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Joint Energy Minimization and Resource
Allocation in C-RAN with Mobile Cloud

Kezhi Wang, Kun Yang, Senior Member, IEEE, and Chathura Sarathchandra Magurawalage

Abstract—Cloud radio access network (C-RAN) has emerged as a potential candidate of the next generation access network
technology to address the increasing mobile traffic, while mobile cloud computing (MCC) offers a prospective solution to the
resource-limited mobile user in executing computation intensive tasks. Taking full advantages of above two cloud-based techniques,
C-RAN with MCC are presented in this paper to enhance both performance and energy efficiencies. In particular, this paper studies the
joint energy minimization and resource allocation in C-RAN with MCC under the time constraints of the given tasks. We first review the
energy and time model of the computation and communication. Then, we formulate the joint energy minimization into a non-convex
optimization with the constraints of task executing time, transmitting power, computation capacity and fronthaul data rates. This
non-convex optimization is then reformulated into an equivalent convex problem based on weighted minimum mean square error
(WMMSE). The iterative algorithm is finally given to deal with the joint resource allocation in C-RAN with mobile cloud. Simulation
results confirm that the proposed energy minimization and resource allocation solution can improve the system performance and save
energy.

Index Terms—C-RAN, Joint Energy Minimization, Mobile Cloud Computing, Resource Allocation.
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1 INTRODUCTION

NOWADAYS, the number of the smart devices and
the corresponding mobile traffic have grown rapidly,

which poses an increasingly high burden on the existing
cellular network. It is predicted that the mobile device traffic
will increase one thousand times and the cost is expected to
decrease one hundred times by 2020, with the help of new
network and computation paradigm [1]. Moreover, more
and more computational resource intensive tasks, such as
multimedia applications, high definition video playing and
gaming appear in our daily life, make the load of both
the mobile phone and the network, in terms of energy
and bandwidth, increase hugely. Further, those types of
applications have the trend of attracting more and more
attention from the smartphone users.

However, in traditional cellular networks, each base
station (BS) transmits data signal separately to the user
equipment (UE), so that the energy cost in the BS will be
usually very high, in order to overcome the path loss and
the interference from the other BSs. Cooperative relaying
has been proposed to mitigate and combat the deleterious
effects of fading by sending and receiving independent
copies of the same signal at different nodes. However, the
total energy cost of the cooperative relaying still may be a
little bit high [2], [3]. Also, coordinated Multi-Point (CoMP)
technique has been proposed to mitigate interference by
using cooperation techniques, such as joint transmission (JT)
and coordinated beamforming (CBF), between different BSs.
CoMP technique sometimes cannot achieve the best perfor-
mance, due to traditional X2 interface limitation, i.e., low
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bandwidth, high latency and inaccurate synchronization.
It is very fortunate that recently, a new promising net-

work infrastructure, i.e., cloud radio access network (C-
RAN), has been presented and soon received a large amount
of attention in both academia and industry [4], [5]. C-RAN
is a cloud computing based, centralized, clean and collabo-
rative radio access network [6]. It divides the traditional BS
into three parts, namely, serval remote radio heads (RRHs),
the baseband unit (BBU) pool, and the high-bandwidth,
high-speed, low latency fiber transport (or fronthaul) link
connecting RRH to the BBU cloud pool. In C-RAN, most
of the intensive network computational tasks, such as base-
band signal processing, precoding matrix calculation, chan-
nel state information estimation are moved to BBU pool
in the cloud, which is composed of numerous software
defined virtual machines with the feature of dynamically
configurable, scalable, sharable, re-allocatable per demand.
On the other hand, RRHs, which act as the soft relay,
can compress and forward the received signals from the
BBU cloud and transmit them in the RF frequency band
to UEs. In this case, RRHs, with limited functions, only
including A/D, D/A conversion, amplification, frequency
conversion, make them very easy to distribute, according
to the network requirement. Thanks to the separation of
BBU and RRH and the cooperation between different BBUs,
significant performance gain can be achieved in terms of
efficient interference cancellation and management as well
as the increase of network capacity and decrease of the
energy cost. The benefits of C-RAN were also given in [5]
from the industry perspectives.

