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Abstract

Named Entity Recognition (NER) has attracted much attention over the past twenty years,

as a main task of Information Extraction. The current dominant techniques for addressing

NER are supervised methods that can achieve high performance, but require new manually

annotated data for every new domain and/or genre change. Our work focuses on approaches

that make it possible to tackle new domains with minimal human intervention to identify

Named Entities (NEs) in Arabic text. Specifically, we investigate two minimally-supervised

methods: semi-supervised learning and distant learning. Our semi-supervised algorithm for

identifying NEs does not require annotated training data or gazetteers. It only requires,

for each NE type, a seed list of a few instances to initiate the learning process. Novel

aspects of our algorithm include (i) a new way to produce and generalise the extraction

patterns (ii) a new filtering criterion to remove noisy patterns (iii) a comparison of two

ranking measures for determining the most reliable candidate NEs. Next, we present our

methodology to exploit Wikipedia structure to automatically develop an Arabic NE anno-

tated corpus. A novel mechanism is introduced, based on the high coverage of Wikipedia, in

order to address two challenges particular to tagging NEs in Arabic text: rich morphology

and the absence of capitalisation. Neither technique has yet achieved performance levels

comparable to those of supervised methods. Semi-supervised algorithms tend to have high

precision but comparatively low recall, whereas distant learning tends to achieve higher

recall but lower precision. Therefore, we present a novel approach to Arabic NER using a

combination of semi-supervised and distant learning techniques. We used a variety of classi-

fier combination schemes, including the Bayesian Classifier Combination (BCC) procedure,

recently proposed for sentiment analysis. According to our results, the BCC model leads

to an increase in performance of 8 percentage points over the best minimally-supervised

classifier.
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Chapter 1

Introduction

1.1 Motivation

Named Entity Recognition (NER) is the Information Extraction (IE) task concerned with

identifying and classifying Named Entities (NEs) found in texts. A Named Entity (NE) is

simply anything that can be referred to with a proper name [Jurafsky and Martin, 2009].

For example, a generic news-oriented Arabic named-entity recogniser might find the organi-

sation ÉK.

@ �é»Qå�� “Apple Inc.” and the locations ñ	J�
�KQK. ñ» “Cupertino” and AJ
 	KPñ 	®J
ËA¿ “California”

in the text: AJ
 	KPñ 	®J
ËA¿ ñ 	J�
�KQK. ñ» ú

	̄ ÉK.


@ �é»Qå��Ë ú
æ�J
KQË @ Q�®ÖÏ @ ©�®K
, “Apple Inc. is headquartered in Cu-

pertino California”.

NER is one of the most popular tasks of IE that has been utilised in several Natural Lan-

guage Processing (NLP) applications. For example, in reference to Information Retrieval

(IR), which aims to identify and retrieve relevant documents from a set of data according

to an input query, Guo et al. [2009] reported that about 71% of the queries in search en-

gines contain NEs. Therefore, improving the retrieval of documents for queries containing

NEs would increase the performance of the whole IR system. Furthermore, extracting NEs

benefits the Question Answering (QA) systems, which aim to take questions as input and

return concise and precise answers. In fact, 80% of the 200 questions that comprised the

Question Answering track competition in Text REtrieval Conference (TREC-8) asked for

NEs [Srihari and Li, 1999] (e.g., who (Person), where (Location), when (Time)). NER

can be used to recognise the NEs within the question, which will help later in identifying

relevant documents and passages. It can also be used to find the precise answer in relevant

2



Chapter 1: Introduction

passages, if the question asks for an NE [Abouenour et al., 2012; Hammo et al., 2002]. In

addition, NER has served as an experimental sandbox for a number of techniques [Bikel

et al., 1997; Liao and Veeramachaneni, 2009; McCallum and Li, 2003].

Most research on NER has been carried out in English [Nadeau and Sekine, 2007],

but a significant amount of research has also been conducted in Arabic [Shaalan, 2014].

Many studies revolving around Arabic NER are based on hand-crafted rules [Elsebai et al.,

2009; Shaalan and Raza, 2007]. The most recent studies use supervised machine learning to

automatically produce sequence labelling algorithms starting from a collection of annotated

training examples [AbdelRahman et al., 2010; Benajiba and Rosso, 2008; Darwish, 2013].

Formerly, there was a lack of freely available resources for Arabic NER. The situation has

changed, however, so that there are currently a number of Arabic NE annotated corpora

[Alotaibi and Lee, 2014; Benajiba et al., 2007; Mohit et al., 2012]. Nonetheless, changing

the domain or expanding the set of NE classes1 still always requires domain-specific experts

and new annotated data. That is, even state-of-the-art NER systems do not necessarily

perform well on other domains [Darwish, 2013; Poibeau and Kosseim, 2001].

Early work in NER in the 1990s was aimed primarily at extraction from newspaper

articles [Grishman and Sundheim, 1996], but since about 1998, there has been increasing

interest in entity identification from several types of text styles, such as biomedical text,

telephone conversation transcripts, weblogs, and social networks [Krallinger et al., 2013;

Ritter et al., 2011; Settles, 2004]. Therefore, dependence on manually annotated data is

insufficient for the variety of domains and texts produced by fast-changing technologies. It

is also known that manually annotated data is expensive and cumbersome to create. As a

result, these data often lack coverage. We have noticed that most of the current annotated

corpora for Arabic NER can only support supervised learning with a small number of

classes [Benajiba et al., 2007; Mohit et al., 2012]. For example, Benajiba et al. [2007]

built an Arabic NER system in order to detect and classify NEs into one of four classes:

Person, Location, Organisation, and Miscellaneous. Another study by Shaalan and Raza

[2009] presented an attempt to extract the 10 most important categories of NEs in Arabic

1The terms ‘type’, ‘class’, and ‘category’ are used interchangeably in this thesis.

3



Chapter 1: Introduction

script. Their system, however, used hand-crafted rules and dictionaries, which could not

cover all names and were specific to the domain. Thus, we aim to move the state-of-the-

art in NER forward by reducing the burden of supervision in training and by developing

minimally-supervised algorithms for NER, particularly for Arabic NER.

1.2 Research Objectives

The main objectives of this research are summarised as follows:

• Develop learning algorithms for Arabic NER that can be adapted to different domains

with minimal human intervention; specifically, test and compare minimally-supervised

techniques.

• Compare the performance of minimally-supervised methods to those of supervised

learning-based NER systems.

• Exploit semi-structured knowledge on the web to compensate for the lack of distin-

guishing orthographic features in Arabic.

• Study the possibility of combining multiple minimally-supervised techniques to im-

prove the overall quality of the output.

1.3 Contributions

The research described in this thesis accomplished several goals and made many contribu-

tions to the field of NER for the Arabic language. These can be summarised as follows:

• We introduced a capitalisation threshold for Arabic, a language that does not have

capitalised letters, using the high coverage of Wikipedia.

• We proposed a mechanism to handle the rich morphology in Arabic, and eliminate

the need to perform any deep morphological analysis by exploiting Wikipedia features

such as anchor texts and redirects.

4



Chapter 1: Introduction

• We developed a method to automatically create NE annotated corpus from Wikipedia

for the standard NE classes. Our Wikipedia-derived Corpus (WDC) is available for

free online to the community of research2.

• We presented in-depth experiments with semi-supervised learning and a pattern-based

approach to Arabic NER across many NE classes.

• We presented a novel approach to Arabic NER using a combination of semi-supervised

learning and distant supervision.

• We used the Independent Bayesian Classifier Combination (IBCC) scheme for NER

and compared it to traditional voting methods.

• We introduced the classifier combination restriction as a means of controlling how

and when the predictions of individual classifiers are combined.

• We built AraNLP, a Java-library that provides essential computational preprocessing

tools for the Arabic Language. This library is explained in a published paper and

available online to the community of research3.

1.4 Thesis Structure

The structure of the rest of this thesis is as follows. Chapter 2 provides some information

about Arabic and its history. It discusses the Arabic script used to write Modern Standard

Arabic (MSA) and its elements. The chapter also discusses the aspects of Arabic that are

most relevant to NLP in general and NER in particular such as derivational and inflec-

tional features and complex morphology. Chapter 3 offers the necessary background on

NER research, covering the main aspects of NER such as NE types, annotation schemes,

and evaluation measures. The chapter then describes the techniques that have been used

by NER systems and the new approaches that are currently being studied in the research

community to overcome the disadvantages of traditional methods. Chapter 4 covers Arabic

2The WDC data set is available at https://sites.google.com/site/mahajalthobaiti
3AraNLP is available at https://sites.google.com/site/mahajalthobaiti
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Chapter 1: Introduction

NER. The chapter first discusses the challenges. Then, it lists the available Arabic lin-

guistic resources according to their genres and the NE types they encompass. Finally, the

chapter describes the basic computational tasks that are necessary for Arabic NER systems

and the approaches that have been adopted by Arabic NER systems. Chapter 5 presents

our semi-supervised algorithm for identifying NEs in Arabic text. The algorithm adopts

the bootstrapping technique that only needs a set of seeds in order to initiate the learning

process. The chapter explains the algorithm in detail and presents extensive experiments

with their results. Chapter 6 describes our methodology to automatically generate an NE

annotated corpus from Wikipedia using minimal time and human intervention. The chapter

also illustrates the mechanism we introduced to exploit the high coverage of Wikipedia in

order to address two challenges particular to tagging NEs in Arabic text: rich morphology

and the absence of capitalisation. The evaluation results of the created corpus is also dis-

cussed in the chapter. Chapter 7 presents a novel approach to Arabic NER, which involves

combining semi-supervised and distant learning techniques using a variety of classifier com-

bination schemes, including the Bayesian Classifier Combination (BCC) procedure. The

chapter also introduces the classifier combination restriction as a means of controlling how

and when the predictions of multiple classifiers are combined. It also shows the effect of

this restriction on the performance of the combination methods. Chapter 8 conveys our

conclusions and highlights the main findings of this research. It also explains our vision for

possible future work.

List of Publications Related to This Work

The work in this thesis has been published in the following peer-reviewed journal and

proceedings:

• Althobaiti, M., Kruschwitz, U., and Poesio, M. (2015). Combining Minimally-supervised

Methods for Arabic Named Entity Recognition. Transactions of the Association for

Computational Linguistics (TACL), 3, 243-255.

• Althobaiti, M., Kruschwitz, U., and Poesio, M. (2014). AraNLP: a Java-based Library

for the Processing of Arabic Text. In Proceedings of the Ninth International Con-
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ference on Language Resources and Evaluation (LREC), Reykjavik, Iceland, pages

4134-4138.

• Althobaiti, M., Kruschwitz, U., and Poesio, M. (2014). Automatic Creation of Arabic

Named Entity Annotated Corpus Using Wikipedia. In Proceedings of the Student Re-

search Workshop at the 14th Conference of the European Chapter of the Association

for Computational Linguistics (EACL), Gothenburg, Sweden, pages 106-115.

• Althobaiti, M., Kruschwitz, U., and Poesio, M. (2013). A Semi-supervised Learning
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• Althobaiti, M., Kruschwitz, U., and Poesio, M. (2012). Identifying Named Entities on
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Chapter 2

Characteristics of Arabic

To possess a comprehensive background of Arabic NER, one should have a thorough knowl-

edge of three essential areas: (a) the Arabic language, (b) the definition of NE task, the

current challenges, and the latest research and (c) the research of Arabic NER. These three

areas of interrelated works are presented in this chapter and the next two chapters (i.e.,

Chapter 3 and Chapter 4) respectively.

This chapter gives a general overview of the Arabic language, emphasising the aspects

that concern the topic of this thesis. First, Section 2.1 presents the history and variants

of Arabic. Second, elements and symbols of the Arabic script are explained in Section 2.2.

Next, the structure and rich morphological features of Arabic words are illustrated in detail

in Section 2.3. Finally, Section 2.4 explains the structure of Arabic sentences.

2.1 Introduction

Arabic belongs to the Semitic family of languages that spread throughout North Africa and

Middle East. The living language members of the Semitic family include Arabic, Aramaic

(including Syriac), Hebrew, and Amharic. The Semitic language family has a long and

distinguished literary history and has played important roles in the cultural landscape of

the Middle East for more than 4,000 years [Hetzron, 2013; Testen, 2015].

Today, Arabic is the largest living language member of the Semitic group in terms of

the number of speakers. It is spoken by more than 400 million people in the Arab world,

and used by more than 1.5 billion Muslims worldwide [UNESCO, 2012, 2015].
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Chapter 2: Characteristics of Arabic

Arabic includes three main forms: Classical Arabic (CA), Modern Standard Arabic

(MSA), and Colloquial Arabic [Elgibali, 2005; Habash, 2010; Korayem et al., 2012]. Clas-

sical Arabic (CA) is essentially the form of the language found in the Quran1. After the

spread of Islam, CA becomes the prominent language of religious worship and sermons

[Watson, 2007]. Most Arabic religious texts and many historical Arabic manuscripts are

written in CA.

Modern Standard Arabic (MSA) is the standard language in use today. It is the official

language of all Arab League countries and the only form of Arabic taught in schools at all

stages. It is used as the primary language of writing, most formal speech, and education.

The Syntax, morphology, and phonology of MSA is based on CA. The main differences

between MSA an CA are (a) the orthography of conventional written Arabic, and (b) the

vocabulary, as MSA is lexically much more modern than CA in order to include modern

technical terms [Al-Johar, 1999; Farber et al., 2008].

Colloquial Arabic refers to the many informal regional spoken dialects used for everyday

communication. It is not taught in schools due to its irregularity. Unlike the widespread

use of MSA across all Arab countries, colloquial Arabic varies dramatically based on many

factors, but is primarily dependent on geography and social class. So, colloquial Arabic

differs not only from one Arab country to another, but also across regions within the same

country. Although colloquial Arabic is rarely written and mostly spoken, written colloquial

Arabic can be mainly found in social media communication, as well as a certain amount of

literature such as plays and poetry [Shaalan, 2014].

2.2 Elements of the Arabic Script

The Arabic script is the second most widely used alphabetic writing system in the world

after Latin script [Testen, 2015]. It is written from right to left and there is no distinction

between uppercase and lowercase letters. The basic Arabic alphabet has 28 letters and 3

different types of diacritical marks. In both printed and handwritten Arabic, most letters

within a word are connected in a cursive style.

1The holy book of Islam.
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Arabic script was first used to type Arabic texts, most notably the Quran. The spread

of Islam made the Arabic script became the writing system for other languages, such as

Persian, Urdu, Sindhi, Malay, and Kurdish. Adaptations of the Arabic script for other

languages resulted in the addition of some letters as well as the redefinition of some letters’

phonetic values [Kaye, 1996]. Since the focus of this thesis is on the Arabic language,

specifically MSA in NLP, this section discusses the Arabic script used in MSA.

The basic 28 letters of the Arabic alphabet corresponds to Arabic’s 28 consonantal

sounds. Most of these basic letters take different shapes depending on whether they are

at the beginning, middle or end of a word, so they may show four distinct forms (initial,

medial, final or isolated). Only six letters (@ , X , 	X , P , 	P ,ð) do not have a distinct medial

form and have to be written with their final form without being connected to the succeeding

letter. Their initial forms are the same as their isolated forms. Table 2.1 shows the 28 basic

letters used in MSA.

ــا ا  ضــ ض  ــضــ ــض
ب بـ ــبــ ــب طــ ط  ــطــ ــط
ت تـ ــتــ ــت ظــ ظ  ــظــ ــظ
ث ثــ ــثــ ــث ع ـعـ ــعــ ــع
ج جــ ــجــ ــج غ غــ ــغــ ــغ
ح حــ ــحــ ــح ف فــ ــفــ ــف

خــ خ  ــخــ ــخ ق قــ ــقــ ــق
ــد د  ك كــ ــكــ ــك
ــذ ذ  ل لــ ــلــ ــل

ــر ر  م مــ ــمــ ــم
ــز ز  ن نــ ــنــ ــن

ســ س  ــســ ــس ه هــ ــهــ ــه
شــ ش  ــشــ ــش و ــو
صــ ص  ــصــ ــص ي يــ ــيــ ــي

 

  

 

Table 2.1: Arabic basic letters.

Diacritical marks are of great importance in Arabic, as they are used to help children

and those learning Arabic to pronounce the words correctly. They are usually optional;
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written Arabic words can be diacritised, partially diacritised or entirely undiacritised. But

when it comes to religious texts, children’s educational texts, and some classical poetry,

diacritical marks are written in full [Elkateb et al., 2006; Habash, 2010; Ryding, 2005]. In

some cases, diacritical marks are crucial to help readers in reducing the ambiguity of certain

words. For example, the meaning of the word Õ
��
Î �� sullam “Ladder”2 can be changed totally

to mean “peace” by only changing the diacritical marks: ÕÎ�� silm.

There are three types of diacritical marks: vowel, nunation, and shaddah. Vowel diacrit-

ical marks represent three short vowels in Arabic: fatHah �� /a/, dammah �� /u/, and kasrah

�� /i/. The sukuwn �� diacritical mark means there is no vowel. The nunation diacritical

marks can only occur in indefinite words. They are pronounced as a short vowel followed by

/n/ sound which is unwritten. The shaddah diacritical mark �� is used to represent a double

consonant. It can be combined with vowel or nunation diacritical marks as illustrated in

Table 2.2.

  

مَ 
مَ 
مَ َََ  

مَ 
مَ 
مَ 
مَ   
مَ  مَ َ مَ َ  
مَ  مَ  مَ   
مَ 

Table 2.2: Arabic diacritical marks.

There are additional symbols that can be treated as separate letters and/or special

combinations of letters and additional diacritical marks. One example of such a symbol is

2Throughout this thesis, Arabic words are supplemented with transliterations and translations in the
following order: Arabic-word Qalam-transliteration “English-translation”.
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hamzah, which can be considered a separate letter (Z) or a diacritical mark with other letter

forms ( ø', ð',
�
@ , @ , @ , Z) [Habash et al., 2007; Soudi et al., 2007]; see Table 2.3.

Furthermore, the taa’ marbuwTah
�è, is a morphological marker for a feminine ending

like in
�éJ. �JºÓ maktabah “’Library’. It is actually a hybrid letter merging the form of the

letters haa’ è and taa’ �H. Also the alif maqSuwrah ø, which looks like a dotless yaa’ ø
 , is

a morphological marker used to mark feminine endings and underlying word roots. It is a

merge of the forms of the letters alif @ and yaa’ ø
 [Habash, 2010].

The standard computer encodings of Arabic, such as CP1256, ISO-8859, and Unicode,

consider the hamzah letter marks to be separate letters (not diacritical marks). They also

consider taa’ marbuwTah and alif maqSuwrah to be separate letters [Habash, 2010].

  

  الماء ء

  أخبار أ

إ  إياك
آ  آمال
  مؤرخ ؤ

  سائل ئ

 

Table 2.3: The hamzah letter forms.

2.3 Arabic Morphology

In linguistics, morphology is defined as the study of internal word formation. Arabic is

characterised by complex, productive morphology, with a root-and-pattern word-formation

mechanism. The morphology of Arabic is the most studied aspect of Arabic when work-

ing on Arabic NLP, because of its important interactions with orthography and syntax

[Habash, 2010]. In addition, the morphological analyser is an important component of

Arabic NLP systems, which must be aware of the word structure whatever the goal of the

systems. In what follows, a brief description of Arabic morphology is given with examples

for clarification.
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2.3.1 Word Structure

The primary concept in morphology is the morpheme, the smallest unit of meaning in a lan-

guage. For example, the word 	àñ�JkAK. baaHithwn “researchers” consists of two morphemes:

�IkAK. baaHith “researcher” and 	àð wn “suffix for masculine plural”. There are three essen-

tial types of morphemes - stems, affixes, and clitics - that concatenate to form words in

Arabic in the following order:

“Arabic Word = Proclitic(s) + Prefix(es) + Stem+ Suffix(es) + Enclitic(s)”.

Detailed information about each type is provided below.

• Stem: The term stem has two slightly different meanings. First, a stem can be the

core part of a word that expresses the basic meaning and cannot be further divided into

smaller morphemes [Payne, 2006]. For example, the stem of the word 	àðQ 	̄ A�Ó musaafirwn

“travellers” is Q 	®� safar “travel”. This usage has been followed by different studies in

order to build stemmers for Arabic, like Khoja’s stemmer [Khoja and Garside, 1999].

Second, stem can refer to the part of the word that is common in all of its inflected forms

[Kroeger, 2005]. According to the second definition, the stem of the Arabic word 	àðQ 	̄ A�Ó

musaafirwn “travellers” is Q 	̄ A�Ó musaafir “traveller”.

• Affixes: Affixes attach to the stem. There are three types of affixes: (a) prefixes that

attach before the stem, (b) suffixes that attach after the stem, and (c) circumfixes that

enclose the stem. The prefixes and suffixes, attached to the stems, are predictable and

limited to a set of features like gender, number, person, aspect, and so on [Farber et al.,

2008]. For example, the prefix 	à na is added to the beginning of imperative verbs in

order to indicate the ‘first person plural’. More examples of affixes are shown in Table

??.

• Clitics: Clitics are morphemes that attach to the stem after affixes (i.e., they are at-

tached to the inflected base words). A clitic has the syntactic characteristics of the word

attached to it, but is based phonologically on another word [Loos et al., 2004]. There

are several possible Arabic clitics that are distinguishable based on their position in the

word. Proclitics come at the beginning of words. They usually represent conjunctions
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(a) A sample of prefixes

 

ت + كتب = تكتب ت
 

ي + كتب = يكتب ي
  

 
(b) A sample of suffixes

 

 ون
 كاتب + ون = كاتبون

 

 ين
 كاتب + ين = كاتبون

 

 

(c) A sample of circumfixes

 

 ت + ...+ان
 ت + كتب + ان = تكتبان

  

 ي + ...+ان
 ي + كتب + ان = يكتبان

  

 

Table 2.4: Types of affixes.
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(e.g., ð wa, � 	̄
fa), prepositions (e.g., �K. bi, �» ka, �Ë li.), future particles (e.g., �� sa), and

the definite article È@ Al “the”. Enclitics come at the end of words. They represent

pronouns such as AÒ» kumaa “your”, AÒë humaa “their”, and ø
 ye “my”.

The following illustration shows how affixes and clitics attach to words:

  

 

 

    

   

   

 بقراراتهم = بــ + قرار + ات + هم
         
Enclitic: 
pronoun 

(their) 

 

 Suffix for 
sound 

feminine 
plural 

 

 The word 
“Decision” 

 

 Proclitic: 
preposition 

(With) 

 

 English meaning 
“With their 
decisions” 

 

     

2.3.2 Derivational and Inflectional Morphology

Arabic is a highly derivational and inflected language. These properties ease the process of

expanding the Arabic vocabulary by using only the roots and the morphological patterns.

There are approximately 10,000 independent roots and 85% of Arabic words are derived

from triliteral roots [de Roeck and Al-Fares, 2000]. Thus, new Arabic words are generated

by applying derivational patterns to root forms. The Arabic language’s derivational and

inflected nature makes it possible to arrange Arabic words according to the roots from

which they are derived.

Derivation is the process by which new words are created from other words. Three

types of morphemes are required to create a word templatic stem: roots, patterns, and

vocalisms. The root morpheme consists of three or four radicals3, and in rare cases up

to five. A root expresses a meaning that is shared amongst all of its derivations. For

example, the root morpheme � � P � X “d-r-s” “studying-relating” has many derivations,

which share the same meaning, such as �PX daras “to study”, �P@X daaris “student”,
�é�@PX

diraasah “studying”, ��
PY�K tadrys “teaching”, and �P@YÓ madaars “schools”. The vocalism

morpheme determines the short vowels to be used within patterns. There are three short

vowels in Arabic: Fathah �� /a/ ), Dammah �� /u/, and Kasrah �� /i/. The pattern morpheme

is a template in which vocalisms and root radicals are included. In the following examples

we illustrate a pattern, as in [Habash, 2010], using a string of letters and numbers to mark

3Radicals is the term used when talking about root to mean consonants making up the root.
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where root radicals and vocalisms are inserted. For example, the pattern 1V2V3 indicates

that there are three root radicals and two vocalisms in the same order as it is in the pattern.

A pattern can also contain additional consonants or long vowels. For example, the pattern

tV1aa2V3 contains a constant “t” and a long vowel “aa”. Table 2.5 provides some examples

of stem construction.

ب –ت  –ك   
كاتب

كتب 
مكتب
كتاب   

 

Table 2.5: Examples of stems derived from their roots.

The derivation process can be summarised with the following equation:

Stem = Root+ Pattern+ vocalisms.

In inflectional morphology, the lexical category and the core meaning of the word remains

unchanged, but the extensions are always variable depending on a set of feasible features.

In Arabic, four inflectional features are restricted to verbs. The following list illustrates the

features applied to verbs and their values.

• Aspect: perfective, imperfective, imperative

• Mood: indicative, subjunctive, jussive

• Person: 1st person, 2nd person, 3rd person

• Voice: active, passive

The inflectional features, that are applied only to Arabic nouns and their possible values

are as follows:

• Case: nominative, accusative, genitive

• State: definite, indefinite
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Moreover, the morphological features for verbs and nouns/adjectives are as follows:

• Gender: feminine, masculine

• Number: singular, dual, plural

For example, if we take one word stem I. �KA¿ kaatib “writer”, derived from a root as explained

in Table 2.5, then it can be inflected for number, gender, case, and state. Table 2.6 shows

some examples of words inflected from the stem I. �KA¿ kaatib “writer”.

كاتبة

كاتبان

كاتبين  

كاتبات  

 

  Table 2.6: Examples of words inflected from the same stem.

2.4 Arabic Syntax

Syntax is the linguistic area concerned with describing how words are arranged together

to compose phrases and sentences. It can also be defined as the study of the formation of

sentences and the relationship between their component parts [Aoun et al., 2009; Testen,

2015].
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2.4.1 Essential Syntactic Principles

There are two essential syntactic principles that affect the structure of Arabic phrases and

sentences:
�é�®K. A¢Ó agreement/concord, and ÉÔ« government [Ryding, 2005].

Agreement or concord is the compatibility of words in a phrase or clause, so that, each

word in a phrase conforms to and reflects the others’ features. For example, adjectival

modifiers of nouns agree with the gender and case of the noun they modify, that is, a

masculine singular noun takes a masculine singular adjective. A verb is masculine singular

if it has a masculine singular subject and so forth [Ryding, 2005].

