, represents the country specific error term for the i™ observation.

The fixed effects model, on the other hand removes the orthogonality assumption. Hence,

for a return series of:
ry = v+ BiXij + &, (4.7)

where y; is the latent time-invariant country characteristic crash risk, the fixed effects

model estimates the demeaned returns:
(rj—7) = v — 7)) + Bi(Xij — Xij) + (&5 — &) - (4.8)

Given y; is time-invariant, the term (y; — ¥;) is eliminated and Equation (4.8) simplifies

to:
(rj—7) = Bj(Xyy — Xip) + (&1 — &) - (4.9)

Since the panel methods described above do not produce any binary classifiers, a one-to-
one comparison with binary models is not possible. However, the return weighted ROC
curve introduced by Jorda and Taylor (2012) within their regime-switching vector error
correction model presents a visual compromise. The adjusted ROC curve is constructed

by taking into account the maximum gain (loss) one would make if they were to predict
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the direction of all returns to be positive (negative). By doing so, the attainable AUC for
the adjusted ROC curve is reduced to 1, which allows for comparisons between similar

models can be made.
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4.4 Data

Chapter 4 focuses on currency crisis on a macroeconomic level which warrants the use of
a different dataset that includes foreign exchange rates and macroeconomic variables at
variable frequencies such as monthly, quarterly and yearly. The main focus of EWS
literature has been emerging markets, which are prone to substantial foreign exchange
fluctuations. However, the mortgage crisis of 2008 showed that wild FX swings are not
exclusive of the Gio. For this reason, 9 developed markets, specifically, United Kingdom,
European Union, Switzerland, Sweden, Norway, Canada, Australia, Japan, and New

Zealand were selected for analysis.

The United States constitutes a large part of all international transactions; as such the US
dollar was selected as the basis for all exchange rates. Hence, all exchange rates are taken
against the U.S. dollar and FX rates which are customarily quoted with US dollar in the
numerator are inverted to make them consistent with the rest of the data. All
macroeconomic and market data are sampled on a monthly basis. Macroeconomic
variables which are released less frequently are adjusted by using simple linear
interpolation. This method is warranted by frequently updated market surveys for the

macroeconomic variables used here.

The dataset runs from January 2000 to December 2012 with a monthly sampling
frequency. This period includes two distinct episodes during which the financial markets
experienced both a boom and a global meltdown. The in-sample period is selected to
include the boom period, which runs from January 2000 to June 2006. Consequently, the

hold-out period runs from July 2006 to December 2012. This partitioning of the dataset
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gives one the opportunity to form an EWS which would truly signal an impending crisis,

using information before any crash was on the horizon.
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4.5 Results

Regression analysis on the dataset shows an expected result: there are significant
differences between variables in their ability to explain FX returns across countries. Most
macroeconomic variables do not have any explanatory power with respect to FX returns.
Even then, there is no consistency in the macroeconomic variables that are found to be
significant as they change significantly from country to country. Market variables on the
other hand, present a different case. TED-Spread is often found to be a significant
explanatory variable which is sometimes accompanied by VIX as well. Thus, it can be said
that a simple linear regression of FX returns supports the case for using market variables
in an EWS. I further test this assumption with additional models. The results for the
multiple linear regressions for the whole dataset are presented in Tables I.1 - 1.3 in

Appendix 1.

4.5.1 Binary Models

Binary crash prediction when compared to forecasting FX movements is a simpler
undertaking. Nonetheless, the number of financial crashes and the wealth lost during
these episodes show that we have not been able to create an EWS to avoid these crises.

The following subsections represent the results for the binary models used in this chapter.

Page |125



4.5.1.1 Indicator Approach

The indicator approach or the signaling approach is a straightforward method which
allows me to test each variable’s predictive capabilities. Tables 4.1-4.4 represent the
indicator approach binary classification performance measures for varying number of the
signals required to indicate a crash. Detailed results for the signals approach using out-of-

sample data are presented in Appendix J.

Table 4.1: Indicator Approach with 1 or more signals

Country Classification Accuracy Precision Recall
United Kingdom 0.4286 0.2453 0.7647
Eurozone 0.3636 0.2333 0.8235
Switzerland 0.3377 0.2647 0.9474
Australia 0.2468 0.1857 0.9286
Canada 0.3636 0.1818 0.7143
Japan 0.4805 0.2593 1.0000
Sweden 0.4156 0.2545 0.7778
Norway 0.4026 0.3016 0.9048
New Zealand 0.2727 0.2031 0.7222

Table 4.2: Indicator Approach with 2 or more signals

Country Classification Accuracy Precision Recall
United Kingdom 0.6494 0.3333 0.5882
Eurozone 0.5195 0.2619 0.6471
Switzerland 0.5325 0.2927 0.6316
Australia 0.4286 0.2000 0.7143
Canada 0.6623 0.2857 0.5714
Japan 0.5974 0.2424 0.5714
Sweden 0.5195 0.2286 0.4444
Norway 0.4675 0.2017 0.6667
New Zealand 0.4545 0.2301 0.6111
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Table 4.3: Indicator Approach with 3 or more signals

Country Classification Accuracy Precision Recall
United Kingdom 0.7662 0.4762 0.5882
Eurozone 0.6364 0.3103 0.5294
Switzerland 0.6364 0.3448 0.5263
Australia 0.6104 0.2778 0.7143
Canada 0.8052 0.4667 0.5000
Japan 0.7532 0.3684 0.5000
Sweden 0.6623 0.2278 0.2278
Norway 0.6364 0.3478 0.3810
New Zealand 0.6623 0.3333 0.4444

Table 4.4: Indicator Approach with 4 or more signals

Country Classification Accuracy Precision Recall
United Kingdom 0.7922 0.5385 0.4118
Eurozone 0.7143 0.3529 0.3529
Switzerland 0.7143 0.3846 0.2632
Australia 0.7273 0.2667 0.2857
Canada 0.8312 0.5714 0.2857
Japan 0.7792 0.418 0.5000
Sweden 0.7143 0.3333 0.2222
Norway 0.7532 0.5714 0.3810
New Zealand 0.7403 0.4375 0.3889

Tables 4.1 - 4.4 show a clear pattern. As the number of signals required increases,
classification accuracy and precision increase at the cost of recall. Table 4.1 shows
persistent high rates of recall for all countries at 1 or more signals. Given the improvement
in classification accuracy as the number of signals required to indicate a crash is
increased, the use of a higher signal threshold seems warranted. Table 4.3 shows that the
signaling approach was quite successful at predicting currency crashes with several
countries attaining classification accuracy values above 60% when a minimum of 3 signals

is required for a crash prediction.
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4.5.1.2 Logit & Probit

The indicator approach has a limited ability to make 1-month ahead forecasts for currency
crashes since the interactions between the indicators are not taken into account directly.
This is a direct amalgamation of all the explanatory variables and gives a solid idea about
which of the variables actually contribute to the model. Other binary models, such as the
logit and probit, provide means to test the combined effect of the variables. The results
for the in-sample logit and probit estimations for each country are shown in Appendix K
where as Appendix L contains the results for in-sample pooled logit and probit
estimations. The in-sample estimates for the coefficients are then combined with the
explanatory variables observed during the out-of-sample period to arrive at the binary
predictions. Tables 4.5 - 4.6 show the resulting out-of-sample binary performance
measures for logit and probit regressions. Detailed results for out-of-sample country-by-

country logit and probit estimations are presented in Appendices M and N, respectively.
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Table 4.5: Country by Country Logit Results*

Country Classification Accuracy Precision Recall
United Kingdom 0.7821 0.5000 0.1765
Eurozone 0.7468 0.3333 0.1765
Switzerland 0.7595 - 0.0000
Australia 0.6962 0.2727 0.4286
Canada 0.8228 - 0.0000
Japan 0.7975 0.0000 0.0000
Sweden 0.5949 0.2308 0.3333
Norway 0.7342 0.5000 0.1905
New Zealand 0.7692 - 0.0000

Table 4.6: Country by Country Probit Results

Country Classification Accuracy Precision Recall
United Kingdom 0.7821 0.5000 0.3529
Eurozone 0.7468 0.3333 0.1765
Switzerland 0.7595 - 0.0000
Australia 0.6962 0.2727 0.4286
Canada 0.8228 - 0.0000
Japan 0.7975 0.0000 0.0000
Sweden 0.5949 0.2308 0.3333
Norway 0.7342 0.5000 0.1905
New Zealand 0.7692 - 0.0000

*> When the model makes o crisis predictions, a non-applicable value (-) for precision and a zero
(0.0000) for recall is observed. This is due to precision measuring the ratio of correct crisis
predictions to the number of total predictions and recall measuring the ratio of correct crisis
predictions to the number of actual crisis. Equations (3.16) and (3.17) show the respective formulas

for precision and recall.
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Appendices M - N show that the explanatory variables found to be significant for both
logit and probit models are identical. However, Switzerland, Canada, Japan and New
Zealand are found to be affected by none of the explanatory variables tested. As a result,
no crisis predictions were made by these models. Consequently, precision and recall
measures for these countries are o for both logit and probit models. This less than
satisfactory performance of both logit and probit models suggests that these models may
not be suitable for currency crash prediction despite the high classification accuracy

values they obtain.

Similar to the indicators approach with 3 or more signals, logit and probit models forecast
currency crashes with relatively high predictive power, where both binary approaches
produce identical results. However, despite their accuracy, these two binary models do
not use most of the macroeconomic variables. In fact, if we consider pooled logit and
probit estimations, all macroeconomic variables become irrelevant and the change in VIX
and TED-Spread are found to be the only two significant explanatory variables. Table 4.7
shows the performance measures for pooled logit and probit models. Detailed results for

the pooled binary estimations using out-of-sample data are presented in Appendix O.

Table 4.7: Pooled Logit & Probit Results

Model  Classification Accuracy Precision Recall

Logit 0.7692 0.4545 0.2941
Probit 0.7692 0.4545 0.2941

*® The results for pooled logit and probit models are identical.
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Given the total lack of macroeconomic variables in pooled logit and probit models and
infrequent inclusion of macroeconomic variables in country-by-country logit and probit
estimations, it can be argued that large monthly movements in currency markets may be
rather short-sighted. Such myopic market behavior would cause liquidity concerns and
immediate financial stability of the banking system to be direct contributors to currency

crashes subduing the effects of a country’s long term macroeconomic health.

In addition to the binary performance measures, the ROC curves for country-by-country

and pooled logit and probit out-of-sample estimations are presented in Figure 4.1 - 4.3.

Figure 4.1: ROC Curves for Country-by-Country Logit Model*

(Out-of-Sample Estimation)
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*” The “Uninformed” variable in all the ROC curves contained in this thesis represents a random

classifier with an AUC of o.5.
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Figure 4.2: ROC Curves for Country-by-Country Probit Model

(Out-of-Sample Estimation)
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Figure 4.3: ROC Curves for Pooled Logit and Probit Models

(Out-of-Sample Estimation)
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Figures 4.1 and 4.2 show that estimations for the United Kingdom and Australia
outperform a random classifier reasonably well, while the estimations for the rest of the
currency pairs are not satisfactory. Furthermore, compared to their country-by-country
counterparts, pooled binary estimations, which only use market variables, result in well-
behaved ROC curves. The areas under the curves for logit and probit estimations shown
in Figure 4.3 stand at 0.6053 and 0.6045, respectively. These results are clearly superior to

0.5, the expected AUC for an uninformed crash identifier.

Logit and probit models combine the individual effects of the variables; however a panel
approach may be able to map the complexity of financial markets much more efficiently.
Therefore, logit and probit models using random and fixed effects were estimated. The
results for binary panel estimates confirm the findings of Bussiere and Fratzscher (2006)

as they do not add value to binary forecasts.

4.5.2 Panel Estimations

Binary modeling may not be market players’ weapon of choice as it has limited ability to
forecast 1-month ahead currency movements since the binary crash definition truncates
information. Instead of predicting whether or not a crash will materialize, one could be
more interested in both the direction and the magnitude of the change in a currency pair.
For this reason, percentage returns were regressed on the same variables in a panel

setting. The results for random and fixed effects models are presented in Appendix P.

The results indicate that the panel approaches capture the FX market fluctuations well.
This is possibly due to the inclusion of macroeconomic variables, namely, interest rate

premium, current account balance and growth rate. The adjusted ROC curve for the panel
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models, presented in Figure 4.4, produces an AUC of 0.6090 and 0.6084 for random and
fixed effects models, respectively. The adjusted ROC curve is of importance as it
encompasses potential gain and loss information. An AUC greater than o.5 for an adjusted
ROC curve indicates that even a simple trading strategy of buying and holding until the

end of each month would produce financial profits.

Figure 4.4: Adjusted ROC Curve for Random and Fixed Effects Models
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Appendix P shows that both random and fixed effects models employed debt related
macroeconomic variables as well as market variables, VIX and TED-Spread. Figure 4.4, on
the other hand clearly shows that point estimations form by using random or fixed effects
models produce meaningful financial profits as the AUC for both panel models are well
above the o.5 mark. Consequently, panel models not only produce good directional
forecasts but also predict these directions with acceptable opportunity costs. Hence, it can
be concluded that, the joint use of macroeconomic variables with market variables in a

panel environment is behind the success of point estimations.
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As a final addition to all models used in this chapter, lagged crash identifiers and lagged
returns were added to binary and panel models, respectively. However, unlike Candelon,
Dumitrescu and Hurlin (2014), both lagged variables were found to contain no additional
information about 1-month ahead currency movements which is in line with weak form
market efficiency. Therefore, the discrepancy between the findings of this chapter and
Candelon, Dumitrescu and Hurlin (2014) may be due to their crisis definition or the use of

emerging markets.

The results presented in this section show that we are still a long way from an omniscient
EWS. Informed prediction of currency movements in some currency pairs on a country-
by-country basis is just harder than others. Such is the case for Switzerland, Canada, Japan
and New Zealand. However, there may still be explanatory power to be gained from data
aggregation since results for panel approaches produce profitable FX strategies.
Furthermore, the lack of past lagged crash indicators and lagged returns in any one of the

models indicates that currency markets process shocks reasonably fast.
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4.6  Discussion of Results

The results for the multiple linear regression models on the other hand indicate weak
explanatory power for most macroeconomic variables. Though these variables may be
expected to hold predictive power in longer forecast horizons, the 1-month forecasting

horizon used in this chapter may have reduced their power.

The indicator approach, using a simple crash definition of 2% loss, is able to produce
informed predictions for 1-month ahead currency crashes. However, the number of signals
required to indicate a crash has a sizeable effect on the performance of the signaling
approach. Hence, the number of signals required to indicate a crash must be increased to
produce a satisfactory binary model. Nonetheless, the indicator approach is quite
successful when using 3 (4) or more signals to indicate a crash with classification accuracy

well above 0.60 (0.70).

Similar to the results obtained in the regression analysis, logit and probit models find
most macroeconomic variables to be insignificant. In contrast to macroeconomic
variables, market variables VIX and TED-Spread are consistently significant in both binary
and point estimate models. The difference between the ROC curves for country-by-
country binary estimations and pooled binary estimations points to gains from pooling.
Furthermore, I find evidence against dynamic specifications for binary models as lagged
crash indicators turn out to be consistently insignificant. However, the binary
performance of logit and probit models, especially when making country-by-country
predictions, are less than satisfactory as they are incapable of producing any crisis

predictions for Switzerland, Canada, Japan and New Zealand. Hence, the results presented
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in this chapter support signaling models rather than logit and probit for binary crash

prediction.

On the other hand, panel approaches seem to have captured the currency market
dynamics better. This may be due to the inclusion of three macroeconomic variables,
namely, interest rate premium, current account balance and growth rate. Nonetheless, the
use of these variables does not render market variables VIX and TED-Spread insignificant.
The adjusted AUC for both fixed and random effects models are well above 0.5, which
indicates panel models using market variables are capable of generating financial profits.
Moreover, similar to binary models, lagged returns are found to be insignificant for panel

models, ruling out dynamic panel approaches.

The macroeconomic variables found to be significant in the panel approach highlight an
important feature of currency markets. Interest rate premium, current account balance
and growth rate are all directly related to the debt servicing ability of a country. Hence,
the addition of these variables to market variables such as TED-Spread or VIX in a panel
setting is in line with theory (Krugman (2002; 2010)). Given the performance of panel
models, it may be argued that banks’ asset-side problems affected global markets
relatively fast. Hence, despite the lack of a direct asset-bubble parameter, the panel
models were able to provide successful investment decisions by taking into account
market variables. However, the lack of a direct asset bubble indicator, the missing link,
still presents a shortcoming for EWS. Thus, forming an asset bubble indicator must be the

next step in creating next generation EWS.

Page |137



Several binary and panel estimation models were reviewed in this chapter using both
macroeconomic variables and market variables as predictors. Market variables, VIX and
TED-Spread, are not only new to the currency crash literature but also help us better
understand how currency markets operate. Much like market heat predicting high
frequency crashes via liquidity related order book variables, the models tested in this
chapter successfully forecast several currency crises using liquidity based market
variables. Hence, Chapter 4 reaffirms the need to focus on market players’ perception of

liquidity risk when making both short and long term crisis predictions.

The work presented in this chapter contributes to the EWS literature by successfully
predicting currency crashes and completes the second of goal of this thesis, crash
prediction. Specifically, Chapter 4 contributes to the literature by creating both binary
and panel prediction models to successful forecast currency crashes for the seldom
studied Gio countries. Furthermore, this chapter contributes to the literature by
introducing market variables, which are found to carry significant crash related
information, into the EWS literature. Perhaps the most important contribution of this
chapter however is in its ability to produce meaningful profits using the point estimates
from panel models. The successful 1-month currency predictions formed here may be
useful to investors as the prediction period is much shorter compared to most EWS

studies that use 12 to 24 month horizons.
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Chapter 5: Conclusion

5.1  Summary of Work

The two primary goals of this thesis were to recover the normal distribution assumption
for high frequency returns and to predict financial crashes that occur in both the short
and the long run. While Chapter 2 focused on fulfilling the first research goal by obtaining
normally distributed high frequency returns via subordination, it also identified the

fundamental elements that influence the price formation process.

In Chapter 2, a novel way to look at high frequency returns, natural time, was introduced.
Instead of calendar time, natural time approach sampled the high frequency data using
transaction time and subordinated the raw returns with order book variables. Essentially,
natural time corrects for the deviations from normality, often observed when working
with high frequency data. In other words, natural time adjusts for the true flow of time,
and hence information, in financial markets by sampling under transaction time and by
employing order book variables in stochastic subordination. Consequently, the natural

time approach corrects the data for heteroscedasticity.

The top 10 most liquid stocks traded at the LSE were used to evaluate natural time and on
several occasions the natural time approach was able to subordinate returns to arrive at
normal distributions. Natural time was also superior to the GARCH model indicating that
the subordination functions were better predictors of volatility compared to the

benchmark GARCH model.
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In Chapter 3, I put to test the applicability of the variables used in the natural time
approach to binary flash crash prediction. The results showed that the key variables used
to account for non-normality of high frequency returns also contain information about
impending flash crashes, even though the variables are formed under calendar time
sampling this time. Hence, the order book variables that were used for subordination in
Chapter 2 were critical in creating the high frequency crash prediction metric, market

heat, in Chapter 3.

Combining linear discriminant analysis with order book variables, MH successfully
predicted short term financial crashes, part of the second goal of this research.
Specifically, MH combined three critical components of high frequency markets: speed,
liquidity and momentum which are captured by order book update duration, liquidity and
volume imbalance variables, respectively. MH was tested against a linear and a VPIN-
based model. Although all three models were capable of predicting the Flash Crash, MH
consistently outperformed all alternatives across different markets and crash thresholds
using both in-sample and out-of-sample data. The broad applicability of the order book
variables identified in Chapter 2 to events as dramatic as the Flash Crash suggests that in
high frequency settings order book information is relevant for both high frequency traders
and policy makers. Given its performance, MH could indeed be incorporated into a circuit

breaker to avoid future episodes like the Flash Crash.

Flash crashes only make up a portion of the financial turbulences we observe in the
finance world. To address the problem of crash prediction in longer time horizons, I
shifted the focus to the macroeconomic level in Chapter 4, creating EWS for currency

crashes, thus completing the second objective of this thesis.
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In Chapter 4, I extend the time scale for crash prediction to predict currency crashes in
G1o countries using both binary and panel models. The binary models tested include the
indicator approach, logit and probit while fixed and random effects models were used to

form point estimates.

Naturally, as one moves from 5-minute ahead forecasts, such as those produced by MH, to
1-month ahead predictions, the state of the economy and hence macroeconomic variables
become relevant in determining the value of the currency. Hence, macroeconomic

variables were tested along with market variables.

One important finding regarding all models used in Chapter 4 is that market variables
VIX and TED-Spread were always found to be significant. While logit and probit model
result were not satisfactory, the signaling model was quite successful. Both panel models
shared three macroeconomic variables, namely, interest rate premium, current account
balance and growth rate. This shows that for point estimates macroeconomic variables

directly related to the debt servicing ability of a country are of importance.

Chapter 4 augmented the signaling model of KLR and introduced a working binary
currency crash predictor. The panel estimations were also very successful. So much so
that the adjusted AUC values for both fixed and random effects models were above 0.60

indicating profitable buy-and-hold strategies.

The performance of the indicator approach and the panel models and the lack of an asset-
side variable, suggest that information regarding asset-side problems were fed quickly to

liquidity and investor sentiment based market variables. Thus, VIX and TED-Spread were
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good approximators for a direct asset-side indicator. Nonetheless, the need for an asset-
side indicator still remains a shortcoming for all EWS which aim to capture the

imbalances in balance sheets.

Page |142



5.2  Contributions

This thesis contributes to several strands of finance literature. Natural time, a novel
subordination procedure introduced in Chapter 2, contributes to the subordination
literature by successfully achieving normal return distributions on several occasions.
Natural time adds to the growing evidence that asset returns are normally distributed
even in the high frequency, as long as one accounts for the latent process returns are
subordinated to. Natural time approach samples the transaction data as they occur in tick
time using a composite index of volume, liquidity and duration as the subordinator. The
success of natural time indicates that the culprit for the non-normal distribution of
financial returns is the imposition of a time grid by sampling data in calendar time

coupled with not accounting for the information contained within the order book.

The contribution of natural time is threefold. First contribution of natural time is that it is
the first study to successful subordinate returns with order book variables under
transaction time. Second contribution of natural time is in its subordination variables. By
extending the range of order book variables used in subordination and employing a
nonlinear asymmetric response function, natural time accounts for the underlying
information process much more efficiently. Finally, given its consistent superiority to
GARCH, natural time contributes to the literature by creating a superior volatility gauge
that accounts for the heteroscedasticity in the data better than the ubiquitous GARCH

model.
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All in all, natural time reconciles the empirical observation of financial returns with
finance theory by recovering one of the central assumptions of finance, normal

distribution.

Market heat, on the other hand, contributes to high frequency crash prediction literature
by proving that flash crashes are predictable, both for single stocks and indices. The
excellent performance of MH rests on two pillars: the use of liquidity related order book

variables and perfect classification of trades.

In a binary crash prediction setting using E-Mini S&Ps500 futures data, market heat is
found to be superior in classification accuracy, precision and recall compared to all
alternative methods tested. The findings are robust across different timeframes and crash
thresholds and extend to several single stocks traded on the London Stock Exchange.
Hence, market heat contributes to the growing flash crash literature by offering a robust
flash crash prediction tool where liquidity is the key driver of high frequency returns. MH
could also be utilized as a circuit breaker by stock exchanges to avoid future flash crash

episodes.

Additionally, unlike most existing literature, natural time and market heat classify high
frequency transactions perfectly into buyer or seller initiated trades via codes provided by
the stock exchange or order submission times. In this respect, this thesis establishes a best
practice for any high frequency study by classifying trades perfectly, an approach that
should always be preferred to outdated bulk classification methods invented before the

widespread availability of order book data.
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In Chapter 4, the crash prediction framework is extended to include low frequency
macroeconomic currency crises. Chapter 4 contributes to the early warning system
literature by developing successful EWS for developed markets instead of the often

studied emerging markets and offers evidence on the predictability of currency crashes.

In order to capture both asset and liability related crashes, market variables, VIX and
TED-Spread were used in addition to macroeconomic indicators, a unique contribution of
this work to the EWS literature. Using a crash threshold of 2% loss and a 1-month forecast
horizon, most macroeconomic variables are found to be insignificant in binary models
while market variables, VIX and TED-Spread, add considerable forecasting power to both
binary and panel models. Macroeconomic variables related to debt servicing are also

found to have explanatory power for panel estimations.

Chapter 4 contributes to the binary currency crash literature by introducing a working
binary indicator of currency crashes for Gio countries, the signaling model with 3 or more
signals to indicate a crash. The most important contribution of Chapter 4 however lies in
its ability to generate profits via the point estimates generated by panel models that

combine macroeconomic and market variables.

Despite the lack of a direct asset side variable, the success of both the indicator approach
and the panel models indicate that the market variables used in this study were able to
effectively account for asset side problems. In fact, the almost complete absence of
macroeconomic variables in logit and probit estimations and the central role of liquidity
based market variables in determining currency fluctuations suggest that liquidity

concerns govern asset returns both in the short and the long run. Thus, the cardinal
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contribution of this thesis is the solid evidence it provides for liquidity as the chief

determinant of asset price depreciations in both the short and the long term.
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5.3  Future Work

Natural time proves that the use of order book variables is effective in accounting for the
latent price process. Future subordination based studies can benefit from this finding by
including an array of additional order book variables to capture information about high

frequency returns.

Furthermore, given natural time’s superiority to GARCH, the information advantage
gained from using order book data could also be used to form a volatility forecasting tool.
Although market heat used some of the order book variables to forecast crashes, the
ultimate evaluation of the usefulness of order book variables would be possible by direct
assessment of these variables as variance predictors. However, as the main goal of natural
time was to recover normal distribution of high frequency returns, volatility related use of

order book variables stands as a future venue of research.

Binary classification, especially in heavily imbalanced sets such as the one used to test
market heat, leaves researchers with a distinct dilemma: high recall or high precision.
Market heat primarily focused on generating a signal each time a crash event was to
occur. Hence, market heat rarely missed a crash, although it sometimes produced a high

number of false positives.

For a market player who wishes to use MH to generate profits, the financial gain of
shorting a stock or an index each time MH produces a signal should be quantified before
MH is used as a trading rule. Similarly, for a stock exchange whose primary duty is to
ensure an orderly and efficient market, the low precision of MH may prove to be

problematic as the efficiency cost of halting markets, when no crisis is bound to happen,
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may be unacceptable. In such instances, stock markets may still combine the order book
variables used in MH with alternative binary prediction techniques where more weight is
given to obtaining a higher precision value. These two alternative uses of MH surely

constitute valid options for the future research.

The adjusted ROC curves for the panel approaches tested in Chapter 4, point to possible
financial gains even with a simple buy and hold strategy. The alpha generation capacity of
these models needs to be tested taking into account execution costs. The back-testing of
such trading strategies would certainly add to the validity of market variables as proxies
for asset side problems in EWS. Such trade based assessment of market variables are left

for future research.
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Appendices

Appendix A

Order Book Reconstruction

The order book is reconstructed from the three main files, namely Order Detail, Order
History and Trade Report, which contain all necessary information to reconstruct the
state of the order book at any moment. Order Detail files provide information on new
orders submitted to the exchange, while Order History files provide information on
alteration of previously submitted orders. The types of change that are allowed by the
Exchange are deletions, expiries, full or partial matches and transaction limits. Order
Detail and Order History files are sufficient to construct the standing order book, as
information on addition and removal of each trade that appears on the order book can be
found within these files. The Trade Report file, on the other hand, is used to determine
trade times which are reported to the nearest second. The sequence of trades, matching

orders and the trade initiators can all be determined using the information in this file.

The sequence of orders are determined by the timestamps and the message sequence
number (MSN) that is provided for all types of orders. Each separate order possesses a
unique Order Code. In case of executions, matching orders are linked via a Match Code
and a Trade Code. Match Codes are not provided for trades against hidden orders. The
direction, price and volume of an order or trades are indicated under Bid/Ask, Price and
AggSize columns, respectively. A “B” under the Bid/Ask column indicates a buy order

while a “S” indicates a sell order. Trade volume and trade price for match orders are
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indicated under Trade Size and Trade Volume columns. The type of order is listed under
the Market Mechanism Type (MMT) column. A “LO” represents a limit order while a

“MQO” stands for a market order.