Another very impressive technique, i.e. mobile cloud
computing (MCC) has attracted a huge number of interest
recently [7], [8]. MCC is inspired by integrating the popular
cloud computing into mobile environment, which enables
that mobile user with increasing computing demands but
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limited computing resource can offload tasks to the power-
ful platforms in the cloud. The reference [8] has investigated
if the offloading operation to the cloud can save energy
and extend battery lifetimes for UEs. The reference [9] has
provided a theoretical framework of energy optimal mobile
cloud computing under stochastic wireless channel while
the reference [10] has proposed a game theoretical approach
for achieving efficient computation offloading for MCC.
Also, energy-efficiency oriented traffic offloading in wireless
networks has been studied in [11]. The integration of cloud
computing into vehicular networks has been investigated in
[12], in which the vehicles can share computation resources,
storage resources and bandwidth resources each other. Ref-
erence [13] has proposed a cloud-based wireless multimedia
social network, where the desktop users can receive mul-
timedia services from a multimedia cloud, and they also
can share their live contents with mobile friends through
wireless connections. Although the cloud computing has
demonstrated the potential ability to improve the perfor-
mance, in not only the MCC, but also C-RAN, the research
of integration between them is rarely less. Fortunately, [14],
[15], [16] have shown that the combination of MCC and
C-RAN is of huge interest. Reference [14] has shown that
computing resources and communication resources can be
coupled for enhancing connected devices. Reference [15]
has studied the topology configuration and rate allocation
in C-RAN with the objective of optimizing the end-to-end
TCP throughput performance of MCC. Reference [16] has
investigated a cross-layer resource allocation model for C-
RAN to minimize the overall system power consumption in
both the BBUs and RRHs.

Moreover, pursuing computational intensive or high
bandwidth tasks in the UE side increases the operating
expense and capital expenditure of the mobile operators,
which drastically reduce their profit and make them face
a very hard situation. It has been shown that the energy
overhead or the electricity cost are among the most im-
portant factors in the overall operational expenditure [17].
Thus, how to save the whole system’s energy is of huge
importance and interest in the operators’ eyes.

To address the above-mentioned questions, in this paper,
we propose a novel C-RAN structure with the mobile cloud
(virtual machine) co-located with the BBU in the cloud pool.
The mobile cloud is responsible for the execution of the
computational intensive task while the BBU is in charge
of returning the execution results to the UE via RRHs. We
aim to jointly reduce the total energy cost under the time
constraints of the given task in C-RAN and mobile cloud.
In particular, we model the energy cost of the mobile cloud
in executing the task, and the energy cost of the network
in transmitting the results back to UE through RRHs. We
also model the time spent in the mobile cloud and in
wireless transmission process. We formulate the joint energy
minimization into a non-convex optimization, which is NP-
hard. Then we convert it to the power minimization plus
the sum data rate (throughput) maximization problems.
Sum data rate (throughput) maximization problem can be
transformed to the equivalent minimization of the weighted
mean square error (MSE) problem, which can be solved by
weighted minimum mean square error (WMMSE) solution
[18], [19]. By using the WMMSE-based iterative algorithm,

we can successfully address the joint resource allocation
between the mobile cloud and C-RAN and also deal with
beamforming vector design in RRHs.

The remainder of this paper is organized as follows.
Section 2 introduces the system model including the mobile
cloud computational model and the network model. Section
3 presents the optimization problem formulation as well
as two separate energy minimization solutions in mobile
cloud and C-RAN, while Section 4 introduces the joint
energy minimization algorithm in mobile cloud and mobile
network. Simulation results are shown in Section 5, followed
by concluding remarks in Section 6.

2 SYSTEM MODEL

In this section, the mathematical models for the mobile
cloud computation as well as the C-RAN are presented.
First, we introduce the concept of the mobile clone in
MCC and the whole system design, and then we describe
the computation models, including the energy and time
consumption model in the cloud and in the network. Finally,
the qualify of service (QoS) requirement is given through the
time constraint of the given task.

2.1 Mobile Clone and System Architecture

Normally, when the mobile users come across the com-
putational intensive or high energy required tasks, they
sometimes do not want to offload those tasks into the mobile
cloud, as transmitting those program data to the cloud
still costs some energy [8]. In some cases, it is even better
to execute those tasks locally if transmission overhead is
too high. Therefore, it is better to have the mobile user’s
computational tasks and some of the corresponding data
in the mobile cloud first. To deal with this concerns, we
propose to have mobile clones which are co-located with
the BBU in the cloud pool. The mobile clone will have the
user task information and data on board. Mobile clone can
be implemented by the cloud-based virtual machine which
holds the same software stack, such as operating system,
middleware, applications, as the mobile user. If the mobile
user wants to execute some task, it only needs to send the
indication signal and the corresponding user configuration
information to the mobile clone (virtual machine), which
will execute those tasks on mobile user’s behalf. In this case,
the mobile user only needs to cost a small amount of energy
and time overhead. After the task execution completion,
the mobile clone will transmit the computation result data
back to the mobile user through C-RAN. Another advantage
of having mobile clone is that each mobile clone can talk
to each other in the cloud without through the wireless
link. In this case, each mobile user’s communication can
be possibly transferred into the communication between
the mobile clones (clone-to-clone communication), thereby
saving a great number of the wireless network resources as
well as the energy and time overhead.

