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ABSTRACT

Bayesian finite mixture modelling is a flexible parametric modelling approach for classifi-

cation and density fitting. Many application areas require distinguishing a signal from a

noise component. In practice, it is often difficult to justify a specific distribution for the sig-

nal component, therefore the signal distribution is usually further modelled via a mixture

of distributions. However, modelling the signal as a mixture of distributions is computa-

tionally challenging due to the difficulties in justifying the exact number of components to

be used and due to the label-switching problem. The use of a non-parametric distribution

to model the signal component is proposed. This new methodology leads to more accurate

parameter estimation, smaller classification error rate and smaller false non-discovery rate

in the case of discrete data. Moreover, it does not incur the label-switching problem. An

application of the method to data generated by ChIP-sequencing experiments is shown.

A one-dimensional Markov random field model is proposed, which accounts for the

spatial dependencies in the data. The methodology is also applied to ChIP-seq data, which

shows that the new method detected more genes enriched regions than similar existing

methods at the same false discovery rate.
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CHAPTER 1

INTRODUCTION

In the late twentieth century, Bayesian methods began to be recognized as a key to major

changes in statistics. The Bayesian statistics approach has a lot of advantages over the

frequentist approach. The frequentist approach is based on repeated samples from a

particular model. In the Bayesian statistics approach, however, the user can formally

incorporate prior information into the model. Introducing a prior brings extra information

into the model, and results in posterior estimates that combine two sources of information.

These sources of information are the previous belief we had about the process (prior) and

the information we already have in the data (likelihood). Introducing a prior may improve

on frequentist estimators in terms of precision. Prior probabilities in Bayesian methods

are subjective. Although frequentists view this as a drawback, advocates of the Bayesian

approach opine that the subjectivity is inevitable, and they further argue that the frequentist

approach also involves subjective choices. Several researchers adopt the Bayesian method

due to its flexibility and consistency in the face of uncertainties. The Bayesian method

provides an atmosphere which is conducive to structuring the data and knowledge about

the data in order to yield conclusive solutions to problems.

1
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Before 1990s, the major challenge faced by the Bayesian method was the difficulty in

evaluating the normalizing constant as a result of computational intractability. Direct com-

putation of the posterior distribution is intractable numerically or analytically, owing to

the dimensionality and the complexity of the model. But when new computational meth-

ods were developed, and powerful computer programs became available, the Bayesian

method was enthusiastically embraced. After the discovery of posterior simulation tech-

niques called Markov Chain Monte Carlo (MCMC) methods, Bayesian methods made a

significant impact in statistical theory, and provided solutions to pressing questions in many

application areas (Robert & Casella 2009). MCMC is a technique of constructing a Markov

process such that the distribution of the samples after a certain number of steps, called the

stationary distribution, is approximately the required posterior distribution (Gelman et al.

2014, Gilks et al. 1996). The use of MCMC algorithms has the promise of computing the

posterior distribution, and evaluating the posterior estimates.

1.1 Finite Mixture models

The Bayesian approach to mixture models has attracted great interest among researchers,

as a tool for parameter estimation and density fittings. Before the discovery of MCMC,

mixture models provided solutions to a few specialized cases (Jasra et al. 2005). Estimation

of parameters via Bayesian analysis of mixture models when the number of components

is assumed known became routine after the paper of Diebolt & Robert (1994). Bayesian

analysis of mixture models for an unknown number of components is now possible using

the methodologies of reversible jump MCMC (Richardson & Green 1997), Birth and Death
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MCMC (Nobile & Fearnside 2007, Stephens 2000a) and mixture of Dirichlet processes

(Antoniak 1974, Escobar & West 1995). The basic idea behind the mixture model is that

we think of observations which originate from different underlying sources with different

underlying distributions (Pearson 1894). From a statistical point of view we refer to the

mixture model as a probabilistic model that tells us the presence of some underlying sub-

populations in an overall population. The finite mixture model represents heterogeneity

in a finite number of latent classes. It enables us to model data with different distributions

and account for the underlying heterogeneity. It enables us to fit the data, use the Bayesian

method to estimate the parameters for the separate distributions, and obtain membership

probabilities of each component for each observation. Applications of the finite mixture

model include machine learning such as clustering, latent class models, pattern recognition,

computer vision and survival analysis.

In the Bayesian paradigm, the mixture model is feasible with the advent of MCMC

simulation. Although the existing literature has shown that the finite mixture model can

be inferred in a simple and effective way in a Bayesian estimation framework, attention

is mostly focused on parametric mixture modelling, when the mixture components are

having the same type of distributions. For example, all the component distributions could

be Poisson with different means or all the component distributions could be negative

Binomial (NB) with different parameters (even though, in practice, it is not necessary that

all the distributions will be of the same kind). Modelling such a situation causes a persistent

challenge in the diagnostic of MCMC convergence due to the following reasons.

The first reason is the challenge of non-identifiability of the components parameters, the

so-called label-switching problem. During the MCMC simulation, the components’ weight
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and parameters interchange making it difficult to assess if the chain has reached a stationary

distribution.

Another challenge to the Bayesian mixture model is the task of selecting the number of

components for the mixtures. There is a trade-off among the users of the mixture model in

the model order selection. There is fear of over-fitting the data when too many components

are used in the mixture. On the other hand, flexibility of the mixture model will be lost

with too few components in the mixture. These, and other related challenges, are our

motivation for the use of the mixture model with a non-parametric component.

1.2 Markov random field model

A Hidden Markov Model (HMM) is described as a stochastic model governed by a Markov

process that has a finite number of states, and a set of random functions related to each

state. Rabiner (1989) used HMM for speech recognition, and the latter is continuously being

used in numerous applications, such as modelling economic and financial data, biological

sequence analysis and in other areas of artificial intelligence and pattern recognition.

HMMs have received widespread attention recently as they provide a handy extension

of independent mixture models to allow for dependent data. The independent assumption

in mixture models is removed by considering successive correlation of the data through

the component from which they are generated.

A one-dimensional Markov Random Field (MRF) model is any one-dimensional Markov

chain. It is, therefore, a first order Markov chain, which satisfies the Markov condition,

h(zi = m|z−i) = h(zi = m|zi−1, zi+1), where z−i = {z1, . . . , zi−1, zi+1, . . . , zn} . MRF models are
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applied in many research areas, such as computer vision, machine learning and biological

sequence analysis.