The two terms agreement and concord are often used interchangeably. The use of

these terms synonymously, however, proves inaccurate because the term agreement refers

to matching between the verb and its subject, whereas the term concord is used to refer

to matching between nouns and their dependants (adjectives, other nouns, or pronouns).

Categories of agreement and concord in Arabic include: inflection for gender, number, and

person for verbs and pronouns and inflection for gender, number, definiteness, and case for

nouns and adjectives [Blake, 1994].

The second syntactic principle is government in which certain words ( ÉÓ@ñ« ‘awaamil

“governing words”) cause others to inflect in particular ways - not in agreement with the

governing word, but as a result of the effect of the governing word. The typical governing

words in Arabic are prepositions, particles, and verbs. For example, when a preposition

precedes a noun, it causes the noun to be in the genitive case. Another example is transitive

verb which causes a direct object to be in the accusative case.

2.4.2 Sentence Structure

Arabic sentences are generally classified as either verbal or nominal sentences4. A nominal

sentence is defined as a sentence which begins with a noun, while a verbal sentence is one

that begins with a verb. In each case, the sentence can be simple, compound, or complex.

Generally speaking, a sentence composed of a single clause is a simple sentence. The

combination of more than one clause using coordinating conjunctions forms a compound

4Nominal sentence is also called copular/equational sentence.
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sentence. A coordinating conjunction is a particle that connects two words, phrases or

clauses together such as ð “and”, Ð@/ð@ “or”, � 	̄
“Then/and so,”. Each clause in the compound

sentence remains independent; therefore, the conjunctions have no effect on the morphology

or syntax of the following clause, but build up the sentence contents in an additive way.

The combination of a main clause and one or more subordinate clauses, is called a com-

plex sentence. Subordinate clauses are of three main types: complement clauses, adverbial

clauses, and relative clauses. Unlike coordinating conjunctions, many Arabic subordinating

conjunctions have a grammatical effect on the structure of the following clause. For exam-

ple,
�	à


@ ’anna “that” is followed by a clause whose subject is either a noun in the accusative

case or a suffixed pronoun. ú
¾Ë likay “in order to” is followed by a verb in the subjunctive

mood [Ryding, 2005]. Table 2.7 shows examples of the simple, compound, and complex

sentences.

 تفتحت الأزهار.

جاء الربيع وتفتحت الأزهار.

 

يبذل الفريق قصارى جهده لكي يحافظ على موقعه في التصنيف العالمي.

 

 

 

  

  

Table 2.7: Sentence Types.

Nominal Sentence

The structure of the nominal sentence consists of two parts: @Y�JJ.Ó subject/topic, and

Q�. 	g predicate/complement. The subject can be a proper noun, definite noun, or pronoun

and the predicate can be a proper noun, indefinite noun, adjective, prepositional phrase,

adverbial phrase, or a sentence. The adjectival predicate agrees with the subject in gender

and number [Habash, 2010].

• Subjectpronoun Predicateproper noun
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YK
 	P ñë

He Zaid

“He is Zaid”

• Subjectproper noun Predicateadjective
Õç'A 	K YK
 	P

Zaid asleep

“Zaid is asleep”

• Subjectdefinite noun Predicateadjective
YJ
 	®Ó H. A�JºË@

the-book useful

“The book is useful.”

• Subjectdefinite noun Predicateprepositional phrase
�I�
J. Ë @ ú


	̄ 	J
 	�Ë@

the-guest in the-home

“The guest is in the home.”

• Subjectdefinite noun Predicateadverbial phrase
ú 	æJ. ÖÏ @ ÐAÓ@ �èPñ 	̄ A 	JË @

the-fountain front the-building

“The fountain is in front of the building.”

• Subjectdefinite noun Predicatenominal sentence
ÉJ
Ôg. AëPñ� �é�®K
YmÌ'@

the-garden fence-its beautiful

“The garden’s fence is beautiful.”

• Subjectdefinite noun Predicateverbal sentence
�PYË@ I. �JºK
 I. ËA¢Ë@

�PYË@ Q���J�Ó Q�
ÖÞ
	�-I. �JºK
 I. ËA¢Ë@
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the-student writes-(3rd person singular masculine hidden pronoun) the-lesson

“The student writes the lesson”

Verbal Sentence

The verbal sentence starts with a verb, which is followed by a subject and one or more

objects. The verb agrees with the subject in gender, number, person. The most basic

form of the verbal sentence has only a verb with a conjugated or pro-dropped pronominal

subject. Like other languages, some verbs in Arabic can have more than one object.

• V erb Subjecthidden pronoun
I. �J»
Q���J�Ó Q�
ÖÞ

	�-I. �J»

wrote-(3rd person singular masculine hidden pronoun)

“He wrote”

• V erb Subjectpronoun
A 	J�. �J»

A 	K-I. �J»

Wrote-we

“We wrote”

• V erb subjecthidden pronoun Objectprnoun
AîD.�J»

Aë Q���J�Ó Q�
ÖÞ
	�-I. �J»

wrote-(3rd person singular masculine hidden pronoun) it

“He wrote it.”

• V erb subjectnoun Objectnoun
H. A�JºË@ I. �KA¾Ë@ I. �J»

wrote the-author the-book

“The author wrote the book.”
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2.5 Summary

This chapter presented a brief description of Arabic script, its elements, history, and vari-

ants. It also illustrated the main characteristics of Arabic that concern many NLP tasks

including NER. The derivational and inflectional nature of the language was also covered

in detail. Finally, this chapter explained the structure of Arabic sentences with various

examples, showing possible part-of-speech categories and the expected order of words in a

sentence.
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Named Entity Recognition (NER)

In the previous Chapter, we provided a general overview of Arabic. We discussed the

Arabic script used to write Modern Standard Arabic (MSA). We also discussed the aspects

of Arabic that are of most concern to Natural Language Processing (NLP) in general

and Named Entity Recognition (NER) in particular, such as derivational and inflectional

features, and complex morphology.

This chapter illustrates the essential aspects of the NER problem. Section 3.1 presents

the standard definition of the NER task. It also offers a brief description of the chronology

of NER history, starting from the first emergence of the term Named Entity and continuing

through the important evaluation campaigns and conferences that gave the NER task its

popularity. Section 3.2 describes the NE types and hierarchies that are proposed and defined

in many conference shared-tasks and research. The annotation schemes and the evaluation

measures for NER are explained in Section 3.3 and Section 3.4 respectively. Section 3.5

demonstrates the techniques that have been used in NER systems and new approaches that

researchers currently study to overcome the current challenges of traditional techniques.

3.1 Definition and History

Named Entity Recognition (NER) is one of the most essential aspects of Information Extrac-

tion (IE). Both conceptually and practically, NER involves two sub-problems: the detection

of the names of entities in text, and the classification of these names into a predefined set of

categories of interest, such as the names of People, Organisations, Locations, Products, etc.

For example, in the sentences “Mark lives in London. He has worked at University College
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London since 2012.”, “Mark”, “London”, and “University College London” are examples

of Person, Location and Organisation entities, respectively.

The term Named Entity (NE) was first introduced to the Natural Language Process-

ing (NLP) community at the sixth Message Understanding Conference (MUC-6) in 1996.

The MUC conferences were the evaluation campaigns that contributed significantly to IE

research and provided the benchmark for Named Entity systems. At that time, the NE

task basically entailed identifying the names of all the People, Organisations, and Geo-

graphic Locations in a text. The task also involved identifying Time, Date, Currency, and

Percentage expressions [Grishman and Sundheim, 1996].

Since MUC-6, several campaigns have arisen to evaluate NE in different languages.

For example, the Multilingual Entity Task evaluations (MET-1 and MET-2) provided a

new opportunity to assess progress on the NE task in Chinese, Japanese, and Spanish

[Chinchor, 1998; Merchant et al., 1996]. The NE task was one of the two tasks assessed

and organised by the Information Retrieval and Extraction Exercise (IREX) project for

Japanese [Sekine and Isahara, 1999]. Also, the HAREM was the first evaluation contest

for Portuguese NER [Santos et al., 2006]. The Conferences on Computational Natural

Language Learning (CoNLL 2002 and CoNLL 2003) included shared tasks on NER in four

languages: English, German, Dutch and Spanish. Arabic was one of the three languages

that were investigated in the task of entity detection and recognition in the Automatic

Content Extraction Program (ACE) [Doddington et al., 2004].

3.2 Types of Named Entities (NEs)

The three most studied types of named entities in the literature are Person, Location, and

Organisation [Sekine et al., 2002; Tjong Kim Sang and De Meulder, 2003]. These types were

collectively called “ENAMEX” at the 1996 MUC-6 competition. MUC-6 also introduced the

“TIMEX” and “NUMEX” types, which cover Date, Time, Money, and Percent [Grishman

and Sundheim, 1996].

Furthermore, the CoNLL conferences added the type Miscellaneous (MISC) to include
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all proper names that were not covered by “ENAMEX” types (i.e., Person, Location, and

Organisation) [Tjong Kim Sang, 2002; Tjong Kim Sang and De Meulder, 2003]. Examples

of proper names covered by Miscellaneous (MISC) are nationalities (e.g., English, Brazilian,

...etc), and events (e.g., 2016 Summer Olympics, the World Cup 2014, ...etc). The detailed

list of CoNLL-2003 NE types can be found in Appendix B.

Five entity types were presented at ACE 2003: Person, Organization, Location, Facility,

and Geo-Political entity. The Facility entity referred to permanent man-made structures

and buildings. Geo-Political entities represented geographical regions defined by political

and/or social groups [Strassel et al., 2003]. This set of entity types was extended in ACE

2004 to include Weapon and Vehicle. Another 40 subtypes were also introduced by ACE

2004. At ACE 2005, three subtypes - Individual, Group, and Indeterminate - were added

to the type Person. Table 3.1 illustrates the types and subtypes of ACE 2005.

Entity Types Entity Sub-types

Person(PER) Group, Indeterminate, Individual

Organisation(ORG) Commercial, Educational, En-
tertainment, Government,
Media, Medical-Science, Non-
Governmental, Religious, Sports

Location(LOC) Address, Boundary, Celestial, Land-
Region-Natural, Region-General,
Region-International, Water-Body

Facility(FAC) Airport, Building-Grounds, Path,
Plant, Subarea-Facility

Geo-political entities(GPE) Continent, County-or-District,
GPE-Cluster, Nation, Population-
Center, Special, State-or-Province

Weapon (WEA) Biological, Blunt, Chemical, Ex-
ploding, Nuclear, Projectile, Sharp,
Shooting, Underspecified

Vehicle (VEH) Air, Land, Subarea-Vehicle, Under-
specified, Water

Table 3.1: ACE 2005 entity types and subtypes.

Many hierarchies of named entity types are presented in the literature. Brunstein

[2002] proposes a BBN hierarchy that contains 29 types and 64 subtypes, representing
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answer categories for the Question Answering (QA) task. These 29 categories include

slightly modified versions of the five ACE types: Person, Location, Organisation, GPE, and

Facility. For example, museums fall into the Facility category according to ACE annotation

guidelines, but in with Organisation type in BBN categories. The BBN categories also

include the MUC types - Time, Date, Money, and Percent - again with some modifications.

Sekine and Nobata [2004] try to cover most frequent name types and rigid designators in

a newspaper using a named entity hierarchy that includes 200 extended categories and

fine-grained subcategries.

The number of the NEs types continues to rise in parallel with increasing studies ded-

icated to specific domains. So, studies that are interested in bioinformatics usually target

entities from that domain such as Protein, DNA, and RNA. In addition, some types of

named entities are targeted according to specific needs such as handling Course Code, and

Room Number, on University intranet [Althobaiti et al., 2012].

3.3 Annotation Schemes for NEs

According to Leech [1997], annotation is the process of adding linguistic information to an

electronic textual data of spoken and/or written language in order to denote the phenomena

to be studied. Annotating text for the NER task is done at the word level and requires a

human linguist to label each word with its corresponding NE type. The most commonly

used NE tags are already covered in Section 3.2. This section describes the two main

schemes for NE annotation.

3.3.1 Inline annotation

Inline annotation directly places annotations and original text in the same file and has two

main formats.

3.3.1.1 Column-based format

In this format, adopted in CoNLL 2002 and CoNLL 2003, the data consists of two columns

separated by a single space. Each word is put on a single line and there is an empty line
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after each sentence. The first column in each line is the token and the second column is

the NE tag. The tag represents the NE type and its position within entity (e.g., the tag

I-PER is used for tokens inside an NE chunk of type Person). There are various forms of

NE chunks representation illustrated as follows:

• IOB1: Tokens tagged with O are Outside of NEs and the I tag is used for tokens

Inside NEs. The first token inside an NE chunk immediately following another NE

chunk of the same type receives a B tag.

Apple I-ORG

Inc. I-ORG

is O

a O

technology O

company O

headquartered O

in O

Cupertino I-LOC

California B-LOC

• IOB2: It is same as IOB1, except that a B tag is used to mark the beginning of an

NE chunk.

Apple B-ORG

Inc. I-ORG

is O

a O

technology O

company O

headquartered O

in O

Cupertino B-LOC

California B-LOC

• IOE1: An E tag is used to mark the last token of an NE chunk immediately preceding

another NE chunk of the same type. The I is used for tokens Inside an NE chunk.

The O tag is for tokens Outside of NEs.
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Apple I-ORG

Inc. I-ORG

is O

a O

technology O

company O

headquartered O

in O

Cupertino E-LOC

California I-LOC

• IOE2: IOE2 is same as IOE1, except that an E tag is used to mark every token,

which exists at the end of the NE chunk.

Apple I-ORG

Inc. E-ORG

is O

a O

technology O

company O

headquartered O

in O

Cupertino E-LOC

California E-LOC

• BILOU: An L tag marks the last token of an NE chunk containing more than or

equal to two tokens, and U marks a unit-token NE chunk (i.e., NE chunk containing

a single token). The B, and I, are used for tokens at the beginning, and inside an NE

chunk. The O tag is for tokens Outside NEs. BILOU is also known in the literature

as BEISO representation, where S (single) is used instead of U,and E (end) is used

instead of L [Kudo and Matsumoto, 2001; Ratinov and Roth, 2009].
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Apple B-ORG

Inc. L-ORG

is O

a O

technology O

company O

headquartered O

in O

Cupertino U-LOC

California U-LOC

IOB1 was first introduced as a representation of text chunks by Ramshaw and Marcus

[1995] and was used for base NP chunking. IOB2, IOE1, and IOE2 are three alternatives to

IOB1 first introduced by Sang and Veenstra [1999]. In CoNLL 2002, the chunk tag format

IOB2 was adopted for NE task, while CoNLL 2003 used the IOB1 format.

3.3.1.2 SGML format

SGML (Standard Generalized Markup Language) is used to specify tag sets and document

markup language. In the MUC evaluation campaigns, the markup was defined in SGML

Document Type Descriptions (DTDs) and used to annotate named entities in the text.

The NE annotations are enclosed in angled brackets; SGML tag elements represent the NE

categories, while subcategories are represented by an SGML tag attribute. The following

shows the SGML format for the example sentence:

Apple Inc. is a technology company headquartered in Cupertino California.

<ENAMEX TYPE=“ORGANISATION” >Apple Inc. </ENAMEX >is a technology com-

pany headquartered in <ENAMEX TYPE =“LOC” >Cupertino </ENAMEX ><ENAMEX

TYPE =“LOC” >California </ENAMEX >

3.3.2 Standoff annotation

Standoff annotation is used to separate annotations from the primary data they refer to.

Primary data can be the original text or other annotation layers [Thompson and McK-

elvie, 1997]. The ACE program made use of the XML-based stand-off annotation format
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since complex representations of IE tasks were required. Figure 3.1 illustrates the ACE

annotation format for the aforementioned sentence example.

Apple Inc. is a technology company headquartered in Cupertino California.

<entity ID="E1" TYPE="ORG" SUBTYPE="Commercial" CLASS="SPC"> 

  <entity_mention ID="E1-1" TYPE="NAM" LDCTYPE="NAM"> 

    <extent> 

      <charseq START="1" END="11"> Apple Inc. </charseq> 

    </extent> 

    <head> 

      <charseq START="1" END="11"> Apple Inc. </charseq> 

    </head> 

  </entity_mention> 

  <entity_attributes> 

    <name NAME="Apple Inc."> 

      <charseq START="1" END="11"> Apple Inc. </charseq> 

    </name> 

  </entity_attributes> 

</entity> 

<entity ID="E2" TYPE="GPE" SUBTYPE="Population-Center" CLASS="SPC"> 

  <entity_mention ID="E2-1" TYPE="NAM" LDCTYPE="NAM" ROLE="LOC"> 

    <extent> 

      <charseq START="53" END="62"> Cupertino </charseq> 

    </extent> 

    <head> 

      <charseq START="53" END="62"> Cupertino </charseq> 

    </head> 

  </entity_mention> 

  <entity_attributes> 

    <name NAME="Cupertino"> 

      <charseq START="53" END="62"> Cupertino </charseq> 

    </name>  

  </entity_attributes> 

</entity> 

<entity ID="E3" TYPE="GPE" SUBTYPE="State-or-Province" CLASS="SPC"> 

  <entity_mention ID="E3-1" TYPE="NAM" LDCTYPE="NAM" ROLE="LOC"> 

    <extent> 

      <charseq START="63" END="73"> California </charseq> 

    </extent> 

    <head> 

      <charseq START="63" END="73"> California </charseq> 

    </head> 

  </entity_mention> 

  <entity_attributes> 

    <name NAME=" California"> 

      <charseq START="63" END="73"> California </charseq> 

    </name> 

  </entity_attributes> 

</entity> 

Figure 3.1: ACE stand-off annotation sample.
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3.4 Evaluation Measures for NER

NER systems are evaluated based on a comparison of their output and that of human

experts. Thus, several measures have been defined to evaluate the quality of NER systems

against manually annotated data. However, the three evaluation measures most widely

used at the conferences and evaluation campaigns of the NE task are: Precision, Recall,

and Fβ [Chinchor, 1998; Marsh and Perzanowski, 1998; Tjong Kim Sang and De Meulder,

2003]. These measures can be computed as follows:

Precision =
Number of detected NEs that are correctly classified by the system

Number of NEs that are detected by the system
,

Recall =
Number of detected NEs that are correctly classified by the system

Number of actual NEs in the gold standard corpus
.

Fβ = (β2 + 1)
Precision*Recall

β2 ∗ (Precision + Recall)

where β is the the relative weight of precision and recall. It is set to 1 when the precision

and recall are the same weight. In this case, the measure is called the traditional F-measure

or balanced F-score and can be expressed as follows:

Fβ=1 = 2 ∗ Precision*Recall

(Precision + Recall)

Next, we illustrate the scoring techniques used in various evaluation campaigns, taking

into account different ways of dealing with various errors produced by the NER systems as

shown in Table 3.2.

MUC: NER systems are evaluated in MUC conferences for type and span. Type refers

to the system’s ability to classify the detected NE correctly and span indicates the system’s

ability to predict the full span of the detected NE. So, the system wins two points when
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Table 3.2: Types of errors produced by NER systems.

it is able to predict the full span of an NE and classify it correctly. On the other hand,

one point is given to the system when it manages to only identify the full boundaries of

the detected NE, but fails to assign the correct type. This evaluation technique tests all

possible errors that the system might produce.

CoNLL: Evaluation in CoNLL does not give partial credit, but requires an exact match

of type and span. So, the scoring process only awards points when the system predicts the

full span of an NE and classifies it correctly. This is useful for some systems and applications,

but not for generic applications. For example, some applications in the bioinformatics field

need to determine whether or not a particular sentence contains a specific gene. In this

case, only information about NE existence in the sentence is required, but detecting the

full span of an entity name is not [Tsai et al., 2006].

ACE: Evaluation in ACE is complex because the ACE program defines complex tasks

(e.g., Mention Detection (MD), Co-reference Resolution), which are extensions of NER. In

addition, many subtypes are taken into consideration when detecting entities. The organis-

ers of the ACE program have chosen a measure called ACE-value to score the performance
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of participants. This measure assigns different weights to different types and different levels

of entity mentions (pronominal, nominal, or named entity mentions). Moreover, different

penalties are also assigned to different types of errors of the MD and Co-reference systems.

ACE evaluation may be the most powerful evaluation scheme currently available. However,

it is extremely complex and makes error analysis difficult.

3.5 Approaches to NER

Although the research aiming to identify NEs in running text started in 1991 [Rau, 1991],

it has grown quickly and steadily since the first IE competitions dedicated to the task in

1995 [Grishman and Sundheim, 1996]. Since then, many studies participating in different

conferences and journals have contributed to the field. Work on English preceded work on

other languages. Thus, this section is dedicated to the presentation of recent and important

English NER works, which have achieved milestones in the evolution of NER research.

Early studies on NER were mainly based on handcrafted rules. For example, five

systems out of eight in the MUC-7 competition were rule-based systems [Nadeau and Sekine,

2007]. Many of the Rule-based systems outperformed other participants in the MUC-6 and

MUC-7 competitions [Marsh and Perzanowski, 1998; Sundheim, 1996]. Machine learning

techniques, however, have played an important role in moving NER research forward by

providing different learning methods, as explained in the following sections.

3.5.1 Supervised Learning

Supervised learning (SL) has been the dominant technique for NER since 1997 [Pantel

and Pennacchiotti, 2006]. Nymble [Bikel et al., 1997] and IdentiFinder [Bikel et al., 1999],

developed by BBN using the Hidden Markov Model (HMM), are two of the earliest NER

systems that utilised machine learning techniques. Other widely used supervised learning

techniques are Maximum Entropy (ME) [Borthwick et al., 1998], Decision Trees [Sekine

et al., 1998], Support Vector Machines (SVMs) [Isozaki and Kazawa, 2002], and Conditional

Random Fields (CRFs) [McCallum and Li, 2003].
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The general approach of supervised learning is to train a model on a large collection of

annotated data and to study the features of positive and negative examples. The trained

model captures examples that have the same features of annotated data on unseen examples.

Therefore, the performance of a supervised system depends on the collection of annotated

data. That is, good systems require a large amount of manually annotated training corpora

with high coverage [Mihalcea and Chklovski, 2003]. Formally, the sequence of tokens in the

unstructured text is denoted as X = x1...xn. Each xi has to be classified into one of a set

Y of labels. This gives a tag sequence Y = y1...yn. A labelled example is the pair < x, y >

and the set of n training examples is taken from the space (X ×Y ). The training set could

be written as < x1, y1 >,< x2, y2 >, ... < xn, yn >. Each feature can be thought of as a

function f : (x, y, i) 7→ R that takes as its argument the sequence xi, and returns a real-

value capturing features of the ith token and its neighbouring tokens when it is assigned

label y [Jones, 2005].

Although a considerable amount of annotated data is available for many languages,

including Arabic [Zaghouani, 2014], changing the domain or expanding the set of classes

always requires domain-specific experts and new annotated data, both of which demand

time and effort. For example, Althobaiti et al. [2012] developed a classifier to recognise the

three named entities, which are constantly referenced in the University domain: Person,

Room Number, and Course Code. A person name is considered a common named entity,

while Course Code and Room Number are specific to the University domain, which required

building a specific corpus that contained manually annotated course codes and room num-

bers. Therefore, much of the current research on NER focuses on approaches that require

minimal human intervention such as semi-supervised learning [Abney, 2010; Nadeau et al.,

2006] and distant learning [Mintz et al., 2009; Nothman et al., 2013].

3.5.2 Semi-supervised Learning

Semi-supervised Learning (SSL) [Abney, 2010] has been used for various NLP tasks, in-

cluding NER [Chapelle et al., 2006; Collins and Singer, 1999]. Bootstrapping is the most

common semi-supervised learning technique [Nadeau and Sekine, 2007]. It involves a small
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degree of supervision, such as a set of seeds, to initiate the learning process [Nadeau and

Sekine, 2007]. An early study that introduced mutual bootstrapping and proved highly

influential is [Riloff and Jones, 1999]. They presented an algorithm that begins with a set

of seed examples of a particular entity type (e.g., London is entity of type City). Then, all

contexts (e.g., “the city of <X >”, “hotels in <X >”) found around these seeds in a large

corpus are compiled, ranked, and used to find new examples.

Pasca et al. [2006] use the same bootstrapping technique as Riloff and Jones [1999], but

apply the technique to very large corpora (100 million web documents). They demonstrate

that starting from a seed of 10 example facts, it is possible to generate one million facts

with a precision rate of 88%. They also use distributional similarity to generate synonyms

(words with the same semantic class), which allows pattern generalisation. For example,

the word Brazilian, in the pattern (<NE >is a Brazilian writer born in <NE >), can be

replaced with similar words (Japanese, Chinese, Mexican, and Portuguese), resulting in

the induction of new patterns such as (<NE >is a Japanese writer born in <NE >).

Etzioni et al. [2005] propose a system called “KnowItAll” that aims to automate the

process of extracting large collections of facts, such as names of cities, movies, or scientists

from the web in a domain-independent and scalable manner. The system has the ability to

extract information without any manually labelled training instances, starting with a set

of classes (such as City, Country,...etc) and a set of generic extraction patterns to generate

candidate facts. For example, the generic pattern ’NP1 such as NPList2’ indicates that

the head of each simple noun phrase (NP) in the list ‘NPList2’ is a member of the class

named in ‘NP1’. So for the class City, KnowITAll extracts four candidate cities from

the sentence “Tours are provided to cities such as London, Paris, Berlin, and Madrid”. In

order to automatically test the plausibility of the candidate extracted facts, KnowItAll uses

Pointwise Mutual Information (PMI) statistics to measure the dependence between each

extracted fact and the automatically generated discriminator phrases associated with the

class (such as “X is a city” for the class City). Figure 3.2 shows the flowchart of the main

components in KnowItAll. The system depends on three methods to boost the system’s

recall and extraction rate without sacrificing precision: (1) pattern learning that learns
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domain-specific extraction rules and enables additional extractions, (2) sub-class extraction

that automatically determines sub-classes in order to improve recall (e.g., ‘Chemist’ and

‘Biologist’ are specified as sub-classes of ‘Scientist’), and (3) list extraction that locates

lists of class instances, learns a wrapper for each list, and extracts list elements using the

wrapper [Etzioni et al., 2005]. .