In this paper, we consider there are N = {1, 2, ..., N}
UEs, each with one antenna, deployed in the C-RAN. Also,
we consider there are L = {1, 2, ..., L} RRHs, each of which
has K ≥ 1 antennas, connecting to the BBU pool through
high-speed fiber fronthaul link, as shown in Fig. 1. We
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Fig. 1. A cloud radio access network with mobile cloud system.

consider the case that each mobile user already has one
specific mobile clone, established in the cloud, beside the
BBU, and the mobile clone has the same software stack as
its corresponding mobile user. Similar to [8] and [10], we
assume that each of UE i has the computational intensive
task Ui to be accomplished in the mobile clone i as follows

Ui = (Fi, Di), i = 1, 2, ..., N (1)

where Fi describes the total number of the CPU cycles
needed to be completed for this computational task Ui for
the i-th UE, while Di denotes the whole size of the task’s
output data transmitting to the i-th UE through C-RAN after
task execration, including the task’s output parameter and
the calculation results, etc. Di and Fi can be obtained by
using the approaches provided in [20].

Since the mobile clone has the same software stack as
the UE, UE only needs to transmit a small amount of
the data including the indication signal and configuration
information to the mobile clone to instruct the task to be
executed. Therefore, we do not consider the time and energy
consumption caused in the uplink transmission process.
Also we assume that all the channel state information (CSI)
are available in the BBU pool, which facilitate interference
cancelation and signal cooperation. We do not consider the
time and energy consumption in the fronthaul link, but
we will consider the the fonthaul constraints by using the
transmitting data rate.

2.2 Computation Model

In the mobile clone, the time spent to complete the task Ui

is defined as follows

TC
i =

Fi

fC
i

, i = 1, 2, ..., N (2)

and the energy used in the i-th mobile clone is given as

EC
i = κC

i (f
C
i )ν

C
i −1Fi, i = 1, 2, ..., N (3)

where κC
i ≥ 0 is the effective switched capacitance, fC

i is the
computation capability of the i-th virtual machine serving
UE i in the cloud and νCi ≥ 1 is the positive constant [21].

According to the realistic measurements, κC
i can be set to

κC
i = 10−11 [22].

We also assume that different mobile clone may have
different computational capacity and the constraint of the
computation capacity fC

i for the virtual machine is given
by

fC
i ≤ fC

i,max, i = 1, 2, ..., N (4)

where fC
i,max is the maximum computation capacity that the

i-th virtual machine can achieve, as in the reality, the virtual
machine normally cannot have unlimited computational
capability.

2.3 Network Model

After the mobile clone completes the execution of the task,
the results will be returned to the mobile user through C-
RAN. The received signal at the UE i under the complex
baseband equivalent channel can be written as

yi =
∑
j∈C

hij
Hvijxi +

N∑
k ̸=i

∑
j∈C

hij
Hvkjxk + σi,

i = 1, 2, ..., N

(5)

where xi denotes the transmission data for the ith UE
with E{|xi|2} = 1, C ⊆ L is the set of serving RRHs,
hij ∈ CK×1 denotes the channel vector from RRH j to
UE i, while σi denotes the white Gaussian noise which is
assumed to be distributed as CN (0, σ2

i ). Denote vij ∈ CK×1

as the transmitting beamforming vector from RRH j to UE i.
Therefore, the signal-to-interference-plus-noise ratio (SINR)
can be expressed by

SINRi =
|
∑

j∈C vij
Hhij|2∑N

k ̸=i |
∑

j∈C vkj
Hhkj|2 + σ2

, i = 1, 2, ..., N.

(6)
Then, the system capacity and the achievable rate for UE i
can be given as

ri = Bilog (1 + SINRi) , i = 1, 2, ..., N (7)

where Bi is the wireless channel bandwidth assigning to UE
i.
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The time cost in sending the execution results back to UE
i from the RRHs is given by

TTr
i =

Di

ri
, i = 1, 2, ..., N (8)

where Di is the returning data, introduced by the first
subsection. Also, we can assume the power to send this task
by RRHs is pi, then the energy consumed by the serving
RRHs is

ETr
i = pi · TTr

i =
piDi

ri
, i = 1, 2, ..., N (9)

where pi can be given as pi =
∑

j∈C |vij|2. Also, we can
assume that each RRH j has its own power constraint as
follows

N∑
i=1

|vij|2 ≤ Pj , j = 1, 2, ..., L. (10)

