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Corals are acclimatized to populate dynamic habitats that neighbour coral

reefs. Habitats, such as seagrass beds, exhibit broad diel changes in tempera-

ture and pH that routinely expose corals to conditions predicted for reefs

over the next 50–100 years. However, whether such acclimatization effectively

enhances physiological tolerance to, and hence provides refuge against, future

climate scenarios remains unknown. Also, whether corals living in low-

variance habitats can tolerate present-day high-variance conditions remains

untested. We experimentally examined how pH and temperature predicted for

the year 2100 affects the growth and physiology of two dominant Caribbean

corals (Acropora palmata and Porites astreoides) native to habitats with intrinsi-

cally low (outer-reef terrace, LV) and/or high (neighbouring seagrass, HV)

environmental variance. Under present-day temperature and pH, growth

and metabolic rates (calcification, respiration and photosynthesis) were

unchanged for HV versus LV populations. Superimposing future climate

scenarios onto the HV and LV conditions did not result in any enhanced

tolerance to colonies native to HV. Calcification rates were always lower for

elevated temperature and/or reduced pH. Together, these results suggest

that seagrass habitats may not serve as refugia against climate change

if the magnitude of future temperature and pH changes is equivalent to

neighbouring reef habitats.
1. Introduction
Tropical

Q

coral reefs are increasingly threatened from both ocean warming and

acidification as atmospheric pCO2 concentrations continue to rise [1]. However,

how these two factors will interact to drive future productivity and distribution

of reef building corals remains unclear [2,3]. Evidence suggests that a rise in temp-

erature can increase coral metabolic and/or growth rates [4], but eventually push

corals past their physiological limits, resulting in mortality [1]. Lower pH appears

to enhance the metabolism of select coral endosymbionts [5], but may increase the

energetic cost of calcification and growth for the coral host [6,7]. Consequently,

research efforts have focused on attempting to de-convolve the impacts of

pH and temperature, while also trying to understand the potential synergistic

interactions of combined stressors.

Coral reefs can have inherently high or low environmental variance.

Deeper outer- and fore-reef habitats typically have relatively stable physio-

chemical conditions. In contrast, shallow reefs are highly dynamic where
entioned
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bathymetry, benthic composition, extreme weather events

and tidal cycles can create natural oscillations in pH and

temperature [8–10]. The scale of these oscillations are habitat

specific (e.g. reef-flat versus seagrass or mangroves [8–12])

with daily temperature fluxes up to 2.58C and pH variance

exceeding 0.5 units [8,9]. Over longer temporal scales,

these habitats are subject to greater oscillations [12]. Conse-

quently, corals within shallow habitats routinely experience

periods of extreme pH (7.8 [9,13]) and temperature (greater

than 338C [9,12]) considered representative of future reef con-

ditions under IPCC climate change scenarios. It is, therefore,

plausible that corals persisting in high-variance habitats

are better conditioned to tolerate periods of less favourable

environmental conditions (e.g. enhanced physiological con-

trol) through expansion of physiological performance

ranges [7].

Increased physiological tolerance to anomalous tem-

perature and/or pH exposure has been shown for corals

populating habitats with high environmental variance in

some [11,14,15], but not in all studies [16,17]. Such con-

trasting observations could reflect that few studies have

included both temperature and pH as experimental variables,

despite the simultaneous threat of ocean warming and acidi-

fication, with even fewer experiments replicating the natural

daily oscillations (frequency and range) of temperature and

pH inherent to coral habitats. Experiments have been

performed to account for ambient pH variability for

coral recruits (Seriatopora caliendrum [18]) and mature corals

(Acropora hyacinthus [11]) when grown under dynamic

rather than steady-state pCO2 conditions, but do not consider

the simultaneous role of temperature variance. Conversely,

the interactive role of temperature and acidification has

been examined for massive- [2,7,19] and branching-corals

[2], but do not replicate the ambient variance in tempera-

ture and pH. Only Dove et al. [20] have incorporated daily

and seasonal variance for both temperature and pH within

their study on patch reef communities, predicting serious

implications for coral reef systems under future climate

change [20]. However, how their observations hold across

systems with inherently different scales of natural variance

remains untested.

To date, no study has compared the physiological

response of corals from relatively low (LV, seagrass) versus

high (HV, outer-reef ) variance habitats, as characterized by

natural daily oscillations of both temperature and pH. It is

unknown whether corals populating HV pH–temperature

habitats have inherently greater tolerance to pH–temperature

stress that is predicted for reefs of the future. Whether corals

populating LV pH–temperature habitats can acclimatize to

HV pH–temperature conditions is also unresolved. Addres-

sing these unknowns is fundamental to understanding how

present-day dynamic reef systems will respond to future

changes in environmental conditions [18]. To address these

unknowns, we conducted a multifactorial manipulative

experiment on two dominant Caribbean coral species, one

cosmopolitan to HV and LV habitats (P. astreoides) versus a

species only found in the LV habitat (A. palmata). Both species

were exposed to current mean temperature and/or pH as

well as future predicted mean temperature and/or pH for

HV and LV habitats, but superimposing the natural variance

of either habitat onto the predicted mean temperature and

pH (following [20]). We also assessed the physiological

tolerance based on key metabolic traits.
RSPB20160442—4/5/16—20:38–Copy Edited by: Not Mentioned
2. Material and methods
(a) Study location and test organisms
The study was conducted on the north coast of Little Cayman

(Cayman Islands) at two sites comprising two habitats: outer-

reef (LV) on the reef-terrace (19841.53, 80803.50) and coral

inhabited seagrass (HV) within the adjacent shallow lagoon

ca 0.5 km inshore (19841.48, 80803.26). Detailed environmental

characterization between March and April 2013, informed the

target control conditions within the study (details in §2c).