The standing order book on the first day of the data is initialized via the “Broadcast
Update Action” (BUA) parameter. A value of “F” in the BUA column for an Order Detail
indicates previous orders at the start of the day that has not been fully matched, deleted
or expired. For these orders, the order size equals the remaining size of the original trade
submitted. Following the initialization process, subsequent orders are added or removed
from the order book via the Order Detail and Order History files, respectively. There is no
separate mechanism for altering normal orders; changes to an order are conveyed with
two consecutive orders namely, a deletion followed by submission of a new order. Order
Detail and Order History rows contain an “Order Action Type” parameter which is
merged into the BUA column here for sake of brevity. Regular order submissions are
realized via a value of “A” while Order Detail rows with a BUA of type “Z” constitute an
exception where changes to volume information of a given order can be realized. Order
History rows with BUA values of “D”, “E”, “P”, “M” and “T” represent deletions, expiries,
partially filled orders, matched orders and transaction limits, respectively. Table A.

provides a sample order matching sequence.

Table A.1: Sample Order Matching Table

Timestamp MSN DataType OrderCode MatchCode TradeCode Bid/Ask Price AggSize TradeSize TradePrice MMT BUA
6/1/2007 08:00:06 7209 OrderDetail 209UTBE107 S 934 285 LO A
6/1/2007 08:00:06 7210 OrderDetail 309WJWD507 S 934.5 400 LO A
6/1/2007 08:00:11 7312 OrderHistory 50ACLVAX07 B 932 65443 0 LO D
6/1/2007 08:00:22 8095 OrderHistory 007K5Q2C07 60AMEOOB07 50ACNA7CO07 S 0 0 5030 933 MO M
6/1/2007 08:00:22 8096 OrderHistory 60AMEOOB07 007K5Q2C07 50ACNA7CO07 B 0 6949 5030 933 MO P
6/1/2007 08:00:22 8098 TradeReport 50ACNA7CO07 5030 933 E
6/1/2007 08:00:22 8105 OrderHistory 309WK03D07 60AMEOOBO7 50ACNA7F07 S 0 0 4073 933 MO M
6/1/2007 08:00:22 8106 OrderHistory 60AMEOO0B07 309WKO03D07 50ACNA7F07 B 0 2876 4073 933 MO P
6/1/2007 08:00:22 8108 TradeReport 50ACNAT7F07 4073 933 E
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Table A.1 shows that Trade Reports only arrive after the two corresponding order history
rows have been created. All three rows, namely 2 Order History and 1 Trade Report, have
matching codes on their Trade Code column. Occasionally more than a single transaction
falls within a given second. In cases like these, to arrive at a fair measure of transaction
price, a volume-weighted price is computed. The volume-weighted price for multiple
transactions on a single second can be computed by:

SMYPiV;
Jm_fl (A1)

Zj Vj
where m is the total number of transactions in a given second, P; is the price of the jh

transaction and Vj; is the volume of the j™ transaction.

Notice however, more than 3 rows have the same Trade Code in Table A.1. This presents
us with an occasion where a single aggressor matches with multiple orders on the order
book. In cases like these, the transaction is classified as a single trade with volume equal

to the sum of all corresponding orders.

The sheer size of the raw data described above makes it impossible to load every data
point into standard statistical packages. For this reason, a two step procedure is followed
to sort and reorganize the SETS data. First, the raw data contained within the .csv files are
loaded into the corresponding tables in MySQL database. This is an essential step in
linking the information contained within each of the three tables and retrieving the
necessary records for a given stock. Following the pooling of data, separate selection
queries are produced for each of the 10 most liquid single stocks traded at the London
Stock Exchange and a master table for each stock is produced containing information on

order details, history and trades. The list of stocks used are presented in Appendix B.
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In the second step, the master table for each selected stock is fed into Matlab, where
orders added or removed from the orderbook according to their “action type”. To make
sure only orders present in the orderbook are removed from the dataset, orders are
matched according to their unique order codes. Since the objective of this research is not
to re-enact how the Exchange matches each submitted order but to have a snapshot of the
whole orderbook at each time a trade occurs, a “bulk” approach is employed. To put it in
another way, the code used to reconstruct the tables makes use of the matching trade
codes within the framework of determining the initiator of a given trade rather than
supply knowledge on which specific order would match another. Undertaking such a task
would be redundant as the Exchange sorts orders according to their price and submission

time and provides the order matching details in the trade report files.

Unlike the simply calculated values for price or trade volume, the determination of a trade
initiator deserves some explanation. The initiator of a trade is determined with the
following algorithm. In cases where a limit order matches with a market order, the
direction of the market order is taken as the initiator. On the other hand, when two limit
orders match, the initiator is designated to be the later arriving order as the other order
has been standing in the orderbook. Similarly, for public orders that match hidden orders,
the initiator is taken to be the public order. To remove multiple instances for the same
order that has matched more than one order, trades which have the same initiator and
bid/ask tag are joined as one effectively reducing the number of trades initiated while

keeping volume information intact.

There are also cases when two market orders match each other, due to the opening

auction. In such cases, the first arriving market order is taken as the initiator. However,
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since the opening auction is not part of the “normal” trading hours, initiator classification
during these hours are of low importance as the dataset pertaining to the first 5 minutes
following the commence of the regular trading hours is discarded. This is a necessary step

to obtain reliable data free of the contamination during the opening interval.

In the end, a series of snapshots are produced at each trade (tick) time with information
on the whole orderbook as well as traded quantity and volume weighted price. The time
series data produced by the above two-step procedure now enables one to test the

assumption of normality under the subordinator introduced in Equation (2.32).
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Appendix B

Top 10 FTSE 100 Firms by Market Capitalization (As of June 18" 2012)

10.

HSBC Holdings
Vodafone Group

BP

GlaxoSmithKline

British American Tobacco
Royal Dutch Shell

BG Group

Rio Tinto

Diageo

SAB Miller
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Appendix C

Table C.1: Subordination Results for British American Tobacco Stock®

Linear Q? Q% Q? QL.‘
(100 Ticks) (100 Ticks) (100 Ticks) (100 Ticks)
-1.1521 e-7 2.5634 e-4 -8.3825 -8 -2.3570 -4
"
(0) (0.0469) (o) (0.1469)
3.2309 e-7 0.0040 3.3020 e-7 0.0054
o
(0.9990) (0) (0-9986) (0)
Log-Volume -2.2954 €+19 9.9927 e+9 ) .
(0) (0.0033)
Duration 2.0499 e+19 1.0000 €+10 2.2049 e+19 1.0000 e+10
(o) (o) (o) (o)
Log-Initimb? 4.6636 e+18 9.9905 e+9 -3.3199 e+18 9.8255 e+9
(o) (o) (o) (o)
Log-Vollmb® 4.6636 e+18 ) 7.0822 e+19 .
(o) (0)
Log-likelihood -10,987 -3,924 -18,782 -4,235
: Q Q2 Q3 Q4
Aut
utoregressive (100 Ticks) (100 Ticks) (100 Ticks) (100 Ticks)
-7.0378 e-11 1.4067 e-9 4.2779 e-8 4.7413 e-9
H (0.0002) (0.3908) (o) (0.0018)
5.3815 e-10 5.0543 -8 7.3008 e-8 5.0818 e-8
o
® (0.9998) (0-9997) (0-9998)
2 (1) 4.9529 e+19 4.5214 e+19 8.4470 e+19 8.9796 e+19
r2 —
tick (0) (0.0001) (0) (o)
Log-Volume - - - -
Duration 4.7589 e+19 8.1599 e+19 9.9942 e+19 9.0038 e+19
(o) (0) (o) (0)
Log-Initimb? 2.7338 e+19 5.8610 e+19 4.7465 e+19 7.9725 €+19
(o) (o) (o) (o)
Log-Vollmb* - - - -
Log-likelihood -15,578 -14,695 -20,179 -17,134
. Q Q2 Q3 Q4
Normality p - - - - - - -
Linear | Autoregressive Linear Autoregressive Linear | Autoregressive Linear | Autoregressive
KS Test 0.0546 0.0617 0.0471 0.0467 0.0428 0.0420 0.0428 0.0414
es (0.0163) (0.0046) (0.0279) (0.0303) (0.0140) (0.0167) (0.0330) (0.0429)
JB Test 1,288 232 107 154 1,485 327 171 44
es (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010)
K8 Test (Z '25:)3) (242429) (242227) (242402)
. 1 . . .
GARCH 3 577 3 47!
39 99 75 3
JB Test (0.0010) (0.0010) (0.0010) (0.2280)
LB Test Q Q2 Q3 Q4
Linear Autoregressive Linear Autoregressive Linear Autoregressive Linear Autoregressive
R 39.9101 28.7350 20.4126 19.6020 36.7815 21.6975 16.5722 18.0809
tick (0.0051) (0.0931) (0.4324) (0.4831) (0.0124) (0:3571) (0.6806) (0.5821)
RZ 148.6908 79-7184 19.3393 13.7170 166.4169 10.3693 69.0445 23.9795
ek (0) (43825 e-9) | (0.4999) (0.8445) (0) (16764 e-14) | (2.6066 e-7) (0-2433)

** All values in parentheses throughout Appendix C show respective p-values for each variable.
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Table C.2: Subordination Results for BG Group Stock

Linear Q Q2 Q3 Q4
(100 Ticks) (100 Ticks) (100 Ticks) (100 Ticks)
5.2752 e-9 1.2289 e-8 -1.7600 e-9 -6.3670 e-8
8 (0.4775) (0) (05236) ©)
2.2900 e-7 9.9620 e-8 1.0177 e-7 1.9840 e-7
’ (0.9992) (0.9996) (0.9996) (0.9992)
Log-Volume - - 97448 e+19 -
(o)
Duration -6.6856 e+17 2.8412 e+19 5.0133 e+19 3.0306 e+19
(o) (0) (o) (0)
Log-Initimb’ 1.6388 e+18 2.0627 e+19 1.0000 €+20 6.9642 e+18
(o) (0) (o) (o)
R 2.2115 e+19 1.0000 e+20
Log-Vollmb ©) (0)
Log-likelihood -13,191 16,022 -19,336 -16,280
Autoregressive Q% Q? Q? Q‘_‘
(100 Ticks) (100 Ticks) (100 Ticks) (100 Ticks)
-1.6080 e-8 3.7530 e-9 -3.8989 e-9 2.6111 e-10
a (0) (0.0247) (0.0204) (0.8797)
5.1336 e-8 5.5061 e-8 6.4588 e-8 5.8724 -8
7 (0.9998) (0.9998) (0.9997) (0.9998)
Rt —1) 9.7638 e+19 9.9365 e+19 8.5969 e+19 9.8878 e+19
(o) (o) (o) (o)
Log-Volume ) 9.6220 e+19 9.8896 e+19 7.6725 e+19
(o) (o) (o)
Duration 6.9329 e+19 6.4660 e+19 8.7163 e+19 7.5697 e+19
(o) (0) (o) (0)
Log-Initimb’ 1.0000 €+20 9.5759 e+19 9.2383 e+19 8.6997 e+19
(o) (0) (o) (o)
Log-Vollmb* - - - -
Log-likelihood -14,690 -16,571 -19,658 17,533
Normality - & - - @ - - B - - U -
Linear | Autoregressive Linear Autoregressive Linear Autoregressive Linear | Autoregressive
KS Test 0.0476 0.0469 0.0638 0.0527 0.0731 0.0706 0.0520 0.0499
(0.0261) (0.0296) (2.7226 e-4) (0.0046) (1.6497 e-6) (4.2399 e-6) (0.0037) (0.0059)
JB Test 88 508 5,712 1,669 17,057 40,037 635 197
(0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010)
KS Test 0.0432 0.0432 0.0519 0.0490
GARCH (0.0554) (0.0334) (0.0017) (0.0075)
59 752 1,647 38
JB Test (0.0010) (0.0010) (0.0010) (0.0010)
LB Test Q Q2 Q3 Q4
Linear Autoregressive Linear | Autoregressive Linear Autoregressive Linear Autoregressive
R 441997 33.6284 21.1028 18.1079 40.2633 27.7002 21.5000 21.0480
tick (0.0014) (0.0288) (0.3911) (0.5803) (0.0046) (0.1167) (0.3682) (0.3943)
RZ 110.3667 45.5594 133.9519 148.7570 80.8810 13.5016 117.0909 17.5531
tick (1.6875 e-14) (9.2608 e-4) (o) (o) (2.7808 e-9) (0.8548) (9.9920 e-16) (0.6168)
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Table C.3: Subordination Results for British Petroleum Stock

Linear Q Q2 Q3 Q4
(100 Ticks) (100 Ticks) (100 Ticks) (100 Ticks)
u 5.4774 €e-10 5.6039 e-9 -1.1944 e-7 1.6878 e-9
(0-8499) (0.0001) (0) (01992)
1.0545 e-7 5.2083 e-8 1.5368 e-7 4.6938 e-8
o
(0.9996) (0.9998) (0.9993) (0.9998)
Loe-Volume 1.0000 e+20 1.9225 e+19
g (0.0003) (0.0193)
Duration 9.9999 e+19 3.3916 e+19 7.1360 e+19 9.2349 e+19
(o) (o) (0.0080) (o)
Log-Initimb’ 6.5665 e+18 8.3459 e+19 4.3670 e+19 9.6643 e+19
(0.0017) (o) (0.0002) (o)
3.7251 e+19
Log-Vollmb* - - -
® (0)
Log-likelihood -19,881 -20,013 -23,179 -19,829
Autoregressive Q% Q? Q? Q‘_‘
(100 Ticks) (100 Ticks) (100 Ticks) (100 Ticks)
2.4504 e-10 2.2236 e-8 1.0981 e-10 -4.8625 e-9
u
(0.8214) (0) (0.9234) (o)
J 3.9512 e-8 3.3979 e-8 4.5813 e-8 3.5850 e-8
(0.9998) (0.9999) (0.9998) (0.9998)
2 (t—1) 9.9984 e+19 9.2228 e+19 9.9255 €+19 94747 e+19
ek (0) (0) (0) (0)
Log-Vol 9.9971 e+19 1.0000 €+20 6.8373 e+19 7.6953 e+19
og-Volume
s (o) (0.0001) (o) (o)
Durati -1.1684 e+15 9.9660 e+19 9.5960 e+19 8.7638 e+19
uration
(o) (0) (o) (0)
Log-Initimb’ 9.9867 e+19 9.9314 e+19 0.9427 e+19 7.8021 e+19
(0) (0) (0) (0)
Log-Vollmb* - - - -
Log-likelihood -20,713 -20,354 -24,781 -20,033
1 2
Normality - Q - - Q - - R - - Rl -
Linear Autoregressive Linear Autoregressive Linear Autoregressive Linear Autoregressive
KS Test 0.0771 0.0895 0.0843 0.0807 0.0605 0.0629 0.0763 0.0728
(2.5298 e-7) (1.0209 e-9) (1.5746 e-8) (7.5652 e-8) (1.4373 e-5) (5.4956 e-6) (6.0209 e-7) (2.2870 e-6)
JB Test 825 35 327 39 227 401 1,390 681
(0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010)
KS Test 0-0755 0.0716 0.0599 0.0596
GARCH (4.8584 e-7) (2.8945 €-6) (1.8433 €-5) (21262 e-4)
39 55 34 51
B Test
JB Tes (0.0010) (0.0010) (0.0010) (0.0010)
LB Test Q Q2 Q3 Q4
Linear Autoregressive Linear Autoregressive Linear Autoregressive Linear Autoregressive
R 38.3925 22.3978 25.2047 21.6862 42.4340 37.8834 26.0675 26.7222
ek (0.0079) (0.3193) (0.1904) (03578) (0.0024) (0.0092) (01636) (0.1433)
RZ 817 88.4018 160.0943 48.8888 331.9561 175.3197 12.1073 13.3700
tick (o) (1.4088 e-10) (o) (3.1881 e-4) (o) (o) (0.9123) (0.8610)
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Table C.4: Subordination Results for Diageo Stock

Linear Q Q2 Q3 Q4
(100 Ticks) (100 Ticks) (100 Ticks) (100 Ticks)
2.0497 e-9 -1.5261 e-14 -1.1230 e-7 -3.9786 e-9
g (02802) (06246) © (01307)
5.5268 e-8 0.1326 e-13 1.8411 e-7 8.3500 e-8
’ (0.9998) @ (0.9993) (0.9997)
Log-Volume 6.6499 e+19 - - -
(o)
Duration 4.5791 e+19 1.4486 e+29 5.0329 e+19 1.6162 e+19
(0) (0) (0.0130) (0)
Log-Initimb’ 5.6861 e+19 1.8021 e+29 6.8562 e+19 -1.5207 e+18
(o) (0) (0.0004) (0)
Log-Vollmb* ) 21857 e+29 9.7174 €+19 1.0000 €+20
(0.0003) (0.0007) (o)
Log-likelihood -12,494 -22,570 -17,865 -15,023
Autoregressive Q% Q% Q? Q‘_‘
(100 Ticks) (100 Ticks) (100 Ticks) (100 Ticks)
-5.2023 e-10 -4.4156 e-9 1.0961 e-8 -1.8292 e-8
H (0.7626) (0.0015) (o) (o)
4.9198 e-8 4.0606 e-8 5.3647 e-8 4.1070 e-8
7 (0.9998) (0.9999) (0.9998) (0.9998)
Rt —1) 7.5215 €+19 9.9986 e+19 7.2471 €+19 0.5429 e+19
(o) (0) (o) (0)
Log-Volume 8.9904 e+19 - - -
(o)
Duration 3.1567 e+19 3.9005 e+19 0.9410 e+19 7.8746 e+19
(o) (0) (o) (0)
Log-Initmb? 4.6724 e+19 9.5468 e+19 9.8314 e+19 8.9904 e+19
(0) (0) (0) (0)
Log-Vollmb?® ) 8.4758 e+19 6.1026 e+19 1.0000 €+20
(0.0009) (o) (0.0008)
Log-likelihood -12,545 -13,344 -19,045 -15,634
Normality - @ - - Q - - % - - U -
Linear Autoregressive Linear Autoregressive Linear Autoregressive Linear Autoregressive
0.0559 0.0532 0-0690 0.0710 0.0615 0.0609 00597 0.0597
K8 Test (0.0117) (0.0190) 53 sz 1 Gauoes) ¢ 1: :)5 4 (1.8349 e-4) (c.omo) (0.0015)
JB Test 50 34 14 5 2,399 3,432 22 8
(0.0010) (0.0010) (0.0035) (0.0640) (0.0010) (0.0010) (0.0010) (0.0196)
KS 0.0503 0.0695 0.0575 0.0490
GARCH Test (0.0308) (4.7165 e-4) (5.0766 e-4) (0.0154)
JB 6 61 122 25
Test (0.0421) (0.0010) (0.0010) (0.0010)
LB Test @ Q ® Q4
Linear Autoregressive Linear Autoregressive Linear Autoregressive Linear Autoregressive
Ruier 32.7175 30.1502 17.4250 16.0873 32.8498 32.0940 40.5332 31.8546
(0.0362) (0.0675) (0.6252) (0.7112) (0.0350) (0.0423) (0.0043) (0.449)
R, 144.5198 44.9474 50.5501 30.5401 314.6211 132.6829 56.0636 21.9425
(o) (0.001) (1.8466 e-4) (0.0616) (0) (o) (28435 €-5) (0.3436)
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Table C.5: Subordination Results for GlaxoSmith Kline Stock

Linear Q Q2 Q3 Q4
(100 Ticks) (100 Ticks) (100 Ticks) (100 Ticks)
6.2051 e-8 5.8319 e-9 9.1322 e-9 3.0601 e-8
# (0) (0.0562) (0.0119) (o)
- 2.4845 e-7 1.0637 e-7 1.4132 e-7 1.9093 e-7
(0.9990) (0.9996) (0.9994) (0.9992)
6.6333 e+18 1.0000 €+20
Log-Volume - -
& (0) ©)
Durati 3.3822 e+19 3.9671 e+18 2.2637 e+19 -0.1226 e+18
uration
(o) (0) (0.0156) (o)
Log-Initimb? -1.0982 e+19 4.6393 e+19 4.2812 e+19 7.0501 e+19
og-InitIm
& (0) (0) (0) (0)
9-9999 €+19 1.0000 €+20
Log-Vollmb* - -
& (o) (0)
Log-likelihood -17,671 -17,770 -22,284 -17,300
Autoregressive Q% Q% Q? Q‘_‘
(100 Ticks) (100 Ticks) (100 Ticks) (100 Ticks)
-7.9494 €-9 1.5186 e-8 -2.7025 e-8 1.7543 e-8
u
(0) (o) (o) (0)
3.0683 e-8 3.1238 e-8 6.0855 e-8 4.8753 e-8
4
(0.9999) (0.9999) (0.9997) (0.9998)
2 (t—1) 7.3744 e+19 6.0055 e+19 ) 6.9436 e+19
ek (0) (0) (0)
Log-Volume 9.9945 e+19 8.8857 e+19 9.3870 e+19 )
(o) (o) (o)
Duration 9.5550 e+19 7.2474 €+19 1.7066 e+19 9.5990 e+19
(o) (0) (0.0055) (o)
Log-Initimb’ 9-5550 e+19 9.9937 e+19 9.9181 e+19 5.4874 e+19
(0) (o) (o) (0)
8.1451 e+19 9.8412 e+19
Log-Vollmb* - -
® (0) 0)
Log-likelihood -19,344 -18,883 -22,888 -18,399
Normality Q Q2 Q3 Q4
Linear Autoregressive Linear Autoregressive Linear Autoregressive Linear Autoregressive
KS Test 0.0774 0.0898 0.0704 0.0661 0.0492 0.0534 0.0567 0.0520
(6.2649 e-7) (3.4869 e-9) (1.0974 e-5) (4.6097 e-5) (0.0012) (33456 e-4) (8.7779 e-4) (0.0030)
JB Test 6,265 6,604 545 65 1,880 352 32 61
(0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010)
0.0809 0.0573 0.0422 0.0464
KS Test
GARCH (1.5988 e-7) (6.6848 e-4) (0.0087) (0.0113)
7,384 58 3,580 6
B Test
JB Tes (0.0010) (0.0010) (0.0010) (0.0390)
LB Test Q Q2 Q3 Q4
Linear Autoregressive Linear Autoregressive Linear Autoregressive Linear Autoregressive
R. 26.4687 34.5167 18.9435 19.0396 76.9710 55.4953 45.5234 35.4982
ek (0.1509) (0.0228) (0.5255) (0.5193) (1.2748 e-8) (3.4616 e-5) (9.3661 e-4) (0.0176)
38.1343 27.4576 26.0144 32.8649 323.4220 60.5702 26.2401 24.1626
RZ
tick (0.0085) (0.1229) (0.1653) (0.0349) (o) (5.8101 e-6) (0.1580) (0.2354)
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Table C.6: Subordination Results for HSBC Stock

. Q Q2 Q3 Q4
Linear (100Ticks) (100Ticks) (100Ticks) (100Ticks)
2.7296 e-9 -2.0346 e-9 1.0424 e-7 2.7508 e-9
. (0.0512) (01408) (0) (09998)
- 5.3767 -8 5.7397 e-8 2.6790 e-7 4.5997 e-4
(0.9998) (0.9997) (0.9986) (0)
Log-Volume 2.6997 e+19 1.3925 e+19 6.9045 e+19 1.0000 e+18
(o) (0.0032) (o) (o)
Duration 5.0572 e+18 7.1242 e+19 -2.2287 e+19 -1.0000 e+18
(0.0086) (o) (o) (0)
Log-Initimb’ 7.3548 e+19 4.8892 e+19 5.5295 e+19 1.0000 e+18
(o) (0) (0.0003) (o)
N 6.0521 e+19 1.0000 €+19
Log-Vollmb - - ©) (o)
Log-likelihood -22,627 -26,360 -31,413 -11,400
Autoregressive Q_l Q'z Q_3 Q‘,‘
(100Ticks) (100Ticks) (100Ticks) (100Ticks)
8.7329 e-9 -3.0180 e-9 5.1429 e-11 1.2593 e-10
# (o) (0.0008) (0.9601) (0.9024)
2.6825 e-8 3.7524 e-8 4.8381e-8 4.2150 e-8
7 (0.9999) (0.9998) (0.9997) (0.9998)
2 (t—1) 8.5851 e+19 3.5343 e+19 8.5057 e+19 6.1408 e+19
(o) (0-0001) (o) (o)
Log-Volume 9.5569 e+19 . 6.3423 e+19 8.8872 e+19
(o) (0.0235) (o)
Duration 1.0000 €+20 9.2838 e+19 5.2372 e+19 -2.7778 e+19
(o) (o) (0.0001) (o)
Log-InitImb’ 6.8892 e+19 9.8567 e+19 6.6997 e+19 1.4235 e+19
(o) (o) (o) (o)
Log-Vollmb?® . 7-8435 e+19 9.4366 e+19 9.1453 e+19
(o) (0.0006) (o)
Log-likelihood -23,508 -27,069 -34,319 -26,224
Normality Q Q2 Q3 Q4
Linear Autoregressive Linear Autoregressive Linear Autoregressive Linear Autoregressive
KS Test 0.0748 0.0663 0.0474 0.0481 0.0503 0.0477 0.0456 0.0448
(1.2026 e-7) (4.2692 e-6) (8.2207 e-4) (6.5517 e-4) (2.4969 e-5) (7.7809 e-5) (0.0018) (0.0022)
JB Test 77 139 642 238 554 1,248 2 o
(0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.2947) (0.5000)
KS Test 0.0529 0.0539 0.0395 0.0415
GARCH (4.9487 e-4) (8.3033 e-5) (0.0019) (0.0059)
6 59 57 2
JB Test (0.0430) (0.0010) (0.0010) (0.4278)
LB Test Q Q2 Q3 Q4
Linear Autoregressive Linear Autoregressive Linear Autoregressive Linear Autoregressive
R 23.9789 17.0894 38.5263 34.2855 36.2941 38.1251 16.9765 16.0319
(0.2433) (0.6472) (0.0076) (0.0243) (0.0142) (0.0085) (0.6545) (0.7146)
RZ 175.8021 350.0387 216.8248 186.4615 271.0396 132.8735 30.2203 21.9554
ek (o) (o) (o) (o) (o) (o) (0.0664) (0:3429)
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Table C.7: Subordination Results for Rio Tinto Stock

Linear Q Q: Q& Q4
(100 Ticks) (100 Ticks) (100 Ticks) (100 Ticks)
u 1.1684 e-9 -9.4706 e-8 8.4961 e-8 -1.6292 e-7
(0.5711) (o) (o) (o)
- 93839 -8 2.5467 e-7 3.2634 e-7 31648 e-7
(0-9995) (0.9986) (0.9981) (0.9982)
Log-Volume 1.1544 e+19 ) 9.0359 e+19 9.5013 e+19
(0) (0) (0.0002)
Duration -5.7860 e+17 9.9996 e+19 ) -2.0075 e+19
(o) (0) (0)
. 6.1705 e+19 1.95138 e+19 9.7974 e+18 4.5420 e+19
Log-InitImb*
il (o) (o) (o) (0.0126)
Log-Vollmb? 1.0000 €+20 2.9427 e+19 -1.2440 e+18 9.7235 e+19
0g-Vollm|
& (0) (0) (0) (0)
Log-likelihood 30,559 34,427 38,358 -35,909
Autoregressive Q% Q% Q? Q‘_‘
(100 Ticks) (100 Ticks) (100 Ticks) (100 Ticks)
u -1.0966 e-8 2.2256 e-9 -8.2373 e-10 5.3539 e-10
(0) (0.3529) (0.5461) (0.6243)
3.7744 e-8 11858 e-7 7.1668 e-8 5.5568 e-8
o
(0-9998) (0-9993) (0-9996) (0.9997)
2 (t—1) 8.8421e+19 4.2534 e+19 5.1620 e+19 7.3631 e+19
ek (0) (0) (0) (0)
Log-Volume 9.9780 e+19 ) 6.5510 e+19 7.3902 e+19
(0.0003) (0.0055) (0.0007)
Duration 8.3914 e+19 4.4047 e+19 7.7802 e+19 7.8727 e+19
(o) (0) (o) (0)
Log-Initimb’ 9.6529 e+19 4.5245 e+19 4.8523 e+19 4.5551 e+19
(0) (0) (o) (0)
Log-Vollmb® 9.9899 e+19 4.4572 e+19 5.8612 e+19 9.9918 e+19
® (0.0005) (0) (0.0196) (0)
Log-likelihood -31,380 -35,522 -41,454 -39,514
Normality Q Q2 Q3 Q4
Linear Autoregressive Linear Autoregressive Linear Autoregressive Linear Autoregressive
0.1154 0.0558 0.0341
0.0371 0.0412 0.186 0.0472 0.0355
KS Test 3105 e- 6.6182 e- 0.0048
(0.0065) (0.0017) Y 329)5 (1.8939 e-30) ( 8) (8.7838 e-6) ( 48) (0.0029)
JB Test 667 524 5,669,668 19,059,097 4,692 4,779 234 210
(0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010)
KS 0.0327 0.0689 0.0397 0.0311
GARCH Test (0.0234) (1.4922 e-10) (3.2037 e-4) (0.0130)
JB 252 61,557 6,217 159
Test (0.0010) (0.0010) (0.0010) (0.0010)
LB Test Q Q2 Q3 Q4
Linear Autoregressive Linear Autoregressive Linear Autoregressive Linear Autoregressive
R 34.2776 27.4318 116.4268 103.0579 38.1285 27.0907 19.4702 14.3619
ek (0.0243) (0.1235) (13323e15) | (3.5583 e-13) (0.0085) (0.1327) (0.4915) (0.8117)
RZ 565.4356 354.4957 19.2040 4.2789 582.9675 279.0021 83.6051 46.7978
ek (o) (o) (0.5086) (0.9999) (o) (o) (9-5141 e-10) (62571 e-4)
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Table C.8: Subordination Results for SAB Miller Stock*®