2.4 Fronthaul Constraints

The fronthaul link can carry the task results from the mobile
clone to the UE through C-RAN. Reference [23] uses l0-
norm to model the j-th fronthaul capability as

C̄j =
N∑
i=1

| |vij|2 |0, j = 1, 2, ..., L (11)

where | |vij|2 |0 denotes the l0-norm of vector |vij|2, which
can be explained as the number of nonzero entries in the
vector and also can be mathematically expressed as

| |vij|2 |0 =

{
0, if |vij|2 = 0
1, otherwise

. (12)

One can see that the number of non-zeros elements of the
transmitting beamforming vector |vij|2 also indicates the
number of data symbol streams, carried by the fronthaul
link from BBU to RRH j for the i-th mobile user. Reference
[23] also assume that each fronthaul link is only capable of
carrying at most C̄j,max signals for UEs as

C̄j ≤ C̄j,max, j = 1, 2, ..., L. (13)

Reference [24] goes a step further and assume that the
fronthaul consumption is the accumulated data rates of
the users served by RRHs and model the j-th fronthaul
capability as

Cj =
N∑
i=1

| |vij|2 |0 · ri, j = 1, 2, ..., L. (14)

In this case, the j-th fronthaul constraint can be modeled as
the maximum data rates which can be allowed to transmit-
ting through BBU to j-th RRH as Cj ≤ Cj,max. Since this
constraint is more realistic, we also use it as the fronthaul
constraint in the following derivation of the optimization
problem.

2.5 QoS Requirement

The QoS can be given as the constraints of the whole time
cost for completing the required task and returning the
results back to the mobile user. We define the total time
spent in executing and transmitting the task results to UE i
as

Ti = TTr
i + TC

i , i = 1, 2, ..., N. (15)

We assume that the task has to be accomplished in time
constraints Ti,max in order to satisfy the mobile user’s
requirement, then the QoS can be given as

Ti ≤ Ti,max, i = 1, 2, ..., N. (16)

Also, the whole energy cost in executing this task and
transmitting the results back to i-th UE can be given as

Ei = EC
i + ηiE

Tr
i , i = 1, 2, ..., N (17)

where ηi ≥ 0 is a weight to trade off between the energy
consumptions in the mobile cloud and the C-RAN, and it
can be also explained as the inefficiency coefficient of the
power amplifier at RRH.

3 PROBLEM FORMULATION AND SEPARATE SOLU-
TIONS

In this section, we provide the energy minimization problem
formulation. Our design aims to minimize the energy cost
while satisfying the time constraints. First, we formulate
the energy minimization for the mobile clone and then we
formulate the energy minimization for C-RAN with the
fronthaul constraints. Two separate solutions are provided
to the energy minimization to the mobile clone and to C-
RAN, respectively.

3.1 Energy Minimization for Mobile Clone

We assume the time constraint for completing the task
in mobile clone as TC

i,max, then the energy minimization
optimization problem for the mobile clone can be given as

P1 : minimize
fC
i

N∑
i=1

EC
i

subject to : TC
i ≤ TC

i,max,

fC
i ≤ fC

i,max, i = 1, 2, ..., N.

(18)

Assume fC∗

i as the optimum solution for problem P1. Then,
if fC∗

i ≤ fC
i,max for i = 1, 2, ..., N , the equality holds for the

first constraints. Therefore, the optimal solution can be given
by

fC∗

i =
Fi

TC
i,max

, i = 1, 2, ..., N. (19)

If fC∗

i > fC
i,max, we assume there is no solution for the

above problem. Thus, the only way to guarantee the QoS
is to increase the maximum computation capacity fC

i,max in
the cloud. Therefore, the whole energy cost is given by

∑N
i=1 κ

C
i

F
νL
i

i

(TC
i,max)

νL
i

−1
, if fC∗

i ≤ fC
i,max,

no solution, if fC∗

i > fC
i,max, i = 1, 2, ..., N.

(20)
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3.2 Energy Minimization for C-RAN
We assume the time constraint for transmitting the task
results through C-RAN to UE i as TTr

i,max. Then, the energy
minimization optimization problem for the C-RAN trans-
mission can be given as

P2 : minimize
vij,ri,C

N∑
i=1

ETr
i

subject to :
N∑
i=1

|vij|2 ≤ Pj ,

N∑
i=1

| |vij|2 |0 · ri ≤ Cj,max,

TTr
i ≤ TTr

i,max, i = 1, 2, ..., N, j = 1, 2, ..., L.

(21)

Problem P2 is a non-convex optimization and NP-hard,
which is very difficult to solve. Reference [25] has shown
that the energy minimization optimization can be probably
transformed to the power minimization under some con-
ditions. In this subsection, we use some approximations to
deal with the energy minimization.

