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Abstract

In Lowest-Unmatched Price Auctions (LUPA) all participants pay a bid-
ding fee and the lowest bid placed by only one participant wins. Many LUPAs
do not specify what happens with the item on offer if there is no unmatched
bid. The item may remain with the auctioneer which may appear unfair
given that the auctioneer collects the bidding fees. We show that in a sym-
metric Nash equilibrium of a LUPA with known prize both players and the
auctioneer will have an expected profit of zero. Moreover, LUPAs may be
seen as a value-revealing mechanism.
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1. Introduction

A Lowest-Unmatched Price Auction (LUPA) specifies that the winning
bid is the lowest among all unmatched bids, i.e. those placed by only one
player. Although participating in a LUPA requires strategic skills, they may
be mistaken for gambles (see Raviv and Virag, 2009 and the clarifications by
the Gambling Commission in 2008). Efficiency of LUPAs as trading mech-
anisms has not been investigated, except for a partial characterization by
Scarsini et al. (2010) who employ the zero-sum property to derive that the
organizer’s expected payoff is non-positive (non-negative for participants);
yet, according to them, LUPAs seem to generate more money than the value
of the object auctioned. Besides, in most LUPAs bidders pay participation
fees and with a strictly positive probability there is no winner, in which case
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Media Item Value, e Total bids Winner, e Profit, e
Radio monetary 10 000 47872 14.55 13 457.28
Radio monetary 10 000 52847 14.65 15 895.03
Radio monetary 1 000 1798 0.60 – 118.98
Radio monetary 3 000 6732 5.82 298.68
Radio monetary 5 000 6201 11.16 – 1 961.51
Newspaper bike 1 099 1272 1.51 – 475.72
TV car 20 000 266824 20.65 11 074.80
Radio house 350 000 610104 99.82 – 51 049

Table 1: Summary of some LUPAs run in Germany in 2005-2006.

the organizer would retain the item.1 This rule seems unfair, as the orga-
nizer also obtains the bidding fees. In this paper we explicitly show that the
expected payoff of participants and organizers is exactly zero.

From a strategic perspective, LUPAs give bidders incentives to outguess
bids of their rivals, unlike, say, first (or second) price private value auctions,
where bidders have incentives to reveal their valuation of the auctioned item
through bids placed. We show that despite this, the value of the auctioned
item is reflected in the bidding behavior, and conclusions can be drawn about
the bidders’ valuation of the item, as well as about efficiency of LUPAs as
trading mechanisms.

In some LUPAs, organizers specify a total number of bids that need to
be placed in order for the sale to take place. This number is typically high
enough to cover the cost of the auctioned item through bidding fees. In
others, the number of required bids is not specified. In Table 1, 4 out of
8 LUPAs of the second type resulted in losses for the organizers, while the
remaining auctions were profitable.2 Games with high and relatively low
stakes seem equally likely to be profitable or unprofitable, independent of
the media (newspaper, radio or TV) used as the auction’s platform.

Papers dealing with LUPAs often assume that players are only allowed

1This rule was used in Eichberger and Vinogradov (2008, 2015) and Östling et al.
(2011).

2Examples are from Eichberger and Vinogradov (2015). In all cases, the bidding cost is
49c per bid. Profit is calculated as the total revenue from bids less the [advertized] value
of the prize. On top of this, there was a fee paid by the organizers of the auction to service
providers, typically 12c per bid.
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to place a single bid, see Rapoport et al. (2007), Östling, et al. (2011) and
Houba et al. (2011). In contrast, here, as in Eichberger and Vinogradov
(2008, 2015) and Scarsini et al. (2010), the game has no restrictions on the
number of bids placed by each player.

2. The model

One can classify the LUPAs in Table 1 into three groups. Firstly, these
are LUPAs with a monetary prize. In these auctions the value of the prize is
identical for all bidders and for the organizer, justifying the common value
assumption. Secondly, there are LUPAs which sell standard items with a
well-defined market value, as the bicycle in Table 1; web-based LUPAs would
sell iPhones, iPads, cameras, or camcorders. In this case, a common value
assumption can also be justified for the bidders; for the organizers the valu-
ation may be different. If the organizer manufactures the item or obtains a
bulk purchase discount from the manufacturer, he may procure the item at a
price below its market value. Thirdly, some LUPAs sell items that different
participants are likely to value differently, e.g., a tuned car or a house.