Linear Q Q2 Q3 Q4
(100 Ticks) (90 Ticks) (100 Ticks) (70 Ticks)
u 8.9473 e-7 -8.6463 e-8 6.6771 -8 2.9076 e-8
(0-2358) (o) (o) (o)
1.9255 e-5 3.2818 e-7 1.4066 e-7 1.8632 e-7
7 (0.9776) (0.9989) (0.9995) (0.9993)
Log-Volume 9.9999 e+14 6.5458 e+19 1.0000 €+20 B
(o) (o) (o)
Duration 4.6693 e+14 -2.1460 e+18 11837 e+19 5.7186 e+18
(o) (o) (0.0001) (0.0002)
Log-Initimb? 1.0000 e+15 1.0000 €+20 2.7082 e+19 -3.9134 e+17
(o) (0) (0) (o)
Log-Vollmb® . ) -1.2608 e+19 8.2618 e+19
(0) (o)
Log-likelihood -6,176 12,649 -15,163 -17,707
Autoregressive Q% Q'z Q3' Q,4
(100 Ticks) (90 Ticks) (100 Ticks) (70 Ticks)
u 1.5232 e-9 1.5490 e-9 5.9718 e-9 -5.5842 e-9
(0.4161) (0.4065) (0.0147) (0.0005)
- 4.7791 €-8 5.6189 e-8 7.9497 e-8 5.5972 e-8
(0.9999) (0.9998) (0.9997) (0.9998)
2 (t—1) 6.7977 e+19 1.8335 e+19 8.1994 e+19 1.0000 €+20
(o) (0.0029) (o) (o)
Log-Volume _ 9:9925 e+19 9.9877 e+19 _
(0.0001) (o)
Duration 9.1697 e+19 6.8442 e+19 4.6871e+19 1.0000 €+20
(o) (o) (o) (o)
Log-InitImb’ 9.9065 e+19 1.0000 €+20 2.8841 e+19 -3.4439 e+11
(o) (o) (o) (o)
N 1.0000 €+20
Log-Vollmb - - - (0)
Log-likelihood -10,026 -13,865 -15,747 -18,791
Normality Q: Q2 Q3 Q4
Linear Autoregressive Linear Autoregressive Linear Autoregressive Linear Autoregressive
KS Test 0.0453 0.0482 0.0545 0.0438 0.0397 0.0393 0.0506 0.0510
(0.1318) (0.0929) (0.0087) (0.0597) (0.0699) (0.0745) (0.0035) (0.0032)
JB Test 85 26 340 234 129 383 25 170
(0.0010) (0.0010) (0.0010) (0.0010) (0.0001) (0.0010) (0.0010) (0.0010)
0.0561 0.0625 0.0324 0.0501
GARCH S Test (0.0312) (0.0016) (0.2132) (0.0040)
7 572 30 43
JB Test (0.0292) (0.0010) (0.0010) (0.0010)
LB Test Q Q2 Q3 Q4
Linear Autoregressive Linear Autoregressive Linear Autoregressive Linear Autoregressive
R 19.3210 21.0630 18.7713 23.9882 25.1293 21.7390 26.2966 271843
(0.5011) (0.3934) (0.5367) (0.2429) (0.1965) (0.3548) (0.1562) (0.1302)
RZ., 108.5900 85.2687 20.6774 33.2963 179.0044 183.8922 133.6843 47.6079
(5527¢14) | (4.9200e10) | (0.4163) (0.0313) (0) (0) (4.8272 e-4)

* Different sampling frequencies have been used in Q2 and Q4 for SAB Miller as sparser sampling

resulted in normally distributed returns without the need for subordination.
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Table C.g: Subordination Results for Shell Stock

Linear Q Q: Q Q4
(70 Ticks) (100 Ticks) (100 Ticks) (100 Ticks)
4.4576 e-10 -1.0791 e-10 -3.7920 e-9 8.5731e-8
. (09316) (09349) (0.0625) 0
1.9568 e-7 4.2722 -8 7.5872 -8 1.9654 e-7
7 (0.9992) (0.9998) (0.9997) (0.9993)
Log-Volume 2.6920 e+19 1.0000 €+20 8.3493 e+19 6.5100 e+19
(o) (0) (0) (o)
Duration 1.0000 €+20 1.0000 €+20 2.3232 e+19 -1.0927 e+18
(o) (0) (o) (o)
Log-Initimb’ 7.1329 e+19 2.9118 e+19 9.8443 e+19 2.6871 e+19
(0.0001) (0) (0) (0)
Log-Vollmb* -4.0737 e+19 ) -2.3712 e+19 .
(o) (0)
Log-likelihood -20,550 16,249 -20,801 -16,219
Autoregressive Q_l Q% Q3' Q‘_‘
(70 Ticks) (100 Ticks) (100 Ticks) (100 Ticks)
-6.1471 e-09 6.1171 -8 -7.3507 e-10 -4.5436 e-9
# (o) (o) (0.6480) (0.0003)
3.5711 e-08 7.58291 e-8 6.0001 e-8 41984 e-8
7 (0.9998) (0.9997) (0.9997) (0.9998)
2 (t=1) 1.0000 €+20 6.5455 e+19 1.2339 e+19 5.2155 e+19
(o) (0.0072) (0.0002) (o)
Log-Volume 7.0068 e+19 1.0000 €+20 4.8654 e+19 9.9192 e+19
(o) (o) (0.0162) (o)
Duration 9.2504 e+19 7.9835 e+19 4.2889 e+19 7.1199 e+19
(o) (0) (o) (o)
Log-InitImb’ 8.2570 e+19 -2.2156 e+17 7.1681 e+19 7.9620 e+19
(o) (0) (0) (o)
Log-Vollmb® ) ) 65802 e+19 :
(0.0033)
Log-likelihood -22,168 -15,635 -21,063 -17,512
Normality Q1 Q2 Q3 Q4
Linear Autoregressive Linear Autoregressive Linear Autoregressive Linear Autoregressive
KS Test 0.0459 0.0462 0.0417 0.0017 0.0383 0.0307 0.0379 0.0379
(0.0049) (0.0045) (0.0513) (0.0510) (0.0331) (0.1424) (0.0758) (0.0756)
JB Test 2,282 392 26 60 525 700 22 43
(0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0001) (0.0010)
KS Test 0.0468 0.0443 0.0350 0.0433
GARCH (0.0039) (0.0320) (0.0652) (0.0280)
JB Test 16 32 164 17
(0.0015) (0.0010) (0.0010) (0.0013)
LB Test Q Q2 Q3 Q4
Linear Autoregressive Linear Autoregressive Linear Autoregressive Linear Autoregressive
Ruici 753423 56.0454 17.0768 17.2084 21.9221 20.7530 13.2405 12.9193
(2.3794 e-8) (2.8615 e-5) (0.6480) (0.6394) (0.3448) (0.4118) (0.8668) (0.8808)
RZ,, 475.5357 260.4708 40.2501 33.2846 239.8774 145.2595 492733 31.9224
(o) (o) (0.0046) (0.0314) (o) (o) (2.8u8 e-4) (0.0441)
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Table C.10: Subordination Results for Vodafone Stock

Linear Q Qz Q Q4
(100 Ticks) (100 Ticks) (100 Ticks) (100 Ticks)
u 8.4457 e-9 -6.0663 e-9 -1.2443 e-7 1.1147 e-6
(o) (0) (o) (0.0003)
5.1454 e-8 5.5362 e-8 2.1666 e-7 1.3173 e-5
4
(0.9998) (0-9997) (0.9989) (0-9499)
Log-Vol -2.5329 e+18 -2.5290 e+19 -2.1256 e+19 9.4929 e+14
og-Volume
& ©) (0) (0 (0.0385)
Durati 1.0000 €+20 1.4859 e+19 1.9632 e+19 8.1095 e+14
uration
(o) (o) (o) (o)
Log-Initimb? 8.8501 e+19 7.1246 e+19 1.1806 e+19 8.7256 e+14
og-InitIm
& ©) (0) (0.0154) (0
3.5517 e+19 7.3204 e+19 8.1513 e+19 9.7458 e+14
Log-Vollmb*
og-rorm (0) (0) (o) (0.0218)
Log-likelihood -23,605 -28,699 -31,011 17,843
Autoregressive Q% Q? Q? Q‘_‘
(100 Ticks) (100 Ticks) (100 Ticks) (100 Ticks)
-1.4271 e-9 -5.0652 e-9 -7.6819 e-11 -1.4458 e-9
"
(01619) (0) (o) (0:3502)
3.9922 e-8 3.0244 e-8 1.3368 e-10 6.5692 e-8
4
(0.9998) (0.9998) @ (0.9997)
2 (t—1) 5.9664 e+19 8.7926 e+19 0.9675 e+24 4.2369 e+19
et (o) (0) (o) (o)
9.1280 e+19
Log-Volume - - -
& (0)
Duration 8.2030 e+19 9.5556 e+19 7.9605 e+24 4.6414 e+19
(o) (o) (0) (o)
Log-Initmb? 8.8930 e+19 4.3409 e+19 8.4025 e+24 1.3794 e+19
(o) (0) (o) (0.0022)
Log-Vollmb?® 7.5715 e+19 ) 8.3709 e+24 4.2489 e+19
(o) (0) (o)
Log-likelihood -23,858 -29,190 -45,945 -27,225
Normality Q Q2 Q3 Q4
Linear Autoregressive Linear Autoregressive Linear Autoregressive Linear Autoregressive
KS Test 0.0508 0.0504 0.0626 0.0615 0.0486 0.0532 0.0309 0.0317
(7.175 e-4) (7.9409 e-4) (7.5934 e-7) (1.2727 e-6) (6.3059 e-5) (8.1188 e-6) (0.0627) (0.0519)
JB Test 788 380 192 125 272 242 51 82
(0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010)
KS Test 0.0453 0.0572 0.0456 0.0341
GARCH (0.0036) (8.9762 e-6) (21554 e-4) (0.0294)
15 162 133 26
B Test
JB Tes (0.0010) (0.0010) (0.0010) (0.0010)
LB Test Q Q2 Q3 Q4
Linear utoregressive Linear utoregressive Linear Autoregressive Linear Autoregressive
Autoreg Autoreg g g
R 36.9369 31.2321 16.7988 16.2786 34.1910 30.5675 20.3761 16.8092
tick (0.0119) (0.0522) (0.6660) (0.6992) (0.0249) (0.0612) (0.4346) (0.6653)
RZ 296.7440 131.8968 37.6809 25.8647 4271796 121.6263 37.3605 39.2457
tick (o) (o) (0.0097) (0.1703) (o) (1.1102 e-16) (0.0106) (0.0062)
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Appendix D

Table D.1.1: In-Sample Linear Crash Estimator LDA Confusion Matrices for E-Mini S&P500 Futures

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted
- Crash NoCrash  Total — Crash NoCrash  Total
g Crash 30 17 47 § Crash 9 o 9
= No Crash | 149 583 732 b NoCrash | 84 686 770
Total 179 600 779 Total 93 686 779
Crash Threshold: -0.75% Crash Threshold: -1.00%
Predicted Predicted
- Crash NoCrash  Total — Crash NoCrash  Total
g Crash 3 o 3 § Crash 2 o 2
= No Crash | 99 686 776 b No Crash | 78 699 777
Total 93 686 779 Total 80 699 779
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Table D.1.2: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for E-Mini S&P500 Futures

Crash Threshold: -0.25%

Predicted

Crash Threshold: -0.50%

Predicted
_ Crash No Crash Total _ Crash No Crash Total
I )
g Crash 26 33 59 g Crash 2 4 6
< <
No Crash | 226 495 721 No Crash | 105 669 774
Total 252 528 780 Total 107 673 780
Crash Threshold: -0.75% Crash Threshold: -1.00%
Predicted Predicted
_ Crash No Crash Total _ Crash No Crash Total
I ]
g Crash 0 1 1 g Crash 0 0 0
< <
No Crash 50 729 779 No Crash 18 762 780
Total 50 730 780 Total 18 762 780
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Table D.2.1: In-Sample VPIN LDA Confusion Matrices for E-Mini S&P500 Futures

Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted
_ Crash No Crash Total _ Crash No Crash Total
I )
g Crash 33 14 47 g Crash 6 3 9
< <
No Crash | 332 400 732 No Crash | 37! 399 770
Total 365 414 779 Total 377 402 779
Crash Threshold: -0.75% Crash Threshold: -1.00%
Predicted Predicted
_ Crash No Crash Total _ Crash No Crash Total
I ]
g Crash 2 1 3 g Crash 2 0 2
< <
No Crash | 35 420 776 No Crash | 399 378 777
Total 358 421 779 Total 401 378 779
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Table D.2.2: Out-of-Sample VPIN LDA Confusion Matrices for E-Mini S&P500 Futures

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted
_ Crash No Crash Total _ Crash No Crash Total
I )
g Crash 33 26 59 g Crash 4 2 6
< <
No Crash | 370 351 721 No Crash | 354 420 774
Total 403 377 780 Total 358 422 780
Crash Threshold: -0.75% Crash Threshold: -1.00%
Predicted Predicted
_ Crash No Crash Total _ Crash No Crash Total
I ]
g Crash 0 1 1 g Crash 0 0 0
< <
No Crash | 103 616 779 No Crash 151 629 780
Total 163 617 780 Total 151 629 780
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Table D.3.1: In-Sample Market Heat LDA Confusion Matrices for E-Mini S&P500 Futures

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted
_ Crash No Crash Total _ Crash No Crash Total
I )
g Crash 6 4 47 g Crash 2 7 9
< <
No Crash 3 719 732 No Crash 6 764 770
Total 19 760 779 Total 8 77 779
Crash Threshold: -0.75% Crash Threshold: -1.00%
Predicted Predicted
_ Crash No Crash Total _ Crash No Crash Total
I ]
g Crash 1 2 3 g Crash 1 1 2
< <
No Crash 18 758 776 No Crash 3 764 777
Total 19 760 779 Total 14 765 779
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Table D.3.2: Out-of-Sample Market Heat LDA Confusion Matrices for E-Mini S&P500 Futures

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted
_ Crash No Crash Total _ Crash No Crash Total
I )
g Crash 7 52 59 g Crash 1 5 6
< <
No Crash | 173 548 721 No Crash 90 684 774
Total 180 600 780 Total o1 689 780
Crash Threshold: -0.75% Crash Threshold: -1.00%
Predicted Predicted
_ Crash No Crash Total _ Crash No Crash Total
I ]
g Crash 0 1 1 g Crash 0 0 0
< <
No Crash 29 750 779 No Crash 0 780 780
Total 29 751 780 Total 0 780 780
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Table D.4.1: In-Sample Market Heat LDA Confusion Matrices for E-Mini S&P500 Futures Using Trade Duration

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted
_ Crash No Crash Total _ Crash No Crash Total
I )
g Crash 16 3t 47 g Crash 4 5 9
< <
No Crash uz 615 732 No Crash 18 752 770
Total 133 646 779 Total 22 757 779
Crash Threshold: -0.75% Crash Threshold: -1.00%
Predicted Predicted
_ Crash No Crash Total _ Crash No Crash Total
I ]
g Crash 1 2 3 g Crash 1 1 2
< <
No Crash 48 728 776 No Crash 20 757 777
Total 49 730 779 Total 21 758 779
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Table D.4.2: Out-of-Sample Market Heat LDA Confusion Matrices for E-Mini S&P500 Futures Using Trade Duration

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted
_ Crash No Crash Total _ Crash No Crash Total
I )
g Crash 17 42 59 g Crash 2 4 6
< <
No Crash | 255 466 721 No Crash 121 653 774
Total 272 508 780 Total 123 657 780
Crash Threshold: -0.75% Crash Threshold: -1.00%
Predicted Predicted
_ Crash No Crash Total _ Crash No Crash Total
I ]
g Crash 0 1 1 g Crash 0 0 0
< <
No Crash 30 749 779 No Crash 4 776 780
Total 30 750 780 Total 4 776 780
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Appendix E

Figure E.1.1: Classification Accuracy for LSE Stocks (Crash Threshold: -0.10%)
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Figure E.1.2: Classification Accuracy for LSE Stocks (Crash Threshold: -0.10%)
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Figure E.1.3: Classification Accuracy for LSE Stocks (Crash Threshold: -0.10%)
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Figure E.2.1: Classification Accuracy for LSE Stocks (Crash Threshold: -0.50%)
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Figure E.2.2: Classification Accuracy for LSE Stocks (Crash Threshold: -0.50%)
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Figure E.2.3: Classification Accuracy for LSE Stocks (Crash Threshold: -0.50%)

Shell
100%

90% -

80% - /\
70% -
60%

50% v A\

40%

30% T T T T T T T T T T T

100%
90%
80%

. 70%
e | inear

0,
e \/PIN 60%

MH 50%
40%

30%

Vodafone

/\

re

/A

e Linear
e \/PIN
/ e MH
Vv
Q’\ ’\ ’\I’\I’\Ig‘b Q‘b Q‘b Q‘b Q‘-b Q%I
%QQ F S @ S

Page 197



Appendix F

Figure F.1.1: Precision for LSE Stocks (Crash Threshold: -0.10%)
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Figure F.1.2: Precision for LSE Stocks (Crash Threshold: -0.10%)
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Figure F.1.3: Precision for LSE Stocks (Crash Threshold: -0.10%)
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Figure F.2.1: Precision for LSE Stocks (Crash Threshold: -0.25%)
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Figure F.2.2: Precision for LSE Stocks (Crash Threshold: -0.25%)
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Figure F.2.3: Precision for LSE Stocks (Crash Threshold: -0.25%)
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Figure F.3.1: Precision for LSE Stocks (Crash Threshold: -0.50%)
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Figure F.3.2: Precision for LSE Stocks (Crash Threshold: -0.50%)
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Figure F.3.3: Precision for LSE Stocks (Crash Threshold: -0.50%)
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Appendix G

Figure G.1.1: Recall for LSE Stocks (Crash Threshold: -0.10%)
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Figure G.1.2: Recall for LSE Stocks (Crash Threshold: -0.10%)

GSK HSBC
90% 90%
80% 80%
70% - 2\ 70%
60% ~ 60% - A VAN
= | inear = | inear
0, a 0, -
50% von 0% e V\/PIN
0, _ 0,
40% vy 40% N/ e MIH
30% 30% .
20% T T T T T T T T T T T 1 20% T T T T T T T T T T T 1
S LLIS SIS S S S LSS SIS S
™ P RPN & & & N WP & ) NN
Rio Tinto SAB Miller
90% 90%
80% 80%
70% 70% \\
60% - 60%
e | inear e | inear
0, _ 0, -
>0% —vpin 0% \ VPIN
40% - —MH 0% - ———MH
30% V 30%
20% T T T T T T T T T T T 1 20% T T T T T T T T T T T 1
S 066\ N S \\,6\ 06\ & 0°° 0‘*’ BN \\,Q‘b Qo‘b S & &,6\ x/\ c/\ & Q‘b BN o‘b *,o°° &
P @@ @ R R R AR RO

Page |208



Figure G.1.3: Recall for LSE Stocks (Crash Threshold: -0.10%)
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Figure G.2.1: Recall for LSE Stocks (Crash Threshold: -0.25%)
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Figure G.2.2: Recall for LSE Stocks (Crash Threshold: -0.25%)
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Figure G.2.3: Recall for LSE Stocks (Crash Threshold: -0.25%)
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Figure G.3.1: Recall for LSE Stocks (Crash Threshold: -0.50%)
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Figure G.3.2: Recall for LSE Stocks (Crash Threshold: -0.50%)
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Figure G.3.3: Recall for LSE Stocks (Crash Threshold: -0.50%)
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Appendix H

Table H.1.1.1: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for British American Tobacco Stock (July 2007)

Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%

Predicted Predicted Predicted
~ Crash NoCrash  Total ~ Crash NoCrash  Total ~ Crash NoCrash  Total
<§ Crash 170 40 210 *{':j Crash 30 7 37 g Crash 4 4 8
No Crash | ©93 171 864 < No Crash | 759 278 1037 < No Crash | 568 498 1066
Total 863 21 1074 Total 789 285 1074 Total 572 502 1074

Table H.1.1.2: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for British American Tobacco Stock (August 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
. Crash NoCrash  Total - Crash No Crash  Total ~ Crash NoCrash  Total
§ Crash 59 152 21 g Crash 13 17 30 g Crash 2 3 5
No Crash | 29! 691 892 < No Crash | 232 841 1073 < No Crash | 92 1006 1098
Total 260 843 1103 Total 245 858 103 Total 94 1009 1103
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Table H.1.1.3: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for British American Tobacco Stock (September 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash No Crash Total — Crash No Crash Total — Crash No Crash Total
= (1] (1]
E Crash 74 78 152 é Crash 3 18 21 é Crash o 1 1
No Crash | 298 448 746 < <
O Lras No Crash | 204 673 877 No Crash | 148 749 897
Total 372 526 898 Total 207 691 898 Total 148 750 898

Table H.1.1.4: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for British American Tobacco Stock (October 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Predicted
— Crash NoCrash  Total
é Crash 130 127 257
= No Crash | 443 510 953
Total 573 637 1210

Predicted
— Crash No Crash
)
*;':j Crash 7 18
<
No Crash | 382 793
Total 399 81

Total
35
175

1210

Crash Threshold: -0.50%

Actual

Crash
No Crash

Total

Predicted
Crash No Crash
o 1
35 174
35 175

Total

1
1209

1210
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Table H.1.1.5: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for British American Tobacco Stock (November 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total - Crash NoCrash  Total - Crash NoCrash  Total
é Crash 148 9 307 § Crash 29 30 59 § Crash o o o
No Crash | 494 429 833 < No Crash | 477 604 1081 < No Crash | 6© 1080 1140
Total 552 588 4o Total 506 634 1140 Total 60 1080 1140

Table H.1.1.6: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for British American Tobacco Stock (December 2007)

Crash Threshold: -0.10%

Crash

Actual

No Crash

Total

Predicted
Crash No Crash
68 62
175 327
243 389

Total
130
502

632

Crash Threshold: -0.25%

Predicted
Crash No Crash

Crash

Actual

No Crash

Total

11

235

12

374

246

386

Total
23
609

632

Crash Threshold: -0.50%

Crash

Actual

No Crash

Total

Predicted
Crash No Crash Total
(0] 1 1
197 434 631
197 435 632
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Table H.1.1.7: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for British American Tobacco Stock (January 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total - Crash NoCrash  Total - Crash NoCrash  Total
g Crash 280 124 404 é Crash 130 46 176 é Crash 41 8 49
No Crash | 482 268 750 < No Crash | 601 377 978 < No Crash | 637 468 1105
Total 762 392 154 Total 731 423 1154 Total 678 476 1154

Table H.1.1.8: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for British American Tobacco Stock (February 2008)

Crash Threshold: -0.10%

Crash

Actual

No Crash

Total

Predicted
Crash No Crash
123 176
301 456

424 632

Total
299
757

1056

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted
— Crash No Crash Total
[T
*;':j Crash 27 54 81
<
No Crash | 331 644 975
Total 358 698 1056

Predicted
—_ Crash No Crash Total
)
?, Crash 2 6 8
<
No Crash [ 319 729 1048
Total 321 735 1056
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Table H.1.1.9: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for British American Tobacco Stock (March 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash No Crash Total — Crash No Crash Total — Crash No Crash Total
= (1] (1]
E Crash 87 5 242 § Crash 27 32 59 § Crash 3 3 6
< <
No Crash | 204 428 632 No Crash | 267 548 815 No Crash | 245 623 868
Total 20t 583 874 Total 204 580 874 Total 248 626 874

Table H.1.1.10: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for British American Tobacco Stock (April 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Predicted
Crash No Crash

Predicted
— Crash No Crash Total
]
£ Crash 144 146 290
<
No Crash | 433 418 851
Total 577 564 g1

Crash

Actual

No Crash

Total

30 33
559 519
589 552

Total
63
1078

141

Crash Threshold: -0.50%

Actual

Crash
No Crash

Total

Predicted
Crash No Crash Total
o 1 1
120 1020 1140
120 1021 1141
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Table H.1.1.11: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for British American Tobacco Stock (May 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total - Crash NoCrash  Total - Crash NoCrash  Total
é Crash 1o 126 245 § Crash 27 34 61 § Crash 3 3 6
No Crash | 27! 427 698 < No Crash | 386 496 882 < No Crash | 297 640 937
Total 390 253 943 Total 413 530 943 Total 300 643 943

Table H.1.1.12: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for British American Tobacco Stock (June 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Predicted
Crash No Crash

Predicted
— Crash NoCrash  Total
+§ Crash 146 155 301
= No Crash | 323 419 742
Total 469 574 1043