From (6) and (7), one can get the achievable rate for i-th
UE as

ri = Bilog

(
1 +

|
∑

j∈C hij
Hvij|2∑N

k=1, k ̸=i |
∑

j∈C hij
Hvkj|2 + σ2

)
,

i = 1, 2, ..., N.
(22)

If one ignores the interference term∑N
k=1, k ̸=i |

∑
j∈C hij

Hvkj|2 and apply Cauchy-Schwarz
inequality [26], one may get

ri ≤ Bilog

(
1 +

∑
j∈C |hij

H |2Pi

σ2

)
, i = 1, 2, ..., N. (23)

Then problem P2 may be approximated as [16]

P3 : minimize
vij,ri,C

N∑
i=1

PTr
i

subject to : constraints of (P2),

(24)

where

PTr
i =

∑
j∈C |vij|2Di

Bilog
(
1 +

∑
j∈C |hij

H |2Pi

σ2

) . (25)

In this case, the equality holds for the last constraint of P2
and then, the minimum transmission data rate can be given
by

ri ≥
Di

TTr
i,max

, i = 1, 2, ..., N. (26)

As the arbitrary phase rotation of the beamforming
vectors vij does not affect P3, the second constraint of P3
can be rewritten as a second-order cone (SOC) constraint as
follows [27]√√√√1− 1

2
Di

Bi·TTr
i,max

√√√√ N∑
k=1

|
∑
j∈C

hij
Hvkj|2 + σ2

≤ Re

|
∑
j∈C

hij
Hvij|2

 , i = 1, 2, ..., N.

(27)

Also, according to [28], the non-convex l0-norm can be
approximated by a convex reweighted l1-norm as |V|0 =∑N

k=1 ρk|vk|, where vk is the k-th element of the vector V
and ρk is the corresponding weight. Following reference
[24], the second last constraint in P2 can be rewritten as
follows

Cj =
N∑
i=1

ρij |vij|2 · ri ≤ Cj,max, j = 1, 2, ..., L (28)

where
ρij =

1

|vij|2 + ϵ
(29)

and ϵ is a small positive factor to ensure stability and can be
set as ϵ = 10−10 [24]. Then P3 can be transferred to

P4 : minimize
vij,ri,C

N∑
i=1

PTr
i

subject to :
N∑
i=1

|vij|2 ≤ Pj ,√√√√1− 1

2
Di

Bi·TTr
i,max

√√√√ N∑
k=1

|
∑
j∈C

hij
Hvkj|2 + σ2

≤ Re

|
∑
j∈C

hij
Hvij|2

 ,

Cj =
N∑
i=1

ρij |vij|2 · ri ≤ Cj,max,

i = 1, 2, ..., N, j = 1, 2, ..., L.

(30)

Note that by using (29), those beamforming vector vij from
RRH j to UE i with lower values will have higher weights
ρij , and will be further forced to reduce and finally be
encouraged to become zero. In this process. RRH cluster
could be formed to serve its corresponding UE [24]. This is
how we obtain C in this paper.

Note also that P4 without the fronthaul constraint is an
SOC problem, which can be solved by the interior-point
method [29], while P4 including the fronthaul constraint
can be addressed by the iterative solution, as shown in [24].
Therefore we can give the iterative Algorithm 1 to deal with
P4, where

PTr =
N∑
i=1

PTr
i . (31)

One can see that the computational complexity of Algo-
rithm 1 mostly come from the Step 1, i,e., SOCP optimiza-
tion, which can be solved by interior-point method. Suppose
Algorithm 1 needs M total number of iterations to converge
or the maximum number of iterations is set to M , then the
computational complexity can be approximately given as
O(M · (KNL)3.5) [30].

4 JOINT OPTIMIZATION SOLUTION

In this section, we will solve the energy minimization opti-
mization and resource allocation jointly between the mobile
cloud and mobile network. The objective is to minimize the
total energy consumption in mobile cloud for executing the
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Algorithm 1 Proposed iterative algorithm for P4

Initialize: m = 1, ρ(0)ij = 0, r(0)i = 1, i = 1, 2, ..., N ,
j = 1, 2, ..., L;
Repeat:
1: Solve the second-order cone programming (SOCP)
optimization P4 using interior-point method,
obtaining the optimal beamforming vector vij

(m);
2: Update r

(m+1)
i = r

(m)
i according to (22);

3: Update ρ
(m+1)
ij = ρ

(m)
ij according to (29);