We begin our analysis with the common value case, proceed with the
case of a different valuation by the organizer, and finally apply results to the
private value variant of a LUPA. The formulation of the game follows closely
Eichberger and Vinogradov (2015), henceforth EV (2015).

2.1. The Game

Consider a finite set of identical potential bidders I = {1, .., N} who value
the item which is to be sold in the auction at A. A player faces bidding costs
of c per bid. Players may become active bidders or may choose not to bid at
all.

We allow for multiple bids and define a strategy si of player i by a vector
of binaries si = (1, 0, ..., 0, 1, ...). The position b in strategy si refers to the
bid b and si (b) indicates whether player i places bid b (si (b) = 1) or does not
place this bid (si (b) = 0). Bidding above A is unprofitable, therefore bids
above A are dominated by the non-participation option, hence the number
of undominated bids is finite. We denote the highest undominated bid by b.
Formally, a strategy is a mapping si : N(b) → {0, 1}, where N(b) denotes the
set of integers up to b. The strategy set S of each player is the set of these
mappings.
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A strategy combination s = (s1, s2, ..sN ) is an element of SN . A strategy
combination s can be written (si, s−i), where s−i is the strategy combination
played by player i’s rivals. Given a strategy combination s, one can determine
the lowest unmatched bid µ (s). If there is no unmatched bid, we assign
µ (s) = 0.

Let πi ∈ ∆(S) be a mixed strategy of player i and denote by π−i the
combination of mixed strategies of his rivals. For a pure strategy si of player
i a profile π−i of mixed strategies of his rivals determines the probability
wb (si, π−i) of bid b winning: wb (si, π−i) =

∑
{s−i:µ(si,s−i)=b} π (s−i), where

π (s−i) =
∏

i 6=j π (sj) denotes the probability of the respective strategy com-
bination. With this notation, the expected payoff of player i from playing si

is

Pi (si, π−i) =

b∑

b=1

si (b) [(A− b) wb (si, π−i)− c] . (1)

Defining the expected payoff Pi (πi, π−i) of a mixed strategy πi for player i
in the usual way, one can apply the standard definition of a Nash equilibrium
in mixed strategies. A combination of mixed strategies

(
π∗

i , π
∗
−i

)
is a Nash

equilibrium if

Pi

(
π∗

i , π
∗
−i

)
≥ Pi

(
πi, π

∗
−i

)
for all πi ∈ ∆(S) and all i ∈ I.

We will focus on symmetric equilibria and, therefore, omit the indices of
players3. We are now ready to state our main results.

2.2. Bidders’ equilibrium payoffs

In a symmetric Nash equilibrium π, all pure strategies s in the support of
the equilibrium mixed strategy supp π must yield an equal expected payoff:

P (s, π) = P (s′, π) , for all s, s′ ∈ supp π. (2)

The following proposition establishes that, in equilibrium, players in a
LUPA will face an expected payoff of zero. The proof rests on showing that
the strategy s0 of not bidding and, hence, obtaining a payoff of zero has
positive probability in any symmetric Nash equilibrium. Hence, s0 belongs

3Formal definitions of µ (s) and wb (si, π) and a more detailed discussion are in EV
(2015).
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to the support of the equilibrium mixed strategy and the expected payoff of
all strategies which are played with positive probability in equilibrium must
be zero.

Proposition 1. For an equilibrium mixed strategy π, the expected payoff
P (s, π) is zero for all s ∈ supp π.

Proposition 1 establishes that participating in a LUPA is not profitable in
expected terms. For an item auctioned in a LUPA which the bidders value at
the market price A, risk-neutral players are indifferent between obtaining the
good in the market and participating in the LUPA. In this sense, LUPA is
a ”fair lottery”. This interpretation of LUPAs as trading mechanisms rests
upon the option not to participate and instead to obtain the item in the
market.

2.3. The equilibrium payoff of the auctioneer

The auctioneer’s valuation of the item on sale may or may not differ from
that of the bidders. If the object is a good which the auctioneer manufactures
himself or obtains at a discount, its value for the auctioneer may differ from
the market price at which bidders may acquire it. Denote the value of the
item for the auctioneer by C which is not necessarily equal to the value of
the object for the bidders A. Moreover, although the bidders’valuation A
determines the expected payoff of the auctioneer, it may be unobservable for
him.