1.3 Research objectives

The overarching aim of the research here is to investigate good models for the analysis

of discrete data sets that involve classification into two groups, consisting of signal and

noise, using the Bayesian method. Two types of mixture models are focused in this

thesis, and these are the finite mixture model and one-dimensional Markov random field

mixture model. Specifically, the thesis addresses both methodological and applied aspects

of Bayesian modelling and is designed to achieve the following objectives:

• to demonstrate that mixture models are suitable and flexible semi-parametric frame-

works for estimation and classification;

• to develop a finite mixture model with a non-parametric component for the analysis

of discrete distributions, when the interest is to distinguish signal from noise for

independent observations;

• to develop a Markov random field model with a non-parametric component as an

extension to the finite mixture model, to account for spatial dependencies in discrete

observations.
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1.4 Source of data

To achieve these research objectives, ChIP-Seq data sets generated by Ramos et al. (2010)

for identifying the genomic regions bound by the histone acetyltransferases are used. For

each region in the genome, the data report the number of bound fragments that align to that

region. Some regions contain large tags (signal) and the rest consist of fewer tags (noise).

A higher value suggests that the corresponding region is most likely to be bound by the

protein of interest. Therefore, the underlying data consist of sub-populations, which can

be inferred by a two-component mixture model with signal and noise components.

1.5 Structure of the thesis

The rest of this work is further divided into six chapters and three appendices.

Chapter 2 focuses on Bayesian analysis for mixture models. The concepts of Bayesian

statistical inference, including prior distribution and MCMC methods, are explained. A

general overview of mixture models, including motivations and challenges of mixture

models are provided. The finite mixture model is introduced in this Chapter. The Chapter

further discusses the hidden Markov model and the Markov random field model.

Chapter 3 introduces ChIP-seq data. The experimental work flow for ChIP-seq and

description of the ChIP-seq data sets used in the thesis are discussed in the Chapter.

Discussions on the parametric distributions used for modelling the noise component are

also provided. These parametric distributions are: Poisson, negative Binonial, zero-inflated

Poisson, and zero-inflated negative Binomial distributions.

Chapters 4, 5 and 6 consist of the original work. The Bayesian mixture model for discrete
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distributions with parametric and non-parametric components is proposed in Chapter 4.

Extensive simulation studies under different scenarios are carried out. The results obtained

are compared with fully parametric mixture models. Chapter 5 provides application of

the proposed method to ChIP-sequence data sets in order to detect enriched gene regions

along the genome and the results are compared with existing methods. Chapter 6 is an

extension of the proposed method to account for spatial dependencies by incorporating

the Markov property into the new model. The proposed one-dimensional MRF model is

discussed in this Chapter. Simulation studies and ChIP-seq data analysis are also carried

out. The result of the data analysis is compared with existing methods.

To conclude this thesis, Chapter 7 summarizes and discusses the main contributions of

the research and provides possible suggestion for future research work.

Appendix A provides prior sensitivity analysis and data analysis trace plots for the

proposed method, Appendix B provides simulation plots for the one-dimensional Markov

random field model, and Appendix C provides the R codes implemented in the thesis for

simulations and data analyses.



CHAPTER 2

BAYESIAN ANALYSIS FOR MIXTURE
MODELS

2.1 The statistical model and Bayesian inference

Specification of a statistical model is the cornerstone of all statistical inference. A statisti-

cal model is a collection of probability distribution functions that explain the generation

of observed data (Williams 2008). Probability distribution functions fall into two cate-

gories: non-parametric and parametric distributions. A non-parametric distribution is a

distribution that does not rely on assumptions about the shape or form of the probability

distribution from which the data are drawn (Sheskin 2003). In contrast, a distribution

is said to be a parametric if it relies on assumptions about the shape of the probability

distribution, and can be described based on a finite number of parameters of the assumed

distribution. For example, we denote the parametric statistical model for an observation xi

as

xi ∼ h(xi|θ), (2.1)

8
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where h(xi|θ) is the probability density (or mass) function of xi, viewed as a probability of

realizing xi as a function of some parameters θ. The estimation process is to choose that

value of θ that would maximize the probability that we would actually observe xi. In other

words, we find the parameter values θ that maximize the following function:

l(θ|xi) = h(xi|θ).

Here, l(θ|xi) is known as the likelihood function. Thus, the likelihood function is viewed

as a function of the unknown parameter θ, which indexes the distribution from which xi is

generated (Press 2009). For example, suppose xi is a Bernoulli random variable (binary 0,1

values), then the likelihood based on a single observation is

l(λ|xi) = λxi(1 − λ)1−xi . (2.2)

Furthermore, if x1, . . . , xn are independent observations drawn from some parametric dis-

tribution, then the complete likelihood for θ based on n observations is given by

l(θ|x) ∝
n∏

i=1

h(xi|θ). (2.3)
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If we still assume that sample of x1, . . . , xn is independently drawn from a Bernoulli distri-

bution, then the likelihood function is

l(λ|x1, . . . , xn) = h(x1, . . . , xn|λ)

∝

n∏
i=1

λxi(1 − λ)1−xi = λ
∑n

i=1 xi(1 − λ)n−
∑n

i=1 xi . (2.4)

The likelihood function plays an important role in statistical inference, especially as a

method of estimating parameter θ. By likelihood we mean how likely the parameter

θ (selected model) agrees with the observed data. In the classical maximum likelihood

estimation (MLE) method, we find the derivative of the log likelihood function,

log(l(θ)) =

n∑
i=1

log(h(xi|θ)), (2.5)

and set its derivative equal to zero

∂
∂θ

log(l(θ)) = 0. (2.6)

In Bayesian inference, the parameter θ is assumed to be a random variable. Let g(θ)

be the probability distribution of the parameter θ, referred to as the prior distribution.

The prior distribution allows us to reflect our opinion (if any) concerning the circumstance

before the data is observed. The inference concerningθ is then obtained by Bayes’ theorem.
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The posterior distribution of θ is given by

f (θ|x) =
l(θ|x)g(θ)∫
l(θ|x)g(θ)dθ

∝ l(θ|x)g(θ). (2.7)

The quantity c =
∫

l(θ|x)g(θ)dθ is the normalizing constant for the function θ 7→ l(θ|x)g(θ)

(Chen et al. 2012).

Adopting Bayesian analysis, therefore, can provide inference about the parameter θ

conditioned on the data. It provides the flexibility of incorporating external information as

prior belief about the parameters.

2.2 The prior distribution

In Bayesian analysis, before the observations are taken into account, the uncertainty of

the parameter is expressed as a probability distribution. The prior probability distribution

(simply the prior distribution) of the parameter θ is a key part of modelling uncertainty in

parameter θ. The prior distributions can be classified as belonging to an informative or a

non-informative prior. A prior is informative when the current information is combined

with information gathered from past experience, such as a previous study or expert opinion

(Bernardo & Smith 2009). Informative prior distributions are proper prior (they integrate

or sum to 1). However, informative prior distributions are more subjective; that is, they

may be only meaningful to the particular analyst that used them (Press 2009).