Crash

Actual

No Crash

Total

57 37
422 527
479 564

Total
94
949

1043

Crash Threshold: -0.50%

Actual

Crash
No Crash

Total

Predicted
Crash NoCrash  Total
3 4 7
539 497 1036
542 501 1043
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Table H.1.2.1: Out-of-Sample VPIN LDA Confusion Matrices for British American Tobacco Stock (July 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
=t 1 210 g g
E Crash > 9 § Crash 18 19 37 § Crash 3 5 8
468 396 864 < <
No Crash No Crash 515 522 1037 No Crash 374 692 1066
Total 583 491 1074 Total 533 541 1074 Total 377 697 1074
Table H.1.2.2: Out-of-Sample VPIN LDA Confusion Matrices for British American Tobacco Stock (August 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 10 102 211 g g
3 Crash 0 é Crash 15 15 30 é Crash 2 3 5
No Crash | 449 452 892 No Crash | 596 567 1073 No Crash | 373 725 1098
Total 549 554 1no3 Total 521 582 1103 Total 375 728 1103
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Table H.1.2.3: Out-of-Sample VPIN LDA Confusion Matrices for British American Tobacco Stock (September 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
=] ] ]
2 Crash 84 68 152 é Crash 1 10 21 é Crash 0 1 1
No Crash | 4°° 346 746 No Crash | 47 406 877 No Crash | 41 486 897
Total 484 414 898 Total 482 416 898 Total 411 487 898
Table H.1.2.4: Out-of-Sample VPIN LDA Confusion Matrices for British American Tobacco Stock (October 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= 130 12 2 g g
3 Crash 3 7 57 § Crash 15 20 35 § Crash ) 1 1
No Crash 463 490 953 No Crash 517 658 175 No Crash 2092 917 1209
Total 593 617 1210 Total 532 678 1210 Total 2092 018 1210
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Table H.1.2.5: Out-of-Sample VPIN LDA Confusion Matrices for British American Tobacco Stock (November 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 1 1 0 ot ot
E Crash 53 54 307 g Crash 38 21 59 é Crash o o o
No Crash | 406 367 833 No Crash | 604 477 1081 No Crash | 125 1015 1140
Total 619 521 4o Total 642 498 1140 Total 125 1015 1140
Table H.1.2.6: Out-of-Sample VPIN LDA Confusion Matrices for British American Tobacco Stock (December 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 6 66 130 g g
3 Crash 4 3 é Crash 15 8 23 é Crash ) 1 1
No Crash | 252 250 502 No Crash | 282 327 609 No Crash | 307 324 631
Total 316 316 632 Total 297 335 632 Total 307 325 632
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Table H.1.2.7: Out-of-Sample VPIN LDA Confusion Matrices for British American Tobacco Stock (January 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 228 176 o ot ot
2 Crash 7 404 é Crash 81 95 176 é Crash 17 32 49
NoCrash | 47 > 70 NoCrash | 499 479 978 No Crash | 551 544 os
Total 645 599 154 Total 580 574 1154 Total 578 576 1154
Table H.1.2.8: Out-of-Sample VPIN LDA Confusion Matrices for British American Tobacco Stock (February 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 12 172 2 g g
3 Crash 7 7 99 é Crash 34 47 81 é Crash 3 5 8
NoCrash | 320 429 7 NoCrash | 397 578 975 No Crash | 532 516 1048
Total 455 601 1056 Total 431 625 1056 Total 535 521 1056
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Table H.1.2.9: Out-of-Sample VPIN LDA Confusion Matrices for British American Tobacco Stock (March 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= < <
3 Crash 136 106 242 é Crash 27 32 59 *3 Crash 3 3 6
< <
No Crash | 34! 201 632 No Crash | 393 422 815 No Crash | 365 503 868
Total 477 397 874 Total 420 454 874 Total 368 506 874
Table H.1.2.10: Out-of-Sample VPIN LDA Confusion Matrices for British American Tobacco Stock (April 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= (1] (1]
3 Crash 153 137 290 é‘ Crash 31 32 63 é‘ Crash ) 1 1
< <
No Crash | 445 406 851 No Crash | 546 532 1078 No Crash | 350 790 1140
Total 598 543 141 Total 577 564 141 Total 350 791 141
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Table H.1.2.11: Out-of-Sample VPIN LDA Confusion Matrices for British American Tobacco Stock (May 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 126 11 2 g g
E Crash 9 45 g Crash 33 28 61 é Crash 1 5 6
No Crash | 353 345 698 No Crash | 465 417 882 No Crash | 369 568 937
Total 479 464 943 Total 498 445 943 Total 370 573 943
Table H.1.2.12: Out-of-Sample VPIN LDA Confusion Matrices for British American Tobacco Stock (June 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= o] [
g Crash 162 139 301 E Crash 38 56 94 E  Crash 4 3 7
< <
NoCrash | 4% 20 4 No Crash | 375 574 949 No Crash | 566 470 1036
Total 576 467 1043 Total 413 630 1043 Total 570 473 1043
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Table H.1.3.1: Out-of-Sample Market Heat LDA Confusion Matrices for British American Tobacco Stock (July 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 82 128 210 g g
E Crash é Crash 20 17 37 é Crash 2 6 8
398 466 864 < <
No Crash No Crash 471 566 1037 No Crash | 3586 480 1066
Total 480 594 1074 Total 491 583 1074 Total 588 486 1074
Table H.1.3.2: Out-of-Sample Market Heat LDA Confusion Matrices for British American Tobacco Stock (August 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 0 121 211 g g
3 Crash 0 é Crash n 19 30 é Crash ! 4 5
No Crash | 275 617 892 No Crash | 343 730 1073 No Crash | 239 859 1098
Total 365 738 1no3 Total 354 749 1103 Total 240 863 1103
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Table H.1.3.3: Out-of-Sample Market Heat LDA Confusion Matrices for British American Tobacco Stock (September 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= 60 2 152 g g
E Crash 9 5 g Crash 5 16 21 g Crash 0 1 1
NoCrash | 2P >3 746 No Crash | 358 519 877 No Crash | 374 523 897
Total 75 623 898 Total 363 535 898 Total 374 524 898
Table H.1.3.4: Out-of-Sample Market Heat LDA Confusion Matrices for British American Tobacco Stock (October 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
2 121 136 2 g g
3 Crash 3 57 § Crash 13 22 35 § Crash 0 1 1
No Crash | 470 477 953 No Crash 548 627 175 No Crash 187 1022 1209
Total 597 613 1210 Total 561 649 1210 Total 187 1023 1210
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Table H.1.3.5: Out-of-Sample Market Heat LDA Confusion Matrices for British American Tobacco Stock (November 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
=t 152 1 0 g g
E Crash > & 307 <§ Crash 27 32 59 <§ Crash o o o
No Crash | 425 408 833 No Crash | 495 586 1081 No Crash | 204 936 1140
Total 577 563 1140 Total 522 618 1140 Total 204 936 1140
Table H.1.3.6: Out-of-Sample Market Heat LDA Confusion Matrices for British American Tobacco Stock (December 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= (1] (1]
3 Crash 52 78 130 § Crash 10 13 23 § Crash 0 1 1
No Crash | 134 368 502 No Crash | 3356 253 609 No Crash | 227 404 631
Total 186 446 632 Total 366 266 632 Total 227 405 632
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Table H.1.3.7: Out-of-Sample Market Heat LDA Confusion Matrices for British American Tobacco Stock (January 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 182 222 ) g g
2 Crash 404 é Crash 78 98 176 é Crash 24 25 49
No Crash | 32! 429 750 No Crash | 422 556 978 No Crash | 535 570 1105
Total 593 651 154 Total 500 654 1154 Total 559 595 1154
Table H.1.3.8: Out-of-Sample Market Heat LDA Confusion Matrices for British American Tobacco Stock (February 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 1 12 2 g g
3 Crash " > 99 é Crash 50 31 81 é Crash 3 5 8
NoCrash | 433 o> 7 No Crash | 557 418 975 NoCrash | 489 559 1048
Total 607 449 1056 Total 607 449 1056 Total 492 564 1056
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Table H.1.3.9: Out-of-Sample Market Heat LDA Confusion Matrices for British American Tobacco Stock (March 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= < <
E Crash 1oz 10 242 § Crash 25 34 59 § Crash 2 4 6
< <
No Crash | 208 364 632 No Crash | 421 394 815 No Crash | 160 708 868
Total 370 504 874 Total 446 428 874 Total 162 712 874
Table H.1.3.10: Out-of-Sample Market Heat LDA Confusion Matrices for British American Tobacco Stock (April 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= < <
3 Crash 134 156 290 g Crash 25 38 63 *;':j Crash 0 ! !
< <
No Crash | 374 477 851 No Crash | 450 628 1078 No Crash | 394 746 1140
Total 508 633 141 Total 475 666 1141 Total 394 747 1141
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Table H.1.3.11: Out-of-Sample Market Heat LDA Confusion Matrices for British American Tobacco Stock (May 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 1u8 12 2 g g
E Crash 7 45 g Crash 25 36 61 é Crash 2 4 6
No Crash | 329 369 698 No Crash | 410 472 882 No Crash | 376 561 937
Total 447 496 13 Total 435 508 943 Total 378 565 943
Table H.1.3.12: Out-of-Sample Market Heat LDA Confusion Matrices for British American Tobacco Stock (June 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 102 1 o1 g g
3 Crash 99 3 é Crash 27 67 94 é Crash 1 6 7
No Crash | 277 465 742 No Crash | 323 626 949 No Crash | 302 734 1036
Total 379 664 1043 Total 350 693 1043 Total 303 740 1043
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Table H.2.1.1: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for BG Group Stock (July 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= 1 11 2 g g
E Crash 59 5 74 g Crash 48 21 69 g Crash 4 8 12
No Crash | 445 388 833 No Crash | 693 435 1038 No Crash | 800 295 1095
Total 604 503 107 Total 651 456 1107 Total 804 303 107
Table H.2.1.2: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for BG Group Stock (August 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
2 106 1 2 g g
3 Crash 43 49 é Crash 33 32 65 § Crash 6 5 1
No Crash 183 793 886 No Crash 330 740 1070 No Crash 275 849 124
Total 289 846 135 Total 363 772 135 Total 281 854 135

Page |234



Table H.2.1.3: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for BG Group Stock (September 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= o] ]
2 Crash 104 98 202 é Crash 10 12 22 é Crash ) 1 1
No Crash | 339 g 744 No Crash | 279 645 924 No Crash | 95 850 945
Total 434 512 946 Total 289 657 946 Total 95 851 946
Table H.2.1.4: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for BG Group Stock (October 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
2 162 170 2 g g
3 Crash 7 33 é Crash 30 32 62 é Crash 1 4 5
No Crash 371 533 904 No Crash 380 794 174 No Crash 330 901 1231
Total 533 703 1236 Total 410 826 1236 Total 331 905 1236
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Table H.2.1.5: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for BG Group Stock (November 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= 190 156 6 g g
2 Crash 9 5 34 é Crash 51 54 105 é Crash 4 8 12
No Crash | 399 413 803 No Crash | 418 626 1044 No Crash | 240 897 1137
Total 580 569 1149 Total 469 680 1149 Total 244 905 1149
Table H.2.1.6: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for BG Group Stock (December 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
2 21 8 g g
3 Crash 5 79 § Crash 9 21 30 § Crash 1 1 2
No Crash | 9° 475 565 No Crash | 92 522 614 No Crash | 58 584 642
Total m 533 644 Total 101 543 644 Total 59 585 644
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Table H.2.1.7: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for BG Group Stock (January 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= < <
2 Crash 243 126 369 é Crash 151 70 221 é Crash 49 22 71
No Crash | 44 > 787 No Crash | 595 430 935 No Crash | 54 571 1085
Total 685 47 156 Total 656 500 156 Total 563 593 156
Table H.2.1.8: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for BG Group Stock (February 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= u8 11 2 g g
3 Crash 9 37 é Crash 61 64 125 § Crash 6 12 18
NoCrash | 37 >%7 524 NoCrash | 396 540 936 NoCrash | 345 698 1043
Total 435 626 1061 Total 457 604 1061 Total 351 710 1061
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Table H.2.1.9: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for BG Group Stock (March 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
2 Crash 92 29 121 g 66 3 S .
g ras 3 Crash 42 10 3 Crash 7 9 1
No Crash | 282 468 750 No Crash | 219 544 763 No Crash | 285 570 855
Total 374 497 871 Total 261 610 871 Total 292 579 871
Table H.2.1.10: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for BG Group Stock (April 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
2 1 10 266 g g
g Crash > 2 § Crash 46 49 95 § Crash 9 10 19
No Crash | 485 382 867 No Crash | 380 658 1038 No Crash | 594 520 1114
Total 642 491 133 Total 426 707 133 Total 603 530 133
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Table H.2.1.11: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for BG Group Stock (May 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= 1 12 258 ot ot
2 Crash 35 3 5 é Crash 63 47 110 é Crash 12 8 20
No Crash | 298 396 694 No Crash | 369 473 842 No Crash | 395 537 932
Total 433 19 252 Total 432 520 952 Total 407 545 952
Table H.2.1.12: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for BG Group Stock (June 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 16 138 o1 g g
3 Crash 3 3 3 § Crash 56 62 18 § Crash 7 15 22
No Crash | 349 408 748 No Crash 332 599 931 No Crash 317 710 1027
Total 503 546 1049 Total 388 661 1049 Total 324 725 1049

Page | 239



Table H.2.2.1: Out-of-Sample VPIN LDA Confusion Matrices for BG Group Stock (July 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= 1 141 2 g g
2 Crash 33 4 74 é Crash 42 27 69 é Crash 4 8 12
No Crash | 402 431 833 No Crash | 554 484 1038 No Crash | 470 625 1095
Total 535 572 1oz Total 596 511 1107 Total 474 633 1107
Table H.2.2.2: Out-of-Sample VPIN LDA Confusion Matrices for BG Group Stock (August 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
2 146 10 2 g g
3 Crash 4 3 49 é Crash 42 23 65 é Crash 4 7 n
No Crash | 423 463 886 No Crash | 502 568 1070 No Crash | 456 668 124
Total 569 566 135 Total 544 501 135 Total 460 675 135
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Table H.2.2.3: Out-of-Sample VPIN LDA Confusion Matrices for BG Group Stock (September 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= < <
2 Crash 1o 92 202 é Crash 1 1 22 é Crash 0 1 1
NoCrash | 497 3% [ NoCrash | 492 432 924 No Crash | 429 516 945
Total 57 429 946 Total 503 443 946 Total 429 517 946
Table H.2.2.4: Out-of-Sample VPIN LDA Confusion Matrices for BG Group Stock (October 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= 181 151 2 g g
3 Crash 5 33 é Crash 26 36 62 é Crash 2 3 5
No Crash 505 399 904 No Crash 512 662 174 No Crash 570 661 1231
Total 686 550 1236 Total 538 698 1236 Total 572 664 1236
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Table H.2.2.5: Out-of-Sample VPIN LDA Confusion Matrices for BG Group Stock (November 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= 18 1 6 ot ot
2 Crash 9 57 34 é Crash 51 54 105 é Crash 4 8 12
No Crash | 42! 382 803 No Crash | 525 519 1044 No Crash | 463 674 1137
Total 610 539 149 Total 576 573 1149 Total 467 682 1149
Table H.2.2.6: Out-of-Sample VPIN LDA Confusion Matrices for BG Group Stock (December 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
2 Crash 40 39 79 5 6 2
g ras E Crash ! 14 30 E Crash ! ! 2
No Crash | 24 324 565 No Crash | 259 355 614 No Crash | 274 368 642
Total 281 363 644 Total 275 369 644 Total 275 369 644
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Table H.2.2.7: Out-of-Sample VPIN LDA Confusion Matrices for BG Group Stock (January 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= < <
2 Crash 208 161 369 é Crash 107 114 221 é Crash 49 22 71
No Crash | 438 349 787 No Crash | 408 527 935 No Crash | 583 502 1085
Total 646 510 156 Total 515 641 156 Total 632 524 156
Table H.2.2.8: Out-of-Sample VPIN LDA Confusion Matrices for BG Group Stock (February 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
2 122 1 2 g g
3 Crash 5 37 é Crash 60 65 125 é Crash 9 9 18
No Crash | 460 358 824 No Crash 525 41 936 No Crash 541 502 1043
Total 588 473 1061 Total 585 476 1061 Total 550 511 1061
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Table H.2.2.9: Out-of-Sample VPIN LDA Confusion Matrices for BG Group Stock (March 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= o] ]
E Crash 101 100 201 é Crash 61 47 108 é Crash 7 9 16
< <
No Crash | 35 38 670 No Crash | 39! 372 763 No Crash | 429 426 855
Total 453 418 871 Total 452 419 871 Total 436 435 871
Table H.2.2.10: Out-of-Sample VPIN LDA Confusion Matrices for BG Group Stock (April 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= < <
3 Crash 172 94 266 é‘ Crash 67 28 95 é‘ Crash 13 6 19
< <
No Crash | 47° 397 867 No Crash 557 481 1038 No Crash 551 563 1114
Total 642 491 133 Total 624 509 133 Total 564 569 133
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Table H.2.2.11: Out-of-Sample VPIN LDA Confusion Matrices for BG Group Stock (May 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= o] ]
E Crash 126 132 258 é Crash 64 46 110 é Crash 6 14 20
< <
No Crash | 38 G 694 No Crash | 420 416 842 No Crash | 397 535 932
Total 506 446 252 Total 490 462 952 Total 403 549 952
Table H.2.2.12: Out-of-Sample VPIN LDA Confusion Matrices for BG Group Stock (June 2008)
p P
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= o] [
3 Crash 198 103 301 é‘ Crash 77 41 18 é‘ Crash 14 8 22
< <
NoCrash | 4% 47 748 NoCrash | 503 428 931 NoCrash | 534 493 1027
Total 599 450 1049 Total 580 469 1049 Total 548 501 1049
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Table H.2.3.1: Out-of-Sample Market Heat LDA Confusion Matrices for BG Group Stock (July 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 102 172 2 g g
2 Crash 7 74 é Crash 30 39 69 é Crash 2 10 12
No Crash | 187 646 833 No Crash | 265 773 1038 No Crash | 458 637 1095
Total 289 818 oz Total 205 812 1107 Total 460 647 1107
Table H.2.3.2: Out-of-Sample Market Heat LDA Confusion Matrices for BG Group Stock (August 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= 108 141 2 g g
3 Crash 4 49 é Crash 33 32 65 é Crash 3 8 n
No Crash 303 583 886 No Crash 357 713 1070 No Crash 422 702 124
Total 41 724 135 Total 390 745 135 Total 425 710 135
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Table H.2.3.3: Out-of-Sample Market Heat LDA Confusion Matrices for BG Group Stock (September 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= 8 1 202 g g
2 Crash 7 5 é Crash 9 13 22 é Crash 0 1 1
NoCrash | 281 493 744 NoCrash | 33° 594 924 NoCrash | 209 736 945
Total 368 578 946 Total 339 607 946 Total 209 737 946
Table H.2.3.4: Out-of-Sample Market Heat LDA Confusion Matrices for BG Group Stock (October 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
2 1 1 2 g g
3 Crash 59 & 3 é Crash 25 37 62 é Crash 2 3 5
No Crash | 442 462 904 No Crash 622 552 174 No Crash | 490 741 1231
Total 601 635 1236 Total 647 589 1236 Total 492 744 1236
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Table H.2.3.5: Out-of-Sample Market Heat LDA Confusion Matrices for BG Group Stock (November 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= 152 1 6 ot ot
E Crash > o4 >4 <§ Crash 48 57 105 <§ Crash 9 3 12
No Crash | 344 459 803 No Crash | 596 538 1044 No Crash | 566 571 1137
Total 496 653 149 Total 554 595 1149 Total 575 574 1149
Table H.2.3.6: Out-of-Sample Market Heat LDA Confusion Matrices for BG Group Stock (December 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= 5 5 < <
3 Crash 7 5 79 é Crash 10 20 30 é Crash o 2 2
No Crash | 137 428 565 No Crash | 144 470 614 No Crash | 16 526 642
Total 164 480 644 Total 154 490 644 Total 16 528 644
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Table H.2.3.7: Out-of-Sample Market Heat LDA Confusion Matrices for BG Group Stock (January 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= 202 16 6 ot ot
2 Crash 7 359 é Crash 86 135 221 é Crash 24 47 71
NoCrash | 441 349 787 NoCrash | 355 580 935 NoCrash | 507 578 1085
Total 643 513 156 Total 441 715 156 Total 531 625 156
Table H.2.3.8: Out-of-Sample Market Heat LDA Confusion Matrices for BG Group Stock (February 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
2 110 12 2 g g
3 Crash 7 37 é Crash 59 66 125 § Crash 4 14 18
NoCrash | 34 5% 524 No Crash | 377 559 936 No Crash | 43! 612 1043
Total 434 627 1061 Total 436 625 1061 Total 435 626 1061
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Table H.2.3.9: Out-of-Sample Market Heat LDA Confusion Matrices for BG Group Stock (March 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= < <
E Crash 70 131 201 é Crash 44 64 108 é Crash 6 10 16
< <
No Crash | 250 414 670 No Crash | 275 488 763 No Crash | 466 389 855
Total 326 545 871 Total 319 552 871 Total 472 399 871
Table H.2.3.10: Out-of-Sample Market Heat LDA Confusion Matrices for BG Group Stock (April 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= o] [
g Crash e s 260 £ Crash 4 54 95 £ Crash 9 10 19
< <
No Crash | 4%4 463 867 No Crash | 493 545 1038 No Crash | 539 575 114
Total 528 605 133 Total 534 599 133 Total 548 585 133
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Table H.2.3.11: Out-of-Sample Market Heat LDA Confusion Matrices for BG Group Stock (May 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= < <
2 Crash 133 125 258 é Crash 50 60 110 é Crash 9 1 20
< <
No Crash | 373 . 694 No Crash | 344 498 842 No Crash | 458 474 932
Total 506 446 952 Total 394 558 952 Total 467 485 952
Table H.2.3.12: Out-of-Sample Market Heat LDA Confusion Matrices for BG Group Stock (June 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
< T
<:§ Crash 160 141 301 é‘ Crash 62 56 18 é‘ Crash 10 12 22
< <
No Crash | 273 475 748 No Crash | 363 568 931 No Crash | 462 565 1027
Total 433 616 1049 Total 425 624 1049 Total 472 577 1049
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Table H.3.1.1: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for British Petroleum Stock (July 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 121 2 16 g g
E Crash 4 3 <§ Crash 39 3 52 <§ Crash 0 1 1
No Crash | 034 346 980 No Crash | 501 590 1001 No Crash | 193 949 1142
Total 755 388 143 Total 540 603 1143 Total 193 950 1143
Table H.3.1.2: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for British Petroleum Stock (August 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 86 140 g g
3 Crash >4 4 é Crash 23 26 49 é Crash 3 2 5
No Crash 248 761 1009 No Crash 226 874 1100 No Crash 17 1027 144
Total 302 847 1149 Total 249 900 1149 Total 120 1029 1149
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Table H.3.1.3: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for British Petroleum Stock (September 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= 8 66 1 g g
2 Crash 4 4 é Crash 17 19 36 é Crash 0 1 1
No Crash | 284 552 836 No Crash | 235 679 914 No Crash | 148 8o1 949
Total 332 618 950 Total 252 698 950 Total 148 802 950
Table H.3.1.4: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for British Petroleum Stock (October 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
2 100 2 172 g g
3 Crash 7 7 § Crash 22 5 27 § Crash 2 0 2
No Crash 558 512 1070 No Crash 512 703 1215 No Crash 730 510 1240
Total 658 584 1242 Total 534 708 1242 Total 732 510 1242
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Table H.3.1.5: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for British Petroleum Stock (November 2007)

Crash Threshold: -0.10%

Predicted

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 81 140 221 g g
E Crash 4 <§ Crash 39 50 89 <§ Crash 0 1 1
No Crash | 38° 546 926 No Crash | 396 662 1058 No Crash | 9° 1056 1146
Total 461 686 147 Total 435 712 1147 Total 90 1057 1147
Table H.3.1.6: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for British Petroleum Stock (December 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
2 Crash 32 52 84 g 6 5
2 ras E Crash 1 7 E Crash ° 0 °
No Crash | 108 411 579 No Crash | 157 499 656 No Crash ) 663 663
Total 200 463 663 Total 158 505 663 Total o 663 663
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Table H.3.1.7: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for British Petroleum Stock (January 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
=t 21 120 g g
E Crash 4 334 é Crash 148 60 208 é Crash 36 8 44
No Crash | 47° 363 833 No Crash | 523 436 959 No Crash | 572 551 123
Total 684 483 167 Total 671 496 167 Total 608 559 167
Table H.3.1.8: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for British Petroleum Stock (February 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
ot 81 n8 1 g g
3 Crash 9 é Crash 38 50 88 é Crash 4 3 7
No Crash | 289 563 852 No Crash | 291 672 963 No Crash | 199 845 1044
Total 370 681 1051 Total 329 722 1051 Total 203 848 1051
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Table H.3.1.9: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for British Petroleum Stock (March 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= o] ]
E Crash 89 7 168 § Crash 37 26 63 § Crash 2 1 3
No Crash | 284 416 700 < No Crash | 325 480 805 < No Crash | 18 747 865
Total 373 495 868 Total 362 506 868 Total 120 748 868
Table H.3.1.10: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for British Petroleum Stock (April 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= (1] (1]
3 Crash 87 8o 167 g Crash 33 28 61 *;':j Crash o 4 4
No Crash | 47 512 983 < No Crash | 516 573 1089 < No Crash | 333 813 1146
Total 558 592 150 Total 549 601 1150 Total 333 817 1150
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Table H.3.1.11: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for British Petroleum Stock (May 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 1 6 201 g g
2 Crash 37 4 é Crash 28 12 40 é Crash 0 2 2
No Crash | 426 322 748 No Crash | 54 395 909 No Crash | 53 894 947
Total 563 386 949 Total 542 407 949 Total 53 896 949
Table H.3.1.12: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for British Petroleum Stock (June 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 1 1 28 g g
3 Crash 49 3 4 é Crash 72 34 106 é Crash 5 2 7
No Crash | 30 474 784 No Crash | 468 494 962 No Crash | 460 601 1061
Total 459 609 1068 Total 540 528 1068 Total 465 603 1068
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Table H.3.2.1: Out-of-Sample VPIN LDA Confusion Matrices for British Petroleum Stock (July 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 8 6 16 g g
2 Crash 9 5 3 é Crash 31 21 52 é Crash 0 1 1
No Crash | 550 424 980 No Crash | 547 544 1001 No Crash | 134 1008 1142
Total 654 489 143 Total 578 565 1143 Total 134 1009 1143
Table H.3.2.2: Out-of-Sample VPIN LDA Confusion Matrices for British Petroleum Stock (August 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 61 140 g g
3 Crash 7 4 é Crash 30 19 49 é Crash ° 5 5
No Crash | 494 515 1009 No Crash | 515 585 1100 No Crash | 461 683 1144
Total 573 576 1149 Total 545 604 1149 Total 461 688 1149
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Table H.3.2.3: Out-of-Sample VPIN LDA Confusion Matrices for British Petroleum Stock (September 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
2 Crash 59 55 14 g 6 g
g ras 3 Crash 7 19 3 3 Crash 0 1 1
No Crash | 435 4! 836 No Crash | 455 459 914 NoCrash | 85 864 949
Total 494 456 950 Total 472 478 950 Total 85 865 950
Table H.3.2.4: Out-of-Sample VPIN LDA Confusion Matrices for British Petroleum Stock (October 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
=] ] [}
3 Crash 102 70 172 § Crash 16 11 27 § Crash 1 1 2
No Crash 583 487 1070 No Crash 643 572 1215 No Crash 599 641 1240
Total 685 557 1242 Total 659 583 1242 Total 600 642 1242
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Table H.3.2.5: Out-of-Sample VPIN LDA Confusion Matrices for British Petroleum Stock (November 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 10 112 221 g g
E Crash 0 <§ Crash 45 44 89 <§ Crash 1 0 1
No Crash | 496 430 926 No Crash | 540 518 1058 No Crash | 455 691 1146
Total 605 542 n47 Total 585 562 1147 Total 456 691 1147
Table H.3.2.6: Out-of-Sample VPIN LDA Confusion Matrices for British Petroleum Stock (December 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 8 (1] (1]
3 Crash 47 37 4 é Crash 2 5 7 é Crash o o o
No Crash | 259 320 579 No Crash | 350 306 656 No Crash o 663 663
Total 306 357 663 Total 352 31 663 Total 0 663 663
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Table H.3.2.7: Out-of-Sample VPIN LDA Confusion Matrices for British Petroleum Stock (January 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 1 141 g g
E Crash 23 4 334 g Crash 122 86 208 g Crash 24 20 44
No Crash | 474 356 830 No Crash | 529 427 956 No Crash | 567 553 1120
Total 667 497 1164 Total 651 513 1164 Total 501 573 1164
Table H.3.2.8: Out-of-Sample VPIN LDA Confusion Matrices for British Petroleum Stock (February 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= o] [
3 Crash n2 87 199 *;':j Crash 43 45 88 *;':j Crash 3 4 7
< <
No Crash | 458 394 852 No Crash | 478 485 963 No Crash | 499 545 1044
Total 570 481 1051 Total 521 530 1051 Total 502 549 1051
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Table H.3.2.9: Out-of-Sample VPIN LDA Confusion Matrices for British Petroleum Stock (March 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= o] ]
E Crash 88 8o 168 § Crash 36 27 63 § Crash 1 2 3
No Crash | 362 338 700 < No Crash | 410 395 805 < No Crash | 355 510 865
Total 450 418 868 Total 446 422 868 Total 356 512 868
Table H.3.2.10: Out-of-Sample VPIN LDA Confusion Matrices for British Petroleum Stock (April 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 80 8 16 g g
3 Crash 7 7 é Crash 26 35 61 é Crash 2 2 4
No Crash | 429 554 983 No Crash | 521 568 1089 No Crash | 549 597 1146
Total 599 641 150 Total 547 603 1150 Total 551 599 1150

Page |262



Table H.3.2.11: Out-of-Sample VPIN LDA Confusion Matrices for British Petroleum Stock (May 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 12 6 201 g g
2 Crash 5 7 é Crash 23 17 40 é Crash 0 2 2
No Crash | 47° 278 748 No Crash | 543 366 909 No Crash | 125 822 947
Total 595 354 949 Total 566 383 949 Total 125 824 949
Table H.3.2.12: Out-of-Sample VPIN LDA Confusion Matrices for British Petroleum Stock (June 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 1 130 28 g g
3 Crash 54 3 4 é Crash 62 44 106 é Crash 1 6 7
No Crash 417 367 784 No Crash 512 450 962 No Crash 517 544 1061
Total 57 497 1068 Total 574 494 1068 Total 518 550 1068
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Table H.3.3.1: Out-of-Sample Market Heat LDA Confusion Matrices for British Petroleum Stock (July 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
2 0 16 ot ot
2 Crash 9 73 3 é Crash 24 28 52 é Crash 0 1 1
No Crash | 481 499 980 No Crash | 406 685 1001 No Crash | 12 1030 1142
Total 571 572 143 Total 430 713 1143 Total 12 1031 1143
Table H.3.3.2: Out-of-Sample Market Heat LDA Confusion Matrices for British Petroleum Stock (August 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
2 81 140 g g
3 Crash > 4 é Crash 22 27 49 é Crash 1 4 5
No Crash 357 652 1009 No Crash 346 754 1100 No Crash 371 773 144
Total 416 733 1149 Total 368 781 1149 Total 372 777 1149
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Table H.3.3.3: Out-of-Sample Market Heat LDA Confusion Matrices for British Petroleum Stock (September 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
2  Crash 56 58 114 g 6 6 5
g ras 3 Crash 20 1 3 3 Crash 0 1 1
NoCrash | 35 ot 530 NoCrash | 476 438 014 NoCrash | 79 870 949
Total 381 569 250 Total 496 454 950 Total 79 871 950
Table H.3.3.4: Out-of-Sample Market Heat LDA Confusion Matrices for British Petroleum Stock (October 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
2 68 10 172 g g
3 Crash 4 7 § Crash 13 14 27 § Crash ) 2 2
No Crash | 304 706 1070 No Crash 423 792 1215 No Crash 559 681 1240
Total 432 810 1242 Total 436 806 1242 Total 559 683 1242
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Table H.3.3.5: Out-of-Sample Market Heat LDA Confusion Matrices for British Petroleum Stock (November 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
- Crash No Crash  Total ~ Crash NoCrash  Total - Crash NoCrash  Total
é Crash 89 132 221 é Crash 33 56 89 *g Crash o ! !
No Crash | 493 523 926 < No Crash | 438 620 1058 < No Crash | 551 595 1146
Total 492 655 147 Total 471 676 1147 Total 551 596 1147