The manipulation study was conducted between May and

July 2014. Two study organisms were selected: A. palmata,

which was only found at the LV outer-reef habitat (n ¼ 40) and

Porites astreoides, which populated both the HV outer-reef and

LV seagrass habitats (n ¼ 40 colonies per habitat). On the reef,

these two coral species accounted for 45.2+ 0.3% of relative

coral cover. Removed fragments were less than 5 cm, carefully

collected from a depth of ca 1.5 m.
(b) Experimental design
Eight experimental treatment conditions were created within con-

trolled laboratory conditions (electronic supplementary material,

figure S1). For both HV and LV, treatments consisted of: (i) a control,

(ii) elevated temperature only, (iii) reduced pH only, and (iv) elev-

ated temperature-reduced pH. Each treatment was superimposed

onto the ambient diel variance of temperature and pH for the

HV versus LV habitats. The eight experimental treatments were

each replicated across five independent aquaria (2 L), with one frag-

ment of: (i) A. palmata (LV), (ii) P. astreoides (LV), and (iii) P. astreoides
(HV) per aquarium. All aquaria were maintained under an ambient

12 L : 12 D photoperiod [2], with average daylight PAR of 400–

500 mmol photons m22 s21 (representative of in situ conditions;

electronic supplementary material, table S1). Light was measured

using three HOBO Pendant temperature/light loggers (Microdaq,

USA), with values averaged and converted to PAR using the day-

light coefficient [21]. Daily NO�3 measurements were taken using

a NO�3 probe (Orion, USA) with all treatments exposed to relatively

low levels throughout the experiment (mean+ s.e. of n ¼ 59 per

habitat), HV¼ 0.95+0.03 mM, LV ¼ 1.06+0.04 mM (electronic

supplementary material, table S1).

Ambient in situ diel variance of pH and temperature for the

LV and HV habitats were recreated for experimentation. In situ
diel records of temperature and pH were used to determine

seven time points representing the range of conditions and

hence scale of variance. Mean temperature and pH at each

time point served as the basis of recreating ambient habitat var-

iance ex situ (see electronic supplementary material, figure S2) in

one of two ways: (i) for the LV habitat, four 250 l reservoirs of

non-filtered outer-reef habitat (LV) natural seawater supplied

all treatment aquaria; (ii) for the HV seagrass habitat, water

from the reservoir was pumped into a 45 l sump containing sea-

grass and carbonate sediment (collected from the in situ seagrass

habitat; electronic supplementary material, figure S1). The sump

contained a pump and aerator, which subsequently supplied

water to all HV treatment aquaria. Temperature was controlled

for both the LV and HV treatments using a water bath with hea-

ters (Aquael, Poland) to achieve the target conditions for each

time period.

Additional elevated temperature and/or reduced pH ‘future

scenario’ treatments were created by superimposing the pH and

temperature conditions predicted for 2100 onto the natural diur-

nal trends from the LV and HV reservoirs (as per [20], figure 1).

Elevated temperature was achieved using additional heaters to

re-create the diurnal oscillations. Temperature was continuously

measured over the duration of the experiment using a HOBO

temperature/light logger verified daily with a temperature

probe (Ocean Optics, England).
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Figure 1. The average pH and temperature aquarium conditions for: (a) the outer-reef low-variance (LV) and (b) seagrass high-variance (HV) habitats of Little
Cayman, Cayman Islands, BWI, for both present day and 2100 (under A1B scenario estimates). The 2100 conditions (grey) represent an Q6approximate temperature
increase+ s.e. of 2.2+ 0.038C and pH decrease of 0.3 + 0.02 units. pH was measured from daily discrete water samples over the seven time periods, while
temperature was measured continuously with a HOBO pendant temperature/light 64 K data logger set at a 30 min interval.
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For the reduced pH treatments, feeds from either the LV or

HV source water were tapped into aquaria, where pH was

altered by subsequently manipulating the seawater by equimolar

additions of strong acid (1 mol l21 HCl), NaOH and Na2CO3

(Thermo-Fisher Scientific, USA) [22]. Volumes of HCl and

HCO3
2, required to adjust pCO2 and pH to the chosen target

values, were first calculated from the measured ambient state

of the carbonate system in seawater using CO2SYS [22]. For

each of the seven daily time periods (electronic supplementary

material, figure S2), water within each aquarium was flushed

with new manipulated seawater. To ensure that the target pH

was achieved and that total alkalinity (TA) was maintained,

pH and TA were tested before every water exchange from dis-

crete water samples. pH (total) was measured using the Orion

Ross Ultra Glass Triode Combination Electrode (Fisher Scientific,

UK) calibrated with Tris buffers (accuracy ca +0.002) using the

potentiometric technique [23]. An open-cell potentiometric titra-

tion procedure was used to measure TA using a Titrino titrator

(Metrohm, UK) with accuracy and precision of ca less than or

equal to 2 mmol kg21 (verified with Dickson standards).