Conversely, when we do not have prior knowledge or have little prior information
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about the unknown parameters before any data are taken, a non-informative or a flat prior

is preferred. The non-informative prior distributions are more preferred by statisticians,

because they are more objective than the informative prior distributions. On the other

hand, a non-informative prior usually leads to an improper posterior (nonintegrable pos-

terior density) (Gelman 2002). In the non-informative prior setting, the prior g(θ) may

be considered to be a uniform distribution, that is, all possible outcome of the parameter

θ have the same probability. As such, a non-informative prior has little impact on the

inference (relative to the information in the likelihood) (Marin & Robert 2014).

Another form of prior probability distribution is the conjugate prior. A prior distribu-

tion is said to be a conjugate if the prior probability distribution g(θ) and the posterior

distribution f (θ|x) are of the same parametric family of distributions, and the prior is said

to be a conjugate prior for the likelihood function. For example, if the likelihood is Poisson,

x ∼ Pois(λ), a conjugate prior on λ is Gamma(r, v) distribution. Consequently, the posterior

distribution of λ is also Gamma distribution. In order to distinguish them from the model

parameters, the prior distribution parameters are referred to as hyperparameters. For ex-

ample, if we denote the parameters for the likelihood as θ, and assume that the parameters

for the prior distribution are known and are denoted as η, thus the prior can be written

as g(θ) = g(θ|η), where η are hyperparameters (Carlin & Louis 2011). Nevertheless, the

power of Bayesian methods largely depends on the proper use of a prior distribution.

In simplest Bayesian models, when the posterior distribution is analytically tractable to a

constant, the unknown parameters can easily be simulated from the posterior distribution

if the posterior is from a recognizable distribution. However, this may not be possible

always, especially for complex models, or when a non-conjugate prior is used. In the



2.3. Markov chain Monte Carlo method 13

next section we discuss an alternative approach to generating samples from the posterior

distribution, when the normalizing constant is analytically intractable. The approach is

called Markov chain Monte Carlo methods.

2.3 Markov chain Monte Carlo method

In Bayesian analysis, MCMC methods allow one to generate samples from (2.7), when

the normalizing constant is analytically intractable owing to the dimensionality of the

model parameters, and expectation of quantities of interest are approximated from these

samples (Press 2009). Basically, MCMC algorithm constructs a Markov chain such that

after a certain number of steps, the chain converges to a stationary distribution. The

stationary distribution is the desired posterior distribution. The simulated values from the

MCMC methods are clearly dependent samples by its very nature (Carlin & Louis 2011).

In practice, the initial draws are typically discarded to allow the effect of the starting value

to wear off. This is referred to as the burn-in period (Press 2009). We briefly describe

two most commonly used MCMC methods: the Gibbs sampler and Metropolis-Hastings

algorithm. Robert & Casella (2009) provides a detailed discussion on MCMC theory and

implementation.

2.3.1 The Gibbs sampler

Gibbs sampling (Geman & Geman 1984, Turchin 1971) is a technique for generating random

variables from a conditional distribution. A sample is drawn from the distribution of each

parameter in turn, given the current values of the other parameters (Casella & George 1992).
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The distribution from which the sample is drawn is called the full conditional distribution.

The sampler is efficient when the parameters have full conditional distributions that are

easy to sample from.

Suppose θ = (θ1, . . . ,θK) is the blocks of the parameter vector. The full posterior

distribution f (θ1, . . . ,θK|x), as described in Bolstad (2011) is given by

f (θ1, . . . ,θK|x) ∝ l(θ1, . . . ,θK|x)g(θ1, . . . ,θK), (2.8)

where l(θ1, . . . ,θK|x) is the likelihood and g(θ1, . . . ,θK) is the prior distribution. And the

full conditional distribution for parameters θk has the general form

f (θk|θ−k, x) = f (θk|θ1, . . . ,θk−1,θk+1, . . . ,θK, x), (2.9)

where θ−k is the set of all the other parameters not in block k. In the procedure of Gibbs

sampling, we set the initial estimates for each parameter θk, and then θk is drawn from its

full conditional distribution by a cyclical sampling scheme through the parameter blocks

in turn given the most recent estimates of the other parameter blocks and the data. The
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procedure is summarized as follows (see Bolstad (2011)).

Algorithm 1: The Gibbs sampler

1. Set t = 0 and start from an arbitrary point θ(0) = (θ(0)
1 , . . . ,θ

(0)
K )

2. For t = 1, 2, . . . , until convergence; k = 1, . . . ,K, simulate θ(t)
k from

• simulate θ(t)
1 ∼ f (θ1|θ

(t−1)
2 , . . . ,θ(t−1)

K , x)

• simulate θ(t)
2 ∼ f (θ2|θ

(t)
1 ,θ

(t−1)
3 , . . . ,θ(t−1)

K , x)

•

•

• simulate θ(t)
K ∼ f (θK|θ

(t)
1 , . . . ,θ

(t)
K−1, x).

3. The stationary distribution θ(N) = (θ(N)
1 , . . . ,θ(N)

K ) is the true posterior distribution of

f (θ1, . . . ,θK|x).

Algorithm 1 gives a Markov chain of (θ(t)
1 , . . . ,θ

(t)
K ) (t = 1, 2, . . . , ). It is our intention

to give only a brief outline of the Gibbs sampling scheme. Detailed modifications to this

scheme can be obtained in Casella & George (1992) and Gelman et al. (2014). We have

implemented Gibbs sampler in the following Chapters and the sampling schemes are

briefly outlined.

2.3.2 The Metropolis-Hastings algorithm

When the prior g(θ) and the likelihood l(θ|x) are not a conjugate pair, then their full con-

ditionals may not be available in close form. Alternative to Gibbs sampling method, the

Metropolis-Hastings (MH) algorithm is used (Carlin & Louis 2011). This is another power-



2.3. Markov chain Monte Carlo method 16

ful procedure that produces a correlated sequence of samples from the target distribution

that may be difficult to make draws by classical independence methods. The Metropolis-

Hastings algorithm is an extension of Metropolis algorithm (Metropolis et al. 1953), where

a parameter value is drawn from its posterior distribution by proposing a new parameter

value given the current value of the parameter, and the draw is either accepted or rejected

according to a specified probability.

Metropolis-Hastings (MH) is a rejection algorithm which proposes a new parameter

value θ∗ from a specified proposal distribution q(θ∗|θ(i−1)) that is, in practice, easy to simu-

late. Then the process accepts or rejects the candidate based on the acceptance ratio. The

generic MH algorithm is provided in Algorithm 2.