Figure 3.2: Flowchart of KnowItAll system [Etzioni et al., 2005].

Nadeau et al. [2006] present a semi-supervised NER system that handles more than

the three classical named-entity types (Person, Location, and Organisation) and is made of

two modules. The first module is used to automatically create large gazetteers of entities

by retrieving pages with a set of seeds and applying a web page wrapper to identify the

location of specific types of information within a web page. The second module is used

to disambiguate entities based on heuristics. The MUC-7 corpus is used to evaluate the

system, which outperforms baseline supervised systems, but it still can not compete with

more complex supervised systems.

Liao and Veeramachaneni [2009] propose a simple semi-supervised learning algorithm

using Conditional Random Fields (CRF). Their algorithm improves the performance of the

NER system by incorporating knowledge from unlabelled text. So, the algorithm starts

with a small amount of labelled data ( L) and a classifier Ck that is trained on L. A large

unlabelled corpus U from the test domain is exploited by automatically and gradually
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adding new training data D from U to L, provided that L has two properties: 1) L is

accurately labelled, so that the labels assigned by automatic annotation of the selected

unlabelled data are correct, and 2) L is not redundant, so that the new data is from regions

in the feature space that the original training data set does not adequately cover. Thus,

the classifier Ck is expected to get better monotonically as the training data gets updated

through k iterations.

Baroni et al. [2010] present an algorithm that automatically identifies the most distinc-

tive properties of each concept from naturally occurring text, which requires no supervision

and minimal pre-encoded knowledge (POS tagging, lemmatisation of the corpus, and a set

of extraction templates defined over POS sequences). So, given a list of concepts and a

corpus, the algorithm constructs structured representations of the concepts in two phases.

In the first phase, the algorithm uses pattern filtering to identify and score potential prop-

erties of the concepts. In the second phase, the algorithm generalises the strings connecting

each scored concept-property pair and assigns a type to each of them. The properties are

scored based on the number of distinct patterns connecting them to a concept, rather than

on the number of co-occurrences in the corpus. This is based on the fact that the variety of

patterns connecting a potential property and a concept is a good indicator of the presence

of a true semantic link.

3.5.3 Distant Learning

Distant learning (DL) is another popular paradigm that avoids the high cost of supervi-

sion. It depends on the use of external knowledge (e.g., encyclopedias such as Wikipedia,

unlabelled large corpora, or external semantic repositories) to increase the performance of

the classifier, or to automatically create new resources for use in the learning process.

Kazama and Torisawa [2007] used Wikipedia to improve the accuracy of their CRF-

based NE recogniser. So, they exploited the first sentence of each Wikipedia article to

automatically create lists of category labels, which were used as features in the NE recog-

niser. In order to create these lists, they retrieved the corresponding Wikipedia entry for

each candidate word sequence in the CoNLL 2003 data set. Then, they used a noun phrase
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following forms of the verb “to be” to derive a label. For example, their method associated

the Wikipedia entry “Apple Inc.” to the category label “company” using the noun phrase

following the verb “is” in the first sentence of the Wikipedia article “Apple Inc. is an

American multinational technology company”.

The automatic creation of training data using external knowledge has also been inves-

tigated in many studies. An et al. [2003] extracted sentences containing listed entities from

the web and produced a 1.8 million Korean word data set. Their corpus performed as well

as manually annotated training data.

Nothman et al. [2008] exploited English Wikipedia to create a massive corpus of named

entity annotated text. They transformed Wikipedia’s links into named entity annotations

by classifying the target articles into standard entity types (i.e, Person, Location, and Or-

ganisation). In order to classify Wikipedia articles, they used a semi-supervised bootstrap-

ping approach with heuristics based primarily on two features: category head nouns and

definitional opening sentences of articles. The bootstrapping approach starts by extracting

the features from each article. Iteratively, confident mappings from feature to NE type are

inferred from classified articles. Then, the classifier is again applied to all of Wikipedia.

The Wikipedia-derived corpora they automatically constructed using the aforementioned

methodology tend to perform better than other cross-corpus train/test pairs in comparison

with MUC, CoNLL, and BBN corpora.

Richman and Schone [2008] used a method similar to that presented by Nothman

et al. [2008] in order to automatically create NE annotated data in six languages: French,

Ukrainian, Spanish, Polish, Russian, and Portuguese. Their approach involved classifying

English Wikipedia articles and using Wikipedia inter-language links to deduce the clas-

sifications in corresponding articles of other languages. With these classifications, they

automatically created annotated Wikipedia articles. Then, they used the generated corpus

as training sets for a variant of BBN’s Identifinder in French, Polish, Portuguese, Rus-

sian, Spanish, and Ukrainian. Their NER classifier trained on a Spanish corpus built from

Wikipedia articles achieved overall F-measure as high as 84.7% on gold-standard corpora,

comparable to an NER classifier trained on up to 40,000 words of a gold-standard newswire
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data set.

Rather than using outgoing links of Wikipedia to derive NE annotations as in the

study of Richman and Schone [2008], Mika et al. [2008] used attribute-value pairs found in

infoboxes. For example, Wikipedia article ‘Apple Inc.’ has an infobox which contains Prod-

ucts as an attribute and Mac, iPad, and iPhone as values. [attribute - value] –>[Products

- Mac, iPad, and iPhone]. For each value in the infobox pairs, the system locates its in-

stances in the Wikipedia article’s text, and tags them with the corresponding attribute.

They used a CoNLL-trained NER tagger to tag English Wikipedia text, which helped map

infobox attributes into NE types. Then, they used this mapping to project NE types onto

the labelled instances in the text, which made up the NE training data. The evaluation

process revealed that their automatic training data did not exceed the gold-standard clas-

sifier on Wikipedia data, but combining their automatic and gold-standard annotations in

the training phase outperformed the gold-standard classifier alone.

Nothman et al. [2013] developed a method that automatically created massive, multilin-

gual training annotations for named entity recognition by exploiting the text and internal

structure of Wikipedia. They first categorised Wikipedia articles into a specific set of named

entity types, training and evaluating on 7,200 manually-labelled Wikipedia articles across

nine languages: English, German, French, Italian, Polish, Spanish, Dutch, Portuguese, and

Russian. Their cross-lingual approach achieved up to 95% accuracy. Then, they trans-

formed Wikipedia’s links into named entity annotations according to the NE type of the

target articles. This technique produced reasonable annotations, but was not immediately

able to compete with existing gold-standard data. They better aligned their automatic an-

notations to the gold standard corpus by deducing additional links and heuristically tweak-

ing the Wikipedia corpora. Following this approach, millions of words were annotated in

the aforementioned nine languages. Their method for automatically deriving corpora from

Wikipedia outperformed the methods proposed by Richman and Schone [2008] and Mika

et al. [2008] when they tested their Wikipedia-trained models on CONLL shared task data

and other gold-standard corpora. When evaluated on manually annotated Wikipedia text,

their Wikipedia-trained models also significantly outperformed gold-standard newswire-
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trained models by 10-12% in terms of F-measure.

3.5.4 Combination of Multiple Classifiers

The combination of multiple learning algorithms (i.e., ensemble learning) is the process by

which multiple models, such as classifiers or experts, are combined in order to obtain better

predictive performance than could be obtained from any of the constituent models or to

reduce the likelihood of an unfortunate selection of poor decisions [Opitz and Maclin, 1999;

Polikar, 2007].

We are not aware of any previous work combining minimally supervised methods (e.g.,

semi-supervised learning, distant learning) for NER tasks in Arabic or any other natural

language, but there are many studies that have examined classifier combination schemes

to combine various supervised-learning systems. Florian et al. [2003] presented the best

system at the NER CoNLL 2003 task, with an F-measure value equal to 88.76%. They used

a combination of four diverse NE classifiers: the transformation-based learning classifier, a

Hidden Markov Model classifier (HMM), a robust risk minimisation classifier based on a

regularised winnow method [Zhang et al., 2002], and an ME classifier. The features they

used included tokens, POS and chunk tags, affixes, gazetteers, and the output of two other

NE classifiers trained on richer data sets. Their methods for combining the results of the

four NE classifiers improved the overall performance by 17-21% when compared with the

best performing classifier.

Benajiba et al. [2008b] examined the impact of using different sets of features for each

NE type instead of simultaneously using a single set of features for all NE types. So, they

created a classifier for each NE type that was independently based on an optimal feature

set, and then combined the different classifiers for a global NER system. An incremental

feature selection method was used to select an optimised feature set and to observe the

errors. In order to create a classifier for each NE type, they adopted two discriminative

approaches: Support Vector Machines (SVMs) and Conditional Random Fields (CRFs).

They investigated many sets of features for each NE type in isolation first, then they

ranked the features according to the best performance of the two classifiers for each NE
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type. In total, 16 features representing the lexical, contextual, morphological, gazetteer,

and shallow syntactic features were examined. Finally, the classifications of all individual

classifiers (one classifier per NE type) are combined. In case of conflicts, where the same

token was annotated as two different NE types, they used a simple heuristic based on the

classifier precision for that specific tag, favoring the tag with the highest precision. The

evaluation process was conducted using the ACE data sets. They concluded that each

feature plays a role in recognising the NE to different degrees and each NE type is sensitive

to different features. The best system’s overall performance in terms of F-measure was

83.5%, 76.7%, and 81.31% for ACE 2003, ACE 2004, and AC 2005 respectively. The study

also reported that it can not be concluded whether CRFs is better than SVMs or vice versa.

Saha and Ekbal [2013] studied classifier combination techniques for various NER models

under single and multi-objective optimisation frameworks. They used seven diverse clas-

sifiers - näıve Bayes, decision tree, memory based learner, HMM, ME, CRFs, and SVMs

- to build a number of voting models based on identified text features that are selected

mostly without domain knowledge. The combination methods used were binary and real

vote-based ensembles. They reported that the proposed multi-objective optimisation classi-

fier ensemble with real voting outperforms the individual classifiers, and the corresponding

single-objective classifier ensemble.

3.6 Summary

In this chapter we presented an overview of the essential aspects of the NER research such

as the annotation schemes and the standard evaluation metrics. We also covered the NE

classes and hierarchies defined in many IE competitions. We then discussed the different

techniques that have been used in NER systems and the challenges they constantly face.

In addition, we discussed the direction of the current research of which the main effort is

to overcome the disadvantages of traditional techniques and reduce annotation labor.
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Arabic Named Entity Recognition

The previous chapter presented the essential aspects of NER such as the standard definition,

annotation schemes, formal evaluation metrics, and NE classes that were proposed in the

research and key evaluation campaigns. We also presented the state-of-the-art in NER, the

current challenges, the new approaches and the possible directions of future research.

This chapter describes in detail the approaches used in Arabic NER, including the recent

research. The characteristics of Arabic that make Arabic NER a challenge are presented

with examples in Section 4.1. The types of NEs and the domains covered by the available

linguistic resources are explained in Section 4.2. The basic computational tasks that are

considered essential preprocessing steps for most Arabic NER in the literature are described

in detail with lists of their commonly-used tools in Section 4.3 and Section 4.4. Section 4.5

shows the approaches used in Arabic NER research.

4.1 Challenges for Arabic NER

Arabic poses many challenges to NLP that originate in the language’s complex nature (see

Chapter 2). The following section summarises the difficulties that may arise during Arabic

NLP tasks in general and Arabic NER in particular:

• Capitalisation is not used in Arabic, which makes determining proper nouns in the

text difficult. Benajiba et al. [2007] assert in their study that the main obstacle to

obtaining high performance in Arabic NER is the absence of capital letters. Although

exploiting English translation of Arabic words might be useful in some cases [Farber
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et al., 2008], it is not a complete alternative to capitalisation because it depends on

the translation process.

• Arabic is characterised by a rich morphology with a large set of features (see Chapter

2). This complex morphology causes what is called data sparseness or data insuffi-

ciency, which means that the ratio of vocabulary size to the total number of words

is very high because multiple affixes attach to the same word. For example, the five

rows in Table 4.1 refer to one word but appear to be five different words because of

the different clitics attached to the word. As a result, Arabic words and contexts may

appear in different forms, further complicating the classification of NEs. To cover

all different word forms and contexts, a huge training corpus is required to achieve a

reasonable performance [Benajiba and Rosso, 2008].

Arabic Word English Translation
	àY	JË London

	àY	JÊË to London

	àY	JÊ 	̄
then London

	àY	JËð and London

	àY 	JÊK. in London

Table 4.1: Data sparseness in Arabic due to clitics.

• Short vowels in the form of diacritical marks are required in Arabic for pronuncia-

tion and disambiguation. However, modern Arabic texts are usually written without

diacritical marks. This absence of diacritical marks causes the structural and lexical

ambiguity of some words. This is attributable to the fact that a word form in Ara-

bic may have two or more meanings depending on the context in which they appear

[Oudah and Shaalan, 2012]. For example, when the diacritical marks are absent, the

word AÖÏ may refer to the person’s name A �Ü
�
Ï lamaa “Lama”, or to the word A �ÜÏ� limaa

“Why”, or to the word A ��Ü
�
Ï lammaa “When”. Therefore, complex processing is required

to analyse the text syntactically.

• Some Arabic names are ambiguous out of context since most names in Arabic have an
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interpretation as a common noun, adjective, or even verb as shown in Table 4.2. This

characteristic of the Arabic language along with the absence of capitalisation make

the list lookup strategies for detecting Arabic NEs less effective and more complex

because ambiguity should be removed not only between different types of NEs but

also between NEs and other regular words in the text.

  

سعيد  
الولد سعيد  

 ذهب سعيد إلى الجامعة

أمل   
الأمل هو الحياة  

 زارت أمل صديقتها

صالح    
  هذا رجل صالح

 يقرأ صالح الكتاب

 

 

 

  

Table 4.2: Examples of personal Arabic names that can be nouns or adjectives.

• There are some Arabic letters that are commonly misspelled and appear in many

variant forms. For instance, in some Arab countries, the letter ø
 yaa’ is often written

without dots. This changes the meaning and makes yaa’ look like the letter ø alif

maqSuwrah [Habash, 2010]. On the other hand, ø alif maqSuwrah might also be

written mistakenly as a bare alif. For Example, the word úÎ« without dots is the

preposition “on” while ú
Î« with dots is the person’s name “Ali”.

• The orthography of Modern Standard Arabic (MSA) has been standardised for a long

time now [Habash, 2010]. However, some differences persist across Arab writers. For

example, there are two common spellings of the proper nouns of some geographic

entities ending with an /a/ vowel such as Syria and Africa. Standard hamzah spelling

rules in Arabic also have some exceptions. In some Arab countries, for example,

the hamzah in the word Èð ñ�Ó “responsible” is commonly written above a dotless
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yaa’ ÈñJ�Ó. In addition, the spelling of loanwords may likely vary according to the

differences in vowel spelling. Some people prefer to use short vowels when writing

loanwords in the Arabic script, while others prefer to use long vowels. For example,

ÕÎJ

	̄

fylm “Film” might also be written: ÕÎ 	̄
film [Habash, 2010]. These inconsistencies

increase the problem of data insufficiency, especially if the data set is not large enough

in the training phase. Many examples can be shown in Table 4.3.

 سوريا

 سورية

 افريقيا

 افريقية

مـيلــف  

مــلــف  

 أستوديو

 أستديو
 

 

  

Table 4.3: Examples of Arabic orthography variations.

4.2 Available Linguistic Resources: Textual Genre and NE

types

Large annotated corpora and gazetteers are essential when implementing and evaluating

Arabic NER systems [Abdul-Hamid and Darwish, 2010; Benajiba et al., 2007; Darwish,

2013]. Unfortunately, it is not easy to access comprehensive and updated lists of freely

available Arabic corpora, as they are scattered in various personal and research groups

sites [Zaghouani, 2014]. Language data providers, such as the Linguistic Data Consortium

(LDC) and the Evaluations and Language Resources Distribution Agency (ELDA), provide
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updated and comprehensive lists of corpora, but they are not always free and sometimes

require calendar-year membership to access to the corpora released in specific years.

Publicly available corpora are preferable in order to make comparisons between NER

systems easier and rank them according to their annotation capability. One of the earli-

est publicly available corpora for Arabic NER is ACE data sets, which are developed and

annotated by the Linguistic Data Consortium (LDC) as part of the Automatic Content Ex-

traction (ACE) program. The ACE data released in 2003 includes Broadcast News (BN)

and Newswire (NW) genres and contains around 55K tokens. The ACE 2004 corpus in-

cludes BN and NW from Arabic Treebank (ATB) genres and contains around 155K. An

additional genre, WebLogs (WL), was added in ACE 2005 which contains around 113K

tokens. The ACE corpora are available under paid license agreements, which makes access-

ing and utilising them difficult for the researcher [Benajiba et al., 2009; Doddington et al.,

2004].

ANERcorp1 is the first freely available Arabic NE annotated corpora that is considered a

standard data set to evaluate and compare different NER systems in the literature [Abdallah

et al., 2012; AbdelRahman et al., 2010; Benajiba et al., 2008b; Darwish, 2013; Oudah and

Shaalan, 2012]. A collection of three gazetteers is also released with ANERcorp, containing

names lists of Person (2,309 names), Location (1,950 names), and Organisation (262 names).

ANERcorp is derived from the newswire domain and covers the CoNLL four classes: Person,

Location, Organisation and Miscellaneous. ANERcorp contains approximately 150K tokens

(11% of the tokens are NEs) and follows the framework used to build the training and

test data sets in the CONLL 2002 conference. So, each token of the data set is tagged as

belonging to one of the following classes: B-PER, I-PER, B-LOC, I-LOC, B-ORG, I-ORG,

B-MISC, and I-MISC where B indicates the Beginning of the entity name and I indicates

the continuation (Inside) the entity name. PER, LOC, ORG indicate Person, Location and

Organisation name respectively. The name of an entity that does not belong to any of the

three previous mentioned classes will be given the tag MISC. The ANERcorp data set is

composed of ANERcorp training set (80% of the data set), and ANERcorp test set (20%

1ANERcorp is available at http://www1.ccls.columbia.edu/~ybenajiba/downloads.html.
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of the data set) [Benajiba et al., 2007].

Another free NER corpus available online is a set of Arabic Wikipedia articles manually

annotated for named entities by Mohit et al. [2012] as part of AQMAR (American and

Qatari Modelling of Arabic) project. The AQMAR2 corpus contains 74k tokens, derived

from 28 Arabic Wikipedia articles and representing four domains: history, science, tech-

nology, and sports. Each article was tagged by 1 of 2 annotators, who were encouraged

to think of up to 3 article-specific entity classes to be added to the standard four (Person,

Organisation, Location, and generic Miscellaneous). For example, the Wikipedia article

Computer Software in AQMAR corpus has, in addition to the standard four classes (PER,

ORG, LOC, and MIS-0), three more classes (added by annotators): MIS-1 for English en-

tities, MIS-2 for name of software (e.g. Microsoft Word), and MIS-3 for name of computer

component (e.g. CPU).

A recent survey for identifying free Arabic language resources reported only two NE

annotated corpora that are available for free, ANERcorp and AQMAR, and four different

sets of gazetteers: JRC-Names3, Named Entity Translation Lexicon (NETLexicon)4, Arabic

Named Entities List (ArabicNEs)5, and ANERgazet6 [Zaghouani, 2014].

The fine-grained NE corpora for Arabic most recently released are WikiFANESelective

and WikiFANEWhole
7. The two corpora are automatically collected from the Arabic version

of Wikipedia by Alotaibi and Lee [2013]. The ACE (2008) taxonomy of named entities is

used for WikiFANE corpora with some modifications. The modifications include adding

one new class “Product” and 9 fined-grained classes to the Person class: Politician, Athlete,

Businessperson, Artist, Scientist, Police, Religious, Engineer, and Other. WikiFANEWhole

contains all sentences retrieved from Wikipedi articles, composing of 2,023,496 tokens. On

the other hand, WikiFANESelective is compiled by selecting only the sentences that have

at least one named entity phrase. The total number of tokens for the compiled corpus is

2,021,177.

2AQMAR is available at http://www.ark.cs.cmu.edu/ArabicNER/.
3JRC-Names is available at https://ec.europa.eu/jrc/en/language-technologies/jrc-names.
4NETLexicon is available at http://nlp.qatar.cmu.edu/resources/NETLexicon/.
5ArabicNEs is available at https://sourceforge.net/projects/arabicnes/.
6ANERgazet is available at http://www1.ccls.columbia.edu/~ybenajiba/downloads.html.
7WikiFANE data sets are available at http://www.arabic-ner.com/.
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Another two fine-grained Arabic NE corpora, NewsFANEGold and WikiFANEGold, were

manually annotated and released by Alotaibi and Lee [2014]. The NewsFANEGold is a

newswire corpus that uses the same textual data appearing in ANERcorp, but has been re-

annotated to the fine-grained level. The WikiFANEGold is drawn from the Arabic version

of Wikipedia and contains 500K tokens. Both of these corpora use the same two-level

taxonomy applied to WikiFANESelective and WikiFANEWhole.

4.3 Basic Computational Tasks

The rich morphology of Arabic causes a set of challenges that should be handled before

developing an NLP system. The following presents the basic computational tasks that are

required to prepare Arabic text in order to perform NER.

4.3.1 Tokenisation

The standard preprocessing step for many NLP tasks is tokenisation, which divides a string

of written language into its component tokens [Jurafsky and Martin, 2009]. Tokens are

usually separated by whitespace characters (e.g., a space or line break ) or by punctuation

marks. For example, tokenisation in English usually involves splitting punctuation marks,

and some affixes like possessives [Chang et al., 2008; Jurafsky and Martin, 2009; Manning

and Schütze, 1999]. On the other hand, morphologically rich languages, like Arabic, re-

quire a more extensive tokenisation process to separate different types of clitics from the

word. This complex tokenisation is usually called word segmentation [Green and DeNero,

2012; Monroe et al., 2014]. Simple tokenisation, which splits text into tokens based on

whitespace and punctuation marks, is usually the first step to produce other word segmen-

tation schemes, as explained in detail in Section 4.3.2. Table 4.4 illustrates how simple

tokenisation works on a text.

49



Chapter 4: Arabic Named Entity Recognition

.فرنسا  في  القدم لكرة   اليورو  بطولة  وستقام  

 
  

فرنسا  .   في  اليورو  لكرة  القدم    وستقام  بطولة  

 

 

 

  

Table 4.4: An example of a simple tokenisation scheme.

4.3.2 Word Segmentation

As already mentioned, Arabic is a highly morphological language with a considerable num-

ber of bound clitics and affixes such as conjunctions, particles, prepositions, and pronouns.

Segmenting bound clitics and affixes reduces data sparsity and simplifies analysis of the

text. These are great benefits for many NLP tasks such as POS tagging. A large num-

ber of possible segmentation levels can be applied to Arabic text, according to the types

of clitics to be split. The optimal segmentation scheme depends entirely on the task and

the implementation of the task itself. So, what is appropriate for NER is not necessarily

appropriate for Machine Translation (MT) [Habash, 2010]. The following is a list of some

commonly used segmentation schemes:

• Decliticisation scheme (D1,D2,D3, and WA): This scheme has three different degrees

and is responsible for splitting off clitics. It was introduced by [Habash and Sadat,

2006]. The first degree, D1, splits off the conjunction clitics that precede the word

(w+...ð ,and f+...� 	̄
) and the infrequent interrogative clitic. D2 does the same as D1,

and also splits off particles (l+...�Ë, k+...�», b+...�K., and s+...��). D3 performs the tasks

of D1 and D2, in addition to splitting the definite article (al+ �Ë @) and all pronominal

enclitics (e.g., ½�...+ak, é�...+hu). WA is a special case of D1 in which the segmenter

splits off only the conjunction clitic (w+...ð).

• Penn Arabic Treebank segmentation (TB): This scheme is similar to D3, but does not

split off the definite article (al+ �Ë @). TB is the scheme that was used in the Arabic

50



Chapter 4: Arabic Named Entity Recognition

Treebank [Maamouri et al., 2004].

• Decliticisation scheme (S2): This scheme was introduced by [Badr et al., 2008]. S2 is

basically similar to D3, except that the split clitics are agglutinated into one prefix

and one suffix, such that any given word is split into three parts: prefix+ stem +suffix.

• Morphemes segmentation scheme (MR): It splits off the word into its stem and affixed

morphemes.

• Lemmas segmentation scheme (LEM): This scheme converts every word to its lemma.

LEM can be used with other segmentation schemes [Habash, 2010].

• English-like segmentation (ENX): It performs decliticisation similarly to D3, but uses

Lemmas and POS tags instead of the regenerated words. The POS tag set is the Bies

reduced Arabic Treebank tag set [Diab et al., 2004; Maamouri et al., 2004].

Table 4.5 provides examples that clarify the differences between the segmentation schemes

mentioned above:

4.3.3 POS Tagging

Part-of-speech (POS) tagging, also called word-category disambiguation, is the process of

assigning appropriate morpho-syntactic tags to every word in a sentence based on the con-

text. The tags are chosen from a comprehensive, well-defined tag set [Habash, 2010]. In

the traditional Arabic POS classification, Arabic words are grammatically analysed into

three main parts-of-speech: verb, noun, and particle [Khoja, 2001]. These three parts-of-

speech can be further sub-categorised into more detailed parts-of-speech that collectively

encompass the whole Arabic language [Haywood and Nahmad, 1962]. The POS tag set for

Arabic can be very large since Arabic has a rich morphology where the words consist of

several segments including inflectional affixes, stems, and clitics. However, there are a vari-

ety of Arabic POS tag sets in which some tag sets are complete and cover all morphological

information, while other tag sets ignore some or all morphological features. In addition,

The tag set size differs depending on whether the text is segmented into morphemes or not
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شركته  . على  ستفرض  التي  الضرائب  ذلك  وسيشمل   

 و+   سيشمل  ذلك الضرائب  التي  ستفرض على  شركته  . 

شركته  . على  ستفرض  التي  الضرائب  ذلك  وسيشمل   

ه  .و+   س+  يشمل  ذلك  الضرائب  التي  س+  تفرض على  شركت      

ة  +ـه و+   س+  يشمل  ذلك  ال+  ضرائب  التي  س+  تفرض على  شرك      
 .  