Based on these manipulations, the future scenario treatments

achieved a temperature increase of 2.2+0.038C and pH decrease

of 0.3+0.02 units (mean+ s.e. conditions at the seven diurnal
RSPB20160442—4/5/16—20:38–Copy Edited by: Not Mentioned
time points over the 59-day experimental period; n ¼ 413; electronic

supplementary material, figure S2). Our method of manipulating

the pH and temperature was able to recreate the predicted changes

of 2100 under IPCC A1B scenarios incorporating the natural diel

trends of each habitat (figure 1), including aragonite saturation

state (Varg) (electronic supplementary material, figure S3 and

table S1). Together, these treatments yielded a daily mean (+s.e.)

(n ¼ 59) Varg for the HV and LV habitats of 3.79+0.04

and 2.94+0.02, respectively, for present-day conditions versus

2.33+0.08 and 2.24+0.03 for 2100 scenarios. Under both the

HV and LV treatments, greater daily variance in both temperature

and pH was experienced for the tanks exposed to the 2100

level conditions (temperature: t6 ¼ 6.36, p , 0.001, pH: t6 ¼ 4.44,

p , 0.005, see the electronic supplementary material).

The eight experimental treatments were conducted over

three phases: (i) recovery (3 days), where corals were initially

removed from their in situ environment and left to recover in

the laboratory under their present-day ambient, i.e. native LV

versus HV treatment conditions; (ii) acclimatization (21 days, as

per [24]) where the full set of present-day or future scenario

pH and temperature treatments were applied, and finally,

(iii) experimentation (35 days) where corals continued to be

exposed to all treatments (total experimental duration, n¼ 59
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days; electronic supplementary material, figure S4). All corals

were sampled for zooxanthellae and chlorophyll a concen-

trations, and incubated to measure rates of photosynthesis,

respiration and calcification (see §2d). (i) At the end of the exper-

imental period (te) to evaluate for the treatment effect, but also

(ii) at the end of the recovery period (t0) to determine that phys-

iological properties had not drifted in the controls as a result of

the experimental set-up. Buoyant mass measurements were

taken at the end of the acclimatization period (ti) and te to estab-

lish an average daily growth rate (electronic supplementary

material, figure S4).

(c) Carbonate chemistry baseline
At each location, discrete water sampling was conducted over

18 days between March and April 2012 to establish the natural

diurnal trends in pH and temperature. Samples were collected

over 24 h, at 3 h intervals starting at sunrise (n ¼ 144 per site).

Seawater carbonate chemistry was measured following the

Carbon Dioxide Information Analysis Centre protocols [23],

with carbonate parameters ( pCO2, TCO2 and Varg) calculated

from TA and pH, as described in [21]. Discrete water samples

were also collected weekly at the seagrass (HV) and outer-reef

(LV) sites during the experimental period (n ¼ 8; electronic

supplementary material, table S1).

(d) Physiological measurements
Coral replicates were weighed in seawater (buoyant weight) at ti

and te with a Ohaus Scout-Pro balance (accuracy 0.01 g). Skeletal

dry weight was demined as per [25] and normalized to surface

area calculated using the advanced geometric technique (AGT)

[26]. Density was determined at the end of the experimental

period using the calculated mass and volume determined from

three-dimensional scans [27]. Growth rates established from buoy-

ant mass corresponded closely to rates established from the TA

method (electronic supplementary material, figure S5) and we,

therefore, present data obtained only from the TA method.

Daily-integrated rates were simultaneously obtained for all colo-

nies from 8 � 3 h incubations (and three control chambers that

contained only seawater) sequentially conducted throughout a

24 h period at t0 and te (as previously detailed [21]). Each colony

was incubated in a closed 500 ml chamber, which was manually

stirred every hour using a stir-bar and magnet. Net photosynthesis

(PN) and respiration rates (R) were determined (each 4 � 3 h incu-

bations at t0 and te), where O2 was measured at the start and end of

each incubation using a Foxy-R O2 probe (Ocean Optics, England).

Dark incubations were conducted immediately after exposure to

light by covering the incubation chambers with custom-made

blackout bags (see [21]). Changes in TA and O2 for each chamber

and 3 h incubation were corrected for any changes in TA or O2

from the seawater controls (n ¼ 3), to yield hourly rates for calcifi-

cation (G, mmol CaCO3 m22 h21) or PN and R (mmol O2 m22 h21)

[21]. Gross productivity (PG) was calculated by the addition of net

photosynthesis and respiration.

Three colonies of each species from each experimental treatment

were randomly selected for surface area determination by three-

dimensional scans [27]. This method showed that AGT underesti-

mated surface area and thus a species-specific correction factor

was applied to all surface area measurements to account for this

difference: A. palmata: r2¼ 0.974, n¼ 24, p¼ 0.001, AGT¼ 20.93þ
(0.97 . three-dimensional scan); P. astreoides: r2 ¼ 0.965, n ¼ 48,

p ¼ 0.010, AGT ¼ 21.08 þ (0.97 . three-dimensional scan).