Algorithm 2: Metropolis-Hastings algorithm

Initialization: θ(0)
∼ q(θ) ;

for i = 1 to N do
Propose: θ∗ ∼ q(θ(i)

|θ(i−1)) ;
Acceptance Probability

r = α(θ∗|θ(i−1)) = min
{

1,
f (θ∗|x)q(θ(i−1)

|θ∗)

f (θ(i−1)
|x)q(θ∗|θ(i−1))

}
u ∼ Uniform(u; 0, 1) ;
if u < r then

Accept the proposal: θ(i)
← θ∗

else
Reject the proposal: θ(i)

← θ(i−1)

end
end

In MH algorithm applications, one important issue is the choice of the proposal den-

sity q(θ∗|θ(i−1)). The choice of proposal density is crucial for rapid convergence of the

algorithm. A proposal density can be a symmetric. A proposal density is symmetric if

q(θ(i)
|θ(i−1)) = q(θ(i−1)

|θ(i)). Gaussian distributions and Uniform distributions can be straight-
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forward choices of a symmetric proposals centered at the current state of the chain. For

example, for a Normal proposal we have that θ∗ = θ(i−1) + Normal(0, σ), such that pdf for

Normal(θ∗ − θ(i−1); 0, σ) = Normal(θ(i−1)
− θ∗; 0, σ) (Yildirim 2012). This procedure is called

the Random-walk Metropolis algorithm (Chib & Greenberg 1995, Yildirim 2012).

Another idea for the choice of a proposal density is an independent proposal. Here, the

candidate θ∗ is drawn independently from the proposal distribution. That is the proposal

q(θ∗|θ(i−1)) = q(θ∗) does not depend on θ(i−1) (Gilks et al. 1996). The Gibbs sampling is con-

sidered a special case of the Metropolis-Hastings algorithm where specifically, a proposal

from the full conditional distribution has a Metropolis-Hastings ratio of 1 - implying that

the proposal is always accepted (Gelman et al. 2014).

Though presented in isolation, the Metropolis-Hastings and Gibbs sampling procedures

can be implemented in a single algorithm - called Metropolis-within-Gibbs algorithm. For

each draws of θ(t)
k , as in regular Gibbs sampling, either a full conditional distribution or

a Metropolis draw is used. This is particularly useful if some of the full conditionals

have a known form, but some of them do not (Geweke et al. 2003). For comprehensive

discussions and implementation with examples on Metropolis-Hastings algorithm refer to

Chib & Greenberg (1995).

In summary MCMC method is one of the standard tools of statisticians’ apparatus in

the Bayesian model inference because it is efficient, fast and easily implemented.
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2.4 Mixture model

This section introduces the concept of mixture model, and explains the motivation for its

use in this thesis, and as well as how it is used in a complex statistical problems.

2.4.1 Motivation

In certain situations the observed data may be so complex such that, use of a single

parametric distribution may be insufficient for making inference. The structure of the data

may consist of several homogeneous subgroups. One may be interested in identifying

these subgroups, which may provide useful information for inference. Mixture models

provide a solution to this problem by assuming the observations are drawn from some

parametric distributions.

Consider the simulated data on Figure 2.1 for illustration purpose. From Figure 2.1(a), it

is reasonable to use a single parametric distribution to model such data, because it is likely

drawn from a single known parametric distribution (say normal distribution). Whereas

in Figures 2.1(b) and 2.1(c), the observed data comes from more than one distribution. By

fitting a single parametric distribution, one may not address the multimodality expressed

in the data. Therefore, we fit a mixture model through appropriate choice of components to

achieve true representation of the data. It should be noted that, apart from multimodality

in the observed data, mixture model is also useful in modelling heavy-tailed densities and

skewed densities (Venturini et al. 2008). Mixture model can provide a useful statistical tool

that is suited for the analysis of many different data types and distributions (McLachlan

& Peel 2004). These distributions may come from any parametric family, continuous or
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discrete, univariate or multivariate. A mixture model is capable of approximating any

arbitrary distribution.
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Figure 2.1: Histogram of simulated data to illustrate the use of mixture models for (a) one Normal
distribution, (b) two Normal distributions and (c) three Normal distributions.

Bayesian approach to fitting mixture model involves specifying prior distributions over

the parameters of the mixture model. That is allowing probability statements to express un-

certainty involved about the unknown parameters. Bayesian mixture of distributions have

gained popularity in a range of application areas, such as computer science, astronomy,

economics, engineering, robotics, ecology, and as demonstrated in this thesis, genetics.

The following section reviews two selections of mixture model used in this thesis. These

models are finite mixture and hidden Markov mixture models.

2.5 Finite mixture model

In the Bayesian modelling framework it is possible to handle mixtures with infinite number

of components. This results in a mixture model with an infinite number of latent classes.

Alternatively, the choice of number of components is treated as fixed (Diebolt & Robert
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1994). In this case, one is not faced with the issue of estimating the latent classes. Finite

mixture model involved modelling with categorical latent variables that express hetero-

geneity in a finite number of latent classes (McLachlan & Peel 2004). Detailed treatment of

finite mixture model theory and implementation is provided, for example, in McLachlan

& Peel (2004), Marin et al. (2005) and Frühwirth-Schnatter (2006).

2.5.1 Model specification and priors

Let x1, . . . , xn be a sample of size n which is assumed to be drawn from a mixture of

distributions

h(x|π,θ) =

K∑
k=1

πkhk(xi|θk), (2.10)

where K is the number of components, θk is the component parameter, hk(xi|θk) is the

density of the component and πk is the component weight, such that

πk ≥ 0, and
K∑

k=1

πk = 1.

The likelihood is given by

l(π,θ|x) =

n∏
i=1

 K∑
k=1

πkhk(xi|θk)

 . (2.11)

Mixture models can be interpreted in terms of missing or incomplete data (Diebolt & Robert

1994). Let zi, (i = 1, . . . ,n) be an indicator variable, indicating to which component obser-

vation xi belongs. Therefore, z = (z1, . . . , zn) are random variables which are independent
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and identically distributed with probability mass function given as

Pr(zi = k|π,θ) = πk, (i = 1, . . . ,n, k = 1, . . . ,K).

Assume that the observations x1, . . . , xn are drawn independently from

h(xi|zi = k,π,θ) = h(xi|θk), (i = 1, . . . ,n),

then the complete likelihood function conditioned on the data and the latent variable

(Frühwirth-Schnatter 2006) is

l(π,θ|x, z) =

n∏
i=1

πzih(xi|θzi)

=

K∏
k=1

∏
i:zi=k

πkh(xi|θk)


=

K∏
k=1

πk

∑n
i=1 I(zi=k)

∏
i:zi=k

h(xi|θk)

 . (2.12)

Denote the prior on the component parameters, which depends on the distribution

family underlying the mixture distribution (Frühwirth-Schnatter 2006) as

θ ∼ g(θ). (2.13)

The prior distribution for the weights for K components is usually assumed to be Dirichlet

distribution

(π1, . . . , πK) ∼ Dir(η1, . . . , ηK), (2.14)
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which is defined by the hyperparameters, η1, . . . , ηK. A prior assumed on π is non-

informative if η1 =, . . . ,= ηK = 1. For a two-component mixture, the Dirichlet distribution

reduces to a Beta distribution.

