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ABSTRACT This paper describes a new type of communication network called data and energy integrated
communication networks (DEINs), which integrates the traditionally separate two processes, i.e., wireless
information transfer (WIT) andwireless energy transfer (WET), fulfilling co-transmission of data and energy.
In particular, the energy transmission using radio frequency is for the purpose of energy harvesting (EH)
rather than information decoding. One driving force of the advent of DEINs is wireless big data, which
comes from wireless sensors that produce a large amount of small piece of data. These sensors are typically
powered by battery that drains sooner or later and will have to be taken out and then replaced or recharged.
EH has emerged as a technology to wirelessly charge batteries in a contactless way. Recent research work has
attempted to combine WET with WIT, typically under the label of simultaneous wireless information and
power transfer. Such work in the literature largely focuses on the communication side of the whole wireless
networks with particular emphasis on power allocation. The DEIN communication network proposed in
this paper regards the convergence of WIT and WET as a full system that considers not only the physical
layer but also the higher layers, such as media access control and information routing. After describing the
DEIN concept and its high-level architecture/protocol stack, this paper presents two use cases focusing on
the lower layer and the higher layer of a DEIN network, respectively. The lower layer use case is about a fair
resource allocation algorithm, whereas the high-layer section introduces an efficient data forwarding scheme
in combination with EH. The two case studies aim to give a better explanation of the DEIN concept. Some
future research directions and challenges are also pointed out.

INDEX TERMS Data and energy integrated communication networks (DEINs), energy harvesting (EH),
wireless big data, power allocation, information dissemination.

I. INTRODUCTION
An important form of big data is large amount of small piece
of data collected from wireless sensors, namely, wireless big
data. These sensors are typically powered by battery that
drains sooner or later and will have to be taken out and then
replaced or recharged. Energy harvesting (EH) has emerged
as a technology to wirelessly charge batteries in a contact-
less way and thus widely used in wireless sensor networks.
EH utilizes radio frequency (RF) rather than the traditional
induction principle or other energy sources such as wind,
vibration or solar to conduct the charging, making it more
controller (usually human cannot control wind or sunshine).
However this RF-based wireless energy transferring (WET)
process is independent of wireless information transfer (WIT)

and the latter is by far the major objective of radio transmis-
sion nowadays.

Information and energy are two fundamental notions in
nature with critical impact on all aspects of life. All living
and machine entities rely on both information and energy
for their existence. In wireless communications, the relation-
ship between information and energy is even more apparent
as radio waves that carry information also transfer energy.
Wireless communication systems employ electromagnetic
waves in order to transfer information. Up until recently,
the information transmission capacity of these signals has
been the main focus of research and applications, neglecting
their energy content. However, thanks to recent advances
in silicon technology, the energy requirements of embedded
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systems have been significantly reduced, making electromag-
netic waves a potentially useful source of energy. For exam-
ple, recent experiments show that hundreds of microwatts
can be harvested from the signals broadcast by a TV station
from as far as a few miles away [1]. As a matter of fact,
the first use of radio waves was for energy transfer rather
than information transmission. However, despite the pio-
neering work of Tesla, who experimentally demonstrated
WET in the late 19th century [2], modern wireless commu-
nication systems mainly focus on the information content
of the radio-frequency (RF) radiation, neglecting its energy
transfer.

Recent research work has attempted to combine WET
with WIT, typically under the label of simultaneous wireless
information and power transfer (SWIPT). Such work in
the literature largely focuses on the communication side of
the whole wireless communication networks with particular
emphasis on power allocation. In contrast to the state of
the art, this paper proposes a new type of communication
network called data and energy integrated communication
networks or DEIN, which integrates the traditionally separate
two processes, i.e., wireless information transfer (WIT) and
wireless energy transfer (WET), fulfilling co-transmission
of data and energy. In particular, the DEIN communication
network in this paper regards the convergence of WIT and
WET as a full system that considers not only the physical
layer but also the higher layers such as media access control
and information/energy routing. There is a lack of systematic
understanding of DEIN in the literature. For instance, little
is known about how to bring the gains of DEIN from the
physical layer to the design of upper layers.

While information and energy transfer are in harmony in
nature, an efficient design of DEIN in its engineering sense is
challenging. For example, a typical DEIN network consists of
many nodes with various capabilities and different constraints
from both communications (such as delay, data rate, etc.) and
energy (such as battery capacity and battery sensitivity, etc.).
These diversities impose difficulties for characterizing the
fundamental limits of DEIN networks and result in extra
system complexity and may incur more energy and spectral
resource [3], [4].