ـه  .و س+   يشمل  ذلك  ال+  ضرائب  التي  س+  تفرض على  شركة  +         

ـه  .و+   س+  يشمل  ذلك  الضرائب  التي  س+  تفرض على  شركة  +      

و+   س+  ي+   شمل  ذلك   ال+  ضرائب  التي  س+  ت+  فرض على            
  .  شركة  +ـه

شركة  . على  فرض  التي  ضرائب  ذلك  شمل   

ة  على  شرك و+   س+  شمل    ذلك     ال+  ضرائب    التي   س+  فرض    
 VBP NN DT IN NN VBP WP  .  +ـه 

Table 4.5: Examples of different segmentation levels.

(and on which segementation scheme is used). So, the POS tag of an unsegmented word

is constructed by concatenating the POS tags of its tokens. For example, “his house” is

written as one word in Arabic, é�J�
K. baythu. Thus, on one hand, the POS-tag of the word

without segmentation (also known as clitic tokenisation) is NOUN+PRON 3MS. On the

other hand, the word after segmentation consists of two tokens: �I�
K. and è so that the

first token can be tagged as NOUN and the second token can be tagged as PRON 3MS.

Therefore, the possessive pronoun is part of the word tag in the first case, while it is a tag

of its own in the second case. Although there are many different sizes of tag sets, there is

no optimal POS tag set. Every applications has different requirements. That is, the larger

sets can help better in higher order tasks (under gold/oracle conditions) [Habash, 2010],

52



Chapter 4: Arabic Named Entity Recognition

but they tend to be hard to predict accurately [Marton et al., 2010]. The smaller tag sets,

on the other hand, can be predicted accurately, and they are proved to be useful for some

tasks such as Base Phrase Chunking [Diab, 2007a,b]. The following explains some of the

Arabic POS tag sets with different degrees of granularity and sizes.

4.3.3.1 Buckwalter Tag Set

The Buckwalter tag set is a form-based tag set that can be used for tokenised and un-

tokenised text [Habash, 2010]. The untokenised tag set is used by the Buckwalter Arabic

Morphological Analyser (BAMA), which assigns complex tags to untokenised/unsegmented

words. For example, the tag for the Arabic word 	àñÒÊªJ
�ð wsy‘lmwn “and they will know”

is CONJ+FUT+IV3MS+IV+IVSUFF SUBJ:MP MOOD:I. The Buckwalter tokenised tag

set is utilised in the Penn Arabic Treebank (PATB) to assigns tags to tokenised words.

For example, the previously mentioned word 	àñÒÊªJ
�ð wsy‘lmwn “and they will know” can

be segmented to 	àð ÕÎ« ø
 � ð w s y ‘lm wn and then annotated by the following tags:

w/CONJ, s/FUT, y/IV3MS, ‘lm/IV, wn/IVSUFF SUBJ:MP MOOD:I. Both Buckwalter

tokenised and untokenised tag sets use the same basic 70 tags such as CONJ for conjunc-

tion, IV for imperfective verb, and IV<PGN> for imperfective verb prefix. These 70 basic

tags are combined to form morpheme tags, which are concatenated to form the word tags.

Buckwalter tokenised and untokenised tags differ only in the number of basic tags that they

can combine. The CONJ tag, from the above examples, is used as a tag of its own in the

Buckwalter tokenised tag set. In contrast, The CONJ tag is used in the token tags which

constitute the word tag in the Buckwalter untokenised tag set. The tokenised Buckwalter

tag set is around 500 tags or so, while the untokenised Buckwalter tag set might reach

thousands of tags [Bies and Maamouri, 2003]. Several variants of Buckwalter tags are used

in different versions of the PATB as well as the BAMA analyser [Habash, 2010].

4.3.3.2 The Reduced Tag Set (RTS)

The Reduced Tag Set (RTS) is also referred to as the Bies tag set and as the PennPOS tag

set [Diab et al., 2004]. Developers of the RTS Ann Bies and Dan Bikel were inspired by
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the Penn English Treebank POS tag set to reduce the Buckwalter tag set to a manageable

size [Marcus et al., 1993]. The RTS ignores many distinctions in Arabic. For example,

JJ is used for all adjectives regardless of their inflections [Habash, 2010]. In addition,

although Arabic has a rich variety of demonstrative pronouns, as can be seen in Table 4.6,

all demonstrative pronouns are considered DT in the RTS.

هذا   هذه
هذان  هاتان
هذين  هاتين
هؤلاء  هؤلاء

 تلك ذلك
 أولئك أولئك

 

   

 

 

Table 4.6: Arabic demonstrative pronouns.

The Bies tag set is used widely for Arabic POS tagging [AlGahtani et al., 2009; Diab

et al., 2004; Habash and Rambow, 2005; Kulick et al., 2006] although it is considered to be

linguistically rough [Habash, 2010]. Appendix A illustrates the list of 24 tags that compose

the Reduced Tag set.

4.3.3.3 The Extended Reduced Tag Set (ERTS)

The ERTS is a subset of the Buckwalter tokenised tag set and a superset of the RTS tag set

[Habash, 2010]. It encodes all information contained in the RTS tag set as well as additional

morphological features such as number, gender, and definiteness. ERTS consists of 72 tags

instead of 24 tags in standard RTS [Diab, 2009]. For example, nouns in RTS might be

represented as NN or NNS indicating only number, whereas ERTS nouns can be expressed

using definiteness (the presence of the definite article), gender, and number such as DNN,

DNNS, NNF, and NNMDu. In ERTS, D represents the presence of the definite article.
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F and M, defining feminine and masculine respectively, represents the gender. Number

is represented by Du for dual, S for plurals, and the absence of a tag for singular [Diab,

2007a].

4.3.4 Stemming

Stemming is the process of reducing derived or inflected words to their stems or original

roots. Algorithms of stemming are commonly referred to as stemmers [Goldsmith et al.,

2001]. Research shows that Arabic stemming is a specifically challenging task because of

its highly inflected and derivational nature [Aljlayl and Frieder, 2002; Larkey et al., 2002,

2007; Nwesri et al., 2005].

The work on stemming can be divided into two main types according to the aims of the

stemming process. Some work tries to reduce words to their original roots (root-extraction

stemmers), and other work aims to extract and remove affixes (light stemmers). Each type

of stemmer has its own significance. In other words, a stemmer that performs well with

certain applications may perform poorly with others [Aljlayl and Frieder, 2002; El-Beltagy

and Rafea, 2011]. Therefore, researchers can decide which type of stemmers to use in their

systems depending on the applications requirements and the experimental results. The

following explains the root-extraction stemmers and light stemmers in detail with their

advantages and disadvantages.

4.3.4.1 Root-extraction Stemmers

Root-extraction stemmers, which are also known as aggressive or strong stemmers, aim

to reduce words to their original roots. Converting a word to its root may result in the

mapping of many related words to that single root, although each one of these terms has a

unique meaning. This makes the root-extraction stemmer a poor candidate for applications

that require the highly accurate matching of similar words [El-Beltagy and Rafea, 2011;

Goweder et al., 2004].

One of the earliest Arabic root-extraction stemmers is the Khoja’s stemmer developed

by Khoja and Garside [1999] from Lancaster University. This stemmer requires root dictio-
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nary and pattern-matching to find the roots of the words after removing affixes using the

following procedures:

1. Remove diacritical marks used for vowelisation.

2. Remove numbers, punctuation marks, and stop words.

3. Remove the definite article ( È@, the ).

4. Remove the inseparable conjunction ( ð, and ).

5. Remove suffixes.

6. Remove prefixes.

7. Match the resulting word against a list of patterns. If a match is found, extract the

characters in the pattern representing the root.

8. Match the extracted root against a list of “valid” roots.

9. Replace weak letters ( @ ð ø
 ) with (ð).

10. Replace all letters containing hamzah with ( @).

11. Examine two-letter roots to see if they should contain a double character. If so, add

this character to the root [Taghva et al., 2005].

The Khoja’s stemmer is widely used and is now the standard algorithm for root stemming

in Arabic [Sawalha and Atwell, 2008].

4.3.4.2 Light Stemmers

The light stemmer is another type of Arabic stemmer, which reduces words to their stems

instead of their original roots. So, the light stemmer targets a specific subset of prefixes

and suffixes to be removed [Al Ameed et al., 2005; Darwish, 2002; Larkey et al., 2007].

Although a light stemmer can correctly conflate many forms of the same word into one

large group, it can fail to conflate other variants that should go together. For example,
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when using a light stemmer, past tense verbs do not get conflated with their present tense

forms, because they retain some affixes and internal differences [Larkey et al., 2007].

Larkey et al. [2002, 2007] developed a number of light stemmers with small differences

between them. These light stemmers were evaluated on the Text Retrieval Conference

(TREC) data set and the results revealed that light10 stemmer was the best. The following

steps show the procedure followed by light10 stemmer to produce the stem of an input

word:

1. Remove punctuation, diacritical marks, and non-letters.

2. Replace (
�
@ , @� ,

c
@) with ( @).

3. Replace final (ø) with (ø
 ).

4. Replace final (
�è) with ( è).

5. Remove the conjunction (ð, and) provided that the the remainder of the word is 3 or

more characters long.

6. Remove the definite articles (�ÊË , �Ë A�	̄ , �Ë A
�
¿ , �Ë A�K. , �Ë @ �ð , �Ë @) provided that the remainder of

the word is at least two characters long.

7. Remove the suffixes (ø
 , �è , è , �éK
 , éK
 , 	áK
 , 	àð , 	à@ , A �ë) provided that the the remainder of

the word is at least two characters long.

In step 5, Larkey et al. [2007] set the length restriction to overcome the problem of removing

the letter ð waaw, which constitutes part of the word, instead of removing the conjunction

ð wa. However, this restriction on length still does not warrant that this prefix will not be

removed when it should not be.

4.3.5 Arabic Normalisation

A large number of Arabic NLP tasks require the text be free of punctuation or diacritical

marks like commas (,), semi-colons (;), colons (:), exclamation points (!), question marks
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(?), hyphens (-), En dashes (–), apostrophes (’), points of ellipsis (...), Arabic commas (,),

Arabic semi-colons (;), and Arabic question marks (?).

For many NLP applications including NER, another issue that should be addressed in

raw Arabic text is inconsistent variations. For example, different forms of alif ( @ ,

@ ,

�
@ , @)

might be written interchangeably; another example is alif maqSuwrah and the regular

dotted yaa’ (ø
 , ø) which are usually used interchangeably at the final position of the

word. The same is true for taa’ marbuwTah and haa’ ( è , �è). These misspelling errors

in Arabic affect 11% of all words in the Penn Arabic Treebank (PATB) Habash [2010].

The Arabic normaliser should provide a different level of orthographic normalisation that

can be carried out on Arabic text to reduce noise and data sparsity. This includes the

normalisation of different letters that can be written interchangeably.

4.4 Tools for Processing Arabic Text

In the following we present Arabic tools that are used extensively in the literature [Habash,

2010] in order to preprocess the Arabic text when developing NER systems.

4.4.1 AMIRA

AMIRA8 is a statistical toolkit for the computational processing of Arabic morphology. It

is built as a successor to the Asvmt toolkit developed at Stanford University [Diab et al.,

2004; Soudi et al., 2007]. AMIRA uses Support Vector Machines in a sequence modelling

framework. It is based on supervised learning and does not depend explicitly on knowledge

of deep morphology. The toolkit contains a tokeniser (AMIRA-ToK) and a POS tagger

(AMIRA-POS). AMIRA-TOK focuses mainly on clitic tokenisation. So, AMIRA-TOK

segments off the following set of clitics:

• Conjunction proclitics (w+...ð ,and f+...� 	̄
).

• Prepositional proclitics (l+...�Ë, k+...�», and b+...�K.).

• Future marker proclitic (s+...��).

8AMIRA ia available at https://www.flintbox.com/public/project/8335/.
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• Verbal particle proclitic (l+...�Ë).

• Definite article (al+ �Ë @).

• Pronominal enclitics indicating possessive /object pronouns.

More details about segmentation schemes can be found in Section 4.3.1.

AMIRA-POS primarily uses the ERTS POS tag set, but it offers an option to tag

with ERTS or RTS tag set (see Section 4.3.3). AMIRA-POS also assumes that the text is

decliticised (clitic tokenised). The user has the flexibility to input raw or clitic tokenised

text in a scheme that is consistent with one of the schemes supported by AMIRA-TOK

[Habash, 2010]. If the input is raw text, AMIRA-POS runs AMIRA-TOK on the input and

then performs POS tagging. The user, however, can request that the POS tags be assigned

to the surface words. In this case, the ERTS tag set is appended with clitic POS tags to

form more complex POS tags.

4.4.2 BAMA

BAMA9 stands for Bukwalter Arabic Morphological Analyser. It contains three Arabic-

English lexicon files: prefixes (299 entries), suffixes (618 entries), and stems (82,158 entries).

The lexicons are supported by three morphological compatibility tables used for control-

ling prefix-stem combinations (1,648 entries), prefix-suffix combinations (598 entries), and

stem-suffix combinations (1,285 entries). Prefix and suffix lexicon entries cover all possible

concatenations of Arabic prefixes and suffixes respectively. The following information is

specified for each lexicon entry: the morphological compatibility category, an English gloss,

and POS data. Stem lexicon entries are gathered around their specific lexeme, which is not

used in the analysis process. Compatibility tables define which morphological categories

are allowed to co-occur [Habash, 2010]. The analysis algorithm is simple because morpho-

tactics and orthographic rules are built directly into the dictionary itself instead of being

specified in terms of general rules that interact to realise the output [Buckwalter, 2004].

So, Arabic words are segmented into all possible sets of prefix, suffix, and stem strings.

9BAMA 1.0/1.2 are both publicly available at https://catalog.ldc.upenn.edu/LDC2002L49. BAMA
2.0 is available through the Linguistic Data Consortium at https://catalog.ldc.upenn.edu/LDC2004L02.
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The valid segmentation is specified when the three strings exist in the lexicons and are

three-way compatible (prefix-stem, prefix-suffix, and stem-suffix)[Buckwalter, 2002].

4.4.3 MADA+TOKAN

The combined package (MADA+TOKEN)10 is built on top of BAMA as a natural successor

in order to meet the growing requirements of many Arabic NLP applications [Habash et al.,

2009]. The package consists of two components. The MADA component, which stands for

Morphological Analysis and Disambiguation for Arabic, is a utility that takes raw Arabic

text and provides a solution to many basic problems in Arabic NLP, including diacritisation

(insertion of short-vowel diacritical marks), morphological disambiguation (determining the

full morphological information for each word given its context), POS tagging (determining

the specific grammatical category of each word), and stemming (reducing each word to its

stem) [Habash and Rambow, 2005]. The TOKAN component allows the user to specify any

decliticisation scheme that can be generated from disambiguated analyses. [Habash, 2010].

4.5 Approaches to Arabic NER

4.5.1 Rule-based Approach

The rule-based approach, which is also known as the knowledge engineering approach, relies

on regular expressions and heuristic rules to identify NEs. This section presents some of

the studies that make use of the rule-based approach to Arabic NER in the literature.

Abuleil and Evens [2004] developed a rule-based NER system that depends on a set

of rules, trigger words (i.e., NE indicators that help identify NEs within text), and some

special verbs. The research is based on the intuition that an NE appears close to one of

these trigger words in Arabic text. The research assumes that the NE should not be more

than three words away from the trigger word or the special verb. The research also assumes

that the longest NE is 7 words. Therefore, their system marks 10 words to the left of the

trigger word/special verb and 10 words to the right of them to identify and mark the name

10MADA+TOKEN package is available at https://flintbox.com/public/project/8348.
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phrases. After marking the name phrases that can include NEs, their technique searches

in the lexicon for the part-of-speech tags for each word (particle, verb, noun, adjective)

in the name phrase. Then, graphs are used to represent the words in these phrases and

the relationships between them. Finally, some rules are used to generate and classify NEs

before saving them in a database. Their system was tested on 500 articles from the Al-Raya

newspaper (2003). It managed to extract 78.4% of the NEs found in the text and obtained

a precision of 90.4% for Person, 93.0% for Location, and 92.3% for Organisation.

Shaalan and Raza [2009] adopted a rule-based approach to develop an NER system for

Arabic (NERA). The system depends on two types of resources: a gazetteer representing

a dictionary of names, and grammar in the form of regular expressions. The NERA sys-

tem also has a filtration mechanism that is used in order to exclude invalid NEs and to

disambiguate identical or overlapping textual matches returned by different named entity

extractors. Rejecting invalid NEs is based on a blacklist (rejecter) dictionary that is built

by analysing the local lexical context of named entities during grammar rule formulation.

Manually constructed corpora from ACE, and the Web are used in the evaluation pro-

cess. The NERA system achieved an F-measure of 87.7%, 85.9%, and 83.15% for Person,

Location, and Organisation respectively.

Elsebai et al. [2009] developed a system for extracting Arabic persons’ names. The

system uses two main components: the General Architecture for Text Engineering (GATE)

environment [Cunningham et al., 2011] and the the Buckwalter Arabic Morphological Anal-

yser (BAMA). A set of trigger words is used in the development of the heuristics in order to

indicate the phrases that probably include persons’ names. The BAMA is also used to for-

mulate the heuristics by assigning a POS-tag to each word. Elsebai et al. [2009] evaluated

their NER system using around 700 news articles extracted from the Aljazeera television

web site. Their system achieved an F-measure of 89% where precision is 93% and the recall

is 86%.
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4.5.2 Machine Learning Approach

This section explains the machine learning algorithms that are used for Arabic NER in the

literature.

One of the earliest systems to exploit supervised learning techniques for Arabic NER is

ANERsys 1.0, developed by Benajiba et al. [2007] based-on Maximum Entropy (ME). So,

Benajiba et al. [2007] trained the ME model using a set of language-independent features.

They used their own gazetteer (ANERgazet). The trained ME model was evaluated on

ANERcorp test set (see Section 4.2 for detailed information about the data set) and achieved

an F-measure equal to 55.23%. The system outperformed the baseline by 12 percentage

points without using any POS-tag information or text segmentation. The baseline model

tagged each word by assigning the class that was most frequently assigned to the word in

the training corpus. The ANERsys 1.0 system had difficulties detecting NEs that contain

more than one token (multi-word NEs).

The ANERsys 2.0, developed by Benajiba and Rosso [2007], is an enhanced version of

the aforementioned system (ANERsys 1.0). The ANERsys 2.0 uses part-of-speech tags to

improve NE boundary detection. It also adopts a 2-step architecture for better multi-word

NE recognition. The first step of ANERsys 2.0 concerns only the delimitation of NEs. The

delimitation of the boundaries of NEs is conducted by an ME-based module and a POS-

tag-based module. The results of these two modules are combined into a third module,

as illustrated in Figure 4.1. The second step is to classify each of the NEs delimited in

the previous step. According to the evaluation results using the ANERcorp test set, the

ANERsys 2.0 leads to an increase in performance of 10 percentage points over the first

version where the overall F-measure = 65.91%.

Benajiba and Rosso [2008] employed Conditional Random Fields (CRFs) in order to

improve the performance of the ANERsys 1.0 and ANERsys 2.0 systems. They trained

a CRF-based classifier with different sets of language-independent and Arabic-specific fea-

tures such as the part-of-speech tags, base phrase chunks, gazetteer, and nationality. They

also studied the impact of tokenising the data. The reported results of evaluating the CRF-
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Figure 4.1: Generic architecture of ANERsys 2.0 system [Benajiba and Rosso, 2007].

based classifier showed an overall F-measure = 70.67% with tokenised data and F-measure

= 67.76% on raw text. The CRF-based classifier achieved the best results when all the

features were combined. The overall performance in terms of F-measure was 79.21% on the

ANERcorp test set.

Benajiba et al. [2008a] applied Support Vector Machines (SVMs) for Arabic NER. They

also investigated the use of lexical, contextual, morphological, gazetteer, and shallow syn-

tactic features in the SVMs classifier. The impact of the different features was also measured

in isolation and combined. The evaluation was considered based on the ACE data sets. The

results showed that the high performance was achieved using a combination of all features.

The overall performance in terms of F-measure was 82.71% for ACE 2003, 76.43% for ACE

2004, and 81.47% for ACE 2005.

Benajiba et al. [2008b] examined the impact of using different sets of features for each

NE type instead of simultaneously using a single set of features for all NE types. So, they

created a classifier for each NE type that was independently based on an optimal feature

set, and then combined the different classifiers for a global NER system. An incremental

feature selection method was used to select an optimised feature set and to observe the

errors. In order to create a classifier for each NE type, they adopted two discriminative

approaches: Support Vector Machines (SVMs) and Conditional Random Fields (CRFs).

They investigated many sets of features for each NE type in isolation first, then they

ranked the features according to the best performance of the two classifiers for each NE
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type. In total, 16 features representing the lexical, contextual, morphological, gazetteer,

and shallow syntactic features were examined. Finally, the classifications of all individual

classifiers (one classifier per NE type) are combined. In case of conflicts, where the same

token was annotated as two different NE types, they used a simple heuristic based on the

classifier precision for that specific tag, favoring the tag with the highest precision. The

evaluation process was conducted using the ACE data sets. They concluded that each

feature plays a role in recognising the NE to different degrees and each NE type is sensitive

to different features. The best system’s overall performance in terms of F-measure was

83.5%, 76.7%, and 81.31% for ACE 2003, ACE 2004, and AC 2005 respectively. The study

also reported that it can not be concluded whether CRFs is better than SVMs or vice versa.

Abdul-Hamid and Darwish [2010] developed a CRF-based classifier with a simplified

feature set that relied primarily on character level features (leading and trailing letters in

a word). They also used a variety of features such as word sequence features, word length,

word position, and word n-gram probability-based features to capture the distribution of

NEs in the text. The evaluation was carried out using ANERcorp and the ACE 2005 data

set. They reported an F-measure of 81% and 76% for the ANERcorp and the ACE 2005

data sets respectively.

Darwish [2013] developed a CRF-based classifier, and presented cross-lingual features

for Arabic NER that made use of the linguistic properties and knowledge bases of another

language. In his study, English capitalisation features and an English knowledge base

(DBpedia) were exploited as discriminative features for Arabic NER. A large Machine

Translation (MT) phrase table and Wikipedia cross-lingual links were used for translation

between Arabic and English. The classifier was evaluated on the ANERcorp data set and

achieved an overall F-measure equal to 84.3%.

The semi-supervised learning is a relatively new area of research [Nadeau and Sekine,

2007]. Most studies that revolve around semi-supervised methods for NER are conducted in

English [Collins and Singer, 1999; Jones, 2005; Nadeau et al., 2006; Riloff and Jones, 1999].

In terms of Arabic NER, AbdelRahman et al. [2010] presented an integrated approach to

Arabic NER in which they combined bootstrapping semi-supervised pattern recognition

64



Chapter 4: Arabic Named Entity Recognition

and the Conditional Random Fields (CRFs) classifier. So, the semi-supervised pattern

recogniser extracts all patterns to let CRF-based classifier identify more NEs. The CRF-

based classifier in turn is trained using some local optimal features, including pattern index,

with the aim of generating potential seeds to help remove noisy patterns. Their proposed

integrated method achieved F-measures of 67.80%, 87.80%, 70.34% for Person, Location,

and Organisation respectively when tested on ANERcorp test set. They also concluded

that bootstrapping semi-supervised pattern recognition is a promising technique for Arabic

NER.

Mohit et al. [2012] considered the domain adaptation problem which usually occurs when

supervised learning on newswire text leads to poor target-domain recall. They explored

the precision-recall tradeoff and proposed a recall-oriented learning method that enhanced

recall over precision. So, a model was built using the structured perceptron and trained

on newswire labelled data. Then, the loss function used in the training was manipulated

in order to improve recall over precision. This function measures the entity recognition

errors for each token in the corpus. That is, the penalties are imposed when recall errors

happen. Mohit et al. [2012] also adopted a semi-supervised learning method (self-training)

in order to tag large unlabelled data (397 Arabic Wikipedia articles). The recall-oriented

perceptron was evaluated when used alone or combined with self-training. The evaluation

set consists of 20 Wikipedia articles annotated manually to identify domain-specific entity

types in addition to the three standard categories. The experimental results showed recall

improvements of nearly 8 percentage points over the baseline (regular perceptron). Inte-

grating a recall-oriented perceptron within self-training produced a recall improvement of

about 4 percentage points compared to baseline when used within self-training.

Alotaibi and Lee [2012] conducted a series of experiments in attempt to classify Arabic

Wikipedia articles into a predefined set of NE types. They explored the use of Näıve Bayes,

Multinomial Näıve Bayes, Support Vector Machines, and Stochastic Gradient Descent for

classifying Wikipedia articles, and achieved F-measures ranging from 78% to 90% using

different language-independent and Arabic-specific features. Their research showed that

the use of enhanced Arabic-specific features does not always lead to the best performance,
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especially when combined with the TF-IDF statistic.

Alotaibi and Lee [2013] developed a methodology to automatically create two NE an-

notated sets from Arabic Wikipedia. The corpora were built using the mechanism that

transforms links into NE annotations by classifying the target articles into named entity

types. They used POS tagging, morphological analysis, and linked NE phrases to detect

other mentions of NEs that appear without links in text. The data sets created by Alotaibi

and Lee [2013] are WikiFANEWhole and WikiFANESelective. The former set contains all sen-

tences retrieved from the Wikipedia articles while the latter set contains only the sentences

that have at least one named entity phrase. The trained models on the WikiFANEWhole

and WikiFANESelective performed well when tested on various newswire test sets, achieving

F-measures of 56.39% and 52.62% respectively when tested on ANERcorp data set. Their

trained models, however, did not surpass the performance of the NE classifier that was

trained and tested on data sets drawn from the same domain and/or corpous.

4.5.3 Hybrid Approach

The hybrid approach integrates the rule-based approach with the machine learning-based

approach in order to enhance the overall performance of the NER system [Shaalan, 2014].

Abdallah et al. [2012] presented a hybrid system for Arabic NER. The rule-based component

of their hybrid system is a re-implementation of the NERA system developed by Shaalan

and Raza [2009], while the machine-learning based component employs the Decision Trees.

The feature set includes language-independent features, Arabic-specific features, and the

NE tags predicted by the rule-based component. The evaluation of their hybrid system

using ANERcorp data set showed F-measures of 92.8%, 87.39%, and 86.12% for the Person,

Location, and Organization NEs respectively.