2.5.2 Posterior and model inference

Throughout this thesis we assume that the number of components K, is known. Statistical

inference for mixtures with an unknown number of components is beyond the scope of

this thesis.

McLachlan & Peel (2004) and Frühwirth-Schnatter (2006) provide a comprehensive

review on classical and Bayesian mixture models inference. The goal of the model inference

is to infer the unknown component parameters (π,θ) given the component indicators z and

the observations x. Therefore, Bayesian mixture model for sampling from the complete

data posterior is proportional to

f (π,θ|z, x) ∝ l(π,θ|x, z)g(π)g(θ). (2.15)

where l(π,θ|x, z) is the complete data likelihood in (2.12), and g(π) and g(θ) are the prior

distributions for the unknown parameters.

MCMC can be used to draw realizations independently from the posterior in (2.15)

using Gibbs sampling scheme by breaking into the following full conditionals

z ∼ f (z|π,θ, x); (2.16)
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θ ∼ f (θ|z, x,π); (2.17)

π ∼ f (π|z, x,θ). (2.18)

Starting with the latent variable, the full conditional for the latent variable given the

component parameters and the observations is

f (z|π,θ, x) ∝ h(x, z|π,θ). (2.19)

Based on the full posterior distribution in (2.19), the posterior probability of zi = k given

xi, such that the ith observation belonging to kth component, can be computed (Frühwirth-

Schnatter 2006, McLachlan & Peel 2004)

Pr(zi = k|xi,π,θ) =
πkh(xi|θk)

K∑
l=1
πlh(xi|θl)

(2.20)

∝ πkh(xi|θk).

Therefore, the posterior of zi follows a Multinomial,

zi ∼Mult(Pr(zi = 1|xi,π,θ), . . . ,Pr(zi = K|xi,π,θ)). (2.21)
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Conditional on z and x, θ is sampled from the posterior (Frühwirth-Schnatter 2006)

f (θk|x, z = k) ∝

∏
i:zi=k

h(xi|θk)

 g(θk). (2.22)

If g(θk) is a conjugate, then it will be of recognizable parametric form. And given z, π is

sampled from the posterior distribution (Frühwirth-Schnatter 2006)

f (π|z) ∝
K∏

k=1

πk

∑n
i=1 I(zi=k)g(π). (2.23)

For a conjugate prior on π, the full conditional for π follows a Dirichlet distribution given

by

π ∼ Dir(n1 + η1, . . . ,nK + ηK), (2.24)

where nK =
∑
i

(zi = k), k = 1, . . . ,K.

Given these full conditionals, Gibbs sampling for finite mixture model can be carried out,

described as follows. Sample draws are made from the distributions of each parameter

in turn, given the current values of the other parameters (Casella & George 1992). For

example, set an initial value for θ as θ(0). Given x and θ(0), then z depends on x and θ(0).

Then z(0) is sampled from the conditional distribution of z given x and θ(0). The distribution

of θ depends on x and z. Then a new value θ(1) is sampled given z(0) and x. Repeating

the process T times produces T steps Markov chain that has a stationary distribution as its

posterior. A Gibbs sampler for mixture model is summarized in Algorithm 3.
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Algorithm 3: The Gibbs sampler for mixture model

• Initialization: Set π(0), z(0) and θ(0) arbitrarily

• Step t. For t = 1, 2, . . .

1. update z(t)
i (i = 1, . . . ,n) from,

Pr(z(t)
i = k|π(t−1)

k ,θ(t−1)
k , xi) ∝ π

(t−1)
k h(xi|θ

(t−1)
k )

2. update π(t) from f (π|z(t));

3. update θ(t) from f (θ|z(t), x)

2.6 Challenge of mixture model

The mixture model in (2.10) is said to be a symmetric mixture model if the parameters θks

have the same dimension and given a common parameter θ0, h1(x,θ0) = · · · = hK(x,θ0) for

any value of x. Otherwise the mixture model is said to be asymmetric. For example, the

mixture density, h(x|θ,π) =
∑K

k=1 πkN(x;µk, σk), is said to be symmetric since each normal

component density have mean µk and variance 1/σk. Estimating the marginal density for

such symmetric mixture model in a Bayesian analysis from the MCMC draws may lead

to a poor result. The major challenge of such an approach is the difficulty in assessing

the convergence of the MCMC samplers due to an identifiability problem (i.e., the label

switching problem).

2.6.1 The label switching problem

The label switching problem occurs when the likelihood is invariant under permutation of

the component parameters, and there are K! permutations. So, the posterior will inherit

the invariance of the likelihood, because the priors are symmetric. Consequently, in any
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MCMC algorithm, the component label permutes multiple times between iterations of the

sampler. As a result of this, the posterior estimate of the characteristic of the component

becomes useless (Rodrı́guez & Walker 2014). In summary, label switching problem is

caused by the symmetry in the likelihood of the model parameters (Stephens 2000b).

To illustrate this, let VK be the set of the permutations of the labels {1, . . . ,K}. If for some

v ∈ VK, we have that v(π,θ) := ((πv(1), . . . , πv(K)), (θv(1), . . . ,θv(K))). Then

h(x|π,θ) = π1h(x;θ1) + · · · + πKh(x;θK)

= πv(1)h(x;θv(1)) + · · · + πv(K)h(x;θv(K))

= h(x|v(π,θ)). (2.25)

Then under this, the likelihood function for n observations is:

l(θ; x) =

n∏
i=1

h(xi|π,θ) =

n∏
i=1

h(xi|v(π,θ)) = l(v(π,θ); x).

That is the likelihood function is invariant with respect to the permutation of the component

parameters. The prior distribution is the same for all the permutation of the component

parameters, if there is no prior information that distinguishes between the mixture com-

ponents. Hence, under this symmetric priors across components, the posterior will also be

exchangeable (invariant with respect to the permutation of the component parameters). As

such the sampler will encounter a symmetries of the posterior distribution during MCMC

simulation (Xie & Chen 2012). This make the ergodic averages to estimate characteristics

of the component meaningless.
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To solve this problem, the initial attempt was to add an identifiability constraint on the

parameters through the prior distribution. This is to obtain a unique labelling by breaking

the symmetry in the posterior distribution. For this approach see Diebolt & Robert (1994)

or Richardson & Green (1997). Stephens (2000b) demonstrated that this method failed to

separate the two components clearly. The main limitation is that it is very difficult to know

which group of parameters should be added to an adequate constraint.