Table H.3.3.6: Out-of-Sample Market Heat LDA Confusion Matrices for British Petroleum Stock (December 2007)

Crash Threshold: -0.10%

Predicted
— Crash NoCrash  Total
é Crash 28 56 84
A No Crash | 154 425 579
Total 182 481 663

Crash Threshold: -0.25%

Predicted
— Crash No Crash Total
<
*;':j Crash 3 4 7
<
No Crash | 279 377 656
Total 282 381 663

Crash Threshold: -0.50%

Predicted
— Crash NoCrash  Total
g Crash ° ° o
B No Crash 0 663 663
Total o 663 663
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Table H.3.3.7: Out-of-Sample Market Heat LDA Confusion Matrices for British Petroleum Stock (January 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= o] ]
2 Crash 143 191 334 é Crash 82 126 208 é Crash 22 22 44
No Crash | 34° 490 830 No Crash | 380 576 956 No Crash | 419 701 1120
Total 483 681 164 Total 462 702 1164 Total 441 723 1164
Table H.3.3.8: Out-of-Sample Market Heat LDA Confusion Matrices for British Petroleum Stock (February 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= 12 1 g g
g Crash 74 5 99 :’, Crash 34 54 88 g Crash 2 5 7
NoCrash | 398 54 52 No Crash | 456 507 963 NoCrash | 53 5n 1044
Total 382 669 1051 Total 490 561 1051 Total 535 516 1051
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Table H.3.3.9: Out-of-Sample Market Heat LDA Confusion Matrices for British Petroleum Stock (March 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= < <
E Crash 61 107 168 é Crash 24 39 63 *g Crash o 3 3
< <
No Crash | 194 506 700 No Crash | 225 580 805 No Crash | 102 763 865
Total 255 613 868 Total 249 619 868 Total 102 766 868
Table H.3.3.10: Out-of-Sample Market Heat LDA Confusion Matrices for British Petroleum Stock (April 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= < <
3 Crash 82 85 167 é‘ Crash 28 33 61 é‘ Crash 2 2 4
< <
No Crash | 440 537 983 No Crash | 518 571 1089 No Crash | 337 609 1146
Total 528 622 150 Total 546 604 1150 Total 539 61 1150
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Table H.3.3.11: Out-of-Sample Market Heat LDA Confusion Matrices for British Petroleum Stock (May 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= o] ]
2 Crash gt 110 201 é Crash 15 25 40 é Crash 0 2 2
< <
No Crash | 395 443 748 No Crash | 360 549 909 No Crash | 146 8o1 947
Total 396 553 949 Total 375 574 949 Total 146 803 949
Table H.3.3.12: Out-of-Sample Market Heat LDA Confusion Matrices for British Petroleum Stock (June 2008)
33 p
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= o] [
3 Crash 151 133 284 *;':j Crash 49 57 106 *;':j Crash 5 2 7
< <
No Crash | 499 375 784 No Crash | 495 557 962 No Crash | 556 505 1061
Total 560 508 1068 Total 454 614 1068 Total 561 507 1068
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Table H.4.1.1: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Diageo Stock (July 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= 10 146 ot ot
2 Crash 9 37 4 é Crash 21 18 39 é Crash 0 2 2
No Crash | 052 301 953 No Crash | 469 501 1060 No Crash | 173 924 1097
Total 761 338 1099 Total 490 609 1099 Total 173 926 1099
Table H.4.1.2: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Diageo Stock (August 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
2 10 158 g g
3 Crash >4 4 > é Crash 19 27 46 é Crash 2 2 4
No Crash 248 723 o No Crash 198 885 1083 No Crash 195 930 125
Total 302 827 129 Total 217 912 1129 Total 197 932 1129
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Table H.4.1.3: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Diageo Stock (September 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
£ Crash 39 47 86 g 8 5
g ras 3 Crash 12 20 3 Crash 0 0 o
No Crash | 3% >4 843 No Crash | 255 654 909 No Crash | 24 905 929
Total 358 571 929 Total 263 666 929 Total 24 905 929
Table H.4.1.4: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Diageo Stock (October 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
2 62 136 g g
3 Crash 74 3 é Crash 16 30 46 é Crash 2 4 6
No Crash 422 645 1067 No Crash 353 804 157 No Crash 200 997 197
Total 484 719 1203 Total 369 834 1203 Total 202 1001 1203

Page |27



Table H.4.1.5: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Diageo Stock (November 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
2 93 98 191 5 g
E Crash £ Crash 45 37 82 £ Crash 3 o 3
No Crash | 430 507 943 < No Crash | 591 461 1052 < No Crash | 337 794 131
Total 529 605 134 Total 636 498 1134 Total 340 794 1134
Table H.4.1.6: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Diageo Stock (December 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
£ Crash 16 49 65 g 8 5
g ras E Crash 3 15 1 E Crash ° 0 °
No Crash | 124 434 558 No Crash | 108 497 605 No Crash | 196 427 623
Total 140 483 623 Total m 512 623 Total 196 427 623

Page |272



Table H.4.1.7: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Diageo Stock (January 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= 246 156 02 ot ot
2 Crash 4 5 4 é Crash 131 62 193 é Crash 31 16 47
No Crash | 430 305 741 No Crash | 524 426 950 No Crash | 526 570 1096
Total 682 461 143 Total 655 488 1143 Total 557 586 1143
Table H.4.1.8: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Diageo Stock (February 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= 1 1 < <
3 Crash 54 43 97 é Crash 24 57 81 é Crash o 6 6
No Crash | 188 672 860 No Crash | 181 795 976 No Crash | 148 903 1051
Total 242 815 1057 Total 205 852 1057 Total 148 909 1057
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Table H.4.1.9: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Diageo Stock (March 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= 2 136 ot ot
E Crash 4 94 3 é Crash 16 35 51 <§ Crash o 2 2
No Crash | 181 541 722 No Crash | 188 619 807 No Crash | 208 648 856
Total 223 635 858 Total 204 654 858 Total 208 650 858
Table H.4.1.10: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Diageo Stock (April 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
2 8 2 1 g g
3 Crash > 7 o7 é Crash 35 20 55 é Crash 1 ° 1
No Crash | 442 499 EaS No Crash | 447 596 1043 No Crash | 343 754 1097
Total 527 57 1098 Total 482 616 1098 Total 344 754 1098
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Table H.4.1.11: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Diageo Stock (May 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= 16 208 ot ot
E Crash > B <§ Crash 35 n 46 <§ Crash 3 1 4
NoCrash | 470 258 729 No Crash | 433 458 891 No Crash | 551 382 933
Total 636 301 937 Total 468 469 937 Total 554 383 937
Table H.4.1.12: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Diageo Stock (June 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
2 12 1 278 g g
3 Crash 3 55 7 é Crash 26 38 64 é Crash o o 0o
No Crash | 20" °% 77° NoCrash | 248 736 984 No Crash | 99 949 1048
Total 384 664 1048 Total 274 774 1048 Total 99 949 1048
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Table H.4.2.1: Out-of-Sample VPIN LDA Confusion Matrices for Diageo Stock (July 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
Z 8 6 146 g g
2 Crash 3 3 4 é Crash 20 19 39 é Crash 0 2 2
No Crash | 408 485 953 No Crash | 523 537 1060 No Crash | 142 955 1097
Total 551 548 1099 Total 543 556 1099 Total 142 957 1099
Table H.4.2.2: Out-of-Sample VPIN LDA Confusion Matrices for Diageo Stock (August 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= 82 6 158 g g
3 Crash 7 > é Crash 26 20 46 é Crash 3 ! 4
No Crash 457 514 o No Crash 531 552 1083 No Crash 553 572 125
Total 539 590 129 Total 557 572 1129 Total 556 573 1129
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Table H.4.2.3: Out-of-Sample VPIN LDA Confusion Matrices for Diageo Stock (September 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 2 86 g g
E Crash 44 4 g Crash 10 10 20 é Crash o o o
No Crash | 425 418 843 No Crash | 429 480 909 No Crash | 8° 849 929
Total 469 460 929 Total 439 490 929 Total 80 849 929
Table H.4.2.4: Out-of-Sample VPIN LDA Confusion Matrices for Diageo Stock (October 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
2 Crash 73 63 136 5 6 6 5 6
2 ras E Crash 2 20 4 E Crash 4 2
No Crash | 490 571 1067 No Crash 577 580 157 No Crash 451 746 197
Total 569 634 1203 Total 603 600 1203 Total 455 748 1203
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Table H.4.2.5: Out-of-Sample VPIN LDA Confusion Matrices for Diageo Stock (November 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 8 106 101 g g
E Crash > 0 <§ Crash 39 43 82 <§ Crash 1 2 3
No Crash | 47! 472 943 No Crash | 593 549 1052 No Crash | 490 641 131
Total 556 578 134 Total 542 592 1134 Total 491 643 1134
Table H.4.2.6: Out-of-Sample VPIN LDA Confusion Matrices for Diageo Stock (December 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 28 6 g g
3 Crash 37 > é Crash 12 6 18 é Crash o 0 °
No Crash | 399 249 558 No Crash | 315 290 605 No Crash | 258 365 623
Total 346 277 623 Total 327 296 623 Total 258 365 623

Page |278



Table H.4.2.7: Out-of-Sample VPIN LDA Confusion Matrices for Diageo Stock (January 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= 261 141 02 g g
2 Crash 4 4 é Crash 132 61 193 é Crash 31 16 47
No Crash | 45 285 74 No Crash | 550 394 950 No Crash | ©57 439 1096
Total 7 426 143 Total 688 455 1143 Total 688 455 1143
Table H.4.2.8: Out-of-Sample VPIN LDA Confusion Matrices for Diageo Stock (February 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= 106 1 1 g g
3 Crash 0 o7 é Crash 36 45 81 é Crash 2 4 6
No Crash | 483 447 860 No Crash | 445 531 976 No Crash | 460 501 1051
Total 519 538 1057 Total 481 576 1057 Total 462 595 1057
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Table H.4.2.9: Out-of-Sample VPIN LDA Confusion Matrices for Diageo Stock (March 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
Z 6 6 136 g g
2 Crash 9 7 3 é Crash 30 21 51 é Crash 2 0 2
No Crash | 376 346 722 No Crash | 406 401 807 No Crash | 366 490 856
Total 445 413 858 Total 436 422 858 Total 368 490 858
Table H.4.2.10: Out-of-Sample VPIN LDA Confusion Matrices for Diageo Stock (April 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
2 6 2 1 g g
3 Crash > 9 57 § Crash 27 28 55 § Crash 0 1 1
No Crash | 429 521 941 No Crash | 560 483 1043 No Crash | 560 537 1097
Total 485 613 1098 Total 587 511 1098 Total 560 538 1098
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Table H.4.2.11: Out-of-Sample VPIN LDA Confusion Matrices for Diageo Stock (May 2008)

Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
= Crash NoCrash  Total - Crash NoCrash  Total - Crash NoCrash  Total
é Crash 33 7 208 § Crash u 35 46 § Crash 2 2 4
NoCrash | 493 32 729  NoCrash | 49 472 891 ¥ NoCrash | 461 492 933
Total 536 401 937 Total 430 507 937 Total 443 494 937

Table H.4.2.12: Out-of-Sample VPIN LDA Confusion Matrices for Diageo Stock (June 2008)

Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total ~ Crash NoCrash  Total ~ Crash No Crash  Total
<:§ Crash 132 146 278 g Crash 35 29 64 *;':j Crash 0 0 °
No Crash | 389 381 770 < No Crash | 536 448 984 < No Crash | 51 537 1048
Total 521 527 1048 Total 571 477 1048 Total 511 537 1048
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Table H.4.3.1: Out-of-Sample Market Heat LDA Confusion Matrices for Diageo Stock (July 2007)

Crash Threshold: -0.10% Crash Threshold: -0.25%

Predicted

Crash Threshold: -0.50%

Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
Z 66 80 146 g g
E Crash 4 <§ Crash 14 25 39 <§ Crash 0 2 2
No Crash | 353 600 953 No Crash | 443 617 1060 No Crash | 150 947 1097
Total 419 680 1099 Total 457 642 1099 Total 150 949 1099
Table H.4.3.2: Out-of-Sample Market Heat LDA Confusion Matrices for Diageo Stock (August 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
2 6 102 158 g g
3 Crash > > é Crash 7 29 46 é Crash 1 3 4
No Crash 278 693 o No Crash 304 779 1083 No Crash 471 654 125
Total 334 795 129 Total 321 808 1129 Total 472 657 1129
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Table H.4.3.3: Out-of-Sample Market Heat LDA Confusion Matrices for Diageo Stock (September 2007)

Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 2 86 g g
E Crash 4 44 g Crash 1 9 20 é Crash ) ) o
No Crash | 32 522 843 No Crash | 292 617 909 No Crash | 10 819 929
Total 363 566 929 Total 303 626 929 Total 110 819 929

Table H.4.3.4: Out-of-Sample Market Heat LDA Confusion Matrices for Diageo Stock (October 2007)

Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total ~ Crash NoCrash  Total ~ Crash No Crash  Total
<:§ Crash 59 77 136 é‘ Crash 28 18 46 é‘ Crash 4 2 6
No Crash 454 613 1067 < No Crash 548 609 157 < No Crash | 430 717 197
Total 513 690 1203 Total 576 627 1203 Total 484 719 1203
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Table H.4.3.5: Out-of-Sample Market Heat LDA Confusion Matrices for Diageo Stock (November 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 82 10 191 g g
E Crash 9 9 é Crash 35 47 82 é Crash 1 2 3
No Crash | 377 566 943 No Crash | 490 562 1052 No Crash | 356 775 131
Total 459 675 134 Total 525 609 134 Total 357 777 134
Table H.4.3.6: Out-of-Sample Market Heat LDA Confusion Matrices for Diageo Stock (December 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
2 Crash 43 22 65 g 8 3
2 ras E Crash 14 4 1 E Crash ° 0 °
No Crash | 3060 198 558 No Crash | 389 216 605 No Crash | 338 285 623
Total 403 220 623 Total 403 220 623 Total 338 285 623
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Table H.4.3.7: Out-of-Sample Market Heat LDA Confusion Matrices for Diageo Stock (January 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= 216 186 02 ot ot
2 Crash 4 é Crash 13 80 193 é Crash 19 28 47
No Crash | 360 381 741 No Crash | 440 510 950 No Crash | 599 587 1096
Total 576 567 143 Total 553 590 1143 Total 528 615 1143
Table H.4.3.8: Out-of-Sample Market Heat LDA Confusion Matrices for Diageo Stock (February 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
2 6 128 1 g g
3 Crash 9 97 é Crash 39 42 81 é Crash o 6 6
NoCrash | 3% 474 800 NoCrash | 424 55 976 NoCrash | 474 577 1051
Total 455 602 1057 Total 463 594 1057 Total 474 583 1057
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Table H.4.3.9: Out-of-Sample Market Heat LDA Confusion Matrices for Diageo Stock (March 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= < <
2 Crash 38 98 136 é Crash 13 38 51 é Crash 1 1 2
< <
No Crash | 213 509 722 No Crash | 229 578 807 No Crash | 492 454 856
Total 251 607 858 Total 242 616 858 Total 403 455 858
Table H.4.3.10: Out-of-Sample Market Heat LDA Confusion Matrices for Diageo Stock (April 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= o] [
3 Crash 88 69 7 § Crash 25 30 55 § Crash 1 ° 1
< <
No Crash | 530 405 941 No Crash | 464 579 1043 No Crash | 497 600 1097
Total 624 474 1098 Total 489 609 1098 Total 498 600 1098
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Table H.4.3.11: Out-of-Sample Market Heat LDA Confusion Matrices for Diageo Stock (May 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
- Crash No Crash  Total — Crash NoCrash  Total — Crash NoCrash  Total
=] ] ]
E Crash 108 100 208 é Crash 25 21 46 *g Crash ! 3 4
< <
No Crash | 297 e 729 No Crash | 305 526 8a1 No Crash | 395 538 933
Total 405 532 937 Total 390 547 937 Total 396 541 937
Table H.4.3.12: Out-of-Sample Market Heat LDA Confusion Matrices for Diageo Stock (June 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total B Crash No Crash  Total _ Crash NoCrash  Total
= T g
3 Crash 1o 168 278 *;':j Crash 28 36 64 *;':j Crash ° 0 °
< <
No Crash | 393 467 770 No Crash | 375 609 984 No Crash | 527 521 1048
Total 413 635 1048 Total 403 645 1048 Total 527 521 1048
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Table H.5.1.1: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for GlaxoSmithKline Stock (July 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 140 6 196 g g
E Crash 4 > 0 <§ Crash 27 3 40 <§ Crash 0 4 4
No Crash | 007 323 930 No Crash | 671 415 1086 No Crash | 378 744 1122
Total 747 379 126 Total 698 428 1126 Total 378 748 1126
Table H.5.1.2: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for GlaxoSmithKline Stock (August 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
ot 8 m 1 g g
3 Crash 4 > é Crash 15 12 27 é Crash 3 2 5
No Crash 227 764 99t No Crash 192 931 123 No Crash 155 990 145
Total 275 875 150 Total 207 943 1150 Total 158 992 1150
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Table H.5.1.3: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for GlaxoSmithKline Stock (September 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= 6 82 1 g g
E Crash 5 47 é Crash 8 8 16 é Crash o o o
NoCrash | 33 402 793 NoCrash | 344 s8¢ 924 No Crash | 4 936 940
Total 396 544 940 Total 352 588 940 Total 4 936 940
Table H.5.1.4: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for GlaxoSmithKline Stock (October 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted No
— Crash NoCrash  Total Crash No Crash  Total = Crash Crash Total
= - 2
<:§ Crash 104 8o 184 é Crash 1 12 23 E Crash 1 1 2
No Crash | 449 606 1055 No Crash | 408 808 1216 No Crash 82 155 1237
Total 553 686 1239 Total 419 820 1239 Total 83 156 1239
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Table H.5.1.5: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for GlaxoSmithKline Stock (November 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 12 20 g g
E Crash 97 9 é Crash 28 38 66 é Crash 6 1 7
< <
No Crash | 493 443 936 No Crash | 425 654 1079 No Crash | 302 836 138
Total 605 540 145 Total 453 692 1145 Total 308 837 1145
Table H.5.1.6: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for GlaxoSmithKline Stock (December 2007)
5 p
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
2 Crash 18 78 96 5 5
g as £ Crash ! 14 15 £ Crash o ! !
< <
No Crash | U2 449 561 No Crash 87 555 642 No Crash | 238 418 656
Total 130 527 657 Total 88 569 657 Total 238 419 657
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Table H.5.1.7: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for GlaxoSmithKline Stock (January 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 196 140 6 ot ot
2 Crash 9 4 33 é Crash 99 68 167 é Crash 28 13 4
No Crash | 47 397 814 No Crash | 473 510 083 No Crash | 520 589 1109
Total 613 537 150 Total 572 578 1150 Total 548 602 1150
Table H.5.1.8: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for GlaxoSmithKline Stock (February 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 10 182 g g
3 Crash & 0 é Crash 29 48 77 é Crash 1 4 5
No Crash | 29! 589 880 No Crash | 3356 629 985 No Crash | 267 790 1057
Total 364 698 1062 Total 385 677 1062 Total 268 794 1062
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Table H.5.1.9: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for GlaxoSmithKline Stock (March 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= < <
E Crash 5 82 165 § Crash 29 46 75 § Crash 2 4 6
< <
No Crash | 34 > oo1 No Crash | 337 444 781 No Crash | 339 51 850
Total 425 431 856 Total 366 490 856 Total 341 515 856
Table H.5.1.10: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for GlaxoSmithKline Stock (April 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= < <
3 Crash 108 100 208 *;':j Crash 37 29 66 *;':j Crash ! 4 5
No Crash 417 485 902 < No Crash 421 623 1044 < No Crash 130 975 105
Total 525 585 110 Total 458 652 1110 Total 131 979 1110
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Table H.5.1.11: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for GlaxoSmithKline Stock (May 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 141 1 192 g g
E Crash 4 > ? <§ Crash 29 7 46 <§ Crash 2 1 3
No Crash | 459 251 7o No Crash | 428 428 856 No Crash | 390 509 899
Total 600 302 902 Total 457 445 902 Total 392 510 902
Table H.5.1.12: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for GlaxoSmithKline Stock (June 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 150 1 26 g g
3 Crash > 4 4 é Crash 40 37 77 é Crash 5 6 n
No Crash | 344 451 795 No Crash | 372 610 982 No Crash | 384 664 1048
Total 494 565 1059 Total 412 647 1059 Total 389 670 1059
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Table H.5.2.1: Out-of-Sample VPIN LDA Confusion Matrices for GlaxoSmithKline Stock (July 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 12 6 196 ot ot
E Crash 0 7 0 <§ Crash 23 7 40 <§ Crash 0 4 4
No Crash | 599 361 930 No Crash | 609 477 1086 No Crash | 308 814 1122
Total 698 428 126 Total 632 494 1126 Total 308 818 126
Table H.5.2.2: Out-of-Sample VPIN LDA Confusion Matrices for GlaxoSmithKline Stock (August 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 81 8 1 g g
3 Crash 7 > é Crash 20 7 27 é Crash 4 1 5
No Crash 531 460 99t No Crash 538 585 123 No Crash 554 591 145
Total 612 538 150 Total 558 502 1150 Total 558 502 1150
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Table H.5.2.3: Out-of-Sample VPIN LDA Confusion Matrices for GlaxoSmithKline Stock (September 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= 68 1 g g
E Crash 79 47 g Crash 7 9 16 <§ Crash o 0 °
No Crash | 4% o 793 NoCrash | 479 445 924 No Crash | 105 835 940
Total 480 460 940 Total 486 454 940 Total 105 835 940
Table H.5.2.4: Out-of-Sample VPIN LDA Confusion Matrices for GlaxoSmithKline Stock (October 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= 88 6 18 g g
3 Crash ? 4 é Crash 9 14 23 é Crash ! ! 2
No Crash 505 550 1055 No Crash 516 700 1216 No Crash 244 993 1237
Total 593 646 1239 Total 525 714 1239 Total 245 994 1239
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Table H.5.2.5: Out-of-Sample VPIN LDA Confusion Matrices for GlaxoSmithKline Stock (November 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 121 88 20 ot ot
E Crash 9 é Crash 34 32 66 <§ Crash 7 0 7
No Crash | 51° 426 936 No Crash | 5% 569 1079 No Crash | 593 635 138
Total 631 514 145 Total 544 601 1145 Total 510 635 1145
Table H.5.2.6: Out-of-Sample VPIN LDA Confusion Matrices for GlaxoSmithKline Stock (December 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 1 6 < <
3 Crash 45 > 9 é Crash 7 8 15 é Crash ° 1 1
No Crash | 27! 290 561 No Crash | 326 316 642 No Crash | 279 377 656
Total 316 34 657 Total 333 324 657 Total 279 378 657
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Table H.5.2.7: Out-of-Sample VPIN LDA Confusion Matrices for GlaxoSmithKline Stock (January 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= o] ]
2 Crash 206 130 336 é Crash 106 61 167 é Crash 20 21 4
No Crash | 474 340 814 No Crash | 547 436 083 No Crash | 598 601 1109
Total 680 470 150 Total 653 497 1150 Total 528 622 1150
Table H.5.2.8: Out-of-Sample VPIN LDA Confusion Matrices for GlaxoSmithKline Stock (February 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= 10 8 182 g g
3 Crash 4 7 é Crash 41 36 77 g Crash 3 2 5
No Crash | 452 428 880 No Crash | 595 480 985 No Crash | 465 592 1057
Total 556 506 1062 Total 546 516 1062 Total 468 594 1062
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Table H.5.2.9: Out-of-Sample VPIN LDA Confusion Matrices for GlaxoSmithKline Stock (March 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= < <
E Crash 5 82 165 § Crash 31 44 75 § Crash 1 5 6
< <
No Crash | 389 3 oo1 No Crash | 430 345 781 No Crash | 385 465 850
Total 472 384 856 Total 467 389 856 Total 386 470 856
Table H.5.2.10: Out-of-Sample VPIN LDA Confusion Matrices for GlaxoSmithKline Stock (April 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= < <
3 Crash n8 90 208 § Crash 39 27 66 § Crash 4 1 5
< <
No Crash | 455 447 902 No Crash | 533 511 1044 No Crash | 416 689 1105
Total 573 537 110 Total 572 538 1110 Total 420 690 1110
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Table H.5.2.11: Out-of-Sample VPIN LDA Confusion Matrices for GlaxoSmithKline Stock (May 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 132 60 192 g g
E Crash 3 ? <§ Crash 32 14 46 <§ Crash 3 0 3
No Crash | 43 278 7o No Crash | 54 342 856 No Crash | 395 504 899
Total 564 338 902 Total 546 356 902 Total 398 504 902
Table H.5.2.12: Out-of-Sample VPIN LDA Confusion Matrices for GlaxoSmithKline Stock (June 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= < <
3 Crash 153 m 264 g Crash 45 32 77 *;':j Crash 8 3 u
No Crash | 47 324 795 < No Crash | 517 465 982 < No Crash | 538 510 1048
Total 624 435 1059 Total 562 497 1059 Total 546 513 1059
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Table H.5.3.1: Out-of-Sample Market Heat LDA Confusion Matrices for GlaxoSmithKline Stock (July 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= 8 10 196 ot ot
2 Crash 9 7 9 é Crash 22 18 40 é Crash 1 3 4
No Crash | 362 568 930 No Crash | 47 615 1086 No Crash | 275 847 1122
Total 451 675 126 Total 493 633 1126 Total 276 850 126
Table H.5.3.2: Out-of-Sample Market Heat LDA Confusion Matrices for GlaxoSmithKline Stock (August 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
2 6 0 1 g g
3 Crash 0 0 > é Crash 14 3 27 é Crash 1 4 5
No Crash 342 649 99t No Crash 335 788 123 No Crash 322 823 145
Total 41 739 150 Total 349 801 1150 Total 323 827 1150
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Table H.5.3.3: Out-of-Sample Market Heat LDA Confusion Matrices for GlaxoSmithKline Stock (September 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= 5 1 < <
E Crash 5 95 47 g Crash 5 1 16 é Crash ) ) o
No Crash | 299 494 793 No Crash | 31 613 924 No Crash | 195 835 940
Total 351 589 940 Total 316 624 940 Total 105 835 940
Table H.5.3.4: Out-of-Sample Market Heat LDA Confusion Matrices for GlaxoSmithKline Stock (October 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= < <
3 Crash 84 100 184 § Crash 11 12 23 § Crash 1 1 2
No Crash 418 637 1055 No Crash 659 557 1216 No Crash 170 1067 1237
Total 502 737 1239 Total 670 569 1239 Total 171 1068 1239
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Table H.5.3.5: Out-of-Sample Market Heat LDA Confusion Matrices for GlaxoSmithKline Stock (November 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 10 10 20 ot ot
E Crash 5 4 9 é Crash 29 37 66 <§ Crash 6 ! 7
No Crash | 408 468 936 No Crash | 595 574 1079 No Crash | 388 750 138
Total 573 572 145 Total 534 611 1145 Total 394 751 1145
Table H.5.3.6: Out-of-Sample Market Heat LDA Confusion Matrices for GlaxoSmithKline Stock (December 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
E  Crash 31 65 96 g g
g ras E Crash 4 1 15 E Crash o ! !
No Crash | 150 405 561 No Crash | 165 477 642 No Crash | 150 506 656
Total 187 470 657 Total 169 488 657 Total 150 507 657
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Table H.5.3.7: Out-of-Sample Market Heat LDA Confusion Matrices for GlaxoSmithKline Stock (January 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total - Crash NoCrash  Total - Crash NoCrash  Total
g Crash 155 181 336 é Crash 82 85 167 é Crash 16 25 4
No Crash | 339 475 814 < No Crash | 380 603 083 < No Crash | 435 674 1109
Total 494 656 150 Total 462 688 1150 Total 451 699 1150

Table H.5.3.8: Out-of-Sample Market Heat LDA Confusion Matrices for GlaxoSmithKline Stock (February 2008)

Crash Threshold: -0.10%

Predicted
— Crash No Crash Total
§ Crash 76 106 182
< No Crash | 358 522 880
Total 434 628 1062

Crash Threshold: -0.25%

Predicted
— Crash No Crash Total
[T
E  Crash 38 39 77
<
No Crash | 434 551 985
Total 472 590 1062