The DEIN concept represents a paradigm shift of future
wireless communication networks with its fundamental goals
changing from pure information transfer to joint data-energy
transfer. For this new type of network as DEIN, fundamental
issues regarding information/energy coding, system mod-
elling and theoretical analysis, and the DEIN overall system
design need to be considered amongmany other new research
issues. The trade-off between information and energy and
their effective interaction necessitate novel designs of almost
all layers of the network protocol stack. Efficient cross-layer
design approaches will be necessary, for example, to bring
advanced physical layer techniques, such as full duplex-
ing and massive multiple-input multiple-output (MIMO),
together with dynamic resource allocation algorithms at the
data link layer, and even combined with multi-hop data

forwarding techniques. As a positioning piece of work,
this paper aims to present some high-level concept of DEIN
by making the following contributions:
• To present the DEIN system architecture through
redefining the traditional network protocol stack by
introducing energy processing alongside the traditional
data processing. Explanation to each newly introduced
components in the stack and their relationship with other
system components is also described.

• To give two use cases of DEIN. The first one gives a
simple example of the functionalities of the DEIN lower
layer, namely, power allocation to maximize the min-
imum data rate of user devices. And the user devises
are powered by the same antenna via WET and their
batteries respect the basic energy harvesting rules. The
second use case presents a high-level perspective of
DEIN, namely, multi-hop data forwarding in combina-
tion with energy harvesting.

• To identify some research challenges of DEIN and to
point out some future research directions in pursuit of
this new and exciting type of future wireless communi-
cation networks as DEIN.

The remainder of the paper is organized as follows. Based
on a brief discussion of existing work, Section II presents
high-level architecture of DEINs. Then two important aspects
of a DEIN are presented in Section III and Section IV,
focusing on the lower layer and the higher layer of a DEIN
network respectively. In particular, Section III describes a fair
resource allocation scheme whereas Section IV introduces
an efficient data forwarding algorithm in a DEIN network.
Simulation results are presented in these two technical sec-
tions. Some future directions are pointed out in Section V
before conclusion remarks are made.
Notations: All lower case and upper case boldface let-

ters represent vectors and matrices, respectively. Let tr(X ),
det(X ), X−1 and XH denote the trace, determinant, inverse
and hermitian of a symmetric matrix X , respectively.
Cx×y and Rx×y denote the set of complex and real matri-
ces of size x × y, and C and R denote the set of com-
plex and real vectors of size x × 1, respectively. All letters
at the right bottom of different variables can be explained
by following: l shows the l-th slot and i is the different
users.

II. DEIN SYSTEM ARCHITECTURE
A. DEIN OVERALL PROTOCOL STACK
By extending the traditional network protocol stack, this
Section presents the DEIN overall system architecture by
adding energy processing stack alongside the information
processing layers, as depicted in Figure 1. Researches need
to be carried out to characterize the capacity of the DEIN
network architecture when receivers have both informa-
tion and EH constraints. Trade-off needs to be considered
between delay, achievable data rate (or throughput), cod-
ing method, power allocation in the decentralized DEIN
channels.
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FIGURE 1. DEIN overall protocol stack (UE side).

B. DEIN PHYSICAL LAYER DESIGN
Both information and energy are transferred from the BS in
the form of RF and received by antennas at the UE side.
Multiple transmit/reception antennas are typically used to
improve the performance of the DEIN systems, giving
rise to the so-called MIMO (Multiple Input and Multiple
Output). Most current literature is limited to small-scale
MIMO systems with only a few antennas at the transmitter
(e.g. 10 or less). A more promising technology is massive
MIMO where hundreds of antennas are deployed at the
BS, which can improve the capacity of wireless networks
significantly.

FIGURE 2. System with a finite-sized battery [5].

The amount of energy that can be transferred over the
wireless channel is severely limited by fading and path-loss
and it is important to design sophisticated physical layer
approaches and improve energy efficiency of DEIN. In a way
similar to modelling an information communication system,
researches have been carried out to investigate energy har-
vesting from an information theoretical perspective. In this
case, References [5] introduces an energy queue on top of
the existing communication channel to describe the energy
harvesting battery, as shown in Figure 2.

Consider the single-user fading channel with additive
Gaussian noise, the transmitter has two queues, the data
queue where the data packets are stored, and an energy queue
where the arriving (harvested) energy is stored. Consider the
classical AWGN channel with input X , additive zero-mean
unit-variance Gaussian noiseN , and output Y = X+N . In the
classical result of Shannon, the codewords are average power
constrained. The capacity of the energy harvesting channel is
known in the cases of unboundedly large battery (Emax = ∞),
no battery (Emax = 0), and for a unit-sized battery (Emax = 1)
over a binary noiseless link. The goal here is to schedule
the transmission of data packets in the data queue using the
energy in the battery.