An alternative approach for dealing with the label switching problem is a decision

theoretic relabelling strategy. Several studies have used a relabelling approach by finding

permutations of the parameters that minimise a loss function (see Stephens (2000b), Nobile

& Fearnside (2007), Celeux et al. (2000) and Rodrı́guez & Walker (2014)). This approach,

however, have been criticised as computationally expensive for large data sets and for

mixture distribution with several components. Another limitation of this method is that it

focuses on mixture models with all components having the same type of distributions. for

example, mixture of several Normal distributions. For a review on the solutions to label

switching problem see Jasra et al. (2005).

In this study therefore, we proposed mixture model with one parametric and one non-

parametric components, which does not satisfy the condition for symmetric mixture mod-

els. Hence it is asymmetric mixture model. Theoretically, there is no label switching prob-

lem for such kind of asymmetric mixture model, since the likelihood is non-exchangeable.

The empirical evidence that the method does not incur the label switching problem is fully

illustrated in Chapter 4 of this thesis.
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2.7 Hidden Markov models

Hidden Markov model (HMM), as an extension of mixture model, is a stochastic pro-

cess generated by a probabilistic Markov chain with finite number of states, and a set of

probability distributions, each associated with its respective state (Koski 2001). Hidden

Markov models are popularly applied in many areas as a convenient representation of

weakly dependent heterogeneous phenomena (Robert et al. 2000). HMM as a statistical

model, originally used for speech recognition (Rabiner 1989), has also been continuously

used in numerous applications, such as, modelling economic and financial data, biolog-

ical sequence analysis and in other areas of artificial intelligence and pattern recognition

(Ghahramani 2001).

Hidden Markov model has been adopted in applications, because it suitably provides

a formulation for an extension of a mixture model, to allow for spatial data. HMM treats

the unobserved latent variable z as a sequence, which has a behaviour of a Markov chain.

Here, the latent variable generates the observations x at a time point, and also models

transitions between different states of behaviour. The Markov chain property results in

the behaviour modelled using a M × N probability matrix δ, called transition probability

matrix, such that the state distribution at each step i, given as zi is conditioned only on

the realisation at previous step i − 1, given as zi−1. The row of the transition matrix is a

probability distribution, which corresponds to the distribution of zi conditional to zi−1,

δms = h(zi = s|zi−1 = m), (2.26)
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and ∑
s

δms = 1

z1 z2 z3 zn

x3x1 x2 xn

− − −−

− − −−

Figure 2.2: Conditional independence relations for Bayesian HMM network (Ghahramani 2001)

A HMM can be explained using a probabilistic directed graph (Figure 2.2) where the

nodes show the states and edges representing transitions from one state to another. HMMs

require that the observation xi be drawn independently from a distribution conditional on

the latent state zi. This implies that the dependent behaviour of x is completely attributed

to the latent variables z. Taking together the distribution of the latent variable and the

observations conditioned on the model parameters result in complete data likelihood;

l(θ|x, z) = h(z1)h(x1|z1,θ)
n∏

i=2

h(zi|zi−1)h(xi|zi,θ). (2.27)

According to Ghahramani (2001) HMM is defined by three properties. Firstly, the ob-

servation xi is generated by some process whose state (unobserved latent variable) zi is

hidden to the observer. Secondly, the state of the hidden process satisfies the Markov

property. Thirdly, the latent state is discrete (Ghahramani 2001). Detailed discussions and

key references on HMMs are provided by Rabiner (1989) and Scott (2002).
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2.7.1 Markov random field model

Markov random field (MRF) is a stochastic process that came originally from statistical

physics; a generalisation of Markov processes in which a time index is replaced by a space

index (Kindermann & Snell 1980). MRF, as a natural extension to the concept of Markov

chain, is a set of random variables described using an undirected graph (Chaudhary 2014),

suitable for spatial data. Consider an undirected graphical model in Figure 2.3. Let G be a

graph with a set of vertices, each vertex represents a latent state zi. Let E be a set of edges,

each of which connects a pair of vertices. The edges captures the inter dependency among

vertices since they are undirected. A clique C is contained in a graph G, where C is a subset

of the vertices in G, such that there exists an edge between all pairs of nodes in the subset.

As an illustration, given G = (V,E), and zi, (i ∈ V) is a MRF define on G (Jung 2009).

Figure 2.3: An undirected graph to illustrate MRF model (Jung 2009)

From Figure 2.3 we notice that z3 is conditionally independent of z4, z6 and z7, given

z1, z2 and z5. Areas where MRF have been applied includes, computer vision (Lempitsky

et al. 2010), machine learning (Salakhutdinov 2009), biological network and genomic data

analysis (Bao et al. 2014, Wang et al. 2013, Wei & Li 2007).
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2.7.2 Model specification and inference

A Markov chain defined in (2.26) is a first order Markov chain, which satisfies the Markov

condition,

h(zi = m|z−i) = h(zi = m|zi−1, zi+1), (2.28)

where z−i = {z1, . . . , zi−1, zi+1, . . . , zn}. This is a MRF model which satisfies the first order

Markov property. The above definition is symmetric, which means that the full conditional

distribution of zi depends only on the neighbours zi−1 and zi+1 (Blake et al. 2011).

The model inference and posterior distribution for MRF follows the same case with the

finite mixture model for component parameters. But the estimation of z differs greatly

with that obtained in the finite mixture model. Because in the MRF, z constitutes a Markov

chain with transition probability in (2.28). The full conditionals for z is given as

z ∼ f (z|x, θ). (2.29)

For more discussions on MRF model, see Chandgotia et al. (2014), Zhang et al. (2001)

Bremaud (1999), and Guttorp & Minin (1995). The one-dimensional MRF is implemented

in Chapter 6, along with discussions on the posterior distributions.



CHAPTER 3

INTRODUCTION TO CHIP-SEQUENCE
DATA

3.1 Introduction

DNA (deoxyribonucleic acid) is the molecule that carries genetic information in almost all

organisms (U.S. National Library of Medicine 2015). It belongs to a class of molecules called

nucleic acids, which are long chains of nucleotides. DNA is made up of two strands of

nucleotides, which consists of a sugar phosphate, to which a base is attached. There are

four individual building blocks nucleotides in DNA. These are; adenine (A), thymine (T),

guanine (G), and cytosine (C). Each nucleotide contains a base. Base pair up naturally only

between A and T, and between G and C to form a base pairs unit. Figure 3.1 illustrates the

two chains of a double helix.

A gene is a stretch of DNA that contains an instructions to create a molecule called

protein in an organism. A complete set of DNA sequence, including all of its genes are

the components of genome. A genome in human is arranged into 23 chromosomes. A

chromosome consist of long chain of DNA and associated proteins.

32



3.1. Introduction 33

Figure 3.1: Double-stranded DNA (helix)(U.S. National Library of Medicine 2015).

DNA and RNA (Ribonucleic acid) are two type of molecules that are responsible for

producing genetic information. DNA is the genetic material and RNA is its transcript.