Oudah and Shaalan [2012] extended the study of Abdallah et al. [2012] by investi-

gating two more machine learning methods: SVMs and Logistic Regression. They also

experimented with more features by including morphological features and an English-gloss

capitalisation feature. The evaluation was conducted using the ANERcorp data set. The

experimental results proved that their best hybrid Arabic NER system outperformed the
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rule-based and the machine learning-based components when they were run individually.

The F-measure performance was 94.4%, 90.1%, and 88.2% for Person, Location, and Or-

ganisation NEs respectively.

4.6 Summary

This chapter highlighted the challenges that emerged when developing Arabic NER systems

because of Arabic’s characteristics and peculiarities. In addition, the basic computational

tasks and common tools used in Arabic NER systems were described in detail. The chapter

also described the approaches used in the Arabic NER field and the most recent research.

It showed that many Arabic NER systems were created using grammar-based techniques

as well as machine learning methods.

The main goal of the new approaches to NER and one of the possible directions in NER

research is to reduce the annotation labour by employing minimally-supervised methods,

such as semi-supervised learning and distant learning, which require less effort and limited

human intervention.

In the following chapters we present the experiments that we have carried out to explore

the minimally-supervised techniques for Arabic NER and to exploit these techniques to

overcome the challenges of Arabic such as rich morphology and the absence of capitalisation.

Chapter 5 presents our semi-supervised learning approach to Arabic NER in which we

propose a new way to produce and generalise the extraction patterns. Chapter 6 presents

our methodology to exploit Wikipedia structure to automatically develop an Arabic NE

annotated corpus. We also introduce a mechanism based on the high coverage of Wikipedia

in order to address the challenges particular to tagging NEs in Arabic text. So, our method

does not require POS tagging or morphological analysis. Chapter 7 describes our novel

approach in which we combine the two minimally supervised methods in order to obtain

better results. Up to our knowledge, our proposed approach is the first to combine minimal

supervision approaches.
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Chapter 5

Semi-supervised Learning

In order to lay a proper foundation on which to present our research, in previous chapters

we explained the background and the state-of-the-art works related to NER in general and

Arabic NER in particular. Our research is presented in this chapter, and in the next two

chapters (i.e., Chapter 6 and 7).

This chapter presents a semi-supervised learning approach to Arabic NER. Our ap-

proach relies on the bootstrapping technique, which starts with a handful of seed instances

for the NE type of interest, and learns the extraction patterns, which are exploited to

identify more instances for that NE type (candidate NEs). Then, the candidate NEs are

sorted according to a ranking measure, so that the best of them are selected as the next

seed instances when the process repeats. Additionally, we propose a new way to produce

and generalise the extraction patterns. Filtering criteria are proposed in order to remove

noisy extraction patterns. We also present and compare two ranking measures for deter-

mining the most reliable candidate NEs: one being the number of distinct patterns used in

extracting candidate NEs and another based on Pointwise Mutual Information (PMI). We

evaluate our algorithm in order to extract the three standard NE types (Person, Location,

Organisation) and to extract three new specialised types of NE (Politicians, Sportspersons,

Artists). Section 5.1 illustrates the architecture of the proposed algorithm and its main

components in detail. Section 5.2 describes the corpora used in the experiments and the

evaluation process. Section 5.3 presents the experimental setup and results for evaluating

the algorithm’s ability to recognise standard and specialised entities. The experimental

results are discussed in Section 5.4. Conclusions about our semi-supervised approach to
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Arabic NER are drawn in Section 5.5.

5.1 The Algorithm

The most common Semi-supervised Learning (SSL) technique is bootstrapping [Nadeau and

Sekine, 2007], which only requires a set of seed instances to initiate the learning process.

Our SSL algorithm begins with seed instances of a given NE type (e.g., A�	�Q 	̄
faransaa

“France”, ú

	GA¢�
Q�. Ë @ 	j�JÖÏ @ almtHaf albryTaany “British Museum”, and XP@ñë �éªÊ�̄ ql‘t hwaard

“Castle Howard” can be used as seed instances for Location), and learns patterns that are

used to extract more instances (candidate NEs). These candidate NEs are sorted so that

the best of them will be selected as seed instances for the next iteration. Figure 5.1 shows

the three components of our algorithm. 

 

 

 

 

 

  

Figure 5.1: The three components of our SSL algorithm.

In order to represent the NE extraction patterns, we proposed a new way that uses a

combination of tokens and POS-tags. Therefore, the training corpus should be automati-

cally assigned part-of-speech tags. In addition, for each particular type of NE, lists of trigger

words (i.e., NE indicators that help identify NEs within text) were used in the algorithm

to generalise the extraction patterns and to filter them. The lists of trigger nouns were

semi-automatically extracted from randomly selected Arabic Wikipedia articles. To be ex-

act, for each type of NE, 100 to 200 pages from Arabic Wikipedia were crawled randomly,

prepared, and pos-tagged to be used to construct trigger nouns. We extracted nouns that

appear most frequently before or after the NE and stored them as trigger nouns. Trigger

verbs are the most frequent verbs (stems) that appear before or after NEs in the Arabic

Wikipedia articles. Trigger verbs and nouns, which surround NEs, were identified in order

to find the most common Arabic NE indicators. Some examples of trigger nouns are: YJ
�Ë@

alsayd “Mr.”,
�èYJ
�Ë@ alsaydh “Mrs.”, and 	áK. bn “the son of” for Person;

�é 	JK
YÓ madynah

70



Chapter 5: Semi-supervised Learning

“city”, and
�éK
Bð wilaayah “state” for Location;

�é»Qå�� sharikah “company”, and
�éËA¿ð wikaalah

“agency” for Organisation. Algorithm 5.1 shows the pseudo-code of our SSL algorithm.

Algorithm 5.1: Semi-supervised algorithm for Arabic NER.

Input: Seed Instances for each NE type
/* Initial seed instances to start learning process */

Data Preparation: Part-of-speech-tagged training corpus
Lists of trigger words for each NE type

Reliable NEs = {Seed Instances}
m=Reliable NEs.size()
Initial P = { }

/* The set of initial patterns */
Final P = { }

/* The set of final patterns*/
Candidate NEs = { }
repeat

1. m = m+1
2. Generate the extraction patterns from the training corpus using Reliable NEs
and save them to Initial P
3. Generalise the patterns in Initial P using trigger words, and save them to
Final P
4. Filter the patterns in Final P to remove noisy ones
5. Apply the patterns in Final P to the training corpus and save the extracted
entities to Candidate NEs
6. Rank all extracted entities in Candidate NEs using a ranking measure
7. Reliable NEs = Top m extracted entities in Candidate NEs

until the end condition

The following sections explain the proposed pattern’s representation, generalisation,

and the filtering steps we applied to them. They also explain the two ranking measures we

used for determining the most reliable extracted entity.

5.1.1 Pattern Induction

This section illustrates the first component of our semi-supervised algorithm. It describes

the process of extracting patterns from the text and generalising them to produce the final

set of patterns. This section also presents the filtering criteria which are used to remove

noisy patterns.
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5.1.1.1 Initial Patterns

Our algorithm infers a set of surface patterns that contain seed instances in the training

corpus. So, for each seed instance x, all sentences containing the term x are first retrieved.

Since words preceding or following the target word may be useful for determining its cat-

egory, the algorithm extracts a number of tokens n on each side of the seed x without

crossing sentence boundaries. Figure 5.2 is an example of initial patterns containing the

seed instance YÒm× muhammad “Muhammad” and its surrounding tokens.

 نوه الدكتور محمد البشر سفير المملكة العربية السعودية
في المغرب

 

 

      

  

Figure 5.2: An example of an initial patterns extracted from data by the SSL algorithm.

We refer to each Token/POS-tag pair as TP pair (e.g., “indicated/VBD” represents

one TP pair). Noun tokens in TP pairs are kept in their inflected form, while verb tokens

are replaced with their roots. So, the inflected verbs �I�. �J» katabt “wrote” and I. �Jº�K taktub

“writes” are changed to I. �J» katab “write” (see Section 2.3.1 for more information about

inflectional and derivational features in Arabic). A root stemmer is used instead of a light

stemmer because the latter fails to conflate related forms that should group together (see

Section 4.3.4). A root stemmer is preferred in our case to obtain as many general patterns

as possible.

5.1.1.2 Generalisation

In the next step, the initial patterns are generalised in order to produce more effective

extraction patterns that contain only useful evidence (e.g., NE indicators) and more general

information about the categories of the words in the patterns. For that purpose, verbs

and nouns that are not among trigger words should be removed, as they do not provide
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useful evidence of the existence of NEs in the text, and they also restrict the patterns

excessively. In contrast, prepositions represent important clues, since they usually precede

NEs. Therefore, we keep them without any change in the patterns. Detailed information

about word categories are neglected because our proposed method does not require this

information. For example, all POS tags used for verbs to indicate the tense (e.g., VBP,

VBD, VBN ) are converted to one form: VB. In summary, all extracted initial patterns

should complete the following steps in order to generate the final patterns:

• TP pairs that contain nouns, and verbs are stripped of their Token parts, unless

they are in the corresponding lists of trigger words. For example, TP pair (YJ
�Ë@/NN

“Mr./NN”) stays unchanged since (YJ
�Ë@ “Mr.”) is in the list of trigger nouns, while

(ÕÎ�̄
/NN “pen/NN”) is changed to only ‘ / NN ’ as (ÕÎ�̄

“pen”) is not among trigger

nouns.

• TP pairs that contain prepositions are not changed.

• TP pairs that contain other part of speech categories (e.g., proper nouns, adjectives,

coordinating conjunctions) are stripped of their Token parts. For example, (YJ
 	®Ó/JJ

‘useful/JJ’) is converted to only ‘ /JJ ’ without the Token part.

• All POS tags used for verbs (e.g., VBP, VBD, VBN ) are converted to one form: VB.

• All POS tags used for nouns (e.g., NN, NNS ) are converted to one form: NN.

• All POS tags used for proper nouns (e.g., NNP, NNPS ) are converted to one form:

NNP.

• The seed instance is replaced with the NE class tag (e.g., <PersonName>, <Loca-

tion>, <Organisation>).

Figure 5.3 shows the final pattern resulting from the initial pattern, after the constrained

processes mentioned above are applied.
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 الدكتور سفير
في

 

 

     

  

 

Figure 5.3: An example of a final pattern resulting from the SSL algorithm.

All final patterns that are generated from the algorithm are gathered to form the pattern

set (Final P). In the final step, two more patterns are generated from every pattern in

Final P. The algorithm splits every final pattern into two parts, where each seed instance

is located in the leftmost or rightmost position in the pattern. The two patterns generated

from our previously mentioned example can be seen in Figure 5.4.

الدكتور سفير في

 

 الدكتور

 

 سفير في

 

     

/ VB   رالدكتو /NN   <PersonName>/NNP    

                                                                                              

 

 

Figure 5.4: An example of generating more patterns from a final pattern.

The rationale behind this is to increase the generality of the patterns by making them

shorter in length, thus increasing their ability to collect more candidate NEs in the matching

process against the text. For example, the short pattern “Dr./NN <PersonName >” might

successfully match more NEs in the text than the long pattern illustrated in Figure 5.3.

However, short patterns, which have TP-pairs containing no Token parts at all but POS

taggings, are a potential source of noise. Therefore, the final pattern set (Final P) is

filtered every time a new pattern is added to it. Repeated patterns are not added. In
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addition, the pattern that contains a number of TP-pairs less than a predefined threshold

(filtering threshold) should contain at least one TP-pair with a Token part. For example, if

we set filtering threshold = 6, then the pattern “/VB /NN <PersonName >/NNP /NNP”

is rejected and not added to the set of final patterns because it consists of four TP-pairs

(<filtering threshold) and does not contain a TP-pair with a Token part. Algorithm 5.2

shows the filtering steps we applied to the set of patterns.

Algorithm 5.2: Filtering the extraction patterns algorithm.

Input: A set of final patterns Final P = {p1, p2, . . . , pn}
1 for i← 1 to n do
2 TP← split pi into TP-pairs
3 /* e.g., the pattern (Dr./NN <PER>/NNP /DT ambassador/NN) contains four

TP */
4 if (TP.size() >= filtering threshold) then
5 keep pi in the set Final P
6 else
7 token found = FALSE
8 for j ← 1 to TP.size() do
9 if TPj contains Token part then

10 token found = TRUE

11 if token found then
12 keep pi in the set Final P
13 else
14 remove pi from the set Final P

5.1.2 Instance Extraction

In this phase, our SSL algorithm retrieves the set of instances I from the training corpus

that match any of the patterns in Final P. First of all, we must ensure that the general-

isation steps used in inducing patterns have already been applied to the training corpus

in order to prepare it for the matching process (e.g., VBD, VBP, and VBN are converted

to VB and so on). The matching of patterns in Final P against the corpus is done using

regular expressions (regexes). For example, the regex for the pattern “ /VB Pñ�J»YË@/NN

<PersonName >/NNP” is depicted in Figure 5.5.
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Arabic Regex: [^/]*/VB\s\bالدكتور\b/NN\s([^/]*)/NNP 

English Translation: [^/]*/VB\s\bDr.\b/NN\s([^/]*)/NNP 

 

Figure 5.5: An example of regex automatically generated from a final pattern.

Our SSL algorithm automatically converts extraction patterns into regular expressions

that can be used to match against the text. Algorithm 5.3 illustrates the steps of this

process.

Algorithm 5.3: Converting extraction patterns to RegEx algorithm.

Input: A set of final patterns Final P = {p1, p2, . . . , pn}
1 for i← 1 to n do
2 TP← split pi into TP-pairs
3 for j ← 1 to TP.size() do
4 Token = match TPj against “[^/]*”
5 POS = match TPj against “/([a-zA-Z_]+)”
6 TokRegex = “ ”
7 Regex = “ ”
8 if Token.isEmpty then
9 TokRegex = “[^/]*”+“/”+POS+“\s”

10 Regex.append(TokRegex)

11 else
12 if Token.contains(“<”) AND Token.contains(“>”) then
13 TokRegex = “([^/]*)”+“/”+POS+“\s”
14 Regex.append(TokRegex)

15 else
16 TokRegex = “\b” +Token+“\b”+“/”+POS+“\s”
17 Regex.append(TokRegex)

The generation of regexes from final patterns is achieved without any modification,

regardless of whether the POS tags assigned to the proper nouns by the POS tagger are

accurate or not. Because of the absence of capitalisation in Arabic, Arabic POS taggers

may mistake some organisations and locations for nouns (NN ) or adjectives (JJ ), especially

Arabic names that have an interpretation as a common noun or adjective. For example,

�èYj�JÖÏ @ �éJ
K. QªË@ �H@PAÓB@ “United Arab Emirates”, and
�èYj�JÖÏ @ ÑÓB@ “United Nations” might be

tagged as �H@PAÓB@/NNS
�éJ
K. QªË@/JJ

�èYj�JÖÏ @/JJ and ÑÓB@/NNS
�èYj�JÖÏ @/JJ.
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In order to increase the number of NEs collected in each iteration, we allowed our SSL

algorithm to automatically add the information of average NE length1 to the produced

regexes. Figure 5.6 presents an example of adding the average NE length to the produced

regex.

Arabic Regex: [^/]*/VB\s\bالدكتور\b/NN(\s([^/]*)/NNP){1,2} 

English Translation: [^/]*/VB\s\bDr.\b/NN(\s([^/]*)/NNP){1,2} 

 

Figure 5.6: An example of automatically generated regex with average NE length.

5.1.3 Instance Ranking/Selection

Our SSL algorithm ranks each extracted instance (i.e., candidate NE) in the set of instances

I according to the number of different patterns that are used to extract it [Baroni et al.,

2010]. This ranking measure arises from the intuition that a candidate NE extracted by

five different patterns for a NE type of interest is more likely to belong to that entity type

than a candidate NE extracted by only one pattern [Riloff and Jones, 1999].

We prefer a threshold defined by distinct patterns instead of a frequency because pattern

variety is a better cue to semantics than absolute frequency [Baroni et al., 2010]. In addition,

we used distinct patterns to overcome errors caused by the absence of capitalisation in

Arabic. For example, in the following sentence
�ékñÊË@ úÎ«@ I. �J» Y�̄ ð “and he has written at

the top of the board” the word úÎ«@ “the top” is not a person name nor a proper noun.

However, it was wrongly detected and classified as a person name by the following pattern:

/CC /RP I. �J»/VB <PersonName >/NNP /NN .

This pattern is relatively similar to the following pattern in English (with some differences

in the word order as the verbs usually come before the nouns in Arabic while the opposite

is true in English):

/CC <PersonName >/NNP write/VB /NN .

Therefore, the problem of considering the word úÎ«@ “the top” to be a person name is not

1The statistics about the length of proper nouns we derived from two Arabic NER corpora (ANERcorp
and AQMAR) showed that the average NE length is 2 tokens (see Table 5.1).
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due to the weakness of the pattern, but the wrong POS tag associated to the word itself,

since the POS tagger considers úÎ«@ “the top” to be an NNP every time the word appears

in this context. Subsequently, if the above sentence or a similar one happens to appear

three times in the text, the word úÎ«@ “the top” might be ranked before the correct NE YÒm×

“Muhammad”, which appears only twice in the text, but in different contexts: YÒm× ú

G @ðQË@

“The novelist Muhammad”, and “
�éK
 @ðQË@ YÒm× I. �J» Y�̄ ð “and Muhammad wrote the novel”.

Our algorithm ranks the instances according to the number of distinct patterns, and

discards all but the top m, where m is set to the number of instances from the previous

iteration, plus one. These m instances are used in the next iteration, and so on. For

example, if we start the algorithm with 10 seed instances, the following iteration will start

with 11, and the next one will start with 12, and so on. This procedure is necessary in

order to ensure that reliable instances from the previous iteration are the only ones to be

included in the next iteration.

An alternative to distinct patterns is the Pointwise Mutual Information (PMI) statistic,

which is commonly used in text mining [Turney et al., 2010]. For this reason, we also

used the Pointwise Mutual Information (PMI) to measure the association strength of the

instance i in the set of instances (I ) across each pattern in the set of patterns (Final P).

A reliable instance is one that is associated with as many patterns in Final P as possible.

PMI of instance i can be computed as follows:

pmi(i) =
∑

PεF inal P

log
|i, p|
|i| ∗ |p| (5.1)

where |i, p| is the frequency of the instance i extracted by pattern p. |p| is the frequency of

the pattern p in the corpus. |i| is the frequency of the instance in the corpus.

5.2 Data

This section describes the two corpora we used in our experiments: ANERcorp and ACE

2005.

ANERcorp, which is freely available for research purposes, contains approximately 150K
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tokens (11% of the tokens are NEs). It is composed of a training set and a test set built and

tagged especially for the NER task by Benajiba et al. [2007]. More details about ANERcorp

are found in Section 4.2.

The second data set used in the training phase is ACE 2005. It is available from

the Linguistic Data Consortium (LDC) and has approximately 113K tokens. The genres

utilised in ACE 2005 are Broadcast News, NewsWire, and WebLogs (see Section 4.2). Each

document in the corpus has four versions:

1. Source text files with extension “.sgm”: These files contain raw Arabic text sur-

rounded by begin text tag <TEXT>and end text tag </TEXT>. This is the only

text to be evaluated.

2. APF files with extension “.apf.xml”: These files contain the ACE Program Format.

3. AG files with extension “.ag.xml”: These files contain the LDC Annotation Graph

format and can be viewed with the LDC’s annotation tool.

4. TABLE files with extension “.tab”: These files store mapping tables between the IDs

used in each ag.xml file and their corresponding apf.xml file.

These two corpora were used as follows:

• Training set ( 90% of ANERcorp training set + ACE 2005): As our SSL algorithm

does not require any annotations in the training phase, we removed all annotations

from the ANERcorp training set. Regarding the ACE corpus, raw Arabic text has

been extracted from files with the ‘sgm’ extension without any kind of annotations.

• Validation set (10% of ANERcorp training set): This set was used to assign appro-

priate values to several parameters in our system, such as the number of initial seeds,

the criterion to stop the training process, and so on.

• Test set (ANERcorp test set): This set was used for evaluation purposes.

The ANERcorp training set was randomly divided into two parts: 90% of this data set was

kept for training, while 10% was dedicated for validation purposes.
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5.3 Experiments and Results

5.3.1 Experimental Setup

We found that Arabic proper nouns in ANERcorp and AQMAR corpora (see Section 4.2)

are one or two words long 92.09% and 84.39% of the time respectively. Table 5.1 shows

the statistics about the length of proper nouns we derived from the two aforementioned

corpora.

 

Table 5.1: The statistics of Arabic proper nouns length in ANERcorp and AQMAR
corpora.

Motivated by the statistics in Table 5.1, the average NE length was set to 2 tokens. In

addition, the experiments we conducted using the validation set showed that increasing the

average length of proper names to more than 2 tokens increased the recall but negatively

affected the precision of the collected NEs. They also showed that around 70% of noisy

patterns extracted were short patterns (fewer than six TP-pairs without Token parts).

Therefore, we set filtering threshold equal to 6 (see Algorithm 5.2). The window size of

tokens when extracting the initial patterns was set to 14, 7 tokens on each side of the seed

instance, without crossing sentence boundaries. We used a window size of 7 tokens because,

based on the statistics in Table 5.1, the longest Arabic name is 5 to 7 tokens. Thus, we

extracted 7 tokens to the left and to the right of the seed instance to identify the borders of

the extraction pattern, which includes the NE indicators. For example, if we have the seed

instance YÔg

@ “Ahmad” and the text �	�ñK
 	áK. YÔg


@ 	áK. 	áÔgQË@YJ.« 	áK. ú
Î« 	á�mÌ'@ ñK. @ ½Ê 	®Ë @ ÕË A« “The

astronomer Abu alHasan Ali ibn Abdulrahman ibn Ahmad ibn Yunus”, then choosing 7

tokens to the left and to the right of the seed will result in extracting the important indicator

‘½Ê 	®Ë @ ÕË A«’, ‘The astronomer’. Therefore, choosing less or more than 7 tokens would have
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little to no benefit. In addition, some informal experiments we conducted demonstrated

that using larger spans had no significant effect on increasing the quality of the patterns.

ANERcorp and ACE corpora were preprocessed in order to prepare them for our pro-

posed algorithm. Thus, sentence detection was applied to the corpora. We used the sentence

detector that we implemented and offered as part of our AraNLP library (see Appendix

C). Then, we conducted clitic tokenisation (i.e., decliticisation), since neglecting clitics al-

together may cause a loss of important information when generating the patterns. For

example, a prepositional proclitic �K. “in” usually comes before location names and keeping

this prepositional proclitic attached to the Arabic word will affect the amount of useful

information that the trained model can learn from the text. The trained model will re-

gard the preposition as part of the Arabic word itself and will not be able to extract the

important clue, that the preposition precedes the Arabic word. Consequently, we chose a

decliticisation scheme in which conjunctions, prepositions, and future marks are separated

from each token.

In order to find the root for each verb in the corpus (see Section 5.1), we chose Khoja’s

stemmer, one of the most common and successful approaches to Arabic stemming (More

details about Khoja’s stemmer are found in Section 4.3.4.1).

Regarding POS tagging, we used the AMIRA toolkit [Diab, 2009] and chose the Reduced

Tag Set (RTS), which ignores many morphological features in Arabic, since our proposed

method does not require any deep morphological information related to gender, number,

or definiteness. The input to AMIRA was our training corpus in the form of one sentence

per line; this is the training corpus after applying a sentence splitter to it. So, AMIRA ran

AMIRA-TOK on our raw text and then performed POS tagging. We chose the output of

this phase to be POS tags assigned to the surface words in our corpus.

5.3.1.1 Parameter Settings

We developed several experimental models according to three parameters that are defined in

our proposed algorithm: the number of initial seeds, the ranking measure, and the number

of iterations (see Algorithm 5.1).
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• Experiment 1: We started with simple models, which were trained on the ANER-

corp corpus and passed through the three components only once (see Figure 5.1).

For each NE class, we only started with five seed instances. We refer to this model

as Simple-Model-5. We also trained two more models, Simple-Model-10 and Simple-

Model-20, which only differed from Simple-Model-5 in the number of seed instances

for each NE class; the number of seeds were 10 and 20 respectively. These simple

models are considered the baselines.

• Experiment 2: We iterated the algorithm through the three components (see Figure

5.1). The number of iterations was set to ten, because the validation set indicated

that increasing the number of iterations to more than ten loops does little to improve

the performance of the system (F-measure improvement <0.01). We started with 20

seed instances for each NE class and the training corpus was ANERcorp. Candidate

NEs were ranked according to the number of distinct patterns in order to select those

that ranked the highest as seed instances for the next iteration, as explained in Section

5.1.3. We refer to these trained models, one model for each NE class, as ‘Model-A(NE

class)’. We also used Pointwise Mutual Information (PMI) as a ranking measure to

determine the most reliable candidate NEs and compared it with ‘the number of

distinct patterns’ as a ranking measure.

• Experiment 3: In order to see the effect of using a large training corpus on the

performance of the trained model, a combination of the ANERcorp training set and

ACE 2005, was used in the training phase. We refer to the trained models resulting

from this experiment as ‘Model-B(NE class)’.

5.3.1.2 Specialised NEs

Semi-supervised learning can be easily adapted to detect new NE types. Therefore, our

SSL algorithm was also tested to recognise three specialised NEs: Politicians, Sportspersons,

and Artists. These new types were chosen because they constitute the largest percentage

of persons’ names in ANERcorp. For evaluation purposes, all annotated persons’ names in
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the ANERcorp test set must be re-annotated to include the three new entities: Politicians,

Sportspersons, and Artists. We re-annotated the test set, so that all annotations of persons’

names (e.g., B-PER, I-PER ) were changed to one of the following classes:

• B-POL: The beginning of the name of a POLitician.

• I-POL: The continuous (Inside) of the name of a POLitician.

• B-SPORT: The beginning of the name of a SPORTsperson.

• I-SPORT: The continuous (Inside) of the name of a SPORTsperson.

• B-ART: The beginning of the name of an ARTist.

• I-ART: The continuous (Inside) of the name of an ARTist.

• B-PER: The beginning of the name of a PERson that does not belong to any of the

previous classes.

• I-PER: The continuous (Inside) of the name of a PERson that does not belong to any

of the previous classes.