Interference is another important issue of communica-
tion systems and thus another DEIN design issue is how
to optimize energy and information transfer jointly for
MIMO interference channels. Interfering signals not intended
for a receiver, impair data transmission, but can indeed be
used as a source of energy. Therefore, the increase of inter-
ference can become useful for wireless nodes whose bat-
teries are low. Conventional transmission strategies, such as
interference alignment (IA) [6], will be tailored to reflect such
new interference management, by bringing energy coopera-
tion into the consideration when designingMIMO precoding.

C. DEIN LINK LAYER DESIGN
A DEIN may work in a cooperative manner where there
are relay nodes between a pair of source and destination
nodes and these relay nodes are powered by energy har-
vesting. Research issues here include characterization of the
performance gain of DEIN with these relays. The perfor-
mance metrics include data rate, delay, energy efficiency, etc.
Furthermore, these relaysmaywork either in a half-duplexing
mode or a full-duplexing mode. In the full-duplexing mode,
a relay can transmit and receive data simultaneously. From
WITs perspective, the loopback interference [7] as a result
of full duplex can be harmful to communications. However,
the full duplex can be significantly effective when used for
energy harvesting since the loopback interference can be
exploited for EH at relay nodes. Full-duplex DEIN will be
an interesting future research direction.

Another important issue for the DEIN link layer design
is dynamic resource allocation algorithms that should be
fair and efficient in order to improve the overall DEIN per-
formance. Here resource may include spectrum, time slot,
power, beamforming vectors, etc. The performance metrics
include link data rate (max, min or mean), DEIN network
throughput, delay (link or network), spectrum efficiency,
energy efficiency, etc. One performance metric that involves
EH may be the data rate per unit of harvested energy or per
transmitted power. Typically such dynamic resource alloca-
tion problems are formulated into certain types of optimiza-
tion problems with constraints. Constrains here may concern
various QoS (Quality of Service) parameters such as task
delay, maximal transmission power at the BS or UEs. More
importantly, energy constraint such as energy causality
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constraint and battery finite storage constraints as described
in [5] shall be respected in the formulated optimization
problems.

Another specific parameter is splitting factor for the energy
harvesting side (i.e., UE) to decide the percentage of the har-
vested energy, denoted by α, to be used for energy harvesting
and remaining 1− α is used for information decoding. A use
case is given in Section III of this paper to illustrate a simple
example of resource allocation in DEIN.

D. DEIN NETWORK LAYER DESIGN
There are two major streams of network design for an
EH-enabled network, wireless or wireline. The first one is
packet routing or information forwarding powered by EH
and the second one is the so-called energy Internet where
the basic principle of Internet is applied for energy routing.
As far as DEIN is concerned, which is for wireless networks,
the harvested energy can be partially transferred to neigh-
bouring nodes through energy cooperation, in addition to the
conventional packet routing.
Gurakan et al. [8] consider a network where there are

both data nodes/links and energy nodes/links. Optimal data
and energy routings are carried out to minimize networks
data transmission delay. In this work, the energy source is
not RF as in DEIN but solar and the concerned network
is wired rather than wireless networks. For fixed data and
energy routing topologies, this work determines the optimum
data rates, transmit powers and energy transfers, subject to
flow and energy conservation constraints [8]. An interesting
observation of the work is that energy is routed from nodes
with lower data loads to nodes with higher data loads.

Mobile devices are becoming increasingly powerful
nowadays in terms of processing, communication and inter-
action. Besides, short range communication techniques, such
as Device-to-Device (D2D), enable mobile devices to con-
duct data forwarding and act as relays for others. However,
this also introduces another problem: battery runs out very
quickly. To address this problem, many recent studies employ
Radio Frequency based EH (RF-EH), which can convert
RF into electricity. However, a big drawback that limits the
application of RF-EH is the large propagation loss of radio
signal energy. A promising way to mitigate this problem
at the network layer is to deploy multiple energy sources
(or energy base bases (eBSs) in the data network. Then one
immediate issue is where to deploy these eBSs. For example,
through perceiving users mobility pattern, energy sources can
be deployed at popular places with many users gathering,
and charge a large number of users devices with a small
propagation loss. Section IV of this paper gives such a
use case.

E. DEIN APPLICATION LAYER DESIGN
In this Section we look into the design of the DEIN appli-
cation layer from different types of wireless networks, such
as wireless sensor networks (WSN), cognitive radio net-
works (CRN) and mobile cellular networks.