Crash Threshold: -0.50%

Predicted
— Crash No Crash Total
T
*;':j Crash 1 4 5
<
No Crash | 45! 606 1057
Total 452 610 1062
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Table H.5.3.9: Out-of-Sample Market Heat LDA Confusion Matrices for GlaxoSmithKline Stock (March 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= o] ]
E Crash 82 53 165 § Crash 55 20 75 § Crash 3 3 6
< <
No Crash | 337 354 691 No Crash | 489 202 781 No Crash | 482 368 850
Total 419 437 856 Total 544 312 856 Total 485 371 856
Table H.5.3.10: Out-of-Sample Market Heat LDA Confusion Matrices for GlaxoSmithKline Stock (April 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= < <
3 Crash 22 no 208 § Crash 25 4 66 § Crash 2 3 5
< <
No Crash | 378 524 902 No Crash | 490 554 1044 No Crash | 458 647 1105
Total 470 640 110 Total 515 595 1110 Total 460 650 1110
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Table H.5.3.11: Out-of-Sample Market Heat LDA Confusion Matrices for GlaxoSmithKline Stock (May 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= 12 68 192 g g
E Crash 4 ? <§ Crash 34 12 46 <§ Crash 3 0 3
No Crash | 494 306 7o No Crash | 470 386 856 No Crash | 263 636 899
Total 528 374 902 Total 504 398 902 Total 266 636 902
Table H.5.3.12: Out-of-Sample Market Heat LDA Confusion Matrices for GlaxoSmithKline Stock (June 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
2 12 152 26 g g
3 Crash > 4 é Crash 31 46 77 é Crash 5 6 n
NoCrash | 30 4% 795 NoCrash | 399 583 982 NoCrash | 5%9 539 1048
Total 442 617 1059 Total 430 629 1059 Total 514 545 1059
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Table H.6.1.1: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for HSBC Stock (July 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
—~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 1 61 1 ot ot
3 Crash 4 75 é Crash 1 5 16 é Crash o 1 1
No Crash | 47° 477 947 No Crash | 599 507 1106 No Crash 16 1105 1121
Total 584 538 n22 Total 610 512 122 Total 16 1106 1122
Table H.6.1.2: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for HSBC Stock (August 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
= Crash NoCrash  Total - Crash No Crash  Total - Crash No Crash  Total
= [} [}
3 Crash 69 147 216 g Crash 1 10 21 g Crash 0 1 1
No Crash | 292 651 943 No Crash | 24 898 138 No Crash | 59 1099 158
Total 361 798 159 Total 251 908 1159 Total 59 1100 1159
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Table H.6.1.3: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for HSBC Stock (September 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
- Crash No Crash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= 1 66 1 g g
E Crash 7 37 é Crash 4 4 8 <§ Crash o 0 °
No Crash | 299 > 81 No Crash | 395 645 950 No Crash | 105 793 958
Total 367 591 958 Total 309 649 958 Total 165 793 958
Table H.6.1.4: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for HSBC Stock (October 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total B Crash No Crash  Total _ Crash NoCrash  Total
ot 12 u6 2 g g
3 Crash 7 43 é Crash 15 7 22 é Crash o ! !
No Crash 411 606 1017 No Crash 368 870 1238 No Crash 23 1236 1259
Total 538 722 1260 Total 383 877 1260 Total 23 1237 1260
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Table H.6.1.5: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for HSBC Stock (November 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 140 166 06 g g
E Crash 4 3 <§ Crash 30 38 68 <§ Crash 2 5 7
No Crash | 337 525 862 No Crash | 356 744 1100 No Crash | 400 761 1161
Total 477 691 168 Total 386 782 1168 Total 402 766 1168
Table H.6.1.6: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for HSBC Stock (December 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 1 6 10 g g
3 Crash 3 7 7 é Crash 2 4 6 é Crash ° ! !
NoCrash | ™3 B4 >7 No Crash | 95 563 658 No Crash | 69 594 663
Total 154 510 664 Total 97 567 664 Total 69 595 664
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Table H.6.1.7: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for HSBC Stock (January 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
=t 2 1 8 g g
E Crash 53 45 39 g Crash 135 57 192 g Crash 40 16 56
No Crash | 459 306 765 No Crash | 543 428 71 No Crash | 446 661 1107
Total 712 45! 163 Total 678 485 1163 Total 486 677 163
Table H.6.1.8: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for HSBC Stock (February 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 128 146 2 g g
3 Crash 4 74 é Crash 34 46 8o g Crash 2 ! 3
No Crash | 339 450 789 No Crash | 35 632 983 No Crash | 241 819 1060
Total 467 596 1063 Total 385 678 1063 Total 243 820 1063
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Table H.6.1.9: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for HSBC Stock (March 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 1 10 22 g g
E Crash 4 0 3 <§ Crash 41 20 61 <§ Crash 5 4 9
No Crash | 203 391 654 No Crash | 229 587 816 No Crash | 139 729 868
Total 377 500 877 Total 270 607 877 Total 144 733 877
Table H.6.1.10: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for HSBC Stock (April 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 12 108 220 g g
3 Crash é Crash 9 9 18 g Crash ° 0 °
No Crash 401 542 943 No Crash 511 634 145 No Crash 148 1015 163
Total 513 650 163 Total 520 643 163 Total 148 1015 163
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Table H.6.1.11: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for HSBC Stock (May 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 82 6 128 g g
E Crash 4 g Crash 10 1 11 é Crash o o o
NoCrash | 3%7 4 o8 NoCrash | 459 476 935 No Crash | _© 946 | 946
Total 469 477 946 Total 469 477 946 Total 0 946 946
Table H.6.1.12: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for HSBC Stock (June 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 122 221 g g
3 Crash 99 é Crash 39 12 51 g Crash 0 2 2
No Crash | 340 498 844 No Crash | 337 477 1014 No Crash | 160 903 1063
Total 468 597 1065 Total 576 489 1065 Total 160 905 1065
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Table H.6.2.1: Out-of-Sample VPIN LDA Confusion Matrices for HSBC Stock (July 2007)

Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 112 6 1 g g
E Crash 3 75 g Crash 15 1 16 g Crash o 1 1
No Crash | 530 411 947 No Crash | 601 505 1106 No Crash | 170 951 1121
Total 648 474 n22 Total 616 506 122 Total 170 952 122
Table H.6.2.2: Out-of-Sample VPIN LDA Confusion Matrices for HSBC Stock (August 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= < <
3 Crash 13 103 216 § Crash 1 10 21 § Crash 0 1 1
No Crash 481 462 943 No Crash 566 572 138 No Crash 329 829 158
Total 594 565 159 Total 577 582 1159 Total 329 830 1159
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Table H.6.2.3: Out-of-Sample VPIN LDA Confusion Matrices for HSBC Stock (September 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
2 8 1 ot ot
E Crash 7 >9 37 <§ Crash 3 5 8 <§ Crash 0 0 o
No Crash | 427 94 81 No Crash | 447 503 950 No Crash | 324 634 958
Total 505 453 958 Total 450 508 958 Total 324 634 958
Table H.6.2.4: Out-of-Sample VPIN LDA Confusion Matrices for HSBC Stock (October 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
2 136 10 2 g g
3 Crash 3 7 43 é Crash 14 8 22 g Crash o ! !
No Crash 555 462 1017 No Crash 6n 627 1238 No Crash 155 104 1259
Total 691 569 1260 Total 625 635 1260 Total 155 105 1260
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Table H.6.2.5: Out-of-Sample VPIN LDA Confusion Matrices for HSBC Stock (November 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 18 122 06 g g
E Crash 4 3 g Crash 42 26 68 é Crash 6 1 7
No Crash | 450 406 862 No Crash | 582 518 1100 No Crash | 551 610 1161
Total 640 528 168 Total 624 544 1168 Total 557 611 1168
Table H.6.2.6: Out-of-Sample VPIN LDA Confusion Matrices for HSBC Stock (December 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 6 61 10 g g
3 Crash 4 7 é Crash 3 3 6 é Crash 1 ° 1
No Crash | 287 270 557 No Crash | 290 368 658 No Crash | 237 426 663
Total 333 331 664 Total 293 371 664 Total 238 426 664
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Table H.6.2.7: Out-of-Sample VPIN LDA Confusion Matrices for HSBC Stock (January 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 210 188 8 ot ot
2 Crash 39 é Crash 96 96 192 é Crash 29 27 56
No Crash | 432 333 765 No Crash | 489 482 71 No Crash | 607 500 1107
Total 642 521 163 Total 585 578 1163 Total 636 527 163
Table H.6.2.8: Out-of-Sample VPIN LDA Confusion Matrices for HSBC Stock (February 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 1 11 2 g g
3 Crash 35 9 74 é Crash 46 34 80 é Crash 3 0 3
No Crash | 423 366 789 No Crash | 528 455 983 No Crash | 495 565 1060
Total 578 485 1063 Total 574 489 1063 Total 498 565 1063
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Table H.6.2.9: Out-of-Sample VPIN LDA Confusion Matrices for HSBC Stock (March 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 131 2 22 g g
E Crash 3 9 3 g Crash 35 26 61 g Crash 8 1 9
No Crash | 350 298 654 No Crash | 436 380 816 No Crash | 406 462 868
Total 487 390 877 Total 471 406 877 Total 414 463 877
Table H.6.2.10: Out-of-Sample VPIN LDA Confusion Matrices for HSBC Stock (April 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 121 220 g g
3 Crash 29 é Crash 8 10 18 é Crash ° 0 °
No Crash 51 432 943 No Crash 520 625 145 No Crash 219 944 163
Total 632 531 163 Total 528 635 163 Total 219 944 163
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Table H.6.2.11: Out-of-Sample VPIN LDA Confusion Matrices for HSBC Stock (May 2008)

Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
= Crash NoCrash  Total - Crash NoCrash  Total - Crash NoCrash  Total
é Crash 70 58 128 g Crash 6 5 u *g Crash o 0 °
NoCrash | #4057 o8 ¥ NoCrash | 482 453 935  NoCrash |_© 946 946
Total 516 430 946 Total 488 458 946 Total o 946 946

Table H.6.2.12: Out-of-Sample VPIN LDA Confusion Matrices for HSBC Stock (June 2008)

Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total ~ Crash NoCrash  Total ~ Crash No Crash  Total
<:§ Crash 132 89 221 é‘ Crash 30 21 51 é‘ Crash 1 1 2
No Crash | 478 366 844 < No Crash | 533 481 1014 < No Crash | 363 700 1063
Total 610 455 1065 Total 563 502 1065 Total 364 701 1065
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Table H.6.3.1: Out-of-Sample Market Heat LDA Confusion Matrices for HSBC Stock (July 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 8 0 1 g g
E Crash 5 9 75 g Crash 8 8 16 g Crash ) 1 1
No Crash | 304 583 947 No Crash | 410 696 1106 No Crash | 155 966 1121
Total 449 673 122 Total 418 704 1122 Total 155 967 1122
Table H.6.3.2: Out-of-Sample Market Heat LDA Confusion Matrices for HSBC Stock (August 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= (1] (1]
3 Crash 74 142 216 § Crash 1 10 21 § Crash 0 1 1
No Crash | 397 636 943 No Crash | 265 873 138 No Crash | 140 1018 158
Total 381 778 159 Total 276 883 1159 Total 140 1019 1159
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Table H.6.3.3: Out-of-Sample Market Heat LDA Confusion Matrices for HSBC Stock (September 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
2 ) 8 1 ot ot
E Crash 5 7 37 g Crash 2 6 8 é Crash o o o
No Crash 258 563 821 No Crash | 269 681 950 No Crash 16 842 958
Total 308 650 958 Total 271 687 958 Total 16 842 958
Table H.6.3.4: Out-of-Sample Market Heat LDA Confusion Matrices for HSBC Stock (October 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= < <
3 Crash n2 131 243 § Crash 10 12 22 § Crash 0 1 1
No Crash 385 632 1017 No Crash 41 827 1238 No Crash 59 1200 1259
Total 497 763 1260 Total 421 839 1260 Total 59 1201 1260
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Table H.6.3.5: Out-of-Sample Market Heat LDA Confusion Matrices for HSBC Stock (November 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 1 1 06 ot ot
E Crash 33 & 3 <§ Crash 30 38 68 <§ Crash 4 3 7
No Crash | 398 494 862 No Crash | 53 570 1100 No Crash | 412 749 1161
Total 501 667 168 Total 560 608 1168 Total 416 752 168
Table H.6.3.6: Out-of-Sample Market Heat LDA Confusion Matrices for HSBC Stock (December 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 1 6 10 g g
3 Crash 3 7 7 é Crash 4 2 6 g Crash ! 0 !
No Crash | 160 397 557 No Crash | 136 522 658 No Crash | 14 549 663
Total 191 473 664 Total 140 524 664 Total 115 549 664
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Table H.6.3.7: Out-of-Sample Market Heat LDA Confusion Matrices for HSBC Stock (January 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 181 21 3 ot ot
2 Crash 7 39 é Crash 83 109 192 é Crash 27 29 56
No Crash | 35! 414 765 No Crash | 461 510 71 No Crash | 590 517 1107
Total 532 631 163 Total 544 619 1163 Total 617 546 163
Table H.6.3.8: Out-of-Sample Market Heat LDA Confusion Matrices for HSBC Stock (February 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= 12 1 2 g g
3 Crash 5 49 74 é Crash 38 42 8o é Crash 2 1 3
No Crash | 398 481 789 No Crash | 402 581 983 No Crash | 394 666 1060
Total 433 630 1063 Total 440 623 1063 Total 396 667 1063
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Table H.6.3.9: Out-of-Sample Market Heat LDA Confusion Matrices for HSBC Stock (March 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= < <
E Crash 98 5 >3 § Crash 27 34 61 § Crash 5 4 9
No Crash | 245 409 654 < No Crash | 296 520 816 < No Crash | 278 590 868
Total 343 534 877 Total 323 554 877 Total 283 594 877
Table H.6.3.10: Out-of-Sample Market Heat LDA Confusion Matrices for HSBC Stock (April 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= < <
3 Crash 76 144 220 é‘ Crash 7 1 18 é‘ Crash o o o
< <
No Crash | 39! 642 943 No Crash | 579 566 1145 No Crash | 325 838 163
Total 377 786 163 Total 586 577 163 Total 325 838 163
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Table H.6.3.11: Out-of-Sample Market Heat LDA Confusion Matrices for HSBC Stock (May 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total - Crash NoCrash  Total - Crash NoCrash  Total
é Crash 69 >9 128 § Crash 7 4 n § Crash 0 0 o
NoCrash | 407 4! o8 ¥ NoCrash | 46 am 935  NoCrash |_© 946 | 946
Total 476 470 946 Total 470 476 946 Total 0 946 946

Table H.6.3.12: Out-of-Sample Market Heat LDA Confusion Matrices for HSBC Stock (June 2008)

Crash Threshold: -0.10%

Predicted
— Crash No Crash Total
]
§ Crash 97 124 221
<
No Crash | 392 542 844
Total 399 666 1065

Crash Threshold: -0.25%

Predicted
— Crash No Crash Total
g Crash 24 27 51
- No Crash | 597 507 1014
Total 531 534 1065