(e) Chlorophyll a and zooxanthellae counts
Tissue was removed from each nubbin with a water pik using GF/

F-filtered seawater; the area of tissue removed was quantified

through corrected AGT [26]. Tissue slurry was homogenized
RSPB20160442—4/5/16—20:38–Copy Edited by: Not Mentioned
using a Pasteur pipette and a small aliquot taken for cell quantifi-

cation using microscopy [28]. A second aliquot was filtered and

extracted in methanol for 24 h at 48C, and chlorophyll a quantified

on the pigment extracts using a USB 2000þ Spectrophotometer

(Mikropack, HL-2000) and the equations of [29] for dinoflagellates.

( f ) Statistics
Linear regression was used to compare the rates of calcification

between t0 and te, to relate calcification calculated with the TA

anomaly method to the buoyant mass technique, and to relate

surface area measured by AGT and the three-dimensonal scan-

ning method. A t-test was conducted to assess whether rates of

calcification at t0 were different from rates of calcification at te.

(i) Multi-model comparison
Within the study, P. astreoides was found at both habitats, whereas

A. palmata was only found at one, and thus the experiment was

not fully factorial. In addition, exploratory analysis of the data

identified significant third-order interaction terms (such as pH,

temperature and species). The large number of terms in a third-

order ANOVA and the unbalanced design raised concerns that

an ANOVA may be affected by over-fitting or ill-conditioning

[30]. For these reasons, our results were analysed in two ways:

(i) by ANOVA with restrictions on the variables (electronic

supplementary material, table S2 and S3), and (ii) with a set

of nested nonlinear models using the multi-model selection

framework (electronic supplementary material). The Akaike infor-

mation criterion of linear models (ANOVA) and nonlinear models

was compared, (electronic supplementary material, table S4–S6),

with a difference of 0–2 considered negligible [30]. Model simpli-

fication, by removing non-significant variables (e.g. tank variance

of 2100 versus present-day, see the electronic supplementary

material), was undertaken to compare models with progressively

simplified fixed effects to select the most appropriate model (see

the electronic supplementary material). Confidence intervals

(CIs) were calculated by the log-profile method [30], and from

these we obtained bounds on the corresponding p-values. pH

and temperature variation for the present-day and 2100 treatments

were tested by Kolmogorov–Smirnov on the residuals of both the

ANOVA and nonlinear model (electronic supplementary material,

table S7–S8 and figure S6).
3. Results
(a) Carbonate chemistry manipulation
To ensure that experimental HV (seagrass) and LV (outer-reef)

present-day control treatments were comparable to the ambient

habitat conditions, we compared calcification rates at t0 with

those at te of the experimental period. Calcification rates

across all species and treatments were unchanged between te

and t0 (slope not significantly different to one, i.e. 1 : 1), thus

demonstrating that ambient conditions were well conserved

throughout the experimental period (figure 2). Calcifica-

tion rates for all species based on the TA anomaly method

versus buoyant mass were significantly correlated (r2 ¼ 0.791,

n ¼ 120, p ¼ 0.001), with their relationship described by the

equation: buoyant mass (mmol m22 d21) ¼ 4.33þ (0.864 . alka-

linity depletion (mmol m22 d21)) (electronic supplementary

material, figure S5 and table S9).

(b) Native habitat and species response
Daily mean calcification rates for colonies maintained under

their native conditions were 9.3% higher (CI: 7.8–10.7%) for



3

0
Porites

astreoides
(LV)

Porites
astreoides

(HV)
coral species

G
(t

e)
 (

m
m

ol
 m

2  
d–1

)
high variance
low variance

Acropora
palmata

(LV)

100

200

200
200 320300280

r2 = 0.859

260240220

220
240
260

G
(t

0)

G(te)

280
300
320

300

400

500

Figure 2. Average (+s.e.) daily calcification rates (G) at the end of the exper-
iment (te) for: A. palmata (outer-reef, low-variance (LV) habitat), P. astreoides
(LV), and P. astreoides (seagrass, high-varianceQ6 (HV) habitat) within the
HV and LV control tanks. A regression between rates of G at the start
(t0) and te of the experiment show strong colinearity between rates (r2 ¼

0.859, n ¼ 30, p ¼ 0.001, G(t0) (mmol m22 d21) ¼ 18.55 þ 0.93G(te)
(mmol m22 d21).

rspb.royalsocietypublishing.org
Proc.R.Soc.B

20160442

5253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

ARTICLE IN PRESS
A. palmata (table 1 and electronic supplementary material, S9)

(268.5+1.2 mmol m22 d21) compared with both native HV

and LV P. astreoides (231.6+ 5.6 mmol m22 d21, 218.6+
7.4 mmol m22 d21, respectively, table 1 and figure 2). Respir-

ation and photosynthesis rates were ca 9.0% (CI: 7.2–10.3%)

and 7.0% (CI: 5.2–7.9%) higher, respectively, for P. astreoides
compared with A. palmata (table 1). Transplantation of

P. astreoides colonies from HV and LV habitats into LV and

HV control tanks, respectively, did not induce a change in

calcification (figure 2). Thus, colonies native to the LV

outer-reef sustained calcification in the HV seagrass control

tanks. Colonies originating from HV, however, showed no

enhanced calcification rates under the more stable LV control

(electronic supplementary material, table S9).