1) WIRELESS SENSOR NETWORKS
A node in a WSN explores its received energy for not
only information transmission but also data collection. The
data collection process, which usually includes reception,
sampling and encoding/decoding, etc., may consume more
energy than data transmission. For this reason, specific
protocols and algorithms need to be designed for differ-
ent layers of DEIN. There are some recent works on
these aspects of similar concepts. Reference [9] proposed
an Energy Harvesting Modeling (EHM) which is suitable
for each node in the WSN and shown in Figure 3 [5].
In the modeling, the energy consumption of data collection
and information transmission is dynamically allocated
by Energy Management Unit (EMU). Reference [10]
considered multi-hop network. Reference [11] proposed a
delay-constrained-based offline power allocation schedule
of multi-hop WSN. Reference [12] compared and ana-
lyzed MAC protocol which adopted Carrier Sense Multiple
Access (CSMA) and polling designed novel probabilistic
polling protocol in single-hop WSN of which some data
collection nodes can harvest energy.

FIGURE 3. EH modelling of a single sensor node [5].

2) COGNITIVE RADIO NETWORKS
In cognitive radio networks, secondary users could access
the spectrum of primary nodes whenever the spectrum is
free [13], [14]. The introduction into the CRN of the tech-
nology of EH could improve not only the spectrum utiliza-
tion but also the energy utilization. The main point of study
is the optimization of allocation cognitive energy and the
energy consumption of data transmission to maximize the
energy utilization under the premise of normal operation of
networks [15], [16]. Reference [17] considered energy har-
vesting cognitive radio networks in which a secondary trans-
mitter harvests energy from ambient sources or wireless
power transfer systems while opportunistically accessing the
spectrum licensed to the primary network. In reference [18],
Gan Zheng considered joint cooperation between informa-
tion and energy and proposed three schedules of realizing
the cooperation. In reference [19], Canhao Xu investigated
the robust transceiver design problem in MIMO underlay
cognitive radio networks and maximized the sum harvested
power at energy harvesting receivers while guaranteeing
the required minimum mean-square-error at the secondary
information-decoding (ID) receiver and the interference
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FIGURE 4. EH-enabled CRN illustration [5].

constraints at the primary receivers. Figure 4 [5] shows
the framework of CRN consisting of a primary user with
energy harvesting and a secondary transmitter with energy
harvesting.

3) MOBILE CELLULAR NETWORKS
The research of introducing the technology of EH into
mobile cellular networks and reasonable allocation of energy
resources is concerned gradually. The 5G wireless commu-
nications will also consider energy efficiency and research
novel wireless communication architectures and technologies
to address spectral efficiency and energy efficiency [20].
In mobile cellular networks, the research of allocation of
energy resources is scarce. The reason is that the charac-
teristics of high power of macro base station reduces the
sensitivity of energy adjustment. Reference [12] researches
the optimal tradeoff between the average grid power and the
outage probability in single-cell energy harvesting wireless
system. Reference [21] develops a new tractable model for
K-tier heterogeneous cellular networks, where each base sta-
tion is powered solely by a self-contained energy harvesting
module. However, due to the unpredictable and intermittent
nature of energy source, it is impossible that communica-
tion system depends entirely on harvesting energy. So it is
significance to mix use of grid and EH in mobile cellular net-
works. Reference [22] considered a heterogeneous network
consisting of one macro base station (BS) powered solely
by power grid, and one small base station powered jointly
by harvested and grid energy and formulated the problem as
minimizing the average power grid consumption by adjusting
the radius of small BS and the carrier number of macro BS
while satisfying the users QoS (weighted outage probability)
constraints for a predefined time period. In addition, the
research of the technology of EH in heterogeneous cellular
networks also has some concerns [21].

III. A CASE STUDY FROM DEIN’S LOWER-LAYER
PERSPECTIVE: FAIR RESOURCE ALLOCATION
In this section, we present a fixed time slotted transmission
scheme and analyze the downlink (DL) WET phase and
uplink (UL)WIT phase. We formulate problems based on the
uplink throughput, with the consideration of fairness. In [23],
the massive MIMO system powered by WET adopts slotted

transmissions, where each slot is divided into three phases
for channel estimation, DL power transmission, and UL data
transmission, respectively. The hybrid access point (H-AP)
operating in full duplex (FD) mode was studied in [24],
where H-AP transmits energy in the DL and receives infor-
mation in the UL simultaneously. In [25], energy transfer-
ring nodes called power beacons (PBs) were used to power
UL transmissions, and the relationship between the densities
of BSs and PBs and the optimal UL transmission power for
a given outage probability were obtained under a stochastic
geometry model.

However, none of the above mentioned works has taken
into account the power sensitivity of RF-DC circuits. The
received RF signals cannot be converted into DC (i.e, energy
transfer) if their power level is lower than the power sen-
sitivity of an RF-DC circuit [26]. Thus, actually received
energy would be much lower than the theoretically predicted
amount, leading to a falsely higher data rate. Besides, none of
these works has considered the battery capacity, thus ignoring
the possibility of energy oveflow or the opportunities for
the user equipment (UE) to optimize the use of harvested
energy across UL WIT slots. It has been shown that UE
using all available energy for WIT in each slot achieves a
lower data rate than uniformly distributing energy between
energy arrivals [27]–[29]. To the best of our knowledge,
no existing work has studied a WET enabled communi-
cation system while considering the power sensitivity of
RF-DC circuits. In this paper, we devise a power and time
allocation policy for the MIMO UL transmission powered by
WET, with the consideration of both finite capacity batteries
at the UE and power sensitivity of RF-DC circuits over a
block fading channel.