Crash Threshold: -0.50%

Predicted
— Crash No Crash Total
T
*;':j Crash ° 2 2
<
No Crash | 459 604 1063
Total 459 606 1065
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Table H.7.1.1: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Rio Tinto Stock (July 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= 18 126 10 ot ot
E Crash 4 3 é Crash 57 50 107 <§ Crash 10 9 19
No Crash | 395 485 850 No Crash | 33t 722 1053 No Crash | 252 889 1141
Total 549 61 160 Total 388 772 1160 Total 262 898 1160
Table H.7.1.2: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Rio Tinto Stock (August 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
2 188 16 2 g g
3 Crash 4 35 é Crash 97 65 162 § Crash 27 13 40
No Crash | 315 500 815 No Crash | 369 636 1005 No Crash | 346 781 1127
Total 503 664 167 Total 466 701 1167 Total 373 794 1167
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Table H.7.1.3: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Rio Tinto Stock (September 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= < <
§ Crash o7 165 262 E  Crash 34 51 85 E  Crash 4 5 9
< 282 426 708 < <
No Crash No Crash | 294 591 885 No Crash | 236 725 961
Total 379 591 970 Total 328 642 970 Total 240 730 970
Table H.7.1.4: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Rio Tinto Stock (October 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= 22 12 1 g g
3 Crash 4 7 35 é Crash 87 40 127 § Crash 13 7 20
No Crash 51 402 913 No Crash 581 556 137 No Crash 529 715 1244
Total 735 529 1264 Total 668 596 1264 Total 542 722 1264
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Table H.7.1.5: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Rio Tinto Stock (November 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 101 2 00 ot ot
E Crash 99 4 g Crash 76 133 209 é Crash 18 40 58
No Crash | 192 576 768 No Crash | 249 710 959 No Crash | 196 914 1110
Total 293 875 168 Total 325 843 1168 Total 214 954 168
Table H.7.1.6: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Rio Tinto Stock (December 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= 0 88 178 g g
3 Crash 0 7 é Crash 21 44 65 é Crash 3 6 9
No Crash | 180 318 498 No Crash | 131 480 61 No Crash | 124 543 667
Total 270 406 676 Total 152 524 676 Total 127 549 676
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Table H.7.1.7: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Rio Tinto Stock (January 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= o] ]
2 Crash 308 142 450 é Crash 201 71 272 é Crash 89 29 18
No Crash | 45° 260 716 No Crash | 535 359 894 No Crash | 575 473 1048
Total 764 402 166 Total 736 430 1166 Total 664 502 1166
Table H.7.1.8: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Rio Tinto Stock (February 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 16 1 12 g g
3 Crash 5 47 3 é Crash 58 32 90 é Crash 8 6 14
No Crash | 349 409 758 No Crash | 412 568 980 No Crash | 391 665 1056
Total 514 556 1070 Total 470 600 1070 Total 399 671 1070
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Table H.7.1.9: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Rio Tinto Stock (March 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= o] ]
2 Crash u6 174 290 é Crash 61 63 124 é Crash 13 10 23
< <
No Crash | 23° 361 e No Crash | 333 424 757 No Crash | 319 539 858
Total 346 535 881 Total 304 487 881 Total 332 549 881
Table H.7.1.10: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Rio Tinto Stock (April 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= < <
3 Crash 200 126 326 é‘ Crash 75 43 18 é‘ Crash 16 4 20
< <
No Crash | 458 383 841 No Crash | 439 560 1049 No Crash 324 823 1147
Total 658 599 167 Total 564 603 1167 Total 340 827 1167
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Table H.7.1.11: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Rio Tinto Stock (May 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 1 141 20 g g
2 Crash 79 4 3 é Crash 88 61 149 é Crash 14 1 25
No Crash | 349 e 650 No Crash | 398 423 821 No Crash | 387 558 945
Total 528 442 970 Total 486 484 970 Total 401 569 970
Table H.7.1.12: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Rio Tinto Stock (June 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= 180 1 2 g g
3 Crash 44 324 § Crash 57 60 117 § Crash 15 7 22
No Crash | 392 352 744 No Crash | 427 524 951 No Crash | 596 540 1046
Total 572 496 1068 Total 484 584 1068 Total 521 547 1068
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Table H.7.2.1: Out-of-Sample VPIN LDA Confusion Matrices for Rio Tinto Stock (July 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= 180 130 10 ot ot
E Crash 3 3 g Crash 66 41 107 g Crash 13 6 19
No Crash | 486 364 850 No Crash | 588 465 1053 No Crash | 612 529 1141
Total 666 494 160 Total 654 506 1160 Total 625 535 1160
Table H.7.2.2: Out-of-Sample VPIN LDA Confusion Matrices for Rio Tinto Stock (August 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
2 178 1 2 g g
3 Crash 7 74 35 é Crash 94 68 162 é Crash 25 15 40
No Crash | 44! 374 815 No Crash | 525 480 1005 No Crash | 3597 530 127
Total 619 548 167 Total 619 548 167 Total 622 545 167
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Table H.7.2.3: Out-of-Sample VPIN LDA Confusion Matrices for Rio Tinto Stock (September 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
=] ] ]
g Crash 34 128 262 E  Crash 45 40 85 E  Crash 5 4 9
No Crash | 335 373 708 < No Crash | 421 464 885 < No Crash | 436 525 961
Total 469 501 970 Total 466 504 970 Total 441 529 970
Table H.7.2.4: Out-of-Sample VPIN LDA Confusion Matrices for Rio Tinto Stock (October 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= 1 1 1 g g
3 Crash 74 77 35 § Crash 73 54 127 § Crash 12 8 20
No Crash 463 450 913 No Crash 679 458 137 No Crash 720 524 1244
Total 637 627 1264 Total 752 512 1264 Total 732 532 1264
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Table H.7.2.5: Out-of-Sample VPIN LDA Confusion Matrices for Rio Tinto Stock (November 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 20 1 00 ot ot
2 Crash 3 97 4 é Crash 95 114 209 é Crash 26 32 58
No Crash | 389 379 768 No Crash | 435 524 959 No Crash | 480 630 1110
Total 592 576 168 Total 530 638 1168 Total 506 662 168
Table H.7.2.6: Out-of-Sample VPIN LDA Confusion Matrices for Rio Tinto Stock (December 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 10 178 g g
3 Crash > & 7 é Crash 39 26 65 é Crash 4 5 9
No Crash | 25! 247 498 No Crash | 304 307 611 No Crash | 269 398 667
Total 356 320 676 Total 343 333 676 Total 273 403 676
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Table H.7.2.7: Out-of-Sample VPIN LDA Confusion Matrices for Rio Tinto Stock (January 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= < <
2 Crash 270 180 450 é Crash 128 144 272 é Crash 73 45 18
No Crash | 433 283 716 No Crash | 445 449 894 No Crash | 610 438 1048
Total 703 463 166 Total 573 593 1166 Total 683 483 1166
Table H.7.2.8: Out-of-Sample VPIN LDA Confusion Matrices for Rio Tinto Stock (February 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 186 126 12 g g
g Crash > § Crash 55 35 90 § Crash 10 4 14
No Crash | 422 336 758 No Crash | 526 454 980 No Crash | 588 468 1056
Total 608 462 1070 Total 581 489 1070 Total 598 472 1070
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Table H.7.2.9: Out-of-Sample VPIN LDA Confusion Matrices for Rio Tinto Stock (March 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 1 131 290 g g
2 Crash 59 3 9 é Crash 53 71 124 é Crash 8 15 23
No Crash | 339 2 9! No Crash | 392 365 757 No Crash | 420 432 858
Total 498 383 881 Total 445 436 881 Total 434 447 881
Table H.7.2.10: Out-of-Sample VPIN LDA Confusion Matrices for Rio Tinto Stock (April 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 150 176 26 g g
3 Crash 5 7 3 é Crash 55 63 18 § Crash 7 13 20
No Crash | 412 429 841 No Crash | 548 501 1049 No Crash | 510 637 1147
Total 562 605 167 Total 603 564 167 Total 517 650 167
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Table H.7.2.11: Out-of-Sample VPIN LDA Confusion Matrices for Rio Tinto Stock (May 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= 152 168 20 ot ot
2 Crash 5 3 é Crash 88 61 149 é Crash 9 16 25
NoCrash | 3™ 336 650 No Crash | 468 353 821 No Crash | 459 486 945
Total 466 504 970 Total 556 414 970 Total 468 502 970
Table H.7.2.12: Out-of-Sample VPIN LDA Confusion Matrices for Rio Tinto Stock (June 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= < <
3 Crash 160 164 324 § Crash 59 58 17 § Crash 11 11 22
No Crash | 393 35! 744 No Crash | 523 428 951 No Crash | 414 632 1046
Total 553 515 1068 Total 582 486 1068 Total 425 643 1068
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Table H.7.3.1: Out-of-Sample Market Heat LDA Confusion Matrices for Rio Tinto Stock (July 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 121 18 10 ot ot
2 Crash 9 3 é Crash 52 55 107 é Crash 1 8 19
No Crash | 201 589 850 No Crash | 292 761 1053 No Crash | 393 838 1141
Total 382 778 160 Total 344 816 1160 Total 314 846 1160
Table H.7.3.2: Out-of-Sample Market Heat LDA Confusion Matrices for Rio Tinto Stock (August 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= 168 18 2 g g
3 Crash 4 35 é Crash 75 87 162 é Crash 22 18 40
No Crash | 333 482 815 No Crash | 409 596 1005 No Crash | 463 664 1127
Total 501 666 167 Total 484 683 1167 Total 485 682 1167
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Table H.7.3.3: Out-of-Sample Market Heat LDA Confusion Matrices for Rio Tinto Stock (September 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= o] ]
E Crash 131 131 262 é Crash 37 48 85 *g Crash 5 4 9
No Crash | 358 350 708 < No Crash | 373 512 885 < No Crash | 53 448 961
Total 489 481 970 Total 410 560 970 Total 518 452 970
Table H.7.3.4: Out-of-Sample Market Heat LDA Confusion Matrices for Rio Tinto Stock (October 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
2 201 150 1 g g
3 Crash 5 35 é Crash 68 59 127 § Crash 1 9 20
NoCrash | 5% S 3 No Crash | 574 563 137 NoCrash | 657 587 1244
Total 702 562 1264 Total 642 622 1264 Total 668 596 1264
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Table H.7.3.5: Out-of-Sample Market Heat LDA Confusion Matrices for Rio Tinto Stock (November 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 166 2 00 ot ot
E Crash 34 4 g Crash 86 123 209 é Crash 23 35 58
No Crash | 392 466 768 No Crash | 379 580 959 No Crash | 420 690 1110
Total 468 700 168 Total 465 703 1168 Total 443 725 1168
Table H.7.3.6: Out-of-Sample Market Heat LDA Confusion Matrices for Rio Tinto Stock (December 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= 12 178 g g
3 Crash 55 3 7 é Crash 18 47 65 é Crash 2 7 9
No Crash | 168 330 498 No Crash | 199 412 61 No Crash | 247 420 667
Total 223 453 676 Total 217 459 676 Total 249 427 676
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Table H.7.3.7: Out-of-Sample Market Heat LDA Confusion Matrices for Rio Tinto Stock (January 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= < <
2 Crash 232 218 450 é Crash 157 115 272 é Crash 64 54 18
No Crash | 395 411 716 No Crash | 387 507 894 No Crash | 458 590 1048
Total 537 629 166 Total 544 622 166 Total 522 644 166
Table H.7.3.8: Out-of-Sample Market Heat LDA Confusion Matrices for Rio Tinto Stock (February 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= < <
g Crash o o " £ Crash 45 45 90 £ Crash 7 7 14
No Crash | 358 400 758 < No Crash | 452 528 980 < No Crash | 540 516 1056
Total 519 551 1070 Total 497 573 1070 Total 547 523 1070
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Table H.7.3.9: Out-of-Sample Market Heat LDA Confusion Matrices for Rio Tinto Stock (March 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= o] ]
2 Crash u8 172 290 é Crash 58 66 124 é Crash 1 12 23
No Crash | 7 9 9! No Crash | 423 334 757 No Crash | 49! 367 858
Total 390 491 881 Total 481 400 881 Total 502 379 881
Table H.7.3.10: Out-of-Sample Market Heat LDA Confusion Matrices for Rio Tinto Stock (April 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 162 16 26 g g
3 Crash 4 3 é Crash 52 66 18 § Crash 9 1 20
No Crash | 439 411 841 No Crash | 599 540 1049 No Crash | 3558 589 1147
Total 592 575 167 Total 561 606 167 Total 567 600 167
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Table H.7.3.11: Out-of-Sample Market Heat LDA Confusion Matrices for Rio Tinto Stock (May 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= < <
E Crash 143 177 320 é Crash 63 86 149 é Crash 8 17 25
< <
No Crash | 320 >4 650 No Crash | 344 477 821 No Crash | 455 490 945
Total 469 501 970 Total 407 563 970 Total 463 507 970
Table H.7.3.12: Out-of-Sample Market Heat LDA Confusion Matrices for Rio Tinto Stock (June 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= o] [
3 Crash 162 162 324 é‘ Crash 49 68 117 é‘ Crash 13 9 22
< <
No Crash | 367 377 744 No Crash | 393 558 951 No Crash | 488 558 1046
Total 529 539 1068 Total 442 626 1068 Total 501 567 1068
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Table H.8.1.1: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for SAB Miller Stock (July 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 142 18 g g
E Crash 4 45 7 <§ Crash 29 16 45 <§ Crash 1 2 3
No Crash | 587 241 828 No Crash | 41 559 970 No Crash | 308 704 1012
Total 729 286 1015 Total 440 575 1015 Total 309 706 1015
Table H.8.1.2: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for SAB Miller Stock (August 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 6 121 21 g g
3 Crash 9 7 é Crash 37 29 66 é Crash 3 6 9
No Crash | 258 623 881 No Crash | 252 780 1032 No Crash | 234 855 1089
Total 354 744 1098 Total 289 809 1098 Total 237 861 1098
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Table H.8.1.3: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for SAB Miller Stock (September 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
2 0 8 1 ot ot
2 Crash 9 3 73 é Crash 19 12 31 é Crash 0 2 2
No Crash | 38 41 724 No Crash | 432 434 866 No Crash | 167 728 895
Total 403 494 897 Total 451 446 897 Total 167 730 897
Table H.8.1.4: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for SAB Miller Stock (October 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= 100 1 2 g g
3 Crash 47 47 é Crash 30 42 72 é Crash 1 5 6
No Crash 361 599 960 No Crash 31 824 135 No Crash 12 1089 1201
Total 461 746 1207 Total 341 866 1207 Total 13 1094 1207
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Table H.8.1.5: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for SAB Miller Stock (November 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 142 1 2 g g
2 Crash 4 53 95 é Crash 52 42 94 é Crash 12 4 16
No Crash | 398 445 843 No Crash | 488 556 1044 No Crash | 302 820 1122
Total 540 598 u38 Total 540 508 138 Total 314 824 138
Table H.8.1.6: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for SAB Miller Stock (December 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 81 138 g g
3 Crash >7 3 é Crash 8 25 33 é Crash 1 5 6
No Crash | 189 304 493 No Crash | 191 407 508 No Crash | 186 439 625
Total 246 385 631 Total 199 432 631 Total 187 444 631
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Table H.8.1.7: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for SAB Miller Stock (January 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
=t 2 141 80 ot ot
E Crash 39 4 3 g Crash 158 100 258 é Crash 44 32 76
No Crash | 453 313 766 No Crash | 484 404 888 No Crash | 546 524 1070
Total 692 454 146 Total 642 504 1146 Total 590 556 1146
Table H.8.1.8: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for SAB Miller Stock (February 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 1 1 2 g g
3 Crash 5 39 54 é Crash 64 65 129 § Crash 5 1 16
NoCrash | 3% 493 771 No Crash | 353 543 896 No Crash | 453 556 1009
Total 423 602 1025 Total 417 608 1025 Total 458 567 1025
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Table H.8.1.9: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for SAB Miller Stock (March 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 8 182 g g
E Crash 3 99 <§ Crash 38 48 86 <§ Crash 3 6 9
No Crash | 20 7 657 No Crash | 254 499 753 No Crash | 240 584 830
Total 303 536 839 Total 292 547 839 Total 249 590 839
Table H.8.1.10: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for SAB Miller Stock (April 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 1 101 236 g g
3 Crash 35 3 é Crash 38 56 94 g Crash 2 5 7
No Crash | 477 394 871 No Crash | 378 635 1013 No Crash | 276 824 1100
Total 612 495 107 Total 416 691 1107 Total 278 829 1107
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Table H.8.1.11: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for SAB Miller Stock (May 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= m 168 g g
E Crash 57 é Crash 31 19 50 <§ Crash 3 4 7
No Crash | 350 374 730 No Crash | 398 450 848 No Crash | 169 722 801
Total 467 431 898 Total 429 469 898 Total 172 726 898
Table H.8.1.12: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for SAB Miller Stock (June 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 12 2 216 g g
3 Crash 4 9 é Crash 61 48 109 § Crash 5 7 12
No Crash | 4% e 7! No Crash | 515 383 898 No Crash | 435 560 995
Total 542 465 1007 Total 576 431 1007 Total 440 567 1007
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Table H.8.2.1: Out-of-Sample VPIN LDA Confusion Matrices for SAB Miller Stock (July 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= m 6 18 ot ot
E Crash 7 7 <§ Crash 26 19 45 <§ Crash 1 2 3
No Crash | 425 403 828 No Crash | 598 462 970 No Crash | 597 505 1012
Total 536 479 1015 Total 534 481 1015 Total 508 507 1015
Table H.8.2.2: Out-of-Sample VPIN LDA Confusion Matrices for SAB Miller Stock (August 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 12 2 21 g g
3 Crash > 9 7 é Crash 4 25 66 é Crash 5 4 9
NoCrash | 475 4% i NoCrash | 537 495 | 103 NoCrash | 5490 549 | 1089
Total 600 498 1098 Total 578 520 1098 Total 545 553 1098
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Table H.8.2.3: Out-of-Sample VPIN LDA Confusion Matrices for SAB Miller Stock (September 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 8 86 1 g g
2 Crash 7 73 é Crash 12 19 31 é Crash 0 2 2
No Crash | 34! 383 724 No Crash | 398 468 866 No Crash | 388 507 895
Total 428 469 897 Total 410 487 897 Total 388 509 897
Table H.8.2.4: Out-of-Sample VPIN LDA Confusion Matrices for SAB Miller Stock (October 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= 10 140 2 g g
3 Crash 7 4 47 é Crash 32 40 72 é Crash 3 3 6
No Crash | 39! 569 960 No Crash | 499 636 1135 No Crash | 535 666 1201
Total 498 799 1207 Total 531 676 1207 Total 538 669 1207
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Table H.8.2.5: Out-of-Sample VPIN LDA Confusion Matrices for SAB Miller Stock (November 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= < <
g Crash 39 156 295 E  Crash 49 45 94 E  Crash 9 7 16
No Crash | 435 408 843 < No Crash | 5% 534 1044 < No Crash | 692 520 1122
Total 574 564 u38 Total 559 579 138 Total 611 527 138
Table H.8.2.6: Out-of-Sample VPIN LDA Confusion Matrices for SAB Miller Stock (December 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= 61 138 g g
3 Crash 77 3 é Crash 15 18 33 é Crash 3 3 6
No Crash 267 226 493 No Crash 287 31 598 No Crash 293 332 625
Total 328 303 631 Total 302 329 631 Total 296 335 631
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Table H.8.2.7: Out-of-Sample VPIN LDA Confusion Matrices for SAB Miller Stock (January 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 226 1 80 ot ot
E Crash 54 3 g Crash 152 106 258 é Crash 48 28 76
No Crash | 444 322 766 No Crash | 504 384 888 No Crash | 589 481 1070
Total 670 476 146 Total 656 490 1146 Total 637 509 1146
Table H.8.2.8: Out-of-Sample VPIN LDA Confusion Matrices for SAB Miller Stock (February 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= 1 10 2 g g
3 Crash 49 5 54 § Crash 59 70 129 § Crash 11 5 16
No Crash | 427 344 m No Crash | 391 505 896 No Crash | 525 484 1009
Total 576 449 1025 Total 450 575 1025 Total 536 489 1025
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Table H.8.2.9: Out-of-Sample VPIN LDA Confusion Matrices for SAB Miller Stock (March 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 102 80 182 ot ot
E Crash é Crash 48 38 86 <§ Crash 4 5 9
No Crash | 358 299 657 No Crash | 400 353 753 No Crash | 408 422 830
Total 460 379 839 Total 448 301 839 Total 412 427 839
Table H.8.2.10: Out-of-Sample VPIN LDA Confusion Matrices for SAB Miller Stock (April 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= < <
3 Crash 128 108 236 g Crash 40 54 94 g Crash 4 3 7
< <
No Crash 438 433 871 No Crash 439 574 1013 No Crash 525 575 1100
Total 566 541 107 Total 479 628 1107 Total 529 578 1107
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Table H.8.2.11: Out-of-Sample VPIN LDA Confusion Matrices for SAB Miller Stock (May 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 106 62 168 ot ot
E Crash <§ Crash 32 18 50 <§ Crash 4 3 7
No Crash | 427 3% 730 No Crash | 475 373 848 No Crash | 387 504 8a1
Total 533 365 898 Total 507 301 898 Total 301 507 898
Table H.8.2.12: Out-of-Sample VPIN LDA Confusion Matrices for SAB Miller Stock (June 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 12 10 216 g g
3 Crash 4 § Crash 51 58 109 § Crash 9 3 12
NoCrash | 4% 3% 7! NoCrash | 438 460 898 NoCrash | 537 458 995
Total 540 467 1007 Total 489 518 1007 Total 546 461 1007
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Table H.8.3.1: Out-of-Sample Market Heat LDA Confusion Matrices for SAB Miller Stock (July 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 81 106 18 ot ot
E Crash 7 <§ Crash 19 26 45 <§ Crash 1 2 3
No Crash | 296 532 828 No Crash | 277 693 970 No Crash | 28° 732 1012
Total 377 638 1015 Total 296 719 1015 Total 281 734 1015
Table H.8.3.2: Out-of-Sample Market Heat LDA Confusion Matrices for SAB Miller Stock (August 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 6 121 21 g g
3 Crash 9 7 é Crash 34 32 66 g Crash 4 5 9
No Crash | 344 537 881 No Crash | 357 675 1032 No Crash | 340 749 1089
Total 440 658 1098 Total 301 707 1098 Total 344 754 1098
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Table H.8.3.3: Out-of-Sample Market Heat LDA Confusion Matrices for SAB Miller Stock (September 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 66 10 1 g g
2 Crash 7 73 é Crash 18 13 31 é Crash 0 2 2
No Crash | 34 382 724 No Crash | 489 377 866 No Crash | 460 435 895
Total 408 489 897 Total 507 390 897 Total 460 437 897
Table H.8.3.4: Out-of-Sample Market Heat LDA Confusion Matrices for SAB Miller Stock (October 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= 100 1 2 g g
3 Crash 47 47 é Crash 33 39 72 é Crash 1 5 6
No Crash | 497 553 960 No Crash 396 739 135 No Crash | 496 705 1201
Total 507 700 1207 Total 429 778 1207 Total 497 710 1207
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Table H.8.3.5: Out-of-Sample Market Heat LDA Confusion Matrices for SAB Miller Stock (November 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 11 176 2 g g
E Crash 2 7 % <§ Crash 50 44 94 <§ Crash 8 8 16
No Crash | 392 451 843 No Crash | 538 506 1044 No Crash | 354 768 1122
Total 51 627 u38 Total 588 550 138 Total 362 776 138
Table H.8.3.6: Out-of-Sample Market Heat LDA Confusion Matrices for SAB Miller Stock (December 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 68 0 138 g g
3 Crash 7 3 é Crash 16 7 33 é Crash 3 3 6
No Crash 231 262 493 No Crash 285 313 598 No Crash 396 229 625
Total 299 332 631 Total 301 330 631 Total 399 232 631
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Table H.8.3.7: Out-of-Sample Market Heat LDA Confusion Matrices for SAB Miller Stock (January 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 1 20 80 ot ot
E Crash 73 7 3 g Crash n8 140 258 g Crash 34 42 76
No Crash | 3% 445 766 No Crash | 422 466 888 No Crash | 416 654 1070
Total 494 652 146 Total 540 606 1146 Total 450 696 1146
Table H.8.3.8: Out-of-Sample Market Heat LDA Confusion Matrices for SAB Miller Stock (February 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 10 1 2 g g
3 Crash 7 47 54 § Crash 55 74 129 § Crash 11 5 16
No Crash | 299 472 m No Crash | 363 533 896 No Crash | 366 643 1009
Total 406 619 1025 Total 218 607 1025 Total 377 648 1025
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Table H.8.3.9: Out-of-Sample Market Heat LDA Confusion Matrices for SAB Miller Stock (March 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= < <
E Crash 77 105 182 é Crash 30 56 86 é Crash 2 7 9
< <
No Crash | *23 B4 657 No Crash | 257 496 753 No Crash | 284 546 830
Total 300 539 839 Total 287 552 839 Total 286 553 839
Table H.8.3.10: Out-of-Sample Market Heat LDA Confusion Matrices for SAB Miller Stock (April 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= < <
3 Crash m 125 236 é Crash 36 58 94 é Crash 4 3 7
< <
No Crash | 399 472 871 No Crash | 45 562 1013 No Crash | 517 583 1100
Total 510 597 1oz Total 487 620 107 Total 521 586 107
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Table H.8.3.11: Out-of-Sample Market Heat LDA Confusion Matrices for SAB Miller Stock (May 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= < <
E Crash 8o 88 168 § Crash 23 27 50 § Crash 1 6 7
< <
No Crash | 362 368 730 No Crash | 350 498 848 No Crash | 250 641 801
Total 442 456 898 Total 373 525 898 Total 251 647 898
Table H.8.3.12: Out-of-Sample Market Heat LDA Confusion Matrices for SAB Miller Stock (June 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= < <
3 Crash 104 n2 216 é‘ Crash 67 42 109 é‘ Crash 5 7 12
< <
NoCrash | 3% 4% 7! NoCrash | 520 378 898 NoCrash | 552 443 995
Total 492 515 1007 Total 587 420 1007 Total 557 450 1007
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Table H.g.1.1: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Shell Stock (July 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 12 60 18 ot ot
E Crash > > <§ Crash 36 n 47 <§ Crash 2 3 5
No Crash | 486 439 925 No Crash | 614 449 1063 No Crash | 544 561 1105
Total 61 499 110 Total 650 460 1110 Total 546 564 1110
Table H.g.1.2: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Shell Stock (August 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 1 126 2 g g
3 Crash 33 > é Crash 25 14 39 é Crash 5 ! 6
No Crash | 305 516 881 No Crash | 373 728 1101 No Crash | 168 966 1134
Total 498 642 1140 Total 398 742 1140 Total 173 967 1140
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Table H.9.1.3: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Shell Stock (September 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
- Crash No Crash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= 68 11 ot g
E Crash 45 3 é Crash 5 5 10 <§ Crash o 0 °
No Crash | 3% 464 820 No Crash | 3°! 622 923 No Crash 0 933 933
Total 424 509 933 Total 306 627 933 Total 0 933 933
Table H.9.1.4: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Shell Stock (October 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total B Crash No Crash  Total _ Crash NoCrash  Total
ot 1 6 1 g g
3 Crash 7 > 3 é Crash 14 9 23 g Crash o 0 °
No Crash 510 552 1062 No Crash 457 755 1212 No Crash 143 1092 1235
Total 627 608 1235 Total 471 764 1235 Total 143 1092 1235
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Table H.9.1.5: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Shell Stock (November 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 182 12 0 g g
E Crash > 307 <§ Crash 26 43 69 <§ Crash 1 3 4
No Crash | 493 336 829 No Crash | 365 702 1067 No Crash | 326 806 1132
Total 675 461 136 Total 301 745 1136 Total 327 809 136
Table H.9.1.6: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Shell Stock (December 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
2 Crash 39 39 78 5 6 g
g ras E Crash 3 3 E Crash o o o
No Crash | 174 387 561 No Crash | 101 532 633 No Crash ) 639 639
Total 213 426 639 Total 104 535 639 Total o 639 639
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Table H.g.1.7: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Shell Stock (January 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 26 151 18 g g
2 Crash 7 5 4 é Crash 127 40 167 é Crash 33 1 44
No Crash | 430 299 735 No Crash | 58 468 086 No Crash | 3550 559 1109
Total 703 450 153 Total 645 508 153 Total 583 570 153
Table H.9.1.8: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Shell Stock (February 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 1 120 26 g g
3 Crash 49 ? é Crash 32 12 44 é Crash 2 ! 3
No Crash 353 434 787 No Crash 407 605 1012 No Crash 318 735 1053
Total 502 554 1056 Total 439 617 1056 Total 320 736 1056
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Table H.9.1.9: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Shell Stock (March 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
- Crash No Crash  Total — Crash NoCrash  Total — Crash NoCrash  Total
=] ] ]
3 Crash 78 146 224 é Crash 14 24 38 ‘g Crash 2 o 2
< <
No Crash | '95 453 648 No Crash | 239 595 834 No Crash | 137 733 870
Total 73 >99 872 Total 253 619 872 Total 139 733 872
Table H.g.1.10: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Shell Stock (April 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total B Crash No Crash  Total _ Crash NoCrash  Total
= g g
3 Crash 131 1o 241 *;':j Crash 15 19 34 é Crash o 3 3
< <
No Crash | 384 506 890 No Crash | 390 707 1097 No Crash | 388 740 128
Total 515 616 3t Total 405 726 131 Total 388 743 131
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Table H.g.1.11: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Shell Stock (May 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 1 8 172 g g
E Crash 4 5 7 g Crash 22 18 40 g Crash 1 7 8
No Crash | 4 361 783 No Crash | 388 527 915 No Crash | 338 609 947
Total 536 49 935 Total 410 545 955 Total 339 616 955
Table H.g.1.12: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Shell Stock (June 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= o] [
g Crash 104 o0 > £ Crash 55 49 104 £ Crash 5 4 9
< <
No Crash | 308 426 734 No Crash | 497 537 944 No Crash | 393 646 1039
Total 472 576 1048 Total 462 586 1048 Total 398 650 1048
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Table H.g.2.1: Out-of-Sample VPIN LDA Confusion Matrices for Shell Stock (July 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total - Crash NoCrash  Total - Crash NoCrash  Total
é Crash o o4 185 § Crash 32 15 47 § Crash 1 4 5
No Crash | 590 425 925 < No Crash | 585 478 1063 < No Crash | 328 777 1105
Total 591 519 110 Total 617 493 1110 Total 329 781 1110

Table H.9.2.2: Out-of-Sample VPIN LDA Confusion Matrices for Shell Stock (August 2007)

Crash Threshold: -0.10%

Predicted
— Crash No Crash Total
]
£ Crash 145 14 259
<
No Crash | 45° 431 881
Total 595 545 1140

Crash Threshold: -0.25%

Predicted
— Crash No Crash Total
T
é Crash 23 16 39
<
No Crash | 530 565 1101
Total 559 581 1140

Crash Threshold: -0.50%

Predicted
— Crash No Crash Total
T
*;':j Crash 2 4 6
<
No Crash | 580 554 134
Total 582 558 140
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Table H.9.2.3: Out-of-Sample VPIN LDA Confusion Matrices for Shell Stock (September 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
- Crash No Crash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= 6 6 1 ot g
E Crash 7 4 3 é Crash 6 4 10 <§ Crash o 0 °
No Crash | 443 37 820 No Crash | 482 441 923 No Crash 0 933 933
Total 515 418 933 Total 488 445 933 Total 0 933 933
Table H.9.2.4: Out-of-Sample VPIN LDA Confusion Matrices for Shell Stock (October 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total B Crash No Crash  Total _ Crash NoCrash  Total
ot 1L 1 g g
3 Crash 4 29 3 é Crash 3 20 23 é Crash o 0 °
No Crash | 004 458 1062 No Crash 485 727 1212 No Crash 204 941 1235
Total 718 517 1235 Total 488 747 1235 Total 204 941 1235
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Table H.9g.2.5: Out-of-Sample VPIN LDA Confusion Matrices for Shell Stock (November 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
=t 136 171 0 g g
E Crash 3 7 307 é Crash 35 34 69 <§ Crash 2 2 4
No Crash | 388 441 829 No Crash | 51 551 1067 No Crash | 479 653 1132
Total 524 612 136 Total 551 585 1136 Total 481 655 136
Table H.9.2.6: Out-of-Sample VPIN LDA Confusion Matrices for Shell Stock (December 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
E  Crash 48 30 78 5 6 5
g ras E Crash 3 3 E Crash o o o
NoCrash | 239 3% 56 NoCrash | 298 335 633 No Crash | © 639 639
Total 287 352 639 Total 301 338 639 Total o 639 639
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Table H.9g.2.7: Out-of-Sample VPIN LDA Confusion Matrices for Shell Stock (January 2008)

Crash Threshold: -0.10%

Predicted

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 256 162 18 g g
E Crash 5 4 g Crash 109 58 167 é Crash 30 14 44
NoCrash | 44 293 735 No Crash | 573 413 986 No Crash | 557 552 109
Total 698 455 153 Total 682 a7 153 Total 587 566 153
Table H.9.2.8: Out-of-Sample VPIN LDA Confusion Matrices for Shell Stock (February 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 1 1 26 g g
3 Crash 4 3 ? é Crash 21 23 44 é Crash ! 2 3
No Crash | 395 392 787 No Crash | 337 475 1012 No Crash | 396 657 1053
Total 529 527 1056 Total 558 498 1056 Total 397 659 1056
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Table H.9.2.9: Out-of-Sample VPIN LDA Confusion Matrices for Shell Stock (March 2008)

Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
= Crash NoCrash  Total - Crash NoCrash  Total - Crash NoCrash  Total
é Crash u6 108 224 é Crash 14 24 38 é Crash 1 1 2
No Crash | 337 . 648 < No Crash | 44° 394 834 < No Crash | 459 420 870
Total 453 419 872 Total 454 418 872 Total 451 421 872

Table H.g.2.10: Out-of-Sample VPIN LDA Confusion Matrices for Shell Stock (April 2008)

Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total ~ Crash NoCrash  Total ~ Crash No Crash  Total
<:§ Crash 134 107 241 *;':j Crash 21 3 34 *;':j Crash ! 2 3
No Crash | 494 396 890 < No Crash | 600 497 1097 < No Crash | 595 623 128
Total 628 503 3t Total 621 510 131 Total 506 625 131
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Table H.g.2.11: Out-of-Sample VPIN LDA Confusion Matrices for Shell Stock (May 2008)

Crash Threshold: -0.10%

Predicted
Crash No Crash Total

Crash Threshold: -0.25%

Predicted

Crash Threshold: -0.50%

Predicted

= — Crash No Crash  Total — Crash No Crash  Total
= 10 68 172 ot ot
E Crash 4 7 g Crash 18 22 40 é Crash 4 4 8
No Crash | 455 328 783 No Crash | 3%3 532 915 No Crash | 33! 616 947
Total 559 396 955 Total 401 554 955 Total 335 620 955
Table H.9g.2.12: Out-of-Sample VPIN LDA Confusion Matrices for Shell Stock (June 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 151 16 1 g g
3 Crash > 3 34 é Crash 57 47 104 g Crash 6 3 9
NoCrash | 39 539 e No Crash | 515 429 944 No Crash | 57 532 1039
Total 546 502 1048 Total 572 476 1048 Total 513 535 1048
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Table H.9.3.1: Out-of-Sample Market Heat LDA Confusion Matrices for Shell Stock (July 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= o] ]
g Crash m 74 185 E  Crash 3 14 47 E  Crash 2 3 5
No Crash | 593 422 925 < No Crash | 744 319 1063 < No Crash | 492 613 1105
Total 614 496 110 Total 777 333 1110 Total 494 616 1110
Table H.9.3.2: Out-of-Sample Market Heat LDA Confusion Matrices for Shell Stock (August 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
2 150 10 2 g g
3 Crash > ? > é Crash 22 7 39 é Crash 2 4 6
No Crash 493 388 881 No Crash 576 525 1101 No Crash 385 749 134
Total 643 497 1140 Total 598 542 1140 Total 387 753 1140
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Table H.9.3.3: Out-of-Sample Market Heat LDA Confusion Matrices for Shell Stock (September 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
- Crash No Crash  Total — Crash NoCrash  Total — Crash NoCrash  Total
2 Crash 60 53 113 g 6 5
b ras 3 Crash 4 10 3 Crash o 0 °
No Crash | 3%5 475 820 No Crash | 439 484 923 No Crash 0 933 933
Total 405 528 933 Total 443 490 933 Total 0 933 933
Table H.9.3.4: Out-of-Sample Market Heat LDA Confusion Matrices for Shell Stock (October 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total B Crash No Crash  Total _ Crash NoCrash  Total
ot 1 82 1 i g
3 Crash 2 3 é Crash 10 = 23 é Crash ° 0 °
No Crash | 484 578 1062 No Crash 530 682 1212 No Crash 317 018 1235
Total 575 660 1235 Total 540 695 1235 Total 317 918 1235
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Table H.9.3.5: Out-of-Sample Market Heat LDA Confusion Matrices for Shell Stock (November 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 12 178 0 ot ot
E Crash 0 7 307 <§ Crash 32 37 69 <§ Crash 2 2 4
No Crash | 329 500 829 No Crash | 423 644 1067 No Crash | 346 786 1132
Total 458 678 136 Total 455 681 1136 Total 348 788 136
Table H.9.3.6: Out-of-Sample Market Heat LDA Confusion Matrices for Shell Stock (December 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
£ Crash 29 49 78 5 6 5
2 ras E Crash 2 4 E Crash ° 0 °
No Crash | 163 398 561 No Crash | 322 31 633 No Crash o 639 639
Total 192 447 639 Total 324 315 639 Total o 639 639
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Table H.9.3.7: Out-of-Sample Market Heat LDA Confusion Matrices for Shell Stock (January 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= 1 22 18 ot ot
2 Crash 95 3 4 é Crash 76 91 167 é Crash 20 24 44
No Crash | 339 396 735 No Crash | 408 578 086 No Crash | 393 716 1109
Total 534 619 153 Total 484 669 153 Total 413 740 153
Table H.9.3.8: Out-of-Sample Market Heat LDA Confusion Matrices for Shell Stock (February 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
2 12 1 26 g g
3 Crash 5 44 9 é Crash 20 24 44 é Crash 2 ! 3
No Crash | 330 451 787 No Crash | 422 590 1012 No Crash | 468 585 1053
Total 461 595 1056 Total 442 614 1056 Total 470 586 1056
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Table H.9.3.9: Out-of-Sample Market Heat LDA Confusion Matrices for Shell Stock (March 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
=] ] ]
2 Crash 66 158 224 é Crash 27 1 38 é Crash 0 2 2
< <
No Crash | 178 470 648 No Crash | 47 363 834 No Crash | 228 642 870
Total 244 628 872 Total 498 374 872 Total 228 644 872
Table H.9.3.10: Out-of-Sample Market Heat LDA Confusion Matrices for Shell Stock (April 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= < <
3 Crash no B =4 § Crash 3 21 34 § Crash 3 o 3
< <
No Crash 438 452 890 No Crash 555 542 1097 No Crash 396 732 128
Total 554 577 3t Total 568 563 131 Total 399 732 131
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Table H.9.3.11: Out-of-Sample Market Heat LDA Confusion Matrices for Shell Stock (May 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
2 Crash 91 81 172 g 6 g 6 8
b ras 3 Crash 24 1 40 3 Crash 2
No Crash | 37° 4B 783 No Crash | 436 479 915 No Crash | 274 673 947
Total 461 494 955 Total 460 495 955 Total 280 675 955
Table H.9.3.12: Out-of-Sample Market Heat LDA Confusion Matrices for Shell Stock (June 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= 130 18 1 g g
3 Crash 3 4 314 é Crash 46 58 104 g Crash 4 5 9
NoCrash | 204 45 e No Crash | 357 587 944 NoCrash | 380 659 1039
Total 44 634 1048 Total 403 645 1048 Total 384 664 1048
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Table H.10.1.1: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Vodafone Stock (July 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 16 6 2 g g
E Crash 3 0 >9 <§ Crash 46 18 64 <§ Crash 2 3 5
No Crash | 493 392 885 No Crash | 680 400 1080 No Crash | 220 919 1139
Total 656 488 44 Total 726 418 1144 Total 222 922 1144
Table H.10.1.2: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Vodafone Stock (August 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= < <
3 Crash 105 139 244 g Crash 35 38 73 *;':j Crash 5 4 9
No Crash 274 646 920 < No Crash 287 804 1091 < No Crash 228 927 155
Total 379 785 1164 Total 322 842 164 Total 233 931 164