4: Update PTr(m+1)
= PTr(m)

according to (25) and (31);
5: m = m+ 1;
Until |PTr(m+1) − PTr(m) | < ε, or maximum number
of iterations is reached.
Return: RRH cluster C, beamforming vector vij and
date rate ri, for i = 1, 2, ..., N , j = 1, 2, ..., L.

task and in C-RAN for transmitting the processing results
back to the mobile user. We assume that the task has to be
completed in the total time constraint (QoS) of the given
task, including the executing time plus the transmitting
time. Therefore, the joint energy optimization problem can
be given as

P5 : minimize
fC
i ,ri,vij,C

N∑
i=1

Ei

subject to :
N∑
i=1

|vij|2 ≤ Pj ,

fC
i ≤ fC

i,max,

TC
i + TTr

i ≤ Ti,max,
N∑
i=1

| |vij|2 |0 · ri ≤ Cj,max,

i = 1, 2, ..., N, j = 1, 2, ..., L

(32)

where ri is given by (22), Ei = EC
i + ηiE

Tr
i , and other

constraints in P5 have been introduced in the last sections.
The above P5 is non-convex problem and difficult to solve.
In the next subsections, we will provide the iterative algo-
rithms based on WMMSE solution to deal with it.

4.1 Problem Transformation

Following the same process before, P5 can be approximated
as

minimize
fC
i ,ri,vij,C

N∑
i=1

κC
i (f

C
i )ν

C
i −1Fi

+ ηi

∑
j∈C |vij|2Di

Bilog
(
1 +

∑
j∈C |hij

H |2Pi

σ2

)
subject to : constraints of (P5).

(33)

Then, the equality of the time constraint holds for P5 in
relaxation. Therefore, by using (2) and (8), time constraint
may be relaxed as

Ti,max = TTr
i + TC

i

=
Di

ri
+

Fi

fC
i

, i = 1, 2, ..., N.
(34)

Then, fC
i can be written as

fC
i =

Fi

Ti,max − Di

ri

, i = 1, 2, ..., N. (35)

Given that Ti,max > 0, fC
i > 0 and fC

i ≤ fC
i,max, one can

get the minimum achievable rate as

ri ≥ Ri,min, (36)

where

Ri,min =
Di

Ti,max − Fi

fC
i,max

, i = 1, 2, ..., N. (37)

We denote vj = [v1j,v2j, ...,vNj]
H , hj =

[h1j,h2j, ...,hNj]
H , vi = [vi1,vi2, ...,viC ]

H and
hi = [hi1,hi2, ...,hiC ]

H for notation simplification. By
using (35), (36) and (37), P5 can be rewritten as

P6 : minimize
ri,vij,C

N∑
i=1

N∑
i=1

γi(ri) + βi(vi)

subject to :
N∑
i=1

|vij|2 ≤ Pj ,

ri ≥ Ri,min,

Cj =
N∑
i=1

ρij |vij|2 · ri ≤ Cj,max,

i = 1, 2, ..., N, j = 1, 2, ..., L

(38)

where

γi(ri) = κC
i

(
Fi

Ti,max − Di

ri

)νC
i −1

Fi (39)

and

βi(vi) = ηi
vi

HviDi

Bilog
(
1 +

∑
j∈C |hij

H |2Pi

σ2

) . (40)

Note that fC
i does no longer exist in P6, which can be

solved by using WMMSE-based iterative solution shown in
the next subsection.

4.2 WMMSE-based Solution

One can see that the objective of P6 is a decreasing function
of the mobile user’s data rate ri. Also, one can recall the
well-known relation between MSE covariance matrix and
the rate ri as follows

ri = log
(
(ei)

−1
)
, i = 1, 2, ..., N. (41)

Then, the sum rate maximization problem can be trans-
formed to the weighted sum MSE minimization optimiza-
tion solved by WMMSE method [18], [19]. Thus, one can
reformulate P8 as an equivalent WMMSE problem and use
the block coordinate descent approach to deal with it.
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Assume the receiving beamforming vector in mobile
user i as ui ⊆ C1×1, as there is only one antenna in the
UE. Thus, the corresponding MSE at UE i can be given as

ei =E
[
(uiyi − xi)(uiyi − xi)

H
]

=
N∑
i=1

ui
H(hi

Hvivi
Hhi + σ2

i )ui − 2 Re
[
ui

Hhi
Hvi

]
+ 1,

i = 1, 2, ..., N.
(42)