FIGURE 5. A DEIN communication model for DL WET and UL WIT.

A. SYSTEM MODEL AND PROBLEM FORMULATION
Suppose a DEIN model consisting of a BS with M anten-
nas and K single-antenna UEs with a finite battery capacity
denoted by Ui(i = 1, . . . ,K ), as shown in Figure 5. It is
assumed that M ≥ K . Each UE uses the energy harvested in
the DL WET phase via beamforming of the BS to power its
UL information transmission. The total capacity of battery in
each UE isQmax, which is large enough to avoid overcharging
the battery.

A fixed time slotted transmission scheme is adopted
here. Each time slot has a constant period T , consisting of
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two phases, namely, the DL WET phase and the UL WIT
phase. The duration of the two phases are τT and (1 − τ )T ,
respectively. But for simplicity it is assumed that t=50%.
Then, the BS transmits energy to Ui through wireless energy
beamforming. The received power level and the energy har-
vested at Ui in time slot l(l = 1, . . . ,N ) are denoted by
Pl,i and El,i, respectively. It is worth noting that due to the
power sensitivity of RF energy harvesting circuits,Uimay not
harvest any RF energy if the received signal power Pl,i is less
than a certain level. Namely, the received power at a UE can
be used only if the received power levelPl,i exceeds the corre-
sponding certain threshold α(e.g., −10 dBm). This indicates
that the WET of every UE follows a Bernoulli process with
different probability pi, where pi is the probability of deliver-
ing energy from the BS. In addition, all UEs conduct ULWIT
simultaneously via space-division-multiple-access (SDMA),
which is powered by the energy stored in the batteries. The
harvested energy is stored in the battery first, and then used
for UL information transmission. For simplicity, we assume
T = 1s and thus T is omitted in the formula below.
We consider frame-based transmissions over flat-fading

channels on a single frequency band [30] (i.e., which
means the channel remains constant in each slot). Denote
hl,i ∈ CM×1 as the UL channel of Ui in the l-th slot and we
have

hl,i = (α0|Di|−βCi)
1
2 gl,i i = 1, . . . ,K (1)

where α0 denotes a constant determined by the RF prop-
agation environment, Di is the propagation distance, βi is
the path loss, Ci is shadow fading and gl,i ∈ CM×1 is the
matrix of Rayleigh fading coefficients and gk,i ∼ CN (0, 1).
By exploiting the channel reciprocity, the DL transmission
channel can be obtained as hHl,i. For simplicity, we assume
Ci = 1 and that CSI is available at both the BS and Ui.
In the DLWET phase, assume that there is just one energy

beam to transmit energy from the BS to these UEs satisfying
the probability pi, since we just transmit energy signals in the
DL [31]. Besides, ambient channel noise energy cannot be
harvested. The DL received signal yl,i, received power Pl,i
and harvested energy El,i of Ui in the in the l-th slot are
expressed as

yl,i = hHl,iωlxl0 + nl,i i = 1, . . . ,K (2)

Pl,i = x2l0h
H
l,iωlω

H
l hl,i i = 1, . . . ,K (3)

El,i = εiτlPl,i = εiτlx2l0h
H
l,iωlω

H
l hl,i i = 1, . . . ,K (4)

where nl,i ∼ CN (0, σ 2
i ) is the receiver noise, ωl is the

M × 1 beamforming and satisfies ‖ωl‖2 = 1, xl0 is the
transmission signal and satisfies x2l0 ≤ Pmax, where Pmax
is the transmit power constraint and εi denotes the energy
harvesting efficiency at Ui, which should satisfy 0 < εi ≤ 1.
For simplicity, we assume εi = 1.
In the UL WIT phase of each slot, UEs use the harvested

energy to power UL information transmission to the BS.
For convenience, we assume the circuit energy consumption

at Ui is 0. The received signal at the dBS in the l-th slot is
given by

yl =
K∑
i=1

hl,ixl,i + nl i = 1, . . . ,K (5)

where nl ∈ CM×1 denotes the receiver additive white Gaus-
sian noise (AWGN). It is assumed that nl ∼ CN (0, σ 2

l I ).
Besides, we assume that the BS employs linear receivers to
decode xl,i in the UL. xl,i denotes the transmit signal of Ui
and satisfies x2l,i = P′l,i, wherePl,i is the transmit power ofUi.
Specifically, let vl,i ∈ CM×1 denote the receive beamforming
vector for decoding xl,i and define V = {vl,1, . . . , vl,K }.
In order to reduce complicity, we employs the ZF based
receive beamforming in the normal information BS pro-
posed by [32], which is independent of wl and τl . Define
H−l,i = [hl,1, . . . , hl,i−1, hl,i+1, . . . , hl,i]H , i = 1, . . . ,K ,
including all the UL channels except hl,i. Then the singular
value decomposition (SVD) of H−l,i is given as