Unlike supervised learning, which may require additional annotated data in the training

data for new categories of NE, our semi-supervised approach uses the ANERcorp training

data without any addition or modification. The methodology was applied without any

major modifications. The only modification made related to generating new lists of trigger

nouns and verbs for each new type of NE (i.e., Politicians, Sportspersons, Artists). They

were generated in the same way as explained in Section 5.1.
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5.3.2 Results

Table 5.2 shows the results of the baselines for each NE type when applied to the ANERcorp

test set.

 

 

 

 
Table 5.2: The results of the baseline models.

Table 5.3 shows the results of evaluating Model-A for the three standard NEs on AN-

ERcorp test set.

 

Table 5.3: The results of Model-A.
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Table 5.4 shows the results of evaluating Model-A when we used PMI as a ranking

measure instead of using the number of distinct patterns. The comparison of the models

when used with different ranking measures is shown in Table 5.5.

 

Table 5.4: The results of Model-A-PMI.

 

 

 

 

 
Table 5.5: The comparison between Model-A and Model-A-PMI.
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Regarding the effect of using large corpora on the performance of our SSL algorithm,

we trained Model-B on a combination of the ANERcorp training set and ACE 2005, as

explained previously. Table 5.6 shows the results of evaluating Model-B on the ANERcorp

test set.

 

Table 5.6: The results of Model-B.

Table 5.7 summarises the trained models with their values for each parameter. It also

shows the performance of each model when applied to the ANERcorp test set by computing

their F-measures for each type of NE.
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Table 5.7: Parameter settings and results of different SSL models.

We tested whether the difference in performance between the aforementioned trained

models (see Table 5.7) is significant using a statistical test over the results of these models on

the ANERcorp test set. We ran a non-parametric sign test (at significance level α = 0.01).

The test results (p-values) for the pairwise comparisons of the trained models can be seen

in Table 5.8.

Simple
Model 5

Simple
Model

10

Simple
Model

20

Model A
(PMI)

Model A Model B

Simple-Model-5 0.00018 4.59E-09 4.51E-16 1.85E-14 1.49E-14

Simple-Model-10 6.54E-06 3.20E-16 1.64E-14 7.16E-12

Simple-Model-20 4.62E-16 4.17E-10 3.09E-07

Model-A(PMI) 4.61E-08 4.98E-08

Model-A 0.2668

Model-B

Table 5.8: The sign test results (p-values) for the pairwise comparisons of the SSL models.
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Table 5.9 shows the results of applying our SSL algorithm on the ANERcorp test set

in order to extract new types of NE. Table 5.10 compares the performance of our SSL

algorithm when extracting standard NEs with its performance when extracting specialised

NEs.

 

Table 5.9: The results of the SSL algorithm when detecting specialised NEs.

 

 

 

 

 

 

 

  

Table 5.10: The results of the SSL algorithm when detecting standard NEs & specialised
NEs.

We compared our SSL algorithm with three different supervised NER classifiers by

testing them on the ANERcorp test set. The three supervised systems are ANERsys 1.0

[Benajiba et al., 2007], ANERsys 2.0 [Benajiba and Rosso, 2007], and a CRF-based classi-

88



Chapter 5: Semi-supervised Learning

fier [Benajiba and Rosso, 2008] (see Section 4.5.2 for more information about these NER

classifiers). Table 5.11 shows the results of the three different supervised classifiers and our

SSL algorithm.

 

Table 5.11: The comparison between our SSL algorithm and three different supervised
classifiers.

5.4 Results Discussion

We started our experiments by building three simple models that begin with 5, 10, or

20 seed instances of the NE type of interest. These three baselines follow the steps of

Algorithm 5.1, but apply only a single iteration. Since the number of iterations is one, no

ranking measure is required to select the best candidate NEs as seed examples for the next

iterations. The results in Table 5.2 show generally high precision of the baselines, although

recall is low. This indicates the sensible representation of patterns that we identified, and

that of the filter algorithm that we applied. Increasing the number of initial seed instances

affected the precision negatively, but had a positive impact on the recall, as expected. We

wanted, however, to keep the number of initial seed instances as low as possible. This is in

line with other studies that applied semi-supervised methods to collect lists of NEs from

the web, such as [Etzioni et al., 2005] and [Nadeau et al., 2006] who used 4 and 15 seed

examples, respectively. Therefore, we decided to start with 20 seed examples and add more
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seed examples through iterations.

In the next experiment we iterated our trained models through steps 1 to 7 in Algorithm

5.1. When using the validation set, we recognised that increasing the number of iterations

to more than ten loops does little to improve the performance of the system (F-measure

improvement <0.01). Therefore, we set the number of iterations to ten. The best extracted

entities of each iteration were used as seed examples for the next iteration. To select

the most reliable extracted entities from each iteration, we built two models that use two

different ranking measures: (a) Model-A ranked candidate NEs according to the number

of distinct patterns used to extract them, and (b) Model-A(PMI) used PMI as a ranking

measure. The results obtained using PMI as a measure to select the seed instances for the

next iteration demonstrated generally lower performance and particularly lower recall (see

Table 5.4). These results can be attributed to PMI’s bias towards infrequent words [Turney

et al., 2010], resulting in the extraction of fewer patterns for the next iteration. Using PMI,

the precision was not affected at all, since very few patterns were added to set Final P in

each iteration. In general, PMI results in a lower performance than that achieved when

using the number of distinct patterns as a reliable measure for seed selection (see Table

5.5).

The effect of using a larger training corpus on the performance of the model can be

seen in Table 5.6, which shows the performance of Model-B. Model-B’s parameters were set

similarly to Model-A’s, but it was trained on a larger corpora (a combination of ANERcorp

and ACE 2005). Using large training data increased the recall of the trained model with a

small negative effect on precision. The sign test we used to statistically conduct pairwise

comparisons of the trained models, however, shows that there is no significant difference

between Model-A and Model-B (p = 0.2668).

Based on all of our previous experiments, we concluded that the following parameters

give the best results: the number of initial seeds is 20, the number of iterations is 10, and

the ranking measure to select the most reliable candidate NEs is the number of distinct

patterns. For the sake of simplicity, we refer to our system that used the trained models

with the previously mentioned parameters as “ASemiNER”.
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The performance of ASemiNER when applied to specialised NEs is comparable to its

performance when extracting standard NEs. The results for the “Politicians” entity show

a reasonable increase in recall from iteration to iteration and a good performance overall.

For “Sportspersons”, the low recall is possibly due to the impact of the lower number of

varied contexts in which seeds occur. So, Sportspersons constitute 19% of all persons’

names that exist in the training corpus, and they occur in a few contexts. Thus, the

diversity of contexts in which seeds appear plays an important role in obtaining a trained

model with good performance. The remaining recall errors can presumably be attributed

to the diversity of categories. Accordingly, Sportspersons can be broken down into other

categories, such as football players, golfers and wrestlers. In contrast, Politician entity

recognition has a higher recall than Sportspersons. This can clearly be attributed to two

facts: 1) Politicians make up 44% of the persons names in the training corpus, and 2) An

efficient model results from using initial seeds like ��ñK. “Bush”, which occurs frequently and

in a variety of contexts in the training corpus. Overall, our semi-supervised system is easily

adaptable when extending the NE hierarchy and performs just as well when recognising the

standard Person category.

In comparison with different supervised NER systems [Benajiba and Rosso, 2007, 2008;

Benajiba et al., 2007] when applied on the ANERcorp test set, ASemiNER outperforms

a sensible supervised system, which depends on a set of simple language-independent fea-

tures. ASemiNER still cannot compete, however, with more complex supervised systems

as seen in Table 5.11. This can be attributed to its relatively low recall which is due to

ASemiNER’s incapability to detect NEs in ambiguous contexts. For example, detecting

�é 	KñÊ ��QK. “Barcelona” as an Organisation name in the following sentence:

“. �H@ñ	J� 5 �èYÖÏ ©�̄ð ð �éJ
J.¢Ë@ �ñj 	®Ë@ 	PA�Jk. @ Y�̄ ú
¾� 	�K
Qj. J
 ���� 	à@ �é 	KñÊ ��QK. Y» @”

“Barcelona confirmed that Chygrynskiy had passed a medical and signed for five years.”

ASemiNER also tends to miss NEs that appear in the text isolated from the context. For

example, the names of the journalists at the beginning of each news articles usually appear

alone attached to the article itself with nothing preceding it. The journalists’ names of

the articles in Benajiba corpus, in particular, are not, preceded by the words “written by”
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and they are followed by different contexts. So, these names are sometimes are followed by

punctuation marks, the name of the city that the news is from, or by the news article itself.

5.5 Summary

This chapter presented a semi-supervised algorithm for identifying Named Entities (NEs)

in Arabic text without annotated training data, or gazetteers. Our proposed algorithm

only requires a seed list of a few instances for each NE type in order to initiate the learning

process. Then, it iterates through three phases: 1) pattern induction, 2) instance (candidate

NEs) extraction, and 3) instance selection and ranking. Our contributions include the

following:

• We proposed a new way to produce the extraction patterns.

• We proposed a new way to generalise and filter the extraction patterns.

• We presented and compared two ranking measures for determining the most reliable

candidate NEs: the number of distinct patterns used in extracting candidate NEs,

and a measure applying Pointwise Mutual Information (PMI).

In comparison with different supervised NER systems, ASemiNER outperforms sensible

supervised systems. It can also be easily adapted to identify new types of NEs and does not

generate problems typical of supervised methods, which usually require annotated training

data and demand more effort and time to extract specialised types of NEs.

In general, our proposed algorithm uses careful criteria when selecting an instance from

candidate NEs for the next iteration, thereby having high precision at the expense of recall.

The low recall can also be attributed to some NEs that appear in ambiguous contexts

and those NEs that are mentioned in the corpus isolated from the context. This makes it

difficult for the algorithm to induce a valid pattern from the contexts.

In the next chapter, we will look at another method of minimally-supervised approaches

to NER in order to handle NEs that can not be easily detected by the SSL algorithm.
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Distant Learning

In the previous chapter we presented a semi-supervised learning technique for Arabic NER

in order to detect NEs in the text with minimal human intervention. We demonstrated

how easily our semi-supervised approach adapts to identify new types of NEs. The pro-

posed algorithm, however, showed limitations when recognising some NEs that appear in

ambiguous contexts.

In this chapter we present distant learning as an alternative that requires limited human

intervention and avoids manually annotated data. The distant learning approach to NER

exploits the high coverage and rich informational structure of online encyclopedias, like

Wikipedia, in order to automatically create an NE annotated corpus.

This chapter presents our methodology for exploiting Wikipedia’s structure in order

to automatically develop an Arabic NE annotated corpus. Each Wikipedia link is trans-

formed into an NE type of the target article in order to produce the NE annotation. Other

Wikipedia features - redirects, anchor texts, and inter-language links - are used to tag addi-

tional NEs, which appear without links in Wikipedia texts. We propose a filtering algorithm

to eliminate ambiguity when tagging candidate NEs. We also introduce a mechanism based

on the high coverage of Wikipedia in order to address two challenges particular to tagging

NEs in Arabic text: rich morphology and the absence of capitalisation. Section 6.1 outlines

the types of Wikipedia articles and the structural information about these articles. Section

6.2 summarises the proposed methodology. Sections 6.3, 6.4, and 6.5 describe the proposed

algorithm in detail. The manually annotated data used for the evaluation, the experimental

setup, and the results are reported in Section 6.7. The results are discussed in Section 6.8.
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We draw some conclusions in Section 6.9.

6.1 Structure of Wikipedia

Wikipedia is a free online encyclopedia project written collaboratively by thousands of

volunteers, using MediaWiki1. Each article in Wikipedia is uniquely identified by its title.

The title is usually the most common name for the entity explained in the article. For

example, ‘United Kingdom’ is the title of the Wikipedia article describing Britain.

6.1.1 Types of Wikipedia Pages

6.1.1.1 Content Pages

Content pages (i.e., Wikipedia articles) contain the majority of Wikipedia’s informative

content. Each content page describes a single topic and has a unique title. In addition to

the text describing the topic of the article, content pages may contain tables, images, links,

and templates.

6.1.1.2 Redirect Pages

A redirect page is used if there are two or more alternative names that can refer to one

entity in Wikipedia. Thus, each alternative name is used as a title whose article contains a

redirect link to the actual article for that entity. For example, ‘UK’ is an alternative name

for the ‘United Kingdom’, so, the article with the title ‘UK’ simply links to the article with

the title ‘United Kingdom’.

6.1.1.3 Disambiguation Pages

A Disambiguation page is created for an ambiguous name that denotes two or more entities

in Wikipedia. For example, the disambiguation page for the Arabic name
�èQë 	P zuhrah

“Venus” enumerates 5 titles related to multiple entities such as ( �éj. ÊK. X �é»Qå��) �èQë 	QË @ 	Q»QÓ “Venus

Centre (dubbing company)” and (I. »ñ») �èQë 	QË @ “Venus (planet)”.

1An open source wiki package written in PHP.
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6.1.1.4 Lists Pages

Wikipedia offers several ways to group articles. One method is to group articles by lists.

The items on these lists include links to articles in a particular subject area, and may include

additional information about the listed items. For example, ‘list of scientists’ contains links

to articles of scientists and links to more specific lists of scientists, such as a list of Brazilian

scientists and a list of British scientists.

6.1.2 Structure of Wikipedia Articles

6.1.2.1 Categories

According to Wikipedia’s guidelines2, every article in the Wikipedia collection should fall

under at least one category. Categories should be on vital topics that are useful to the

reader. For example, the Wikipedia article about the United Kingdom in Wikipedia is

associated with a set of categories that includes ‘Countries bordering the Atlantic Ocean’,

‘Countries in Europe’, and ‘English-speaking countries and territories’. Categories allow

Wikipedia articles to be associated with more than one topic.

6.1.2.2 Infobox

An infobox is a fixed-format table added to the top right-hand or left-hand corner of articles

to provide a summary of some unifying parameters shared by the articles. Infobox templates

contain important facts and parameters that related articles have in common. For example,

every scientist has a name, date of birth, birthplace, nationality, and field of study.

6.1.3 Links

A link is a method used by Wikipedia to link pages within wiki environments. Links are

enclosed in doubled square brackets. A vertical bar, the ‘pipe’ symbol, is used to create a

link while labelling it with a different name on the current page. Look at the following two

examples:

2Wikipedia’s guidelines are available at http://en.wikipedia.org/wiki/Category:Wikipedia_

guidelines.
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1 - [[a]] is labelled ‘a’ on the current page and links to taget page ‘a’,

2 - [[a|b]] is labelled ‘b’ on the current page, but links to target page ‘a’.

In the second example, the anchor text (i.e., link label) is ‘b’, while ‘a’, a link target,

refers to the title of the target article. In the first example, the anchor text shown on the

page and the title of the target article are the same.

6.2 Creating NE Corpora by Leveraging Wikipedia Struc-

ture and Features

In order to transform Wikipedia into an NE annoted corpus, we exploited many of Wikipedia’s

concepts such as links, anchor texts, and redirects [Mika et al., 2008; Nothman et al., 2008,

2013]. Our approach to automatically developing an annotated NE corpus led us to adopt

the following steps:

1. Classify Wikipedia articles into a specific set of NE types.

2. Annotate the Wikipedia text as follows:

• Identify matching phrases in the title and the first sentence of each article and

label the matching phrases according to the article type.

• Label linked phrases in the text according to the NE type of the target article.

• Compile a list of alternative titles for articles and filter out ambiguous ones.

• Identify and label matching phrases in the list and the Wikipedia text.

3. Filter sentences to prevent noisy sentences being included in the corpus.

All of our experiments were conducted on the 26 March 2013 Arabic version of the Wikipedia

dump3. A parser was created to handle the mediawiki markup and to extract structural

information from the Wikipedia dump, such as a list of redirect pages along with their

target articles, a list of pairs containing link labels and their target articles in the form

’anchor text, target article’, and essential information for each article (e.g., title, body text,

categories, and templates).

3Arabic Wikipedia dump is available at http://dumps.wikimedia.org/arwiki/.
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6.3 Classifying Wikipedia Articles into NE Types

Categorising Wikipedia articles is the initial step in producing NE training data. Therefore,

all Wikipedia articles need to be classified into a specific set of NE types.

6.3.1 Data set and Annotation

In order to develop a Wikipedia document classifier, we used a set of 4,000 manually clas-

sified Wikipedia articles4. The set was manually classified using the ACE (2008) taxonomy

and a new class (Product). In total, there were eight coarse-grained categories: Facility,

Geo-Political, Location, Organisation, Person, Vehicle, Weapon, and Product. As our work

adheres to the CoNLL definition, we mapped these classified Wikipedia articles into CoNLL

NE types – Person, Location, Organisation, Miscellaneous, or Other – based on the CoNLL

2003 annotation guidelines [Tjong Kim Sang and De Meulder, 2003]( see Appendix B for

detailed list of CoNLL-2003 NE types with associated categories of names).

6.3.2 Classification of Wikipedia Articles

Many researchers have already addressed the task of classifying Wikipedia articles into

named entity types [Dakka and Cucerzan, 2008; Tardif et al., 2009]. Up to our knowledge,

only Alotaibi and Lee [2012] have experimented with classifying the Arabic version of

Wikipedia into NE classes (see Section 4.5.2).

We conducted three experiments that used simple bag-of-words features extracted from

different portions of the Wikipedia document and metadata. We included the following

portions of the document in each experiment:

Experiment 1: It involved tokens from the article title and the entire article body.

Experiment 2: Rich metadata in Wikipedia proved effective for the classification of

articles [Alotaibi and Lee, 2012; Tardif et al., 2009]. Therefore, in Experiment 2 we included

tokens from categories, tokens from the article title and the first sentence of the document,

and templates - specifically ‘Infobox’.

4The set of Arabic Wikipedia articles manually classified is available at http://www.arabic-ner.com/.
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Experiment 3: It involved the same set of tokens as Experiment 2, except that cat-

egories and infobox features were marked with suffixes to differentiate them from tokens

extracted from the article body text. We incorporated this step of distinguishing tokens

based on their locations in the document, because it has been reported to improve the

accuracy of document classification [Alotaibi and Lee, 2012; Tardif et al., 2009].

In order to optimise features, we implemented a filtered version of the bag-of-words

article representation (e.g., removing punctuation marks and symbols) to classify the Arabic

Wikipedia documents instead of using a raw data set. In addition, Alotaibi and Lee [2012]

demonstrated the great impact of applying clitic tokenisation as opposed to the neutral

effect of stemming. So, we implemented the filtered features proposed in the study of

Alotaibi and Lee [2012], which included removing punctuation marks and symbols, filtering

stop words, and normalising digits. We extended the features, however, by utilising the

clitic tokenisation scheme that involves separating conjunctions, prepositions, and pronouns

from each word.

The feature set was represented using the Term Frequency-Inverse Document Frequency

(TF − IDF ) method, a numerical statistic that reflects how important a token is to a

document.

6.3.3 Results of Classifying Wikipedia Articles

As for the learning process, our Wikipedia documents classifier was trained using Liblin-

ear5. 80% of the 4,000 manually classified Wikipedia articles were dedicated to the training

stage, while 20% were specified to test the classifier. Table 6.1 is a comparison of the pre-

cision, recall, and F-measure of the classifiers that resulted from the three aforementioned

experiments. The Wikipedia document classifier in Experiment 3 performed better than

the other classifiers. Therefore, we selected it to classify all of the Wikipedia articles. At

the end of this stage, we obtained a list of pairs containing each Wikipedia article and its

NE Type. We stored this list in a database in preparation for the next stage: developing

the NE-tagged training corpus.

5Liblinear is available at https://www.csie.ntu.edu.tw/~cjlin/liblinear/.
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Table 6.1: The results of the three Wikipedia document classifiers.

6.4 Annotation Process

After classifying Wikipedia articles into a set of NE types, each Wikipedia link in the

article text is transformed into an NE type of the target article in order to produce the NE

annotation. Other Wikipedia features - redirects, anchor texts, and inter-language links -

are exploited to tag additional NEs, which appear without links in Wikipedia texts. Next,

we explain the steps that our methodology followed to produce the NE annotated corpus

from Wikipedia in detail.

6.4.1 Utilising Titles of Articles and Link Targets

To identify corresponding words in the article title and the entire body of text and then

to tag the matching phrases with the NE type can be a risky process, especially for terms

with more than one meaning. For example, the title of the article describing the city 	àA¿

kaan “Cannes” can also, in Arabic, refer to the past verb 	àA¿ kaan “was”. The portion of

the Wikipedia article unlikely to produce errors during the matching process is the first

sentence, which usually contains the definition of the term the Wikipedia article is written

about [Zesch et al., 2008].

To successfully complete this step, it is necessary to be aware that article titles often
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contain abbreviations or shortened names (e.g., personal first or last name instead of full

name), while the article’s first sentence is usually made up of unabbreviated and full names.

This pattern makes it difficult to identify matching terms in the title and first sentence, and

frequently appears in biographical Wikipedia articles. For example, one article is entitled

ø
 	P@QË @ QºK. ñK. @ “Abu Bakr Al-Razi”, but the first sentence states the full name of the person:

ø
 	P@QË @ AK
Q» 	P 	áK. úæ
m
�'
 	áK. YÒm× QºK. ñK. @ “Abu Bakr Mohammad Bin Yahia Bin Zakaria Al-Razi”.

In our estimation, the best solution to this problem is partial matching. In this case,

the system should first identify all corresponding words in the title and the first sentence.

Second, the system should annotate them and all words that fall between, provided that:

• the sequence of the words in the article title and the text are the same in order to

avoid errors in tagging. For example, if the title of the article is 	QÖß
A�JË @ Qî 	E “The River

Thames”, but the first sentence reads . . . . ú

	̄ ©�®K
 Qî 	E ñë 	QÖß
A�JË @ “The Thames is a river

flowing through southern England....”, then the text will not be properly tagged.

• the number of tokens located between matched tokens is less than or equal to five6.

Figure 6.1 shows one example of partial matching.

Figure 6.1: An example of the partial matching.

6The statistics about the length of proper nouns we derived from two Arabic NER corpora (ANERcorp
and AQMAR) showed that the longest proper Arabic names are 5 to 7 tokens in length (see Table 5.1).
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The next step is to transform the links between Wikipedia articles into NE annota-

tions according to the link target type. Therefore, the link ([[ AÓAK. ð@ ¼@PAK.| AÓAK. ð@]]/[[Barack

Obama|Obama]]) would be changed to ( AÓAK. ð@ PER) (Obama PER), since the link target

(Barack Obama) is the title of an article about a person. By the end of this stage, all

NE anchor texts (anchor texts referring to NE articles) on Wikipedia should be annotated

based on the NE type of the target article.

6.4.2 Dictionaries of Alternative Names

Depending only on NE anchor texts in order to derive and annotate data from Wikipedia

results in a low-quality data set, as Wikipedia contains a fair amount of NEs that are

mentioned without links. This is due to the fact that each term on Wikipedia is more likely

to be linked on its first appearance in the article [Nothman et al., 2008]. These unlinked NE

phrases can be found simply by identifying the matching terms in the list of article titles

and the text. The process is not as straightforward as it seems, however, because identifying

corresponding terms may prove ineffective, especially in the case of a morphologically rich

language in which unlinked NE phrases are sometimes found agglutinated to prefixes and

conjunctions. In order to detect unlinked and inflected forms of NEs in Wikipedia text, we

extended the list of article titles that were used in the previous step to find and match the

possible NEs by including NE anchor texts. Adding NE anchor texts to the list assists in

finding NEs in the text that may be morphologically inflected, while eliminating the need

for any morphological analysis. Table 6.2 shows examples from the dictionary of NE anchor

texts.

 
 والمغرب
بالمغرب
كالمغرب
للمغرب
 وكالمغرب

 

 

   

 

  

Table 6.2: Examples from the dictionary of NE anchor texts.
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Spelling variations resulting from the varied transliteration of foreign NEs in some cases

prevent the accurate matching and identification of unlinked NEs, if only the list of NE

anchor texts is used. For example, @Q��Êm.�
	' @ “England” has been written in Arabic Wikipedia

in five different ways: èQ��Êm.�
	' @, @Q��Ê 	ª 	K @, èQ��Ê 	ª 	K @, @Q��Ê¾ 	K @, èQ��Ê¾ 	K @. The best resolution to this issue is

to compile a list of redirected page titles that send the reader to articles describing NEs.

We refer to these titles as NE redirects. We call the list of NE redirects and anchor texts a

list of alternative names, since they can be used as alternative names for article titles.

The list of alternative names is used to find unlinked NEs in the text by matching

phrases from the list with identical terms in the article text. This list is essential for

managing spelling and morphological variations of unlinked NEs, as well as misspellings.

Consequently, the process increases the coverage of NE tags augmented within the plain

texts of Wikipedia articles.

6.4.2.1 Filtering the Dictionaries of Alternative Names

Identifying matching phrases in the list of alternative names and the text inevitably results

in a lower quality corpus due to noisy names. The noisy alternative names usually occur

with meaningful NEs. For example, the article on the person 	á�
ÓB@ éÊË @YJ.« ñK. @ “Abu Abdullah

Alamyn” has an alternative name consisting only of his last name 	á�
ÓB@ alamyn, which

means “custodian” or “secretary”. Therefore, annotating every occurrence of 	á�
ÓB@ alamyn

as PER would lead to incorrect tagging and ambiguity. The same applies to the city with

the name èYK
Ym.Ì'@ aljadydah, which literally means “new”. Thus, the list of alternative names

should be filtered to remove such noisy alternative names.

Capitalisation probability measure for Arabic words: We introduce a capitalisation

probability measure for Arabic words, which are never capitalised, in order to omit one-

word NE phrases that are ambiguous when taken out of context because they usually have

an interpretation as a common noun or adjective in Arabic. This require finding the English

gloss for each one-word alternative name and then computing its probability of being capi-

talised using the English Wikipedia. To find the English gloss for Arabic words, we exploit

Wikipedia Arabic-to-English cross-lingual links that provide us with a reasonable number
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of Arabic and corresponding English terms. If the English gloss for the Arabic word could

not be found using inter-language links, we resort to an online translator. Before translat-

ing the Arabic word, a light stemmer is used to remove prefixes and conjunctions in order

to get the translation of the word itself without its associated affixes. For example, the

English translation of the Arabic word 	àY	JÊ¿ kalandan is “such as London”. So, in order to

get the translation of the main word itself, 	àY 	JË landan “London”, we used a light stemmer

to remove affixes. The capitalisation probability is computed as follows:

Pr[EN ] =
f(EN)isCapitalised

f(EN)isCapitalised+f(EN)notCapitalised

where: EN is the English gloss of the alternative name; f(EN)isCapitalised is the number

of times the English gloss EN is capitalised in English Wikipedia; and f(EN)notCapitalised

is the number of times the English gloss EN is not capitalised in English Wikipedia. This

way, we build a list of Arabic words along with their probabilities of being capitalised.