Given a strategy combination s = (s1, .., si, .., sN) , denote the total amount

of bidding fees collected by F (s) =
N∑

i=1

c ·
b∑

b=1

si (b) , and define the realized

revenue of the auctioneer as

R (s) =

{
µ (s) + F (s) if µ (s) > 0,
C + F (s) if µ (s) = 0.

(3)

This formulation assumes that the auctioneer always keeps the fees col-
lected and, on top of this, either obtains the winning bid in exchange for
the item if there is a winner (µ (s) > 0), or keeps the item if there is a tie
(µ (s) = 0) and thus saves C. For a profile of mixed strategies π, the expected
revenue of the auctioneer is

R (π) =
∑

s∈SN

π (s) · R (s) . (4)

5



Denote by τ (π) = Pr {s :µ (s) = 0} =
∑

s∈SN :µ(s)=0

π (s) the probability of a

tie.

Proposition 2. If π is an equilibrium mixed strategy then

R (π) = (1− τ (π))A + τ (π)C. (5)

The valuation of the item by participants, A, enters the expected revenue
of the auctioneer through the strategic behavior of players in equilibrium.
To see this, recall that Proposition 1 ensures that, in equilibrium, bidders’
expected costs (bidding fees plus the winning bid) equal their expected gains
(the value of the prize). For this reason, in expected terms, all bidding fees
and the winning bid sum up to (1− τ (π))A in Equation (5). The remaining
term of the expression is the expected value of not allocating the item if there
is no winner.

Applying this result to the case where the auctioneer has to procure the
item at the market price (common value assumption), C = A, one obtains
immediately that the expected return of the LUPA, R (π) = A, equals the
market value at which the item can be purchased. Hence, an auctioneer who
values the item the same as the participants cannot expect a strictly positive
profit by selling the item through this mechanism.

Corollary 3. For C = A in equilibrium R (π) = A holds.

If the organizer and the bidders have different valuations of the item,
proposition 1 also shows that LUPAs are fair mechanisms. For A ≥ C, the
auctioneer’s expected revenue is limited above by the market valuation of
the item. For A < C, the auctioneer would better not auction the item
at all since expected revenue falls below the auctioneer’s procurement cost
C. These findings are in stark contrast with the first-glance impression that
collecting bidding fees from a large number of participants would generate
unlimited profits for the auctioneer.

Profitability of the LUPA for the auctioneer depends on the equilibrium
probability of a tie τ (π), which depends on the number of players N , bidding
fee c and bidders’ valuation A. The latter may be unknown to the orga-
nizer (private value). The auctioneer starts the auction only if he believes
his rent is positive, A − C > 0; this gives incentives to minimize the prob-
ability of a tie. This can be done, for example, by appropriately choosing
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the bidding fee, c. If the probability of a tie is close to zero, LUPAs act as
a value-revealing mechanism in expected terms: the expected revenue of the
auctioneer converges to the valuation of the good by the participants.

Re-auctioning has a similar effect. If a LUPA results in a tie, the auc-
tioneer with C < A has incentives to re-auction the item. If re-auctioning is
always done through a LUPA, the expected value of the auctioneer is again
equal to the market valuation of the item.

Corollary 4. If the auctioneer re-auctions the item through a LUPA, when-
ever there is no winner, then R (π) = A.

To see the last result, in (5) replace value C by the expected revenue from
re-auctioning the item: R (π) = (1− τ )A + τR (π), which yields R (π) = A.
Although the item may be re-auctioned in a LUPA with a different bidding
fee, by Proposition 2, the expected revenue of the auctioneer does not depend
on the choice of fees.

3. Conclusion

LUPAs still are unusual selling mechanisms, yet they possess attractive
features: the expected value for participants is the same as if they would
obtain the auctioned item in the market and the seller’s expected revenue
cannot exceed the market price. Moreover, LUPAs are capable of revealing
the market valuation of the auctioned item if the probability of a tie (no
winner) is close to zero or if the seller keeps re-auctioning the item if ties
occur. All these properties are in expected terms. For applications, this
means that LUPAs should be repeated many times in order to deliver these
results on average.