Gene expression mechanisms tell us how information contained in a gene translates into a

useful product. A gene can be expressed as a protein. There are two major steps for making

a protein from a gene within each cell; transcription and translation. In the transcription

step, the cell nucleus contains an information stored in a gene’s DNA. This information

from the gene’s DNA is transferred to RNA. The type of RNA that contains the protein-

making information is known as messenger RNA (mRNA) (protein-coding genes). The

mRNA carries this information out of the nucleus from the DNA into the cytoplasm (U.S.

National Library of Medicine 2015).

The second step for making a protein from gene take place inside the cytoplasm, and

the process is known as translation. The mRNA is ”read” based on a specialized complex

known as a ribosome, which associates the DNA sequence to the amino acid sequence in

proteins. Each sequence of three bases in mRNA forms a codon, and each codon codes

for a particular amino acid. Then the transfer RNA (tRNA - a type of RNA), gathers the
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protein, one amino acid at a time (Nature Education 2014). Figure 3.2 show that through

the processes of transcription and translation, information from genes is used to make

proteins. Together, the steps of transcription and translation are known as gene expression.

U.S. National Library of Medicine (2015), Suganuma & Workman (2011), and Nicholl (2008)

provide more on biological gene expression processes.

Figure 3.2: Transcription and translation processes for making proteins from genes

Genes are surrounded by DNA sequences that govern their expression. Transcrip-

tion factors are proteins that regulate gene expression through recognizing and binding

to specific DNA sequences (Mo 2012). Another binding protein called histone, is a little

cluster of eight proteins (H2A,H2B,H3,H4), two subunits of each protein. They are posi-

tively charged, wrapped around DNA through interactions with the negative charges of

DNA (Suganuma & Workman 2011). They provide a structural support and contribute

immensely in controlling the activities of the genes. Histone proteins can be modified after

they are made. For instance, histones can be methylated, acetylated, sumolated, and so on.

In order to fully understand the regulatory network of histone modifications and tran-

scription factors, it is of great significance to study the machinery of these proteins at the
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genomic level. Thus, a powerful biological experiment with chromatin immunoprecipita-

tion followed by high-throughput sequencing (ChIP-seq) allow one to locate genome-wide

binding sites of a transcription factor, histone modification or DNA methylation (Park

2009). We briefly describe below, the experimental work flow of ChIP-seq.

3.2 Overview of ChIP-seq experiment

Chromatin immunoprecipitation sequencing, also called ChIP-sequencing (ChIP-seq), is a

widespread experimental approach in functional genomic and medical research (Schweik-

ert et al. 2013). It is crucial in appreciating many biological processes. The ChIP-seq experi-

ment to identify DNA-protein binding sites is fully discussed in the literature of Lefrançois

et al. (2010) and Park (2009). In the ChIP technology, the protein-chromatin are crosslinked

to DNA with a cross linking agent, typically formaldehyde. The chromatin is isolated and

sheared into smaller fragments. DNA fragments are then co-immunoprecipitated using

an antibody that binds specifically to the protein of interest. The crosslinks are then re-

versed to remove the remaining unbound DNA. Finally, the released DNA is sequenced to

identify the genome-wide sites associated with the protein of interest. Figure 3.3 illustrates

the procedure. The DNA tags are aligned to the genome. Typically, only the tags that are

mapped to the genome are considered for the analyses. Due to the size of the genome, it

is natural to divide the entire genome into consecutive base pairs regions. Majority of the

regions contain no or fewer tags (noise) and the rest consist of large tags (signal).
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Figure 3.3: ChIP-Seq is used to analyze protein-DNA interactions (Lim 2010)

3.3 ChIP-seq data

In this study we use two proteins, p300 and CBP (CREB-binding protein) generated in

Ramos et al. (2010). They belong to a class of binding protein called Histone AcetylTrans-

ferras (HATs). HATs is a histone modifying enzyme, which add acetyl groups to target

histones, and HATs is associated with transcriptional activation (Wang et al. 2009). The

p300 and CBP are transcriptional co-activators largely known to regulate same genes, and

are crucial for number of biological functions (see Ramos et al. (2010) and Chen et al. (2013)

for biological significance of p300 and CBP). Several ChIP-seq study have been carried

out to detect genomic binding sites of p300 and CBP proteins. For example, Ramos et al.

(2010) and Wang et al. (2009) found the number of regions bound by p300 and CBP using

different antibody specificity for p300 and CBP proteins. Bao et al. (2013) and Bao et al.

(2014) employed statistical analysis to detect bound regions for p300 and CBP proteins.

For the purpose of modelling, there is the need to mention some typical features of the



3.4. Statistical analysis 37

ChIP-seq data sets. Both p300 and CBP are of very high dimension, given the size of the

genome. The data sets are discrete in nature and usually consist of an excess of zeroes.

The counts of neighbouring windows are typically dependent, especially when the data set

consist of smaller window size regions. Further descriptions of the data sets are contained

in Vinciotti & Bao (2013), and in the Chapters in which they are analysed.

3.4 Statistical analysis

The final data generated by the experiment report the number of aligned DNA fragments

in the sample for each position along the genome. The statistical analysis is aimed at

distinguishing the truly enriched regions from the background noise along the genome.

Since the genomic regions are either bound by the protein or not bound by the protein, it is

therefore a mixture model problem with noise and signal components. Several researchers

employed a mixture model approach to analyse ChIP-seq data, with different distributions

chosen for modelling the noise component. For example, Mo (2012) and Bao et al. (2013)

employed a Poisson distribution for the noise component, Spyrou et al. (2009) and Kuan

et al. (2011) used negative Binomial distribution for the noise component and Qin et al.

(2010) and Bao et al. (2014) adopted zero-inflated models for the noise component. In this

thesis Poisson distribution, negative Binomial diatribution and zero-inflated diatributions

(e.g. zero-inflated Poisson or zero-inflated negative Binomial distributions) are used to

model the noise component. In the following sections, brief outlines of these parametric

distributions, with respect to ChIP-seq data analysis are presented.
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3.4.1 Poisson distribution

The Poisson distribution is a discrete probability distribution used to model the number of

counts of event occurring randomly within a given time interval. The Poisson probability

mass function is given by

h(x;λ) =
λxe−λ

x!
x = 0, 1, 2, . . . , (3.1)

where λ is the shape parameter and indicates the average number of occurrences in the

given time period. It is the expected number of rare counts in the windows of the genome.

The Poisson distribution is the popular choice for modelling the noise component

in ChIP-seq studies, since a region not bound by the protein is a rare event. This was

considered, for example by Mo (2012) and Bao et al. (2013), in which they used a Poisson

distribution to model the background noise. The choice is appropriate when the regions

in the genome consist of 1000 base pairs long. The noise distribution in ChIP-seq data

however, may be over-dispersed in relation to the Poisson distribution. The Poisson

distributional assumption of equality of mean and variance might not fully capture the

complexity in the noise distribution. This is true when smaller window sizes are considered

for the regions. In such case, a negative Binomial distribution becomes a better choice for

the noise component.