Then, P6 can be transformed to

P7 : minimize
ϕi,vij,ui,C

N∑
i=1

ϕiei + τi(ωi(ϕi))− ϕi(ωi(ϕi))+

βi(vi)

subject to : constraints of (P6).
(43)

where
τi(ei) = γi(−Bi · log(ei)), (44)

and ωi(·) is the inverse mapping of the gradient map ∂τi(ei)
∂ei

.
One can see that τi(ei) is a strictly concave function in P7,
as γi(ri) is the decreasing utility function of the data rate ri.
One can see that P7 is convex with respect to each of the
individual variables ϕi, vij and ui. Therefore, one can use
the block coordinate descent method to solve it [16], [24],
[18], [19]. The process to solve P7 is as follows:

Step 1: By fixing all the transmit beamforming vector vi,
the optimal receive beamforming vector can be give by the
well-known minimum mean square error (MMSE) receiver
as

ui =
(
hi

Hvi

)
·
(

N∑
k=1

hi
Hvkvk

Hhi + σ2
i

)−1

,

i = 1, 2, ..., N.

(45)

Step 2: By fixing the transmit beamforming vector vi

and the MMSE receiver ui, the corresponding optimal MSE
weight ϕi can be given by

ϕi =
∂τ(ei)

∂ei

=
Diκ

C
i (ν

C
i − 1) log(2)

(
BiFi log(ei)

BiTi,max log(ei)+Di log(2)

)νC
i

Biei log
2(ei)

,

i = 1, 2, ..., N.
(46)

Step 3: By fixing the optimal MSE weight ϕi and MMSE
receiver ui, the optimal transmit beamforming vector vi

can be calculated by solving the following quadratically
constrained quadratic programming (QCQP), which can
also be transformed to SOCP as

minimize
ri,vij,C

N∑
i=1

ϕi · ei + βi(vi)

subject to : constraints of (P6).

(47)

Thus, we can deal with the overall optimization problem
with WMMSE-based iterative method as in Algorithm 2,
where ε is a small constant to guarantee convergence and

E =
N∑
i=1

Ei. (48)

Algorithm 2 Proposed iterative algorithm for joint
optimization problem

Initialize: n = 1, ρ(0)ij = 1, r(0)i = 1, vij
(0),

i = 1, 2, ..., N , j = 1, 2, ..., L.
Repeat:
1: Obtain the receive beamforming vector ui

(n)

according to (45) by fixing vij
(n−1);

2: Obtain the MSE weight ϕi according to (46)
by fixing vij

(n−1) and ui
(n);

3: Obtain the transmit beamforming vector vij
(n)

according to SOCP (47) by fixing ϕ
(n)
i , ui

(n);
4: Update r

(n+1)
i = r

(n)
i according to (22);

5: Update ρ
(n+1)
ij = ρ

(n)
ij according to (29);

6: Update E(n+1) = E(n) according to (48);
7: n = n+ 1;
Until |E(n+1) − E(n)| < ε, or maximum number
of iterations is reached.
Return: RRH cluster C, beamforming vector vij,
date rate ri, and computational capacity fi,
for i = 1, 2, ..., N , j = 1, 2, ..., L.

One can see that the computational complexity of Al-
gorithm 2 mostly come from the Step 3, i,e., SOCP opti-
mization, which can be solved by interior-point method.
Similar to Algorithm 1, suppose Algorithm 2 needs M total
number of iterations to converge or the maximum number
of iterations is set to M , then the computational complexity
can be approximately given as O(M · (KNL)3.5) [30].

5 SIMULATION RESULTS

In this section, simulation results are provided to show
the effectiveness of the proposed joint energy minimization
optimization. Matlab with CVX tool [31] has been used in
the simulation. The simulation parameters are summarized
in Table. 1 and the simulation environment is shown in Fig.
2, in which we consider the C-RAN network with L = 4
RRHs, each equipped with K = 2 antennas. Also, we
assume there are N = 5 mobile users, each of which has
only one antenna. We assume there are five mobile clones
co-located with the BBUs, and each mobile clone has the
same software stack as its corresponding mobile users and
can execute the task for the mobile user. Moreover, we
assume the maximum transmit power for each RRH is 1 W,
while the maximum computation capacity for each mobile

TABLE 1
Simulation Parameters.

Parameter Description Value
L Number of RRHs 4
K Number of antennas of RRH 2
N Number of UEs 5

Pj , j ∈ C Power constraint for RRH 1 W
fC
i,max, i ∈ N Computation capacity constraint 1 M
ηi, i ∈ N Trade off factor 10
Bi, i ∈ N Bandwidth 10 MHz

Cj,max, j ∈ C Fronthaul capacity 10 Mbps
νCi , i ∈ N Cloud computation parameter 3
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Fig. 2. C-RAN network with L = 4 RRHs and N = 5 UEs.

clone is 1 M CPU cycles per second. Similar to [32], we
model the path and penetration loss as

p(d) = 127 + 25log10(d) (49)

where d (km) is the propagation distance. Also, we model
the small scale fading as independent circularly symmetric
Gaussian process distributed as CN (0, 1), whereas the noise
power spectral density is assumed to be −100 dBm/Hz. We
assume the energy tradeoff factor between the mobile clone
and C-RAN as ηi = 10, the parameter for the cloud energy
model νCi = 3 and ϵ = 10−10. Also, we assume the wireless
channel bandwidth as 10 MHz and the fronthaul capacity
constraint as 10 Mbps.