These considerations may explain why some LUPAs ended with losses
for the organizers whereas others were beneficial for them. Most of auctions
referred to in this paper were linked to a marketing campaign by TV or
radio broadcasters without the intention of frequent repetitions. In these
cases, potential losses were covered by marketing expenses. In contrast,
the LUPAs conducted on the internet sell homogenous goods in a series
of repeated auctions, which provide a better setting for testing our zero-
expected profit result. However, this type of LUPAs often imposes an upper
limit on the number of bids in order to guarantee a total amount of bidding
fees which covers the cost of the auctioned item. According to our theory,
provisions of this type are unnecessary.
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4. Proofs

The following result from EV(2015) is used in the proofs. Consider a
LUPA, denoted as Γk, in which players are restricted to place bids only
up to k ≤ A, i.e. they can only play strategies from the constrained set
Sk = {s ∈ S : s (b) = 0, ∀b > k}. Let πk be the mixed strategy played sym-
metrically by all players in Γk and πk+1 the mixed strategy played in a sim-
ilarly defined ”larger”game Γk+1. If πk+1 is an equilibrium in Γk+1, the
following proposition links it to an equilibrium in Γk:

Proposition 5 (EV, 2014). Consider game Γk+1. For any strategy s such
that s (k + 1) = 0 denote with s′ (s) its counterpart such that s′ (k + 1) = 1
and s′ (l) = s (l) , ∀l ≤ k. With this notation, if πk+1 is an equilibrium mixed
strategy in Γk+1, then a mixed strategy π̃k with elements π̃k (s) as defined
below is an equilibrium mixed strategy in Γk:

π̃k (s|πk+1) :=

{
πk+1 (s) + πk+1 (s′) if s (k + 1) = 0,

0 if s (k + 1) = 1.
(6)

Moreover, the two equilibria generate equal expected payoffs Pi (s, πk+1) =
Pi (s, π̃k).

This proposition combines Proposition 2 and Lemma A.4 from EV (2015).
Note that in the above proposition, any s has exactly one counterpart s′ (s).

Proof of Proposition 1

Proof. It suffices to show that if s ∈ supp πk+1 then Pi (s, πk+1) = 0.
First, we will show that this holds in Γ1 (LUPA with only one bid b = 1 al-

lowed). The strategy set S1 is {s0, s1} = {0, 1}. Let π1 = (π0
1, π

1
1) be symmet-

ric mixed equilibrium in Γ: π0
1, π

1
1 > 0 ⇒ Pi (s

1, π1) = (A− 1) w1 (s1, π1) −
c = Pi (s

0, π1) = 0. This implies w1 (s1, π1) = (π0
1)

N−1
= c

A−1
, which results

in π0
1 = N−1

√
c

A−1
. Since π0

1 + π1
1 = 1, we obtain π1

1 = 1 − N−1
√

c
A−1

. By

computation, this is the only equilibrium. Since s0 is in the support of it,
the expected payoff of players from playing any s ∈ supp π1 is Pi (s, π1) = 0,
∀i ∈ I, hence also the expected payoff Pi (π1) = 0.

Now assume that the proposition holds for Γk and consider game Γk+1.
Let πk+1 be equilibrium in Γk+1. Construct π̃k as in (6): π̃k (s) = πk+1 (s) +
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πk+1 (s′ (s)) , ∀s ∈ Sk. By Proposition 5, π̃k is equilibrium in Γk, and Pi (s, πk+1) =
Pi (s, π̃k) for any player i and any strategy s ∈ Sk. By inductive hypothesis,
Pi (s, π̃k) = 0 = Pi (s, πk+1). Since all strategies in the support of the mixed
equilibrium deliver equal expected payoffs, it follows that if s ∈ supp πk+1

then Pi (s, πk+1) = 0.

Proof of Proposition 2

Proof. From (3) and (4)

R (π) =
∑

s∈SN

π (s)·R (s) =
∑

s∈SN :µ(s)>0

π (s) [µ (s) + F (s)]+
∑

s∈SN :µ(s)=0

π (s) [C + F (s)] .