It is evident that one-word NEs, that have an interpreation as a common noun, adjective,

or verb in Arabic, usually achieve a low probability. By specifying a capitalisation threshold

constraint, we prevent such words from being included in the list of alternative names. After

a set of experiments, we decided to set the capitalisation threshold equal to 0.75.

Contrastingly, multi-word alternative names (e.g., XñÒm× ù 	®¢�Ó “MusTafae Mahmud”,

ÈXA« YÔg@ “Ahmad Adel”) rarely cause errors in the automatic annotation process. Wikipedi-

ans, however, at times append personal and job titles to the person’s name contained in

the anchor text, which refers to the article about that person. Examples of such anchor

texts are Y ��@P 	áK. YÒm× Z@P 	PñË@ �Êm.× ��
KP “President of the Council of Ministers Muhammad

bin Rashid” and Y ��@P 	áK. YÒm× ú
G. X Õ» Ag “Ruler of Dubai Muhammad bin Rashid”. As a result,

the system mistakenly annotates words like Dubai, Council, and Ministers as PER.

To solve this problem, we omitted the multi-word alternative name if any of its words

belonged to the list of apposition words which usually appear adjacent to NEs such as ��
KP

“President”, QK
 	Pð “Minister”, and Õ» Ag “Ruler”. The filtering algorithm managed to exclude

22.95% of the alternative names from the original list. Algorithm 6.1 shows pseudo code of

the filtering algorithm.
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Algorithm 6.1: Filtering alternative names algorithm.

Input: A set L = {l1, l2, . . . , ln} of all alternative names of Wikipedia articles
Output: A set RL = {rl1, rl2, . . . , rln} of reliable alternative names

1 for i← 1 to n do
2 T ← split li into tokens
3 if (T.size() >= 2) then

/* All tokens of T do not belong to apposition list */

4 if (! containAppositiveWord(T)) then
5 add li to the set RL

6 else
7 lightstem ← findLightStem(li)
8 englishgloss ← translate(lightstem)

/* Compute Capitalisation Probability for English gloss */

9 capprob ← compCapProb(englishgloss)
10 if (capprob > 0.75) then
11 add li to the set RL

Some statistics about the dictionaries derived from Wikipedia by exploiting Wikipedia’s

structure and adopting the filtering algorithm are reported in Table 6.3.
 

 

 

 

 

 

  

 

 

 

 

Table 6.3: Dictionaries derived from Wikipedia.

6.4.3 Post-processing

The goal of post-processing was to address some issues that arose during the annotation

process as a result of different domains, genres, and conventions of entity types. For ex-

ample, nationalities and other adjectival forms of nations, religions, and ethnic groups are

considered MISC in the CoNLL NER task in the English corpus, while the Spanish corpus

consider them NOT named entities [Nothman et al., 2013]. As far as we know, almost
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all Arabic NER data sets that followed the CoNLL guidelines in the annotation process

consider nationalities NOT named entities. We found that there are 1521 nationalities in

ANERcorp corpus and they are considered NOT NEs. In Wikipedia all nationalities are

linked to articles about the corresponding countries, which makes our methodology tag

them as LOC. We decided to consider them NOT named entities in accordance with the

CoNLL-style Arabic data sets. Therefore, in order to resolve this issue, we compiled a list

of nationalities, and other adjectival forms of religion and ethnic groups, so that any anchor

text matching an entry in the list was retagged as a NOT named entity.

The list of nationalities and apposition words used in Section 6.4.2.1 were compiled

by exploiting the ‘List of’ articles in Wikipedia such as list of people by nationality, list

of ethnic groups, list of adjectival forms of place names, and list of titles. Some English

versions of these ‘List of’ pages have been translated into Arabic, either because they are

more comprehensive than the Arabic version, or because there is no corresponding page in

Arabic.

6.5 Wikipedia-derived Corpus (WDC)

After the annotation process was completed, the last step was to incorporate sentences into

the corpus. As a result, we obtained an annotated data set made up of approximately ten

million tokens. However, in order to obtain a corpus with a large number of tags without

affecting its quality, we created a data set called Wikipedia-derived corpus (WDC ), which

included only sentences with at least three annotated named entity tokens.

The WDC data set contains 165,119 sentences consisting of around 6 million tokens.

The annotation style of the WDC data set followed the CoNLL format, where each token

and its tag are placed together in the same file in the form < token > \s < tag >. The

NE boundary is specified using the IOB2 representation scheme, where B- indicates the

beginning of the NE, I- refers to the continuation (Inside) of the NE, and O indicates

that the word is not a NE. The WDC data set is available online to the community of

researchers7.

7The WDC data set is available at https://sites.google.com/site/mahajalthobaiti/.
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6.6 Data

To evaluate the quality of our methodology, we used WDC as training data to build an NE

classifier. Then, we tested the resulting classifier on data sets from different domains. We

used three data sets: ANERcorp, NEWS, and TWEETS.

ANERcorp, which is freely available for research purposes, contains approximately 150K

tokens (11% of the tokens are NEs). It is composed of a training set and a test set built and

tagged especially for the NER task by Benajiba et al. [2007]. More details about ANERcorp

are found in Section 4.2.

The NEWS data set contains news snippets from the RSS feed of the Arabic version of

news.google.com from October 2012. The RSS consists of the headline and the first 50 to

100 words in the news articles. This set contains approximately 15K tokens. The third test

set (TWEETS) contains a set of 1,423 tweets authored between 23rd of November 2011

and 27th of November 2011. It has approximately 26K tokens [Darwish, 2013].

6.7 Experiments and Results

6.7.1 Experimental Setup

All experiments to train and build the classifiers were conducted using Conditional Random

Fields (CRFs)8. Regarding the features used in all our experiments, we used the most suc-

cessful features reported in Arabic NER work [Abdul-Hamid and Darwish, 2010; Benajiba

et al., 2008b; Darwish, 2013]. These features include:

• The words immediately before and after the current word in their raw and stemmed

forms.

• The first 1, 2, 3, 4 characters in a word.

• The last 1, 2, 3, 4 characters in a word.

• The appearance of the word in the gazetteer.

8We used CRFsuite which is available at http://www.chokkan.org/software/crfsuite/.
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• The stemmed form of the word.

We used ANERgazet, the gazetteer developed by Benajiba et al. [2008b] (see Section 4.2).

A light stemmer was used to determine the stemmed form of the word by using simple rules

to remove conjunctions, prepositions, and definite articles [Larkey et al., 2002].

We built an NE classifier by training a classifier on the automatically NE annotated

corpus from Wikipedia (WDC ) (see Section 6.2). We named that classifier the Distant

Learning (DL) classifier. We also built another NE classifier by training it on manually an-

notated data (ANERcorp training set). We called that classifier the gold-standard classifier.

These two classifiers used the same aforementioned features.

We compared the DL classifier and gold-standard classifier by evaluating them on data

sets from different domains. Firstly, we decided to test them on Wikipedia. Thus, a subset,

containing around 14k tokens, of the WDC set was allocated for testing purpose. It was

checked and annotated manually by one native speaker of Arabic according to the CoNLL

tagging guidelines. Secondly, the gold-standard classifier and DL classifier were tested on

the ANERcorp test data. The objective of this comparison was to show how well the DL

classifier works on a newswire domain, which is more specific than Wikipedia’s open domain.

Thirdly, the gold-standard classifier and the DL classifier were tested on NEWS corpus,

which is also a newswire based data set. Finally, we tested the gold-standard classifier and

DL classifier on data extracted from a social network, namely Twitter (TWEETS corpus).

We also compared our approach with other approaches for automatically producing

NE annotations from Arabic Wikipedia. So, our DL classifier and other two classifiers

trained on two corpora automatically annotated from Arabic Wikipedia (WikiFANEWhole

and WikiFANESelective) were evaluated on the ANERcorp test set (see Section 4.2 for more

details about WikiFANE data sets).

In order to show the effect of combining our corpus (WDC ) with a manually annotated

data set from a different domain, we merged WDC with the ANERcorp training set. Then,

we trained a classifier on the combined corpus and tested its performance on the four

aforementioned data sets: ANERcorp test set, NEWS set, Wikipedia set, and TWEETS

set. We refer to that classifier as the combined data classifier.
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6.7.2 Results

We compared the NE classifier (gold-standard classifier) that we trained on the manually

annotated data (ANERcorp training set) with the state-of-the-art NE classifier trained on

the same data set by Darwish [2013]. We refer to his NE classifier as the state-of-the-art

classifier. Table 6.4 compares the performance of the state-of-the-art classifier with the

performance of our gold-standard classifier.

 

Table 6.4: The comparison between our gold-standard classifier and the state-of-the-art
classifier.

Table 6.5 shows the results of our DL classifier and the results of the two classifiers

trained on WikiFANE data sets, which were automatically collected from Wikipedia by

Alotaibi and Lee [2013].

 

Table 6.5: The comparison between the DL classifier and the two WikiFANE classifiers

Table 6.6 shows the results of the comparison of the DL classifier and gold-standard

classifier when tested on four different data sets: Wikipedia data set, ANERcorp test set,

NEWS, and TWEETS corpora. The detailed results of each classifier on different data sets

can be found in Table 6.7, Table 6.8, Table 6.9, and Table 6.10.
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Table 6.6: The comparison between the gold-standard classifier and DL classifier in terms
of F-measure on different data sets.

 

Table 6.7: The results of the gold-standard and DL classifiers on the Wikipedia test set.

 

Table 6.8: The results of the gold-standard and DL classifiers on the ANERcorp test set.
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Table 6.9: The results of the gold-standard and DL classifiers on the NEWS data set.

 

Table 6.10: The results of the gold-standard and DL classifiers on the TWEETS data set.

Table 6.11 shows the results of the combined data classifier when tested on the three

test sets.

 

Table 6.11: The results of combining WDC with the ANERcorp data set.

The difference in performance of the three aforementioned classifiers - the DL classifier,

gold-standard classifier, and combined data classifier - was tested using a statistical test.

We ran a sign test over the results of these three classifiers on different data sets: the

ANERcorp test set, NEWS data set, TWEETS data set, and Wikipedia test set. The

alpha level (α = 0.01) was used as a significance criterion for the statistical test. Table 6.12

shows the p-values for the pairwise comparisons of the three classifiers.
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Table 6.12: The sign test results (p-values) for the pairwise comparisons of the
gold-standard classifier and DL classifier.

6.8 Results Discussion

The results of the gold-standard classifier when tested on the ANERcorp test set showed

high precision and recall, producing an overall F-measure equal to 78.15%. The high

performance of the gold-standard classifier was expected, as it was trained on a manually

annotated corpus (ANERcorp training set) and tested on data from the same corpus. The

gold-standard classifier that we developed appeared to perform on par with the state-of-

the-art NE classifier, as seen in Table 6.4.

The DL classifier was built using the same features utilised when building the gold-

standard classifier, but it was trained on the (WDC ) corpus - the NE annotated data set

that we created automatically from Wikipedia. The comparison between the DL classi-

fier and the two classifiers trained on the WikiFANE data sets, which were automatically

collected from Wikipedia by Alotaibi and Lee [2013], revealed that our proposed method-

ology produced a data set that outperformed the two other data sets in terms of recall and

F-measure.

The results in Table 6.6 show that our DL classifier outperforms the F-measure of

the gold-standard classifier by around 48 percentage points when tested on the Wikipedia

set. The sign test in Table 6.12 shows a siginficant difference in performance between the
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gold-standard classifier and the DL classifier (p < 0.01). The obvious difference in the per-

formance of the two classifiers can be attributed to the difference in annotation convention

for different domains. For example, many NE keywords in Arabic Wikipedia, which appear

in the text along with NEs (e.g.,
�éªÓAg. “university”,

�é 	JK
YÓ “city”,
�é»Qå�� “company”), are usu-

ally considered part of NE names. So, the phrase ‘Shizuoka Prefecture’ that is mentioned

in some Arabic Wikipedia articles is considered an entity and linked to an article that talks

about Shizuoka, making the system annotate all words in the phrase as NEs as follows:

�é 	¢ 	̄ Am× B-LOC A¿ð 	Q�
 �� I-LOC “Shizuoka B-LOC Prefecture I-LOC ”. On the other hand, in

the ANERcorp corpus, only the word after the NE keyword
�éK
Bð “Prefecture” is considered

an NE. In addition, although sport facilities (e.g., stadiums) are categorised in Wikipedia

as Location, they are not considered entities in the ANERcorp corpus.

The gold-standard classifier outperforms the F-measure of the DL classifier by around

13 points when tested on the ANERcorp test set (p < 0.01). This can be attributed to

the fact that training and test data sets for the gold-standard classifier are drawn from

the same corpus. In addition, 69% of NEs in the test data are existing in the training set

[Darwish, 2013].

The results of the gold-standard classifier on the NEWS data set (as seen in Table

6.9) are lower than those on the ANERcorp test set (the overall F-measure is 53.74% on

the NEWS data set, while it is 78.15% on the ANERcorp test set). The DL classifier

appears to perform as well as the gold-standard classifier on the NEWS set, producing an

F-measure equal to 50.12%. In addition, the results of testing the DL classifier and gold-

standard classifier on data set from the Twitter prove that models trained on open-domain

data sets like Wikipedia perform better on social network text than classifiers trained on

domain-specific data sets.

When tested on the ANERcorp test set, NEWS test set, and Wikipedia set, the com-

bined data classifier achieves results that fall between the results of the classifiers trained

on each corpus separately (i.e., DL classifier and gold-standard classifier). The results of

the combined data classifier when tested on the fourth test set (TWEETS) show little im-

provement over the performances of the two classifiers trained on each corpus separately.
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In fact, the sign test (see Table 6.12) reveals significant difference in performance between

the combined data classifier and the other two classifiers - the gold-standard classifier and

the DL classifier - over the four data sets. Only the DL classifier vs. combine data clas-

sifier comparison over the TWEETS data set shows absolutely no significant difference in

performance. (p = 0.2416).

Generally, although the DL classifier does not outperform the gold-standard classifier

which is trained and tested on data from the same corpus, it performs on par with the

gold-standard classifier on non-corresponding test sets where the training and test sets are

not from the same corpus and/or domain. In addition, the DL classifier outperforms the

gold-standard classifier on social network and open-domain text such as Wikipedia and

Twitter.

6.9 Summary

This chapter presented a methodology that requires minimal time and human intervention

to generate an NE annotated corpus from Wikipedia. The corpus created with our method

(WDC ) contains around 6 million tokens representing different genres, as Wikipedia is

considered an open domain. The evaluation results show the high quality of the WDC. So

that, the DL classifier trained on WDC can compete with those trained on manually anno-

tated corpora. Furthermore, the data set WDC outperforms other NE corpora generated

automatically from Arabic Wikipedia by 8 to 12 points in terms of F-measure. Our main

contributions include:

• We introduced a capitalisation probability measure for Arabic words, which are never

capitalised, using the high coverage of Wikipedia.

• We proposed a mechanism to handle the rich morphology in Arabic, and eliminate

the need to perform any deep morphological analysis by exploiting Wikipedia features

such as anchor texts and redirects.

• We automatically developed a large automatic NE corpus and made it available online.
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The results of our distant learning approach to Arabic NER show high recall but low

precision, whereas our semi-supervised method (see Chapter 5) has very high precision but

comparatively low recall. These differences in strengths can be exploited to produce better

results. Therefore, we plan, in the next chapter, to investigate the differences between the

two minimally-supervised methods and to exploit these differences to obtain better results.
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Classifier Combination

In the previous chapters we presented two minimally supervised methods: semi-supervised

learning and distant learning. These methods are alternatives to supervised methods and

do not require manually annotated data. However, the performance of such methods tends

to be lower than that achieved with supervised methods. Semi-supervised methods tend

to have very high precision but comparatively low recall, whereas distant learning tends to

achieve higher recall but lower precision. This complementarity suggests that better results

may be obtained by combining the two types of minimally supervised methods.

In this chapter, we present a novel approach to Arabic NER using a combination of

semi-supervised and distant learning techniques. We combine the two minimally supervised

methods (explained in Chapter 5 and 6) in order to obtain better results, exploiting their

complementary strengths. Various classifier combination schemes are used to combine

minimal supervision methods. In particular, we test the recently proposed Independent

Bayesian Classifier Combination (IBCC) scheme [Kim and Ghahramani, 2012; Levenberg

et al., 2014], and compare it with traditional voting methods for classifier combination.

Section 7.1 presents an error analysis that digs deeper into explaining where each classifier

complements the other. Section 7.2 supplies a brief description of the classifier combination

schemes used in this chapter. The data sets used in the experiments and the evaluation

results are discussed in Section 7.3 and Section 7.4 respectively. The results are discussed

in Section 7.5. Finally, the conclusions are drawn in Section 7.6.
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7.1 The Case for Classifier Combination

We use SSL to refer to our semi-supervised classifier and DL to refer to our distant learning

classifier. Table 7.1 summarises the results of both classifiers when tested on the ANERcorp

test set (see Chapter 5 and Chapter 6 for detailed results).

NEs Classifiers Precision Recall F-measure

PER
SSL 85.91 51.10 64.08

DL 80.01 45.11 57.69

LOC
SSL 87.91 62.48 73.04

DL 75.21 67.14 70.95

ORG
SSL 84.27 40.30 54.52

DL 74.10 57.02 64.45

Overall
SSL 86.03 51.29 64.27

DL 76.44 56.42 64.92

Table 7.1: The comparison between the SSL classifier and DL classifier.

As is apparent in Table 7.1, the SSL classifier tends to be more precise at the expense of

recall. The distant learning technique is lower in precision than the semi-supervised learning

technique, but higher in recall. Generally, preference is given to the distant supervision

classifier in terms of F-measure.

The two classifiers have different strengths. Our semi-supervised algorithm iterates

between pattern extraction and candidate NEs extraction and selection. Only the candidate

NEs of which the classifier is most confident are added at each iteration, which results in the

high precision. The SSL classifier performs better than distant learning when detecting NEs

that appear in reliable/regular patterns. Usually these patterns are learned easily during

the training phase, either because they contain important NE indicators, also known as

trigger words which help in identifying a NE within text, or because they are supported

by many reliable candidate NEs. For example, the SSL classifier has a high probability to

successfully detect AÓAK. ð@ “Obama” and ÈA 	g 	àA 	̄ ��
ñË “Louis van Gaal” as persons’ names

in the following sentences:

• . . . AJ
 	K A¢�
QK. Pð 	QK
 ø

	YË@ AÓAK. ð@ ��
KQË @ h �Qå�

“President Obama said on a visit to Britain ...”
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• . . . 	à@ YJ
��K
A 	KñK
 Q��� ��	�AÓ H. PYÓ ÈA 	g 	àA 	̄ ��
ñË ÈA�̄

“Louis van Gaal the manager of Manchester United said that ...”

The patterns extracted from such sentences in the newswire domain are learned easily

during the training phase, as they contain good NE indicators like ��
KQË @ “president” and

H. PYÓ “manager”.

Our distant learning method relies on Wikipedia structure and links to automatically

create NE annotated data. It also depends on Wikipedia features, such as inter-language

links and redirects, to handle the rich morphology of Arabic without the need to perform

excessive preprocessing steps (e.g., POS tagging, deep morphological analysis), which has a

slightly negative effect on the precision of the DL classifier. The recall, however, of the DL

classifier is high, covering as many NEs as possible in all possible domains. Therefore, the

DL classifier is better than the SSL classifier at detecting NEs that appear in ambiguous

contexts (they can be used for different NE types) and with no obvious clues (NE indicators).

For example, detecting ø
 P@Q�
 	̄
“Ferrari” and AJ
»ñ	K “Nokia” as organisation names in the

following sentences:

• . . . ø
 P@Q�
 	̄ ÐQk ø

	YË@ ,ñ 	JK
P ��KA� úÎ« ñ�	�ñË@ ÐY�®�K

“Alonso got ahead of the Renault driver who prevented Ferrari from ... ”

• �é�® 	®�Ë@ ÐAÖ �ß @ 	àC«@ 	áÓ ÐñK
 YªK. AJ
»ñ	K H. A¢ 	k ZAg.
“Nokia’s speech came a day after the completion of the deal”

The strengths and weaknesses of the SSL and DL classifiers indicate that a classifier en-

semble may perform better than its individual components.

7.2 Classifier Combination Methods

Classifier combination methods are suitable for utilising the predictions of multiple classi-

fiers to enable higher accuracy classifications. Dietterich [2000b] reviews many methods for

constructing ensembles and explains why classifier combination techniques often perform

better than any individual classifier. Tulyakov et al. [2008] introduce various categories of
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classifier combinations according to different criteria, including the type of the classifier’s

output and the level at which the combinations operate. Several empirical and theoretical

studies have been conducted to compare ensemble methods such as boosting, randomi-

sation, and bagging techniques [Bauer and Kohavi, 1999; Dietterich, 2000a; Maclin and

Opitz, 1997]. Ghahramani and Kim [2003] explore a general framework for a Bayesian

model combination that explicitly models the relationship between each classifier’s output

and the unknown true label. As such, multiclass Bayesian Classifier Combination (BCC)

models are developed to combine predictions of multiple classifiers. Their proposed method

for BCC in the machine learning context is derived directly from the method proposed in

[Haitovsky et al., 2002] for modelling disagreement between human assessors, which in turn

is an extension of [Dawid and Skene, 1979]. Similar studies on modelling data annotation

using a variety of methods are presented in [Carpenter, 2008; Cohn and Specia, 2013].

Simpson et al. [2013] present a variant of BCC in which they consider the use of a prin-

cipled approximate Bayesian method, variational Bayes (VB), as an inference technique

instead of using Gibbs Sampling. They also alter the model so as to use point values for

hyper-parameters, instead of placing exponential hyper-priors over them.

The following sections detail the combination methods used in this chapter to combine

the minimally supervised classifiers for Arabic NER.

7.2.1 Voting

Voting is the most common method in classifier combination because of its simplicity and

acceptable results [Van Erp et al., 2002; Van Halteren et al., 2001]. Each classifier is

allowed to vote for the class of its choice. It is common to take the majority vote, where

each individual classifier is given one vote and the class with the highest number of votes

is chosen. In the case of a tie, when two or more classes receive the same number of

votes, a random selection is taken from among the winning classes. It is useful, however, if

individual classifiers are distinguished by their quality. For this purpose, weights are used

to encode the importance of each individual classifier [Van Erp et al., 2002].

Equal voting assumes that all classifiers have the same quality [Van Halteren et al., 2001].
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Weighted voting, on the other hand, gives more weight to classifiers of better quality. So,

each classifier is weighted according to its overall precision, or its precision and recall on

the class it suggests.

Formally, given K classifiers, a widely used combination scheme is through the linear

interpolation of the classifiers’ class probability distribution as follows

P(C |SK
1 (w)) =

K∑
k=1

Pk (C |Sk (w)) · λk (w) (7.1)

where Pk(C|Sk(w)) is an estimation of the probability that the correct classification is C

given Sk(w), the class for the word w as suggested by classifier k. λk(w) is the weight that

specifies the importance given to each classifier k in the combination.

Pk(C|Sk(w)) is computed as follows

Pk(C|Sk(w)) =


1, if Sk(w) = C

0, otherwise

(7.2)

For equal voting, each classifier should have the same weight (e.g., λk(w) = 1/K). In case

of weighted voting, the weight associated with each classifier can be computed from its

precision and/or recall as illustrated above.

7.2.2 Independent Bayesian Classifier Combination (IBCC)

Using a Bayesian approach to classifier combination (BCC) provides a mathematical combi-

nation framework in which many classifiers, with various distributions and training features,

can be combined to provide more accurate information. This framework explicitly models

the relationship between each classifier’s output and the unknown true label [Levenberg

et al., 2014]. This section describes the Bayesian approach to the classifier combination we

adopted which, like the work of Levenberg et al. [2014], is based on Simpson et al. [2013]

simplification of Ghahramani and Kim [2003] model.

For ith data point, true label ti is assumed to be generated by a multinomial distribution

with the parameter δ: p(ti = j|δ) = δj , which models the class proportions. True labels
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may take values ti = 1...J , where J is the number of true classes. It is also assumed that

there are K individual classifiers. The output of the classifiers are assumed to be discrete

with values l = 1...L, where L is the number of possible outputs. The output c
(k)
i of

the classifier k is assumed to be generated by a multinomial distribution with parameters

π
(k)
j : p(c

(k)
i = l|ti = j, π

(k)
j ) = π

(k)
j,l where π(k) is the confusion matrix for the classifier k,

which quantifies the decision-making abilities of each individual classifier.

As in Simpson et al. [2013], we assume that parameters π
(k)
j and δ have Dirichlet prior

distributions with hyper-parameters α
(k)
0,j = [α

(k)
0,j1, α

(k)
0,j2, ..., α

(k)
0,jL] and ν = [ν0,1, ν0,2, ..., ν0,J ]

respectively. Given the observed class labels and based on the above prior, the joint distri-

bution over all variables for the IBCC model is

p(δ,Π, t, c|A0, ν) =

I∏
i=1

{δti
K∏
k=1

π
(k)

ti,c
(k)
i

}p(δ|ν)p(Π|A), (7.3)

where Π = {π(k)j |j = 1...J, k = 1...K} and A0 = {α(k)
0,j |j = 1...J, k = 1...K}. The conditional

probability of a test data point ti being assigned class j is given by

p(ti = j) =
ρij∑J
y=1 ρiy

, (7.4)

where

ρij = δj

K∏
k=1

π
j,c

(k)
i

. (7.5)

In our implementation we used point values for A0 as in [Simpson et al., 2013]. The

values of hyper-parameters A0 offered a natural method to include any prior knowledge.