Consistently, across all observations (photosynthesis, res-

piration and calcification) native habitat gave a small positive

effect (less than þ4% for corals native to HV seagrass) which

in only a single case (photosynthesis) rose above the threshold

for statistical significance (table 1). Thus, the response to ‘future

scenarios’ was independent of LV (outer-reef) or HV (seagrass)

growth history. However, colonies from the LV habitat all

experienced an increase in skeletal density under the reduced

pH treatments (t ¼ 23.79, p ¼ 0.005; electronic supplementary

material, figure S7). No significant difference was detected in

the skeletal densities of the controls between the HV and LV

treatments, independent of species.

Overall, physiological responses to experimental treatments

were similar for both A. palmata and P. astreoides (figure 3 and

electronic supplementary material, table S9). pH had a larger

influence on coral calcification than temperature (table 1).

Reduced pH treatments decreased calcification by 38.7% (CI:

36.3–41.0%), whereas elevated temperature treatments

decreased calcification by 20.4% (CI: 17.8–22.9%). The greatest

decrease in calcification was observed under the combined elev-

ated temperature-reduced pH treatment. However, the

nonlinear model indicated that any interactive effect of pH

and temperature was negligible (3.2%, CI: 20.8 to 7.1%,

table 1), because an additive response of temperature and pH

independently explained the majority of trends within the
RSPB20160442—4/5/16—20:38–Copy Edited by: Not Mentioned
dataset (see the electronic supplementary material). Conse-

quently, the additive response of temperature and pH stress

resulted in a decrease in calcification of 59.1%.

Respiration did not change in response to any treatment

(within 5.5% of the control; figure 3 and table 1) and, there-

fore, changes in net photosynthesis were mirrored as

changes in gross photosynthesis. Net photosynthesis fell

under all reduced pH treatments (pH: 17.3%, CI: 14.8–19.7;

pH þ temp: 26.5% CI: 22.5–30.6%). When temperature was

elevated to 2100 scenarios but pH was maintained at pre-

sent-day levels, net photosynthesis was elevated (8.3%, CI:

5.6–11.1%, table 1).

(c) Treatment variance
Corals native to both HV (seagrass) and LV (outer-reef )

environments experienced significant, but very small (less

than 5%) reductions in all metabolic parameters under the

HV treatment conditions (table 1). The treatment response

was the same for LV-grown A. palmata exposed to HV treat-

ment conditions, as well as the reciprocal transplantation of

HV or LV grown P. astreoides (figure 3 and table 1).

(d) Metabolic coupling
Across treatments, calcification rates were closely coupled to

gross photosynthesis rates, independent of species and native

habitat, with 83% of calcification explained by the covariance

with gross photosynthesis (r2 ¼ 0.831, n ¼ 90, p ¼ 0.01,

figure 4). For P. astreoides, changes in gross photosynthesis

were generally independent of the zooxanthellae density

(zooxanthellae never declined by less than 10% of the control,

figure 4). Similarly, A. palmata colonies exposed to the elev-

ated temperature treatment exhibited a decrease in gross

photosynthesis that was independent of zooxanthellae

density. However, A. palmata exposed to reduced pH, or com-

bined elevated temperature-reduced pH treatments exhibited

a decrease in gross photosynthesis that corresponded with a

loss in zooxanthellae density (figure 4; as well as decrease in

chlorophyll a, 10–23%, electronic supplementary material,

table S9). Visual observations support these trends, with

paling observed among the A. palmata fragments beginning

on day 14 of Qthe experiment (E. Camp, personal observation).

Thus, while the treatment-induced declines in calcification

were independent of host taxa (figure 4), they correspond

with very different modes of symbiont response: a loss of

productivity per zooxanthellae cell for P. asteoides (and

A. palmata under elevated temperature alone) versus a loss

of zooxanthellae cells (but general maintenance of pro-

ductivity per zooxanthellae cell) under reduced pH for

A. palmata (figure 4).
4. Discussion
Recent studies have suggested that populations grown under

more variable pH [11] or temperature [15] environments

enhance resistance of corals to anomalous pH and temperature

stress. Shallow reef habitats are often characterized by variable

temperature and pH as a result of coupling between environ-

mental factors and benthic metabolism [20]. However, we

observed the same impact of elevated mean temperature

and/or reduced pH on metabolic rates, regardless of acclimat-

ization to HV (seagrass) or LV (outer-reef) habitats. This was



Ta
bl

e
1.