Note that
∑

s∈SN :µ(s)>0

π (s)+
∑

s∈SN :µ(s)=0

π (s) =
∑

s∈SN

π (s) = 1, and that the

probability of a tie is defined as τ =
∑

s∈SN :µ(s)=0

π (s), therefore

R (π) =
∑

s∈SN :µ(s)>0

π (s) µ (s) +
∑

s∈SN

π (s)F (s) + τC.

It remains show that the first two terms on the right-hand side add to
(1− τ )A. For the first of them we need to show

∑

s∈SN :µ(s)>0

π (s)µ (s) =

N∑

i=1

∑

si∈S

π (si)

b∑

b=1

si (b) wb (si, π) b. (7)

To prove this, introduce the indicator function

δb (si, s−i) =

{
1 if µ (si, s−i) = b
0 otherwise,

and represent the probability of winning wb (si, π) as

wb (si, π) =
∑

s−i∈SN−1

π (s−i) · δb (si, s−i) .
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Substitute this to the right-hand side of (7) to obtain

N∑

i=1

∑

si∈S

π (si)
b∑

b=1

si (b)
∑

s−i∈SN−1

π (s−i) · δb (si, s−i) b

=
N∑

i=1

∑

si∈S

π (si)
∑

s−i∈SN−1

π (s−i)
b∑

b=1

si (b) · δb (si, s−i) b =

N∑

i=1

∑

s∈SN

π (s)

b∑

b=1

si (b) · δb (si, s−i) b =
∑

s∈SN

π (s)

N∑

i=1

b∑

b=1

si (b) · δb (si, s−i) b.

Here on each strategy combination (si, s−i) the indicator δb (si, s−i) will take
value 1 either for exactly one player and one bid b, in which case δb (si, s−i) b =
µ (s) > 0, or for nobody, in which case µ (s) = 0. With this in mind, we
obtain

∑

s∈SN

π (s)
N∑

i=1

b∑

b=1

si (b) · δb (si, s−i) b =
∑

s∈SN :µ(s)>0

π (s) µ (s) .

Finally, consider

∑

s∈SN :µ(s)>0

π (s)µ (s) +
∑

s∈SN

π (s) F (s) =

N∑

i=1

∑

si∈S

π (si)

b∑

b=1

si (b) wb (si, π) b +
∑

s∈SN

π (s)

N∑

i=1

c ·
b∑

b=1

si (b) =

N∑

i=1

∑

si∈S

π (si)
b∑

b=1

si (b) wb (si, π) b +
N∑

i=1

∑

si∈S

π (si)
∑

s−i∈SN−1

π (s−i) · c ·
b∑

b=1

si (b) .
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Subtract

N∑

i=1

∑

si∈S

π (si)

b∑

b=1

si (b) wb (si, π) A from both sides to obtain

∑

s∈SN :µ(s)>0

π (s) µ (s) +
∑

s∈SN

π (s) F (s)−
N∑

i=1

∑

si∈S

π (si)

b∑

b=1

si (b) wb (si, π) A =

−
N∑

i=1

∑

si∈S

π (si)




b∑

b=1

si (b) wb (si, π) (A− b)−
∑

s−i∈SN−1

π (s−i)

︸ ︷︷ ︸
=1

· c ·
b∑

b=1

si (b)




=

−
N∑

i=1

∑

si∈S

π (si)




b∑

b=1

si (b) (wb (si, π) (A− b)− c)


 =

−
N∑

i=1

∑

si∈S

π (si)Pi (si, π) .

By Proposition 1, in equilibrium Pi (si, π) = 0 for any si such that π (si) >
0, therefore

∑

s∈SN :µ(s)>0

π (s) µ (s) +
∑

s∈SN

π (s)F (s) =

N∑

i=1

∑

si∈S

π (si)

b∑

b=1

si (b) wb (si, π) A.

It only remains to note that similarly to (7) one has

∑

s∈SN :µ(s)>0

π (s) A =

N∑

i=1

∑

si∈S

π (si)

b∑

b=1

si (b) wb (si, π) A,

and hence the previous equality turns to
∑

s∈SN :µ(s)>0

π (s) µ (s) +
∑

s∈SN

π (s) F (s) =
∑

s∈SN :µ(s)>0

π (s) A = (1− τ) A.

This proves that
R (π) = (1− τ )A + τC.
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