H−l,i = Xl,i3l,iYHl,i = Xl,i3l,i[Y l,iỸl,i]H (6)

where Xl,i ∈ C(K−1)×(K−1), Y l,i ∈ CM×(K−1), Ỹl,i ∈
CM×(M−K+1). Thus, the beamforming can be expressed as

vZFl,i =
Ỹl,iỸHl,ihl,i∥∥ỸHl,ihl,i∥∥ . Then, throughput of Ui in bits/second/

Hz (bps/Hz) can be expressed as

RZFl,i = (1− τl) log(1+
P′l,ĩhl,i

σ 2
i

) i = 1, . . . ,K (7)

where h̃l,i =
∥∥ỸHl,ihl,i∥∥2, and P′l,i = El,i

1−τ , meaning that we
assume using all the energy harvested to transfer information
in UL phase.

Let Ql,i represent the amount of energy available in the
battery of Ui at slot l after DL energy broadcasting phase and
its updating function is as follows:

Ql,i = min(Ql−1,i + El,i,Qmax) (8)

This can be considered as the battery storage constraint
indicating that the energy available of Ui cannot exceed the
maximum battery capacity at any time.

In order to insure fairness, we maximize the minimum
(max-min) average UL WIT throughput of all UEs by opti-
mizing the DL energy beams. The optimization problem can
be defined as

max
ωl

minPl,i

s.t. ‖ωl‖ = 1 (9)

Please refer to [29] for a solution to this optimization
problem.

B. PERFORMANCE EVALUATION AND ANALYSIS
The numerical experiments are performed to evaluate the
performance of the proposed algorithm in terms of fairness,
sensitivity and throughput. The simulation parameter settings
as shown in Table 1 are used unless stated otherwise.
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TABLE 1. Simulation parameters.

At the WIT phase, we aim to maximize the minimum
throughput among UEs by obtaining an optimal power
allocation. The throughput among UEs versus circuit sen-
sitivity can be seen in Figure 6, which indicates that the
throughput decreases as the sensitivity grows. This is because
as the sensitivity becoming larger, users are less possible
to harvest the received energy, causing the throughput at
UL phase decreased.

FIGURE 6. UE throughput versus circuit sensitivity (τ = 0.5).

We compare different scenarios with different DL slot τ ,
which can be shown in Figure 7. Its obvious that the through-
put will decrease with the circuit sensitivity since more and
more users are unable to harvest received energy. Above all,
the scenario with τ = 0.5 shows a better performance than
any other circumstance, indicating that it is closer to the
optimal slot allocation.

Figure 8 depicts the throughput among UEs increases
as Qmax grows. The reason is that as a bigger Qmax means
a less constrained battery, which helps UEs allocate a more
adaptive slot to transmit information. It is also observed that
the curve increase more smoothly when Qmax is higher since
the energy harvested at UEs will be more difficult to make the
battery fully charged, resulting in the battery constraint less
an issue.

FIGURE 7. UE throughput versus circuit sensitivity.

FIGURE 8. UE throughput versus battery capacity Qmax.

IV. A CASE STUDY FROM DEIN’S HIGHER-LAYER
PERSPECTIVE: DATA FORWARDING
A. PROBLEM CLARIFICATION
Wireless big data usually involves data dissemination in a
large scale. Given the limited battery and transmission range
capacity of UEs, multi-hop relaying is an effective mecha-
nism for large wireless networks. Throwbox deployment is an
effective means for data forwarding as it can bridge two UEs
that do not encounter each other directly. The seminal work
on throwbox deployment in [33] carries out a joint design
of throwbox deployment and routing, and proposes three
deployment schemes based on different knowledge levels.
Work [35] proposes another throwbox deployment approach,
which explores the social graph of specific locations and
users to determine the deployment of throwboxes. Work [36]
conducts throwbox deployment in combination with storage
allocation. With a particular number of throwboxes and a
specific size of storage, this work attempts to conduct the
optimal throwbox deployment and storage allocation jointly,
in order to maximize the performance of data forwarding.
This paper investigates throwbox deployment in the context
of DEIN, namely, the throwbox needs to disseminate not only
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data but also energy to power up UEs. Thus the throwbox
here is named as H-box for hybrid box. The trade-off
between data forwarding (DF) and energy harvesting (EH)
through throwbox deployment will be looked into in
this paper.