Thus, they can be regarded as pseudo-counts of prior observations and they can be chosen

to represent any prior level of uncertainty in the confusion matrices, Π. Our inference

technique for the unknown variables (δ, π, and t) was Gibbs sampling as in [Ghahramani

and Kim, 2003; Simpson et al., 2013]. Figure 7.1 shows the directed graphical model for

IBCC. The c
(k)
i represents observed values. Circular nodes are variables with distributions

and square nodes are variables instantiated with point values.
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Figure 7.1: The directed graph of IBCC.

7.3 Data

In this section, we describe the two data sets we used:

• Validation set1(NEWS + BBCNEWS): 90% of this data set is used to estimate the

weight of each individual classifier and 10% is used to perform error analysis.

• Test set (ANERcorp test set): This data set is used to evaluate different classifier

combination methods.

The validation set is composed of two data sets: NEWS and BBCNEWS. The NEWS

set contains around 15k tokens collected by Darwish [2013] from the RSS feed of the Ara-

bic (Egypt) version of news.google.com from October 2012. We created the BBCNEWS

corpus by collecting a representative sample of news from BBC in May 2014. It contains

around 3k tokens and covers different types of news such as politics, economics, and en-

tertainment. BBCNEWS was annotated by one person, a native Arabic speaker, using the

CoNLL tagging guidelines

The ANERcorp test set makes up 20% of the whole ANERcorp data set. The

ANERcorp data set is a newswire corpus built and manually tagged, especially for the

1Also known as development set.
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Arabic NER task by Benajiba et al. [2007], and contains approximately 150K tokens (see

Section 4.2 for details).

7.4 Experiments and Results

7.4.1 Experimental Setup

In the IBCC model, the validation data was used as known ti to ground the estimates

of model parameters. The hyper-parameters were set as α
(k)
j = 1 and νj = 1 [Kim and

Ghahramani, 2012; Levenberg et al., 2014]. The initial values for random variables were set

as follows: (a) the class proportion δ was initialised to the result of counting ti and (b) the

confusion matrix π was initialised to the result of counting ti and the output of each classifier

c(k). We carried out likelihood analysis. We ran Gibbs sampling well past stability (i.e., 1000

iterations). Stability was actually reached in approximately 100 iterations. Figure 7.2(a)

shows the scatterplot of the the observed data log-likelihood during the 1000 iterations.

Figure 7.2(b) shows a closer picture for only the first 200 iterations. The convergence of

the sample label values are noticeable after approximately 100 iterations.

(a) 1000 iterations (b) 200 iterations

Figure 7.2: The progress of the sampler versus iteration.

All parameters required in voting methods were specified using the validation set. We

examined two different voting methods: equal voting and weighted voting. In the case of

equal voting, each classifier was given an equal weight, (1/K) where K was the number of

classifiers to be combined. In weighted voting, total precision was used in order to give
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preference to classifiers with good quality.

The SSL and DL classifiers were trained with two different algorithms using different

training data. The SSL classifier was trained on ANERcorp training data, while the DL

classifier was trained on a corpus automatically derived from Arabic Wikipedia, as explained

in Chapter 5 and 6. At the beginning of our experiments we proposed a simple combined

classifier that makes the final decision based on the agreed decisions of the individual

classifiers, namely the SSL classifier and DL classifier. That is, if the individual classifiers

agree on the NE type of a certain word, then it is annotated by an agreed NE type. In

the case of disagreement, the word is considered not named entity. This simple combined

classifier forms the baseline in our experiments.

In the next step, several experiments were carried out in which the SSL and DL classifiers

were combined using the three classifier combination methods: equal voting, weighted

voting, and IBCC.

We also introduced the classifier combination restriction in order to control how and

when the predictions of individual classifiers should be combined. The importance of re-

stricting the classifier combination appeared when we conducted an error analysis of the

three combined classifiers using the validation set. The error analysis shows that 10.01% of

the NEs were correctly detected by the semi-supervised classifier, but considered not NEs

by the distant learning classifier. At the same time, the distant learning classifier managed

to correctly detect 25.44% of the NEs that were considered not NEs by the semi-supervised

classifier. We also noticed that false positive rates, i.e. the possibility of considering a word

an NE when it is actually not an NE, are very low (0.66% and 2.45% for the semi-supervised

and distant learning classifiers respectively). These low false positive rates and the high

percentage of the NEs that are detected and missed by the two classifiers in a mutually

exclusive way can be exploited to obtain better results, more specifically, to increase recall

without negatively affecting precision. Therefore, we restricted the combination process to

only include situations where the individual classifiers agree or disagree on the NE type of

a certain word. The combination process is ignored in cases where the individual classi-

fiers only disagree on detecting NEs. For example, if the individual classifiers disagree on
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whether a certain word is an NE or not, the word is automatically considered an NE. Figure

7.3 provides some examples that illustrate the restrictions we applied to the combination

process.
 

  

 
Figure 7.3: Examples of restricting the combination process.

7.4.2 Results

Table 7.2 shows the results of the simple combined classifier, which is considered a baseline

in our experiments.

NEs Precision Recall F-measure

PER 97.31 24.69 39.39

LOC 98.35 40.01 56.88

ORG 97.38 33.20 49.52

Overall 97.68 32.63 48.92

Table 7.2: The results of the baseline.

Table 7.3 shows the results of the three classifier combination methods - equal voting,

weighted voting and IBCC - when applied to combine the SSL and DL classifiers.

The results of restricting the combination process that we applied in order to control

how and when the predictions of individual classifiers should be combined are seen in Table

7.4.
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NEs
Combination

Methods
Precision Recall F-measure

PER

Equal Voting 79.99 41.88 54.97

Weighted Voting 80.15 44.24 57.01

IBCC 77.87 63.86 70.17

LOC

Equal Voting 86.87 30.66 45.32

Weighted Voting 87.48 30.23 44.93

IBCC 81.52 59.86 69.03

ORG

Equal Voting 97.01 29.97 45.79

Weighted Voting 98.11 30.98 47.09

IBCC 95.44 34.31 50.47

Overall

Equal Voting 87.96 34.17 49.22

Weighted Voting 88.58 35.15 50.33

IBCC 84.94 52.68 65.03

NEs Individual Classifiers Precision Recall F-measure

Overall
SSL 86.03 51.29 64.27

DL 76.44 56.42 64.92

Table 7.3: The results of various combination methods.

NEs
Combination

Methods
Precision Recall F-measure

PER

Equal Voting 74.46 61.88 67.59

Weighted Voting 77.77 63.50 69.91

IBCC 77.88 64.56 70.60

LOC

Equal Voting 74.04 71.36 72.68

Weighted Voting 74.05 73.70 73.86

IBCC 76.20 75.91 76.05

ORG

Equal Voting 76.01 63.97 69.47

Weighted Voting 76.30 66.60 71.12

IBCC 78.91 66.65 72.26

Overall

Equal Voting 74.84 65.74 69.99

Weighted Voting 76.04 67.93 71.76

IBCC 77.66 69.04 73.10

NEs Individual Classifiers Precision Recall F-measure

Overall
SSL 86.03 51.29 64.27

DL 76.44 56.42 64.92

Table 7.4: The results of various combination methods when restricting the combination
process.
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We tested the significance of the difference in performance between the three classifier

combination methods - equal voting, weighted voting, and IBCC - by conducting two

different statistical tests on the results of these combination methods on an ANERcorp

test set. The alpha level (α = 0.01) was used as a significance criterion for all statistical

tests. First, we ran a non-parametric sign test, as seen in Table 7.5.

Combination Without Restriction

Equal Voting Weighted Voting IBCC

Equal Voting

Weighted Voting 0.3394

IBCC <2.2E-16 <2.2E-16

Combination With Restriction

Equal Voting Weighted Voting IBCC

Equal Voting

Weighted Voting 1.78E-07

IBCC <2.2E-16 1.97E-06

Table 7.5: The sign test results (p-values) for the pairwise comparisons of the combination
methods.

Second, we used a bootstrap sampling [Efron and Tibshirani, 1994], which is becoming

the de facto standard in NLP [Søgaard et al., 2014]. Table 7.6 compares each pair of

the three combination methods using a bootstrap sampling over documents with 10,000

replicates. It shows the p-values and confidence intervals of the difference between means.

Combination Without Restriction

Combination Methods Comparison p-value [95% CI]

Weighted Voting, Equal Voting 0.508 [-0.365, 0.349]

IBCC, Equal Voting 0.000 [4.800, 6.122]

IBCC, Weighted Voting 0.000 [4.783, 6.130]

Combination With Restriction

Combination Methods Comparison p-value [95% CI]

Weighted Voting, Equal Voting 0.000 [0.270, 0.600]

IBCC, Equal Voting 0.000 [0.539, 0.896]

IBCC, Weighted Voting 0.000 [0.157, 0.426]

Table 7.6: The bootstrap test results (p-values and CI) for the pairwise comparisons of
the combination methods.
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7.5 Results Discussion

The results of the baseline show very high precision, which indicates that both individual

classifiers are mostly accurate. The individual classifiers also commit different errors that

are evident in the low recall. The accuracy and diversity of the individual classifiers are

the main conditions for a combined classifier to demonstrate better accuracy than any of

its components [Dietterich, 2000b]. The results of the baseline confirm that the SSL and

DL classifiers can be combined to aggregate their best decisions, and to improve overall

performance.

Combining the SSL and DL classifiers using the three classifier combination methods -

IBCC, equal voting, and weighted voting - shows that the IBCC scheme outperforms all

voting techniques and individual classifiers in terms of F-measure. Regarding precision,

voting techniques show the highest scores. However, the high precision is accompanied

by a reduction in recall for both voting methods. The sign test shows a small p-value

(p < 0.01) for each pair of the three combination methods, as seen in Table 7.5, suggesting

that these methods are significantly different. The only comparison where no significance

was found is equal voting vs. weighted voting, when we used them to combine the data

without any restrictions (p = 0.3394). In addition, the bootstrap sampling shows there are

highly significant difference, between almost all three methods of combination. The one

exception is the comparison between equal voting and weighted voting, when they are used

as a combination method without restriction, which produces an insignificant difference

(p = 0.508, CI = -0.365 to 0.349). Generally, the IBCC scheme performs significantly better

than voting-based combination methods whether we impose restrictions on the combination

process or not, as can be seen in Table 7.3 and Table 7.4. It also has relatively high precision

compared to the precision of individual classifiers and much better recall.

Restricting the combination process in this way increases recall without negatively af-

fecting the precision, as seen in Table 7.4. The increase in recall makes the overall F-measure

for all combination methods higher than those of individual classifiers. This way of using

the IBCC model results in a performance level that is superior to all of the individual clas-
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sifiers and other voting-based combined classifiers. Therefore, the IBCC model leads to a

12% increase in the performance of the best individual classifier, while voting methods in-

crease the performance by around 7% - 10%. These results highlight the role of restricting

the combination, which affects the performance of combination methods and gives more

control over how and when the predictions of individual classifiers should be combined.

7.6 Summary

In this chapter, we combined two minimally supervised methods using a variety of classifier

combination schemes. Our main contributions include the following:

• We presented a novel approach to Arabic NER using a combination of semi-supervised

learning and distant supervision.

• We used the Independent Bayesian Classifier Combination (IBCC) scheme for NER, and

compared it to traditional voting methods.

• We introduced the classifier combination restriction as a means of controlling how and

when the predictions of individual classifiers should be combined.

The research presented in this chapter demonstrated that combining the two minimal

supervision approaches using various classifier combination methods led to better results

for NER. The use of IBCC improved the performance by 8 percentage points over the best

individual classifier, whereas the improvement in the performance when using voting meth-

ods was only 4 to 6 percentage points. Although all combination methods resulted in an

accurate classification, the IBCC model achieved better recall than other traditional com-

bination methods. Our experiments also showed how restricting the combination process

can increase the recall ability of all the combination methods without negatively affecting

the precision.

The approach we proposed can be easily adapted to new NE types and different domains

without the need for human intervention. In addition, there are many ways to restrict

the combination process according to the applications’ preferences, either producing high

accuracy or recall.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this work we attempted to move the state-of-the-art in NER forward, focusing on Arabic

NER. In particular, our research aimed to overcome the problems raised by traditional su-

pervised NER systems when changing the domain or expanding the set of NE classes: (a)

the need for domain-specific experts and (b) the time and effort required for new manually

annotated data. Our proposed solution involved two stages of work. First, we devel-

oped two new minimally supervised methods that require less human intervention, namely

semi-supervised learning and distant learning techniques, and compared their performance

levels to those of supervised methods. Second, we addressed the issue of performance of

minimally-supervised methods, analysing their strengths and weaknesses, and combining

them to obtain better results.

8.1.1 Minimally-supervised Methods

Our semi-supervised learning technique does not require annotated training data, or

gazetteers. It relies on the bootstrapping technique, which starts with only a few sets of

seed instances for a particular NE class (e.g., “London” and “Paris” are two seed instances

for the Location class) in order to initiate the learning process. Depending on the seed

instances, the algorithm learns the extraction patterns, which are exploited to identify

more instances for that NE type (candidate NEs). Then, the candidate NEs are sorted

according to a ranking measure in order to select the best of them to serve as the next seed
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instances when the process repeats. Our contributions to this part of the work include the

following:

• We proposed a new way to produce extraction patterns.

• We proposed a new way to generalise and filter extraction patterns.

• We presented and compared two ranking measures for determining the most reliable

candidate NEs: the number of distinct patterns used in extracting candidate NEs and

a measure applying Pointwise Mutual Information (PMI).

In a comparison with different supervised NER systems, our semi-supervised classifier

(SSL classifier) outperforms some supervised systems that use simple language-independent

features. The SSL classifier also can be easily adapted to identify new types of NEs and

does not suffer from the problems typical of supervised methods that require annotated

training data, and demand more effort and time to extract specialised types of NEs.

Our distant learning technique exploits Wikipedia structure to automatically develop

an Arabic NE annotated corpus. Each Wikipedia link is transformed into an NE type of

the target article in order to produce the NE annotation. Other Wikipedia features, such

as redirects, anchor texts, and inter-language links, are used to tag additional NEs, which

appear without links in Wikipedia texts. We also exploited the high coverage of Wikipedia

in order to address the challenges particular to tagging NEs in Arabic text as follows:

• We introduced a capitalisation probability measure for Arabic words, which are never

capitalised, using the high coverage of Wikipedia and the inter-language links.

• We proposed a mechanism to handle the rich morphology in Arabic, and eliminate

the need to perform any deep morphological analysis by exploiting Wikipedia features

such as anchor texts and redirects.

Our distant learning technique managed to automatically develop a large NE annotated

corpus. We referred to that corpus as the Wikipedia-derived corpus (WDC ). The WDC

contains about 6 million tokens representing different genres, as Wikipedia is considered an

open domain.
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The WDC corpus was used to train an NE classifier (DL classifier) which was tested on

data from different domains. The evaluation results showed that the DL classifier trained

on WDC can compete with those trained on manually annotated corpora. In a comparison

with our semi-supervised algorithm, the DL classifier shows high recall but low precision,

while our SSL classifier tends to have very high precision but comparatively low recall.

8.1.2 Combination of Minimally-supervised Methods

The semi-supervised learning and distant learning techniques display different strengths.

This complementarity suggests that better results may be obtained by combining them.

Therefore, we combined our semi-supervised algorithm with the distant learning technique

using a variety of classifier combination schemes. Our main contributions include the fol-

lowing:

• We presented a novel approach to Arabic NER using a combination of semi-supervised

learning and distant supervision.

• We used a new approach to classifier combination, the Independent Bayesian Classifier

Combination (IBCC) scheme, for NER for the first time and compared it to traditional

voting methods.

• We introduced classifier combination restriction as a means of controlling how and

when the predictions of individual classifiers are combined.

Our experiments demonstrate that combining the two minimal supervision approaches

using various classifier combination methods leads to better results for NER where the

performance of the combined classifier outperforms the individual classifiers (SSL classifier

and DL classifier). Although all combination methods result in an accurate classification,

the IBCC model achieves better recall than other traditional combination methods. The

evaluation results also show how restricting the combination process can increase the recall

ability of all the combination methods without negatively affecting the precision.
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A pipeline for Arabic NLP

During our work on this thesis we developed a Java-based library named “AraNLP” for

the processing of Arabic text. AraNLP is an attempt to group most of the essential Arabic

text preprocessing tools into one library by integrating or accurately adapting existing tools

and by developing new ones when required. The library includes a sentence detector, to-

keniser, word segmenter, root stemmer, light stemmer, part-of-speech tagger (POS-tagger),

normaliser, and a punctuation and diacritical mark remover (see Appendix C for detailed

information about the library).

8.2 Future Work

The scope of our future work is vast. One major route to consider is to use our approaches

to Arabic NER - semi-supervised technique, distant learning technique, and a combina-

tion of the two - to recognise fine-grained sets of named entity classes and not only for

standard classes (Person, Location, and Organisation). Although we have only tested our

semi-supervised technique in order to identify three specialised types of NEs (Politicians,

Sportspersons, Artists), more entities may be tested in the future.

Another possible direction for our work would involve experimentation with more minimally-

supervised learning algorithms, such as self-training and co-training, and investigating their

performance for Arabic NER when they work exclusively or cooperatively with the other

minimally-supervised techniques.

There is also plenty of room for more research on domain adaptation problem where

NER systems developed for one domain do not necessarily perform well on other domains.

More investigation is required to fine-tune NER systems to perform well in new domains

and to handle the differences in annotation convention for different domains.
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Appendix C: A Pipeline for Arabic NLP (AraNLP)

A good number of tools are available for preparing Arabic text and developing Arabic

NLP systems. Integration and compatibility problems, however, might occur with

some of these tools. Thus, Arabic NLP researchers find themselves either modifying

the existing processing tools to suit their needs, or building their own pipeline that

consists of essential text preparation tools arranged in a particular order, depending

on the applications requirements. Therefore, providing a library equipped with all

or most of the tools essential for the processing of Arabic text (e.g., tokenisation,

sentence detection, word segmenter, stemming, POS tagging), will make it possible to

move Arabic NLP forward and to facilitate the reuse of already existing preprocessing

algorithmic resources. For that reason, we developed AraNLP, a Java-based library

that covers various Arabic text preprocessing tools. It is an attempt to group the vital

Arabic text preprocessing tools into one library by integrating existing tools and by

developing new ones when required. The library includes:

• Sentence detector,

• Tokeniser,

• Light Stemmer,

• Root Stemmer,

• Part-of-speech (POS) Tagger,

• Word Segmenter,

• Normaliser,

• Punctuation and Diacritical marks remover.

AraNLP has already been used in this thesis to prepare the Arabic text for the ex-

periments and it successfully preprocessed the data sets. Figure 1 illustrates a typical

processing pipeline applying the tools provided by AraNLP. The library is available

free online1.

1AraNLP is available at https://sites.google.com/site/mahajalthobaiti
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 Letter Normaliser 

 Diacritical marks Remover 

 Punctuation marks Remover 

 Tatweel Remover 

 

POS Tagger 

Tagged Text 

Pre-Processing  

 

  Simple Tokeniser 

 Trained Tokeniser 

 Word Segmenter/ Decliticiser 

Raw Text 

Sentence Detection 

Orthographic Normalisation 

Tokenisation 

Figure 1: Typical processing pipeline of AraNLP.

C.1 The Modules

C.1.1 Sentence Boundary Detection

Sentence boundary detection is the process of isolating independent sentences. Finding

the correct sentence boundaries is more important for some NLP task than others,

and more critical for some languages and colloquial dialects than others, as well. This

is due to the ambiguity of punctuation marks, and the misuse of these marks in some

cases [7]. Many Arabic NLP studies rely on known Arabic sentence separators ( , ; : .

?) to segment raw text into sentences, and even depend on syntactic analysis to resolve

the ambiguity of punctuation marks, as in the study of [12]. However, we found no

study on processing Modern Standard Arabic (MSA) that provides evaluation results

for the sentence detectors they used.
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Depending purely on a few rules and one’s intuition that some punctuation marks,

more often than not, are used to delimit sentences is not an optimal solution, especially

for NLP tasks to which sentence detection is crucial. Therefore, we decided to build

a maximum entropy model2 for identifying sentence boundaries in raw Arabic text.

The corpus on which the model has been trained consists of 1,838 sentences collected

from 59 Arabic Wikipedia documents of various genres. According to the machine

learning package, the input format of the training data should be one sentence per

line. Contextual features of the potential sentence boundary, including the tokens

preceding and following the token that contains the end-of-sentence character and the

spaces that delimited the tokens, are used. The trained model performed well on a

test data set made up of 871 sentences, with 0.97 precision and recall reaching nearly

0.98.

C.1.2 Tokenisation

The standard preprocessing step for many NLP tasks is tokenisation, which divides

a string of written language into its component tokens. For less complex languages,

tokenisation usually involves splitting punctuation marks, and some affixes off of the

words. On the other hand, morphologically rich languages, like Arabic, require a more

extensive tokenisation process to separate different types of clitics and particles from

the word. This complex tokenisation is usually called word segmentation [6]. The

word segmenter provided by AraNLP is discussed in detail in Section C.1.4.

More relevant to our current topic is simple tokenisation, which only splits off punc-

tuation marks and non-alphanumeric characters from words. Although this type of

tokenisation may seem simple and require no disambiguation, there are some NLP

tasks for which it may be unsuitable, like Named Entity Recognition (NER). Oc-

casionally, punctuation marks and numbers appear in the names of entities such as

Product names and numbers (e.g., ’Olympus SP-820UZ digital camera’). The names of

these types of NEs are translated into Arabic with the same numbers and punctuation

marks. In addition, specific domains (e.g., University domain) introduce new types of

entities (e.g., Course Code and Room Number) that contain punctuation marks and

other symbols that should be considered single tokens [3]. Thus, it is necessary to take

2The Maxent machine learning package, available as part of the OpenNLP project was used to

train both Sentence Detector and Tokeniser.
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into account the careful separation of non-alphanumeric characters from the words.

To address this issue, we built a model that detects token boundaries using MaxEnt

machine learning. The training corpus we used consists of around 52,000 tokens from

the Arabic Wikipedia collection. The training algorithm uses contextual features such

as the two characters preceding and following the position where a space might be

added, the tokens preceding and following that position without crossing sentence

boundaries, and class information about the preceding and following two characters

(e.g., letters, numbers, end-of-sentence characters). A test data set with 21,000 tokens

was used to evaluate the trained tokeniser, which achieved a 0.97 precision and recall

score.

C.1.3 Stemming

Stemming is the process of reducing derived or inflected words to their stems or original

roots. Research has shown that Arabic stemming is challenging because of its highly

inflectional and derivational nature [2, 11]. The work on stemming can be divided into

two main types, according to the aims of the stemming process. Some work tries to

reduce the words to their original roots (root-extraction stemmers), while other work

aims to extract and remove affixes (light stemmers). Each type of stemmer has its own

significance. In other words, a stemmer that performs well with certain applications

may perform poorly with others [2, 5].

AraNLP supports the two types of stemmers in order to encompass all potential needs.

We implemented several versions of light stemming akin to those suggested by [10]

and [11]. They tried to remove strings that appeared as affixes more often than

they appeared at the beginning or end of Arabic words without affixes. Their light

stemming versions have been thoroughly tested and proved efficient for NLP tasks

such as NER [1].

As for the root stemmer, we incorporated the algorithm provided by [9]. They relied on

morphological analysis to develop their stemmer by first removing layers of prefixes

and suffixes, and then checking a set of roots and patterns to specify whether the

remainder was a known root with a known pattern. The Khoja Stemmer has been

modified, so that it can be used easily within our AraNLP library. We also exempted

‘stop words’ from stemming instead of removing them, as in the Khoja Stemmer. We

used the same list of 168 Arabic stop words provided by Khoja and Garside.
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C.1.4 Word Segmentation & POS Tagging

As already mentioned, Arabic is a highly morphological language with a considerable

number of bound clitics and affixes such as conjunctions, particles, prepositions, and

pronouns. Segmenting bound clitics and affixes reduces data sparsity and simplifies

analysing the text syntactically. These are great benefits for many NLP tasks such

as POS tagging. A large number of possible segmentation levels can be applied to

Arabic text, according to the types of clitics to be split. For example, a shallow

segmenter may only separate conjunctions and prepositions from the word. More

complex segmentation may break up the word into its stem and different clitics (e.g.,

conjunctions, interrogative clitics, definite articles, future verbal particle).

Our library links up to the Stanford Arabic word segmenter and POS tagger. The

segmenter produces the three Penn Arabic Treebank (PATB) clitic segmentations:

conjunctions, prepositions, and pronouns. The main advantage of this word segmenter

is that it processes raw text quickly in comparison to other word segmenters, as its

implementation is based on a sequence classifier (Conditional Random Fields). The

Stanford POS tagger is based on a maximum-entropy technique. We noticed that the

Arabic POS tagger quality increased when the text is segmented in order to separate

bound clitics from words. In AraNLP, you can use the POS tagger directly, as word

segmentation is carried out automatically before POS tagging.

C.1.5 Arabic Normalisation

A large number of NLP tasks require the text be free of punctuation or diacritical

marks, if not both. Therefore, we implemented a simple tool to remove punctuation

and diacritical marks. It removes all three forms of diacritical marks, as suggested

by [4]: vowel, nunation, and the shadda. The tool removes the following default

punctuation marks: commas (,), semi-colons (;), colons (:), exclamation points (!),

question marks (?), hyphens (-), En dashes (–), apostrophes (’), points of ellipsis (...),

Arabic commas (,), Arabic semi-colons (;), and Arabic question marks (?).

For many NLP applications, another issue that should be addressed in raw Arabic

text is inconsistent variations. For example, different forms of alif ( @ ,

@ ,

�
@ , @) might

be written interchangeably; another example is alif maqSuwrah and regular dotted

yaa’ (ø
 , ø) which are usually used interchangeably at the final position of the word.
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The same is true for taa’ marbuwTah and haa’ ( è , �è). These misspelling errors in

Arabic affect 11% of all words in the Penn Arabic Treebank (PATB) [8]. AraNLP

provides a different level of orthographic normalisation that can be carried out on

Arabic text to reduce noise and data sparsity. This includes normalisation of the

hamzated alif to a bare alif (alif without hamzah), normalisation of taa’ marbuwTah

to haa’, normalisation of the dotless yaa’ (alif maqSuwrah) to yaa’, and the removal

of tatweel (stretching character). AraNLP enables the user to customize the level of

normalisation according to the application’s need. In addition, the punctuation can

easily be added or deleted from the list of punctuation marks.
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