St
at

ist
ica

lr
es

ul
ts

fo
rt

he
in

te
rv

al
es

tim
at

e
an

d
sig

ni
fic

an
ce

of
te

m
pe

rat
ur

e,
pH

an
d

te
m

pe
rat

ur
e-

pH
co

m
bi

ne
d

on
th

e
ph

ys
iol

og
y

(p
ho

to
sy

nt
he

sis
,r

es
pi

rat
ion

an
d

ca
lci

fic
at

ion
rat

es
)f

or
th

e
co

ra
ls

A.
pa

lm
at

a
(n

at
ive

to
ou

te
r-r

ee
f),

P.
as

te
oid

es
(n

at
ive

to
ou

te
r-r

ee
f)

an
d

P.
as

tre
oid

es
(n

at
ive

to
se

ag
ra

ss
),

un
de

rb
ot

h
hi

gh
an

d
low

ex
pe

rim
en

ta
lt

re
at

m
en

t
va

ria
nc

e.
Fo

re
ac

h
of

th
e

m
et

ab
ol

ic
pa

ra
m

et
er

s
(p

ho
to

sy
nt

he
sis

,r
es

pi
rat

ion
an

d
ca

lci
fic

at
ion

)
m

od
el

es
tim

at
es

ar
e

sh
ow

n
fo

rd
iff

er
en

t
va

ria
bl

e
in

te
rac

tio
ns

(sp
ec

ies
,h

ab
ita

t,
tre

at
m

en
t

va
ria

nc
e,

te
m

pe
rat

ur
e

an
d

pH
).

M
od

els
we

re
sim

pl
ifi

ed
to

re
m

ov
e

an
y

no
n-

sig
ni

fic
an

t
pa

ra
m

et
er

s
(se

e
th

e
ele

ctr
on

ic
su

pp
lem

en
ta

ry
m

at
er

ial
).

Co
nfi

de
nc

e
in

te
rv

als
(C

Is)
ar

e
in

di
ca

te
d

at
95

%
fo

rt
he

m
od

el
es

tim
at

es
as

ar
e

sig
ni

fic
an

ce
(p

)v
alu

es
.E

xp
er

im
en

ta
lp

ar
am

et
er

s
re

pr
es

en
te

d
in

th
e

m
od

el
ar

e
in

di
ca

te
d

by
du

m
m

y-
co

di
ng

.

m
od

el
pa

ra
m

et
er

s

ph
ot

os
yn

th
es

is
(%

)
re

sp
ira

tio
n

(%
)

ca
lci

fic
at

io
n

(%
)

es
t.

CI
lo

w
CI

hi
gh

Si
g.

es
t.

CI
lo

w
CI

hi
gh

sig
.

es
t.

CI
lo

w
CI

hi
gh

sig
.

va
ria

bl
e

in
te

rac
tio

ns
29

9
29

3
30

5
**

*
15

1
14

7
15

5
**

*
24

9
24

4
25

4
**

*

ba
se

lin
e

co
nd

iti
on

s
sp

ec
ies

6.
5

5.
2

7.
9

**
*

8.
7

7.
2

10
.3

**
*

2
9.

3
2

10
.7

2
7.

8
**

*

ha
bi

ta
t

2
0.

4
2

2.
5

0.
9

2
0.

6
2

3.
3

1.
6

2
0

3.
9

te
m

pe
rat

ur
e

te
m

pe
rat

ur
e

8.
3

5.
6

11
.1

**
*

2
1.

5
2

4.
7

3.
5

2
20

.4
2

22
.9

2
17

.8
**

*

te
m

pe
rat

ur
e:

tre
at

m
en

tv
ar

.
3.

4
1.

6
5.

2
**

2
0.

4
2

2.
7

1
1.

7
2

0.
1

3.
5

te
m

pe
rat

ur
e:

ha
bi

ta
t

1.
2

2
2.

8
4

0.
3

2
0.

7
3.

6
1.

1
2

2.
6

3.
6

pH
pH

2
17

.3
2

19
.7

2
14

.8
**

*
2

2.
2

2
5.

5
1.

1
2

38
.7

2
41

2
36

.3
**

*

pH
:t

re
at

m
en

tv
ar

.
2

6.
3

2
8.

1
2

4.
5

**
*

2
3.

2
2

5.
4

2
0.

9
*

2
1.

9
2

3.
7

2
0.

1
*

pH
:h

ab
ita

t
3.

8
1.

3
6.

2
**

3.
2

2
0.

1
6.

5
3.

7
1.

4
6

**

te
m

pe
rat

ur
e

an
d

pH
te

m
pe

rat
ur

e
an

d
pH

2
26

.5
2

30
.6

2
22

.5
**

*
1.

5
2

3.
6

6.
1

3.
2

2
0.

8
7.

1

te
m

pe
rat

ur
e

an
d

pH
:t

re
at

m
en

tv
ar

.
3.

7
0.

6
6.

9
*

4.
4

0.
5

8.
3

*
3.

8
0.

7
7

*

te
m

pe
rat

ur
e

an
d

pH
:h

ab
ita

t
0.

5
2

1.
1

4.
5

2
4.

6
2

9.
3

0
0.

1
2

0.
2

4

ef
fe

ct
es

tim
at

e
sig

ni
fic

an
ce

m
od

el
re

pr
es

en
ta

tio
n

sh
ad

in
g

ef
fe

ct
de

sc
rip

tio
n

ch
an

ge
p-

va
lu

e
le

ve
l

va
ria

bl
es

du
m

m
y-

co
di

ng
ex

pe
rim

en
ta

lp
ar

am
et

er

sm
all

in
cre

as
e

þ
5

to
þ

10
%

*
,

0.
05

sp
ec

ies
1

P.
as

tre
oid

es

**
,

0.
01

2
1

A.
pa

lm
at

a

sm
all

de
cre

as
e

2
5

to
2

10
%

**
*

,
0.