Rather than research in relaying among UEs, which are
well investigated, this paper considers the following scenario
in DEIN: the base station first forwards data to multiple
H-boxes, and then the UEs that need the data can receive data
from the H-boxes when they visit the hot spots with H-boxes.
As this is in a DEIN network, in addition to receiving data
(i.e., to carry out WIT), UEs can also harvest energy from the
throwboxes (i.e., to conduct WET). For simplicity and easy
illustration, we assume the transmissions of data and energy
use different wireless channel.

Suppose the concerned DEIN network is composed
of M UEs, denoted by M = {0, 1, . . . ,M − 1} and
N potential deploying places N = {0, 1, . . . ,N − 1}, called
hot spots. There are Y H-Box in total to be deployed. Vector
Y = [y0, y1, . . . , yN−1] (yj ∈ {0, 1}) indicates the number of
H-Boxes deployed at each hot spot. If Y ≥ N , the deployment
is quite simple as each hot spot can have an H-Box equipped.
In this paper, we consider the situation where Y < N . Here
the technical task is to select certain hot spots for the given
number of throwboxes.

Mobility pattern of each user is explored, from which
the average sojourn time of each user at each place can
be attained. The average sojourn time can be computed by
calculating the ratio of time the user spent at the place in the
past. Consider a whole time T , the average sojourn time is
the product of the ratio and the whole time. Specifically, we
denote by τ ij the average sojourn time of user i at hot spot j
during the whole time T .

B. EFFICIENCY OF DATA FORWARDING
AND ENERGY HARVESTING
H-Box deployment aims at maximizing the efficiency of
data forwarding and energy harvesting. As for data for-
warding efficiency, instead of data transmission rate, the
success ratio of data forwarding is more concerned, because
data forwarding in MSN is usually unreliable. There-
fore, we define data forwarding efficiency by the suc-
cess ratio of data forwarding. For instance, if 10 different
data are expected by 10 different UEs, the total num-
ber of data copies expected to be received is 100.
If 90 copies are received in total, then the data
forwarding efficiency is 0.9.

Energy harvesting efficiency can be denoted by the average
capacity of energy harvested from the hot spots by each UE.
Similarly, it is determined by the average sojourn time of
UEs at the hot spots. However, it does not always increases
with the sojourn time.When the average sojourn time reaches
a threshold, the battery will be fully powered and no more
energy will be harvested. Consequently, we define the fol-
lowing threshold function to denote the increase of energy

harvesting efficiency with the average sojourn time.

ψα(x) =

{
x, if x < α,

α, otherwise
(10)

Denoting the capacity of UE device battery by Q, and the
power of the received energy signal (i.e., the energy harvested
per unit of time) by P, we define the threshold by Q

P . With
such a threshold, the maximum energy harvesting efficiency
is Q. In other words, the battery capacity of a UE can be
doubled at most via energy harvesting. Such a threshold turns
out to be reasonable since the doubled battery capacity is
usually enough for the daily requirement of most mobile UEs.

C. H-BOX DEPLOYMENT SCHEME
We propose the Hybird-Deployment (D-deployment) to real-
ize the above two goals. As the two goals cannot be achieved
simultaneously, we make a tradeoff between them.

Firstly, we consider how to maximize energy harvest-
ing efficiency. According to the threshold function defined
in Eq. (10), energy harvesting efficiency can bemaximized by

Max. E(Y) =
M−1∑
i=0

P · ψQ/P(
N−1∑
j=0

τ ij · yj)

s.t.
N−1∑
j=0

yj = Y , yj ∈ {0, 1} (11)

where E(Y) denotes the energy harvesting efficiency of the
network. Q and P are the capacity of UE device battery and
the energy harvested per unit of time, respectively. τ ij is the
average sojourn time of UE i at hot spot j and yj is the number
of H-Box deployed at hot spot j.

Then, we make the tradeoff by considering energy harvest-
ing efficiency while maximizing data forwarding efficiency.
Since the base station send the same data to each H-Box,
data arrive the H-Boxes with the same speed. Define the
average speed by µ. Then, the total number of data copies
expected to be received is µMT and the number of data

copies actually received is
∑M−1

i=0 µ(
∑N−1

j=0 τ ij yj). Hence, data
forwarding efficiency can be denoted by

D(Y ) =

∑M−1
i=0

∑N−1
j=0 τ ij yj

MT
(12)

We make the tradeoff by maximizing data forwarding
efficiency at the constraint of energy harvesting efficiency.
Specifically, we first compute the maximal energy harvesting
efficiency Emax that can be achieved by Eq. (11). Then, con-
sidering a degradation of energy harvesting efficiency βEmax
(0 ≤ β ≤ 1), we make the tradeoff by

Max. D(Y)

s.t. E(Y) ≥ βEmax
N−1∑
j=0

yj = Y , yj ∈ {0, 1}. (13)
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β is a parameter to control the importance of the two goals.
The larger β is, the more important energy harvesting will be.
When β = 0, energy harvesting efficiency is thoroughly
ignored. On the other hand, if β increases to 1, the scheme
will totally focus on energy harvesting efficiency. Eq. (11)
and Eq. (13) can be easily solved using heuristic methods.