Page |378



Table H.10.1.3: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Vodafone Stock (September 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= 102, < <
2 Crash 95 97 9 é Crash 13 13 26 é Crash 0 2 2
No Crash | 3% e 774 No Crash | 39! 549 940 NoCrash | 196 768 964
Total 418 548 966 Total 404 562 966 Total 196 770 966
Table H.10.1.4: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Vodafone Stock (October 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
2 152 10 261 g g
3 Crash > 0 é Crash 33 19 52 é Crash 3 ° 3
No Crash | 466 537 1003 No Crash | 400 812 1212 No Crash | 192 1069 1261
Total 618 646 1264 Total 433 831 1264 Total 195 1069 1264
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Table H.10.1.5: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Vodafone Stock (November 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= < <
g Crash 153 158 31 E Crash 34 37 7 E Crash 1 4 5
< <
No Crash | 394 457 851 No Crash | 394 697 1001 No Crash | 209 948 1157
Total 547 615 162 Total 428 734 162 Total 210 952 162
Table H.10.1.6: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Vodafone Stock (December 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= (1] (1]
3 Crash 45 96 141 *;':j Crash 7 16 23 *;':j Crash o 0 °
No Crash | 134 393 527 < No Crash | 127 518 645 < No Crash ) 668 668
Total 179 489 668 Total 134 534 668 Total 0 668 668
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Table H.10.1.7: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Vodafone Stock (January 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= < <
E Crash 233 161 394 é Crash 97 63 160 é Crash 28 18 46
< <
No Crash | 428 345 773 No Crash | 438 569 1007 No Crash | 379 742 1121
Total 661 506 167 Total 535 632 1167 Total 407 760 167
Table H.10.1.8: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Vodafone Stock (February 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= o] [
3 Crash 138 130 268 é‘ Crash 26 26 52 é‘ Crash 2 4 6
< <
No Crash | 345 453 798 No Crash | 35 663 1014 No Crash | 193 867 1060
Total 483 583 1066 Total 377 689 1066 Total 195 871 1066
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Table H.10.1.9: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Vodafone Stock (March 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 6 168 26 g g
E Crash 0 4 <§ Crash 41 56 97 <§ Crash 6 8 14
No Crash | 199 426 616 No Crash | 256 527 783 No Crash | 219 647 866
Total 286 594 880 Total 297 583 880 Total 225 655 880
Table H.10.1.10: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Vodafone Stock (April 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 121 158 2 g g
3 Crash > 79 é Crash 31 4 72 é Crash 3 2 5
No Crash | 372 504 876 No Crash | 418 665 1083 No Crash | 295 855 1150
Total 493 662 155 Total 449 706 155 Total 298 857 155
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Table H.10.1.11: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Vodafone Stock (May 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
=t 1 218 g g
2 Crash 75 43 é Crash 22 21 43 é Crash 1 2 3
No Crash | 202 >37 739 No Crash | 544 370 914 No Crash | 178 776 954
Total 277 680 957 Total 566 391 957 Total 179 778 957
Table H.10.1.12: Out-of-Sample Linear Crash Estimator LDA Confusion Matrices for Vodafone Stock (June 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 148 136 28 g g
3 Crash 4 3 4 é Crash 40 38 78 é Crash 3 7 10
No Crash | 357 420 753 No Crash | 457 532 989 No Crash | 337 720 1057
Total 505 562 1067 Total 497 570 1067 Total 340 727 1067
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Table H.10.2.1: Out-of-Sample VPIN LDA Confusion Matrices for Vodafone Stock (July 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 152 10 2 g g
E Crash > 7 >9 <§ Crash 30 34 64 <§ Crash 1 4 5
No Crash | 477 408 885 No Crash | 549 531 1080 No Crash | 563 576 1139
Total 629 515 144 Total 579 565 1144 Total 564 580 1144
Table H.10.2.2: Out-of-Sample VPIN LDA Confusion Matrices for Vodafone Stock (August 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 1 131 2 g g
3 Crash 3 3 4 é Crash 46 27 73 é Crash 6 3 9
No Crash 454 466 920 No Crash 533 558 1091 No Crash 540 615 155
Total 567 597 1164 Total 579 585 1164 Total 546 618 1164
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Table H.10.2.3: Out-of-Sample VPIN LDA Confusion Matrices for Vodafone Stock (September 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
= 112 80 192 g g
2 Crash 9 é Crash 15 1 26 é Crash 0 2 2
NoCrash | 499 3% 774 No Crash | 489 451 940 NoCrash | 394 570 964
Total 521 445 966 Total 504 462 966 Total 394 572 966
Table H.10.2.4: Out-of-Sample VPIN LDA Confusion Matrices for Vodafone Stock (October 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
2 1 102 261 g g
3 Crash 59 § Crash 24 28 52 § Crash 1 2 3
No Crash | 5%3 420 1003 No Crash | 614 598 1212 No Crash | 675 586 1261
Total 742 522 1264 Total 638 626 1264 Total 676 588 1264
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Table H.10.2.5: Out-of-Sample VPIN LDA Confusion Matrices for Vodafone Stock (November 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= < <
E Crash 159 152 3u é Crash 35 36 7 *g Crash 2 3 5
< <
No Crash | 43© 421 851 No Crash | 490 601 1001 No Crash | 692 555 1157
Total 589 573 162 Total 525 637 1162 Total 604 558 162
Table H.10.2.6: Out-of-Sample VPIN LDA Confusion Matrices for Vodafone Stock (December 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= < <
3 Crash 67 74 141 é‘ Crash 10 13 23 é‘ Crash o o o
< <
No Crash | 242 285 527 No Crash | 324 321 645 No Crash | 303 365 668
Total 309 359 668 Total 334 334 668 Total 303 365 668
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Table H.10.2.7: Out-of-Sample VPIN LDA Confusion Matrices for Vodafone Stock (January 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 1 201 g g
E Crash 23 394 g Crash 96 64 160 é Crash 26 20 46
No Crash | 37° 403 773 No Crash | 578 429 1007 No Crash | 637 484 1121
Total 563 604 167 Total 674 493 167 Total 663 504 167
Table H.10.2.8: Out-of-Sample VPIN LDA Confusion Matrices for Vodafone Stock (February 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 1 12 268 g g
3 Crash 45 3 § Crash 32 20 52 § Crash 4 2 6
No Crash | 44! 357 798 No Crash | 533 481 1014 No Crash | 530 530 1060
Total 586 480 1066 Total 565 501 1066 Total 534 532 1066
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Table H.10.2.9: Out-of-Sample VPIN LDA Confusion Matrices for Vodafone Stock (March 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= o] ]
g Casn | 3w 204 E Crsh | 7 40 97 £ Crash 7 7 14
< <
No Crash | 319 297 616 No Crash | 400 383 783 No Crash | 438 428 866
Total 472 408 880 Total 457 423 880 Total 445 435 880
Table H.10.2.10: Out-of-Sample VPIN LDA Confusion Matrices for Vodafone Stock (April 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= o] [
3 Crash Bt 18 =79 § Crash 43 29 72 § Crash o 5 5
< <
No Crash | 483 463 876 No Crash | 555 528 1083 No Crash | 555 595 1150
Total 544 6u 155 Total 598 557 1155 Total 555 600 1155
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Table H.10.2.11: Out-of-Sample VPIN LDA Confusion Matrices for Vodafone Stock (May 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 140 8 218 ot ot
E Crash 4 7 <§ Crash 20 23 43 <§ Crash 1 2 3
No Crash | 453 286 739 No Crash | 314 600 914 No Crash | 223 731 954
Total 593 364 957 Total 334 623 957 Total 224 733 957
Table H.10.2.12: Out-of-Sample VPIN LDA Confusion Matrices for Vodafone Stock (June 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 171 1 28 g g
3 Crash 7 3 4 é Crash 43 35 78 g Crash 5 5 10
No Crash | #12 37 783 No Crash | 544 445 989 No Crash | 532 525 1057
Total 583 484 1067 Total 587 480 1067 Total 537 530 1067
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Table H.10.3.1: Out-of-Sample Market Heat LDA Confusion Matrices for Vodafone Stock (July 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= < <
E Crash = 136 59 § Crash 32 32 64 § Crash 2 3 5
No Crash | 38° 505 885 < No Crash | 688 392 1080 < No Crash | 65! 488 1139
Total 503 641 44 Total 720 424 1144 Total 653 491 1144
Table H.10.3.2: Out-of-Sample Market Heat LDA Confusion Matrices for Vodafone Stock (August 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= < <
3 Crash 93 151 244 *;':j Crash 26 47 73 *;':j Crash 4 5 9
< <
No Crash 331 589 920 No Crash 380 711 1091 No Crash 336 819 155
Total 424 740 1164 Total 406 758 1164 Total 340 824 1164
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Table H.10.3.3: Out-of-Sample Market Heat LDA Confusion Matrices for Vodafone Stock (September 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash NoCrash  Total — Crash NoCrash  Total
=] ] ]
2 Crash 8o 12 192 é Crash 12 14 26 é Crash 0 2 2
< <
No Crash | 357 417 774 No Crash | 330 610 940 No Crash | 398 566 964
Total 437 529 966 Total 342 624 966 Total 398 568 966
Table H.10.3.4: Out-of-Sample Market Heat LDA Confusion Matrices for Vodafone Stock (October 2007)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash NoCrash  Total _ Crash No Crash  Total
= < <
3 Crash 14 147 261 g Crash 30 22 52 *;':j Crash o 3 3
< <
No Crash | 390 607 1003 No Crash 626 586 1212 No Crash 579 682 1261
Total 510 754 1264 Total 656 608 1264 Total 579 685 1264
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Table H.10.3.5: Out-of-Sample Market Heat LDA Confusion Matrices for Vodafone Stock (November 2007)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= < <
E Crash s 39 3 § Crash 42 29 7 § Crash 2 3 5
< <
No Crash | 495 356 851 No Crash | 601 490 1001 No Crash | 553 604 1157
Total 667 495 162 Total 643 519 1162 Total 555 607 162
able N1.10.3.6: VUut-or-oample arke ea onfusion atrices for Vodafone Stock ecember 2007
Table H.10.3.6: Out-of-Sample Market Heat LDA Conff Mat for Vodafone Stock (D b )
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= < <
3 Crash 54 87 141 é‘ Crash 8 15 23 é‘ Crash o o o
< <
No Crash | 198 329 527 No Crash | 165 480 645 No Crash | 432 236 668
Total 252 416 668 Total 173 495 668 Total 432 236 668
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Table H.10.3.7: Out-of-Sample Market Heat LDA Confusion Matrices for Vodafone Stock (January 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
T T
é Crash 172 222 394 é Crash 72 88 160 é Crash 21 25 46
< <
No Crash | 38 455 773 No Crash | 410 597 1007 No Crash | 495 716 1121
Total 490 677 167 Total 482 685 1167 Total 426 741 167
Table H.10.3.8: Out-of-Sample Market Heat LDA Confusion Matrices for Vodafone Stock (February 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= o] [
3 Crash 1o 19 268 § Crash 22 30 52 § Crash 3 3 6
< <
No Crash 31 487 798 No Crash | 377 637 1014 No Crash | 423 637 1060
Total 430 636 1066 Total 399 667 1066 Total 426 640 1066
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Table H.10.3.9: Out-of-Sample Market Heat LDA Confusion Matrices for Vodafone Stock (March 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= < <
g Crash 87 177 264 E  Crash 39 58 97 E  Crash 7 7 14
No Crash | 210 406 616 < No Crash | 322 461 783 < No Crash | 417 449 866
Total 297 583 880 Total 361 519 880 Total 424 456 880
Table H.10.3.10: Out-of-Sample Market Heat LDA Confusion Matrices for Vodafone Stock (April 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 156 12 2 g g
3 Crash > 3 79 é Crash 34 38 72 g Crash 3 2 5
No Crash | 448 428 876 No Crash | 526 557 1083 No Crash | 455 695 1150
Total 604 55! 155 Total 560 595 1155 Total 458 697 1155
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Table H.10.3.11: Out-of-Sample Market Heat LDA Confusion Matrices for Vodafone Stock (May 2008)

Crash Threshold: -0.10%

Crash Threshold: -0.25%

Crash Threshold: -0.50%

Predicted Predicted Predicted
= Crash NoCrash  Total — Crash No Crash  Total — Crash No Crash  Total
= 0 128 218 g g
E Crash 0 <§ Crash 26 7 43 <§ Crash 1 2 3
No Crash | 265 a7 739 No Crash | 5! 403 914 No Crash | 412 542 954
Total 355 602 957 Total 537 420 957 Total 413 544 957
Table H.10.3.12: Out-of-Sample Market Heat LDA Confusion Matrices for Vodafone Stock (June 2008)
Crash Threshold: -0.10% Crash Threshold: -0.25% Crash Threshold: -0.50%
Predicted Predicted Predicted
~ Crash NoCrash  Total _ Crash No Crash  Total _ Crash No Crash  Total
= 16 121 28 g g
3 Crash 3 4 é Crash 48 30 78 é Crash 4 6 10
NoCrash | 43 > 73 No Crash | 577 2 989 NoCrash | 575 482 1057
Total 595 472 1067 Total 625 442 1067 Total 579 488 1067
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Appendix I

Table I.1: Multiple Linear Regression of Lagged Variables on Out-of-Sample FX Returns
(Monthly Sampling)

United Kingdom Eurozone Switzerland

variable coefficient p-value R* coefficient p-value R* coefficient p-value R?

constant 0.0164 0.0054 0.0159 0.0188
Lagged Returns - - - -
Interest Rate Premium - - - -
Inflation - - - -
Unemployment - - - -
Current Account - - - -
Reserves 01741 00081 044 i - - )
Money Supply (M2) - - - -
GDP Growth - - - -
Index Returns - - - -
TED-Spread -3.7865 e-4 0.0067 -3.2792 e-4 0.0404
A VIX - - - -
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Table I.1 (Continued): Multiple Linear Regression of Lagged Variables on Out-of-Sample FX Returns
(Monthly Sampling)

Australia Canada Japan
variable coefficient p-value R* coefficient p-value R* coefficient p-value R

constant - - - - - -
Lagged Returns - - - - - -
Interest Rate Premium - - - - - -
Inflation - - - - - ,
Unemployment - - - - - -
Current Account -4.0236 0.0000 - - - -

0.0857 0 o]
Reserves - - - - 0.1314 0.0000
Money Supply (M2) - - - - - _
GDP Growth - - - - - -
Index Returns - - - - - _
TED-Spread - - - - - -

A VIX - - -0.0243 0.0000 - -
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Table I.1 (Continued): Multiple Linear Regression of Lagged Variables on Out-of-Sample FX Returns
(Monthly Sampling)

Sweden Norway New Zealand
variable coefficient  p-value R* coefficient p-value R* coefficient p-value R*

constant 0.0024 0.0027 0.0168 0.0153 0.0212 0.0063
Lagged Returns - - - - - -
Interest Rate Premium - - - - - -
Inflation - - - - - ,
Unemployment - - - - - -
Current Account - - - - - -
Reserves - - - - - -
Money Supply (M2) -0.4065 9.5635 e-4 - - - -
GDP Growth - - - - - -
Index Returns - - - - - ,
TED-Spread -4.7275 e-4 0.0033 -3.5196 e-4 0.0310 -4.9540 e-4 0.0070
A VIX - - - - - -
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Appendix ]

Table J.1: Signals Approach Out-of-Sample Confusion Matrices for United Kingdom

1 or More Signals

Predicted
- Crash No Crash
g Crash 13 4
< No Crash 40 20
Total 53 24
3 or More Signals
Predicted
- Crash No Crash
g Crash 10 7
< No Crash 1 49
Total 21 56

Total

17
60

77

Total

17
60

77

2 or More Signals

Predicted
= Crash No Crash
g Crash 10 7
< No Crash 20 40
Total 30 47
4 or More Signals
Predicted
= Crash No Crash
g Crash 7 10
< No Crash 6 54
Total 13 64

Total

17
60

77

Total

17
60

77
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Table J.2: Signals Approach Out-of-Sample Confusion Matrices for Eurozone

1 or More Signals

Predicted
- Crash No Crash
g Crash 14 3
< No Crash 46 14
Total 60 17
3 or More Signals
Predicted
- Crash No Crash
é Crash 9 8
< No Crash 20 40
Total 29 48

Total

17
60

77

Total

17
60

77

2 or More Signals

Predicted
= Crash No Crash
g Crash 1 6
< No Crash 31 29
Total 42 35
4 or More Signals
Predicted
= Crash No Crash
g Crash 6 1
< No Crash 1 49
Total 17 60

Total

17
60

77

Total

17
60

77
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Table J.3: Signals Approach Out-of-Sample Confusion Matrices for Switzerland

1 or More Signals

Predicted

- Crash No Crash
g Crash 18 1
< No Crash 50 8
Total 68 9

3 or More Signals

Predicted

- Crash No Crash
é Crash 10 9
< No Crash 19 39
Total 29 48

Total

19
58

77

Total

19
58

77

2 or More Signals

Predicted
- Crash No Crash
g Crash 12 7
< No Crash 29 29
Total 41 36
4 or More Signals
Predicted
- Crash No Crash
g Crash 5 14
< No Crash 8 50
Total 13 64

Total
19
58
77

Total
19
58
77
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Table J.4: Signals Approach Out-of-Sample Confusion Matrices for Australia

1 or More Signals

Predicted
- Crash No Crash
g Crash 13 1
< No Crash 57
Total 70 7
3 or More Signals
Predicted
- Crash No Crash
é Crash 10 4
< No Crash 26 37
Total 36 4

Total

14
63

77

Total

14
63

77

2 or More Signals

Predicted
- Crash No Crash
g Crash 10 4
< No Crash 40 23
Total 50 27
4 or More Signals
Predicted
- Crash No Crash
g Crash 4 10
< No Crash 1 52
Total 15 62

Total

14
63

77

Total

14
63

77
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Table J.5: Signals Approach Out-of-Sample Confusion Matrices for Canada

1 or More Signals

Predicted
= Crash No Crash
g Crash 10 4
< No Crash 45 18
Total 55 22
3 or More Signals
Predicted
= Crash No Crash
é Crash 7 7
< No Crash 8 55
Total 15 62

Total

14
63

77

Total

14
63

77

2 or More Signals

Predicted

= Crash No Crash
g Crash 8 6
< No Crash 20 43
Total 28 49

4 or More Signals
Predicted

= Crash No Crash
g Crash 4 10
< No Crash 3 60
Total 7 70

Total

14
63

77

Total

14
63

77
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Table J.6: Signals Approach Out-of-Sample Confusion Matrices for Japan

1 or More Signals

Predicted
- Crash No Crash
g Crash 14 o
< No Crash 40 23
Total 54 23
3 or More Signals
Predicted
- Crash No Crash
é Crash 7 7
< No Crash 12 51
Total 19 58

Total

14
63

77

Total

14
63

77

2 or More Signals

Predicted
- Crash No Crash
g Crash 8 6
< No Crash 25 38
Total 33 44
4 or More Signals
Predicted
- Crash No Crash
g Crash 7 7
< No Crash 10 53
Total 17 60

Total

14
63

77

Total

14
63

77
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Table J.7: Signals Approach Out-of-Sample Confusion Matrices for Sweden

1 or More Signals

Predicted

- Crash No Crash
g Crash 14 4
< No Crash 41 18
Total 55 22

3 or More Signals

Predicted

- Crash No Crash
é Crash 5 13
< No Crash 13 46
Total 18 59

Total
18
59
77

Total
18
59
77

2 or More Signals

Predicted

= Crash No Crash
g Crash 8 10
< No Crash 27 32
Total 35 42

4 or More Signals
Predicted

= Crash No Crash
g Crash 4 14
< No Crash 8 51
Total 12 65

Total
18
59
77

Total
18
59
77
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Table J.8: Signals Approach Out-of-Sample Confusion Matrices for Norway

1 or More Signals

Predicted
- Crash No Crash
g Crash 19 2
< No Crash 44 12
Total 63 14
3 or More Signals
Predicted
- Crash No Crash
é Crash 8 13
< No Crash 15 41
Total 23 54

Total
21
56
77

Total
21
56
77

2 or More Signals

Predicted
- Crash No Crash
g Crash 14 7
< No Crash 34 22
Total 48 29
4 or More Signals
Predicted
- Crash No Crash
g Crash 8 13
< No Crash 6 50
Total 14 63

Total
21
56
77

Total
21
56
77
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Table J.9: Signals Approach Out-of-Sample Confusion Matrices for New Zealand

1 or More Signals

Predicted

- Crash No Crash
g Crash 13 5
< No Crash 51 8
Total 64 13

3 or More Signals

Predicted

- Crash No Crash
é Crash 8 10
< No Crash 16 43
Total 24 53

Total
18
59
77

Total
18
59
77

2 or More Signals

Predicted
- Crash No Crash
g Crash 1 7
< No Crash 35 24
Total 46 31
4 or More Signals
Predicted
- Crash No Crash
g Crash 7 1
< No Crash 9 50
Total 16 61

Total
18
59
77

Total
18
59
77
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Appendix K

Table K.1: Binary In-Sample Crash Estimation Results (January 2000 - June 2006)*

country variable logit variable probit
constant -1.859406 constant -1.750648
(0.3687632) (0.3397966)
United VIX 3.438467 TED-Spread 0.0168237
Kingdom (1.753634) (0.0072853)
Reserves -8.802038
(4.006543)
constant -1.570555 constant -0.9211882
(0.3417863) (0.1825515)
VIX 6.397665 VIX 3.682519
Eurozone
(2.1587) (1.21522)
Index Return 17.31092 Index Return 9.872468
(7.22152) (4.064429)
. constant -1.187166 constant -0.7264997
Switzerland
(0.2710327) (0.1584402)
constant -2.230034 constant -1.363707
.5615126 .3308798
Australia (0.5615126) (0.3308798)
TED-Spread 0.029967 TED-Spread 0.0183853
(0.0123843) (0.0074885)
Canada constant -2.47092 constant -1.419188
(0.4279363) (0.2109854)
Japan constant -0.9162907 constant -0.5659488
(0.2522625) (0.1524533)
constant -2.892443 constant -1.709441
(0.682601) (0.3734137)
TED-Spread 0.0372642 TED-Spread 0.0220537
(0.0131957) (0.0076819)
Sweden
Money Supply  31.55654 Money Supply  18.65052
(12.69668) (7.492772)
Reserves -19.76751 Reserves -11.67296
(8.555822) (4.831465)
constant -1.393379 constant -0.8483243
N (0.2882487) (0.164433)
orway
VIX 3.406396 VIX 2.107986
(1.402876) (0.8344955)
New Zealand constant -1.187166 constant -0.7264997
(0.2710327) (0.1584402)

3 All values in parentheses throughout Appendix H show respective p-values for each variable.
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Appendix L

Table L.1: Pooled Logit In-Sample Estimation (January 2000 - June 2006)

Logistic Regression Number of obs. =693
Wald chiz (2) =30.30
Prob. > chi2 = 0.0000
Pseudo R2 =0.0383
Log pseudolikelihood =  -344.39245
Robust
crash | Coefficient Standard z P>|z| [95% Confidence Interval]
Errors
TED-Spread 0184287 .0042494 4.34 0.000 .0101001 .0267573
VIX 1.480911 .4785649 3.09 0.002 .5429415 2.418881
constant | -2.069384 1938379 -10.68 0.000  -2.449299 -1.689468
Table L.2: Pooled Probit In-Sample Estimation (January 2000 - June 2006)
Probit Regression Number of obs. =693
Wald chiz (2) =30.53
Prob. > chiz = 0.0000
Pseudo R2 = 0.0396
Log pseudolikelihood =  -343.92422
Robust
crash | Coefficient Standard z P>|z| [95% Confidence Interval]
Error
TED-Spread .o111228 .0025391 4.38 0.000 .0061462 .0160995
VIX .8922877 28439 3.14 0.002 3348935 1.449682
constant -1.251406 1122989 -11.14 0.000 -1.471508 -1.031304
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Appendix M

Table M.1: Country-by-Country Out-of-Sample Logit Confusion Matrices

United Kingdom Eurozone Switzerland
Predicted Predicted Predicted
Tg Crash No Crash Total —~ Crash No Crash Total - Crash No Crash Total
g Crash 3 14 17 g Crash 3 14 17 g Crash o 19 19
No Crash 3 58 61 <  No Crash 6 55 61 < No Crash 0 59 59
Total 6 72 78 Total 9 69 78 Total 0 78 78
Australia Canada Japan
Predicted Predicted Predicted
-7§ Crash No Crash Total - Crash No Crash Total —= Crash No Crash Total
2 Crash 6 8 14 g Crash 0 14 14 g Crash 0 15 15
No Crash 16 48 64 < No Crash o 64 64 < No Crash 0 63 63
Total 22 56 78 Total o 78 78 Total ) 78 78
Sweden Norway New Zealand
Predicted Predicted Predicted
'T‘g Crash No Crash _ Total = Crash No Crash ~ Total = Crash No Crash  Total
2 Crash 6 12 18 ‘3 Crash 4 17 21 ‘3 Crash 0 18 18
No Crash 20 40 60 < No Crash 4 53 57 < No Crash 0 60 60
Total 26 52 78 Total 8 70 78 Total o 78 78
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Appendix N

Table N.1: Country-by-Country Out-of-Sample Probit Confusion Matrices

United Kingdom
"
g Crash
< No Crash
Total
Australia
=
g Crash
< No Crash
Total
Sweden
=
g Crash
< No Crash
Total

Predicted
Crash No Crash Total
6 1 17
6 55 61
12 72 78
Predicted
Crash No Crash Total
6 8 14
16 48 64
22 56 78
Predicted
Crash No Crash Total
6 12 18
20 40 60
26 52 78

Eurozone

Actual

Crash
No Crash
Total

Canada

Actual

Crash
No Crash
Total

Norway

Actual

Crash
No Crash
Total

Predicted
Crash No Crash
3 14
6 55
9 69
Predicted
Crash No Crash
0 14
0 64
o 78
Predicted
Crash No Crash
4 17
4 53
8 70

Total
17
61
78

Total
14
64
78

Total
21

57
78

Switzerland
Predicted
= Crash No Crash  Total
g Crash o 19 19
< No Crash 0 59 59
Total o 78 78
Japan
Predicted
= Crash No Crash  Total
g Crash o) 15 15
< No Crash 0 63 63
Total o 78 78
New Zealand
Predicted
= Crash No Crash  Total
g Crash o) 18 18
< No Crash 0 60 60
Total o 78 78
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Appendix O

Table O.1: Pooled Logit Out-of-Sample Confusion Matrix

Predicted
— Crash NoCrash  Total
g Crash 45 108 153
B No Crash 54 495 549
Total 99 603 702

Table O.2: Pooled Probit Out-of-Sample Confusion Matrix

Predicted
— Crash NoCrash  Total
g Crash 45 108 153
B No Crash 54 495 549
Total 99 603 702
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Appendix P

Table P.1: Random Effects Model (January 2000 - June 2006)

Random-effects GLS Regression
Group variable: country

Number of obs.
Number of groups

R*: within = 0.1022 Obs. per group:  min
between  =0.3037 avg
overall = 0.1025 max

correlation (g;, X) =0 (assumed) Wald chi’*(s)

(correlation between explanatory variables and error terms) Prob > chi®

=693
=9

=77
=77.0
=77

= 0251.16
= 0.0000

(Standard Errors adjusted for g clusters in country)

Robust
crash | Coefficient  Standard z P>|z| [95% Confidence Interval]
Error
A interest rate premium -.0107598 .0029774 -3.61 0.000 -.0165954 -.0049243
A current account/GDP -.0030491 .0001748 -17.44 0.000 -.0033917 -.0027064
GDP growth .2122208 .0653019 3.25 0.001 .0842315 .3402101
VIX -.0245184 .0038531 -6.36 0.000 -.0320703 -.0169665
TED-Spread -.0003332 .0000374 -8.90 0.000  -.00040065 -.0002598
constant .0143798 .001421 10.12 0.000 .0115948 .0171648
oy o (standard deviation of residuals within countries)
0, | .02698606 (standard deviation of residuals)
p o (fraction of variance due to differences across countries)

Table P.2: Random Effects Model - Unit Root Test

Levin-Lin-Chu unit-root test for fxreturn

Ho: Panels contain unit roots

Ha: Panels are stationary

Number of panels = ¢
Number of periods = 77

AR parameter: Common Asymptotics: N/T -> o

Panel means: Included

Time trend: Not included

ADF regressions: 0.67 lags average (chosen by AIC)

LR variance: Bartlett kernel, 13.00 lags average (chosen by LLC)
Statistic p-value

Unadjusted t  -22.3161
Adjusted t* -20.7402

0.0000
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Table P.3: Fixed Effects Model (January 2000 - June 2006)

Fixed-effects (within) Regression
Group variable: country

R*: within
between
overall

correlation (g;, X)

= 0.1022

=0.2974
= 0.1025

= 0.0119

(correlation between explanatory variables and error terms)

Number of obs.
Number of groups

Obs. per group:  min
avg
max

Wald chi’*(s)

Prob. > chi®

=693
=9

=77
=77.0
=77

=3696.46
= 0.0000

(Std. Err. adjusted for g clusters in country)

Robust
crash | Coefficient  Standard z P>|z| [95% Confidence Interval]
Errors
A interest rate premium -.0107147 .0029884 -3.59 0.007 -.0176058 -.0038235
A current account/GDP -.0031157 .0001708 -18.24 0.000  -.0035096 -.0027218
GDP growth 2028469 .0743218 2.73 0.026 .0314605 3742334
VIX -.0245315 .0038306 -6.40 0.000 -.0333648 -.0156981
TED-Spread -.0003329 .0000377 -8.84 0.000  -.0004198 -.0002461
constant .0144088 .0013422 10.74 0.000 .o113138 .0175039
oy .00120878  (standard deviation of residuals within groups)
g, | .02698606 (standard deviation of residuals)
p | .00200239 (fraction of variance due to differences across countries)

Table P.4: Fixed Effects Model - Unit Root Test

Levin-Lin-Chu unit-root test for fxreturn

Ho: Panels contain unit roots

Ha: Panels are stationary

AR parameter:
Panel means:
Time trend:

ADF regressions:

Number of panels

= 9

Number of periods = 77

Common
Included
Not included

0.67 lags average (chosen by AIC)

Asymptotics: N/T -> o

LR variance: Bartlett kernel, 13.00 lags average (chosen by LLC)
Statistic p-value

Unadjusted t  -22.3161

Adjusted t* -20.7402 0.0000
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