00
1

ha
bi

ta
t

1
se

ag
ra

ss

2
1

ou
te

r-r
ee

f

m
ed

iu
m

de
cre

as
e

2
10

to
2

20
%

tre
at

m
en

t
va

ria
nc

e
1

hi
gh

2
1

low

te
m

pe
rat

ur
e

0
pr

es
en

t-d
ay

am
bi

en
t

lar
ge

de
cre

as
e

.
2

20
%

þ
1

þ
2.

28
C

pH
0

pr
es

en
t-d

ay
am

bi
en

t

þ
1

2
0.

3
pH

un
its

rspb.royalsocietypublishing.org
Proc.R.Soc.B

20160442

6316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

ARTICLE IN PRESS

RSPB20160442—4/5/16—20:38–Copy Edited by: Not Mentioned



Porites astreoides (LV) Porites astreoides (HV) Acropora palmata (LV)

high variability
low variability

control temp. pH temp. and pH control temp. pH temp. and pH control temp. pH temp. and pH
0

100

R
 (

m
m

ol
 m

–2
 d

–1
)

200
0

100

200

300

P G
 (

m
m

ol
 m

–2
 d

–1
)

0

100

200

300

G
 (

m
m

ol
 m

–2
 d

–1
)

400

(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

Figure 3. The metabolic response of corals across experimental treatments. Daily rates of respiration (R), gross productivity (PG) and calcification (G) for Porites
astreoides (outer-reef, low-variance (LV) habitat) (4. a,d,g), P. astreoides (seagrass, high-variance (HV) habitat) (4. b,e,h) and A. palmata (LV) (4. c,f,i) relative to the
controls, for both the HV and LV treatments. Daily rates (+s.e., n ¼ 5) were determined at the end of the experiemnt (te). Corals were from Little Cayman,
Cayman Islands, BWI, with control conditions resprentative of present-day in situ conditions for the seagrass and outer-reef, while experimental conditions
best represent the temperature increases and pH decreases estimated under the IPCC A1B scenario.
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true for P. astreoides found in both habitats, but also for

A. palmata found only in the LV outer-reef, which under our

experimental conditions acclimatized to present-day HV

conditions. Therefore, the absence of A. palmata from the HV

seagrass habitat would suggest that some factor other than var-

iance itself restricts its ability to survive in this environment

(e.g. low sexual reproductive success of A. palmata [31]).

Within our study, reduced pH had a larger negative

impact on photosynthesis and calcification rates relative to

the elevated temperature treatment (figure 3). This outcome

is consistent with recent observations that calcification rates

decline under lower seawater pH scenarios [1], with little-

to-no upregulation in calcification from elevated temperature

[2]. Both A. palmata and P. astreoides in our experiment exhib-

ited a large decrease in calcification across all treatments

(independently of LV and HV). These observations are con-

sistent with previous reports of a significant decrease in

calcification (ca 40%) of P. astreoides along an increasingly

acidic gradient [16] and under lowered pH conditions

within laboratory studies [32]. Similarly, Acropora spp. have

exhibited reduced calcification in experimental acidification

scenarios [33]. Such responses are not always observed, with

feeding on particulate organics [19] and/or elevated inorganic

nutrient availability [34] in particular found to ameliorate the

impacts of low pH on Porites spp. calcification. However, our

experimental set-up was designed to replicate the in situ
conditions with low inorganic nutrient availability (NO3

2 con-

centrations less than 1.1 mM) and supplied with organic

particulate by the regular exchange of native ambient seawater.
RSPB20160442—4/5/16—20:38–Copy Edited by: Not Mentioned
The reduced pH treatments resulted in denser coral calcifi-

cation for the HV populations, although it is not currently

clear why HV corals were more densely calcified when they

experienced similar reductions in calcification as the LV popu-

lations. HV conditions did result in periods of extended low

pH (at night) and consequently, low Varg (close-to/or below

the saturation threshold). This response appears to mirror

abiotic aragonite precipitation, where lowVarg (pH) conditions

have been shown to induce shorter and wider crystal forma-

tion in tightly packed bundles, compared with longer thinner

crystals under ‘normal’ Varg [6].

For the pH and combined pH/temperature treat-

ments, calcification and photosynthesis were coupled across

all treatments. Interestingly, however, the elevated tempera-

ture treatment stimulated photosynthesis (as per [35]) for both

species examined but was not accompanied by enhanced calci-

fication rates, resulting in an uncoupling of the photosynthesis/

calcification relationship. While the cause of this latter response

is not entirely clear, Anthony et al. [2] observed increased

productivity for Acropora sp. without an overall decrease in

calcification rates for an intermediate warming scenario,

roughly equivalent to future treatment levels employed

within our study [2]. This is potentially indicative of exceeding

thermal windows that govern metabolic processes (e.g. inor-

ganic carbon acquisition [2]). Thermal tolerance windows are

species-specific [36] and, perhaps, explain why some studies

[35], but not others [37] have observed an increase in calcifica-

tion with increased temperature. Coral species can potentially

sustain calcification through upregulation of pH of the
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calcifying fluid [7], although this likely comes with an energetic

cost [6]. Consequently, corals that are unable to maintain photo-

synthesis owing to reduced thermal tolerance are likely to

experience a decrease in calcification rates, when respiration

also remains unchanged as our results demonstrate.