D. PERFORMANCE EVALUATION AND ANALYSIS
Performance of the H-box deployment (H-deployment)
scheme is studied by Matlab based simulations. An exist-
ing throwbox deployment scheme [35] is employed for
comparison. For the convenience of discussion, we call it
S-deployment. S-deployment focus on maximizing data for-
warding efficiency, but fails to consider energy harvesting
efficiency. Moreover, instead of computing the sojourn time
of UEs, it simply selects the hot spots with the largest cen-
trality for deployment. We consider a scenario with 100 UEs
and 15 hot spots. The average inter-contact time between any
UE and any hot spot is randomly set according to a uniform
distribution U (1, 10). The main parameter settings are listed
in Table 2.

TABLE 2. Simulation parameters.

Two performance metrics, i.e. Data Forwarding (DF)
efficiency and Energy Harvesting (EH) efficiency, are
studied. DF efficiency is the ratio of data copies received
by the UEs successfully. EH efficiency indicates the aver-
age energy harvested by each UE. Performances of the
two deployment schemes are comparedwith different number
of H-Box Y .

The number of H-Boxes decides the chance for UEs
to receive data and harvest energy, and hence affect the
DF efficiency and the EH efficiency. As shown
in Fig. 9 and Fig. 10, Both DF efficiency and EH effi-
ciency increase with the number of H-Boxes. Differently,
DF efficiency increases all the time indicating that it can be
further improved with more H-Boxes. While, EH efficiency
increases and approximates to an upper bound, which is
the capacity of the UE device battery Q, according to the
threshold function. Such an upper bound is reasonable as
it allows UEs to double their battery capacity via energy
harvesting and such an energy capacity is usually sufficient
for the daily requirements of most UEs.

In addition, H-deployment outperforms S-deployment in
terms of both DF efficiency and EH efficiency because,
in S-deployment, H-Box is directly deployed at the hot spots

FIGURE 9. DF efficiency under different number of H-boxes.

FIGURE 10. EH efficiency under different number of H-boxes.

with the largest centrality. Such a deployment principle is
quite simple. Nevertheless, the centrality adopted is simply
derived from the visiting frequency of UEs which is not as
valid as the total sojourn time to evaluate DF efficiency and
EH efficiency.

V. CONCLUDING REMARKS AND FUTURE DIRECTIONS
This paper proposes a new network architecture/protocol
stack calledDEINwhere traditional information transmission
is fully or partially powered by RF EH. The cooperation
between WIT and WET in DEIN is described. Two DEIN
use cases are then presented focusing on the lower layer and
the higher layer of a DEIN network respectively. The lower-
layer use case is about a fair resource allocation algorithm
whereas the high-layer section introduces an efficient data
forwarding scheme in combination with EH. Some research
challenges have been briefly discussed when describing the
DEIN system architecture in Section II. More future research
directions are identified below:

1) Research into the information theoretical foundation
of DEIN, including the relationship between energy
coding and information coding, joint coding of infor-
mation and energy and its criteria.
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2) Interference management in DEIN, in particular how to
turn interference, which is regarded as harmful in tra-
ditional wireless communications, into a useful source
for energy harvesting.

3) DEIN system architecture, including multi-hop relays
that are powered purely via RF EH. In a relay-assisted
DEIN network, the cooperation among nodes requires
knowledge of the battery status of other nodes in the
network. This leads to more signaling among nodes
and thus increased DEIN overhead and more spec-
trum wastage and more interference to other nodes.
Moreover, the diversity of network topology imposes
more complexity to the problem.

4) Protocols and resource allocation. Both WIT and WET
use the limited radio spectrum. How to design efficient
and fair resource allocation algorithms while satisfying
requirements from energy/battery, networks and end
UEs is a challenging issue.

5) Hardware design and implementation of DEIN.
One example is the design of new receiver architectures
that will have the capability to optimally decode and
harvest energy simultaneously.

6) Cooperation and integration with other energy sources
such as solar, wind, vibration, etc. Research issues
include energy source selection, distributed energy
storage, energy charging/use scheduling, etc. and these
shall be conducted jointly with data transmission.

Other equally important issues include energy security,
how mobility making impact on EH. Furthermore, the major-
ity of the current research focuses on single UE cases. How to
expand this to multi-user scenarios is also a future direction.
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