In Fig. 3, we show the energy consumption for the whole
system including mobile clone and C-RAN for different QoS
requirement and different CPU cycles of the task. Transmis-
sion data Di = 1000 bits is set in this figure. One can see
that with the increase of the CPU cycles of the task Fi, the
energy cost rise correspondingly. Also, with the increase of
the time constraint, the total energy decrease, as the mobile
clone and the C-RAN can have more time to complete the
task and return the result to the mobile user.

In Fig. 4, we show the total energy consumption for
different QoS requirement and different data size of the
transmission. Fi = 1500 CPU cycles is set in this figure.
One can see that with the increase of the result data size Di

of the task, the energy cost increase correspondingly, but not
as fast as Fig. 3. This is due to the tradeoff factors we set.
Similarly to Fig. 3, with the increase of the time constraint,
the total energy cost decrease. This can be also explained
that with the increase of the QoS level, more energy is
correspondingly required.

In Fig. 5, the relations between the total energy consump-
tion and different QoS or time constraints are examined
under different Di with total CPU cycles Fi = 1500. One
can see that with the increase of the time constraints, the
energy consumption decreases, as expected. Also, with the
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Fig. 4. Total energy consumption vs. data size under different Ti,max

with Fi = 1500.

increase of the data size, the energy increases, but the gap
between them is small, due to the tradeoff factor we set.

Similar to Fig. 5, Fig. 6 shows that the whole energy
consumption of mobile cloud and C-RAN decreases either
with the increase of the time constraints or with the decrease
of the CPU cycles required by each task.

In Fig. 7 and Fig. 8, we compare the proposed joint
energy minimization optimization with the separate energy
minimization solutions, which has been used in some works
such as [32], etc. For the separate energy minimization, we
set two time constraints as TTr

i ≤ TTr
i,max and TC

i ≤ TC
i,max,

where TTr
i,max + TC

i,max = Ti,max. Ti,max = 0.1s is set in
both Fig. 7 and Fig. 8 while Di = 1000 and Fi = 1500
are set in Fig. 7 and Fig. 8, respectively. One can see that
the joint energy minimization achieves the best perfor-
mance, followed by the second best solution when setting
TTr
i,max = TTr

i,max/4 in both Fig. 7 and Fig. 8. The perfor-
mance of TTr

i,max = TTr
i,max ∗ 3/4 can be shown as the worst
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Fig. 6. Total energy consumption vs. time constraint under different CPU
cycles Fi with Di = 1000.

solution among the test ones in both figures. Therefore,
the simulation results show that the proposed joint energy
minimization outperforms the separate solutions in all the
cases.

In Fig. 9, we assume that one additional user has been
added in C-RAN system in Fig. 2 and other parameters are
set the same as in Fig. 7. One can see that our proposed
optimization method has nearly the same performance gain
as in Fig. 7. As expected, more power is used for all the
solutions in Fig. 9 than Fig. 7. Also, we have checked our
our solution for different number of antennas and similar
performance gain can be achieved. However we do not
show those figures for brevity.

6 CONCLUSION

A novel C-RAN architecture with the mobile clones in-
volved is proposed in this paper by taking full advantages
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of the two cloud-based techniques. In particular, we assume
there is one task needed to be executed in the mobile clone
for each UE and we model this task with two features, i.e,
the total number of the CPU cycles required to complete
this task and the total data size required to transmit the
result back to the UEs through C-RAN. We jointly minimize
the whole energy cost in mobile cloud and mobile network
by modeling this problem into the optimization problem
when taking QoS, i.e., the time constraint into consideration.
Also, we have considered the fronthaul constraints in C-
RAN in order to get the RRH clusters. Numerical results are
presented to show that the proposed energy minimization
and resource allocation solution can improve the system
performance and save energy.

Future work will be focused on the whole data trans-
mission process including the uplink (i.e., the UE sending
user data to RRH) and downlink transmission (i.e., the RRH
sending result data back to RRH). Also, we aim to model the
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Fig. 9. Total energy consumption vs. CPU cycles for six mobile users.

fronthaul transmission in C-RAN, including transmission
time model and energy consumption model in fronthaul.
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