For P. astreoides, changes of gross photosynthesis rates over

the experimental treatments were independent of zooxanthel-

lae density as cells become less productive with the various

stressors. In contrast, A. palmata under reduced pH exhibited

a loss of productivity that was associated with a loss of sym-

biont cell density (and coloration). Such acidification-induced

bleaching has been observed by Anthony et al. [2] for both

massive and branching corals, but the cause has not been
RSPB20160442—4/5/16—20:38–Copy Edited by: Not Mentioned
fully resolved [2]. For example, depigmentation could stem

from direct impacts of acidosis [38], disruption to the

carbon-concentration mechanisms [39], or disruption to the

photoprotective mechanism of corals through reduction of

PGPase [40]. Even so, a key difference between the two species,

we tested, appears to be an inherent association with different

symbiont genotypes. A search of the ‘Coral Trait’ database

(https://coraltraits.org; search 11 November 2015) demon-

strates that A. palmata has a highly conserved association

with Symbiodinium ITS2 type A3 throughout the Caribbean

[41], whereas P. astreoides has a wider symbiont pool, including

types A3, A4, A4a, B1, C3 and Cla-j [41,42]. Symbiodinium gen-

otypes, in particular those in Clade A have very different

https://coraltraits.org
https://coraltraits.org
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responses to pH [5] and or temperature [43] and may partly

explain why A. palmata and P. astreoides are affected by temp-

erature and pH stress in very different ways (despite the

same net outcome of a reduction in photosynthesis and

calcification); this notion warrants more targeted investigation.

Central to how corals will survive pH/temperature stress

predicted for reefs under future climate scenarios is whether

the rate of adaptation exceeds the rate of environmental

change [44]. Within our experiment, we exposed corals to altered

environmental conditions of 2.2+0.038C and a pH decrease of

0.3+0.02 units over 59 days; consequently, any adaptation

process exceeding this period will not have been identified.

The overall lack in effect of environmental growth history

(LV versus HV) onthe metabolic rate measurements isconsistent

with Comeau et al. [11], who observed that coral calcifica-

tion was independent of native Varg variance [11]. Similarly,

coral populations from the Florida Reef tract exposed to

large highly dynamic diel and seasonal fluctuations in pH

experienced no reduced effect to elevated pCO2 conditions

expected underacidification [17]. It is conceivable that the differ-

ences in environmental growth history may be too small to affect

coral physiology, i.e. we observed the same physiological

response for corals native to HV and LV in terms of metabolic

rate measurements.

Variance in pH and/or temperature did not influence

calcification rates, despite the very different Varg profiles of

each habitat. Under present-day conditions, the seagrass habitat

could thus be described as providing a ‘buffering’ service [9,12],

because the daily net Vargwas elevated by 1.52 units compared

with the reef system, thereby maintaining favourable conditions

that are being lost elsewhere (a refuge, sensu [45]). However,

when 2100 pH and temperature conditions were superimposed,

the HV seagrass and LV outer-reef achieved similar daily net

Varg, because the daytime elevation in pH and Varg of the sea-

grass habitat did not compensate for the low night-time

conditions. Similarity in coral metabolic response when exposed

to 2100 conditions, irrespective of their environmental history,

questions whether seagrass habitats can sustain a buffering
RSPB20160442—4/5/16—20:38–Copy Edited by: Not Mentioned
role if they ultimately experience the same changes in pH as

predicted for the open-ocean.

Whether dissolution of carbonate sediment [10] or

enhanced daytime productivity of photoautrotrophs [12] can

offset the influence of future acidification on inshore habitats

remains to be seen. Seagrass beds, as for our HV habitat, typi-

cally appear to respond favourably to high-CO2 with increased

reproduction, rhizome biomass and growth of new shoots [46].

As a result, a positive feedback scenario might be expected as

ocean acidification progresses, whereby, the amplification of

pH by seagrass may increase to moderate the decline in pH.

Future research and long-term monitoring is necessary to

determine if the status of seagrass as ‘winners’ with ocean acid-

ification can counteract the decline in pH and provide refuge to

corals within or near seagrass beds. A true ‘ecological scale’

experiment will clearly be required to resolve whether acidifi-

cation and warmer waters combined will drive greater

metabolic variance in shallow habitats; however, we have

shown for the first time that variance does not enhance toler-

ance of A. palmata or P. astreoides when maintained under

present-day variance regimes of pH and temperature. Species

appear to have very different photosynthesis responses

coupled to a common calcification response across pH and

temperature treatments. Shallow water systems with inher-

ently variable pH and/or temperature have been proposed

as possible future climate change refugia [12], but the results

from our species and system examined would not support

this view.
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