3.4.2 Negative Binomial distribution

The background noise in ChIP-seq data is known to be non-uniform. Some authors aban-

don the Poisson model in favour of more sophisticated approaches that account for over
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dispersion. One popular strategy is to model the noise distribution in windows of certain

size as following a negative Binomial distribution. The probability mass function for NB

distribution is given as

h(x|r, v) =
Γ(r + x)

Γ(r)Γ(x + 1)
vr(1 − v)x, (3.2)

where Γ(·) is the Gamma function defined as

Γ(r) =

∫
∞

0
xr−1e−xdx. (3.3)

The non-negative dispersion parameter r is the number of successes, and v is the probability

parameter for the NB distribution. The NB distribution has the mean

E(x) = µ = r
(1 − v)

v
, (3.4)

where

r =
µ2

σ2 − µ

and

v =
r

r + µ
.

The variance is given as

var(x) = σ2 = r
(1 − v)

v2 . (3.5)

We further have that

σ2 = µ +
1
r
µ2 (3.6)
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Negative Binomial distribution is an over-dispersed Poisson distribution which allows for

greater variance. For a large r, NB distribution approaches a Poisson distribution. That is

the variance approaches the mean as r→∞ (Cook 2009).

Majority of the regions in the genome are not enriched, with significantly more empty

regions, which give rise to an excess of zeroes in the observed data. This forms the noise

distribution and motivates researchers in ChIP-seq data analysis to consider a zero-inflated

distribution to model the noise distribution.

3.4.3 Zero-inflated distributions

A zero-inflated model provides a way of modelling the excess of zeroes in addition to

allowing for over-dispersion (Lambert 1992). It is a mixture model of two components:

a zero mass component (i.e., zero with probability 1) and a count component. Hence,

the observed zeroes in the data can come from both sources: either they are “excess” or

“structural” zeroes from the first component, or “random” or “sampling” zeroes from the

second (count) component. The special mixture model for zero-inflated distribution is

given by:

h1(x) = πω1(x, 0) + (1 − π)ω2(x,θ), (3.7)

where h1(x) is the noise component, π denotes the probability of the structural zeroes,

ω1(x, 0) is the degenerate distribution at 0 and ω2(x,θ) is the count distribution. In ChIP-

seq data analysis, two popular zero-inflated models often used to fit the noise distribution

are the zero-inflated Poisson (ZIP) and the zero-inflated negative Binomial (ZINB) models.
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Zero-inflated Poisson distribution

The probability mass function for ZIP distribution with parameters π and λ is given as,

ZIP(x|π, λ) =


π + (1 − π)e−λ, i f x = 0

(1 − π) e−λ
x! λ

x, i f x > 0

(3.8)

where 0 ≤ π ≤ 1 and λ ≥ 0. The parameter π gives the extra probability thrust at the value

0. Note that when π = 0, then ZIP(π, λ) reduces to Poi(λ) (Beckett et al. 2014). The mean of

the ZIP distribution is given by

E(x) = (1 − π)λ, (3.9)

and has the variance

σ2 = (1 − π)(λ + πλ2). (3.10)

In practice however, the non-zero component in the zero-inflated model may be over-

dispersed in relation to the Poisson model. In such a circumstance, the zero-inflated

negative Binomial (ZINB) model better accounts for the over-dispersion compared to the

ZIP model (Flynn & Francis 2009).

Zero-inflated negative Binomial distribution

The probability mass function for ZINB distribution is given as,

ZINB(x|π, r, v) =


π + (1 − π)vr, i f x = 0

(1 − π) Γ(r+x)
Γ(r)Γ(x+1)v

r(1 − v)x, i f x > 0,

(3.11)
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where π is defined in (3.8), the dispersion parameter r and the probability parameter v are

defined in (3.2). The mean for ZINB is given as,

E(x) = (1 − π)µ, (3.12)

and the variance is

σ2(x) = (1 − π)µ(1 + µ(π + r)), (3.13)

where µ is given in (3.4) as,

µ = r
(1 − v)

v
. (3.14)

3.5 Conclusion

Two-component mixture model with Poisson distribution as a choice for the noise com-

ponent fits the data in ChIP-seq studies very well when 1000 contiguous base pairs long

genomic regions are considered. This is implemented in Chapter 5. In cases where smaller

window sizes (say, 200bp) are considered for the regions, the counts in the neighbouring

windows are spatially dependent. Consequently, the true enriched regions could easily

cross some adjacent windows in the genome. Elaborate models which account for Markov

properties, such as HMMs or MRF model are required in order to cater for the spatial

dependencies, with distributions that caters for over-dispersion, such as NB distribution

or zero-inflated distributions as the choice for the noise component. This is implemented

in Chapter 6.



CHAPTER 4

MIXTURES OF DISCRETE
DISTRIBUTIONS WITH A

NON-PARAMETRIC COMPONENT

4.1 Introduction

The density of a typical mixture distribution as written in (2.10) is

h(x|π,θ) =

K∑
k=1

πkhk(xi|θk),
∑

k

πk = 1. (4.1)

By relaxing distributional assumptions, a mixture model provides a convenient semi-

parametric framework for modelling distributions of unknown shape. For example, it is

used for model-based density estimation, since any distribution can be approximated by a

mixture of elementary components.

In the last two decades, many new methodologies have been proposed for the Bayesian

analysis of finite mixture models, such as Diebolt & Robert (1994), West (1997), Richardson

& Green (1997), Stephens (2000a), McLachlan & Peel (2004) and Nobile & Fearnside (2007).

43
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The existing literature, as described in Chapter 2, have shown that finite mixture models can

be inferred in a simple and effective way in a Bayesian estimation framework. Persistent

challenges, however, still exist in the diagnostic of Markov Chain Monte Carlo (MCMC)

convergence due to the following aspects.

The first aspect is the label switching problem, which is caused by the symmetry

in the likelihood function. Many methods exist on how to tackle the label switching

problem, for example, there are methods that impose identifiability constraints (Diebolt

& Robert 1994, McLachlan & Peel 2004, Richardson & Green 1997) and others that are

based on relabelling algorithms (Celeux 1998, Celeux et al. 2000, Rodrı́guez & Walker 2014,

Stephens 2000b). For a review and comparison of these methods see, for example, Jasra

et al. (2005) and Sperrin et al. (2010). One problem common to the existing methods for

dealing with the label switching problem is that they usually require heavy computational

costs, which make them unsuitable for large data sets and models with a large number of

components. Another drawback of these methods is that they focus on mixture models

where all components have the same type of distributions and focus on dealing with the

invariance of the likelihood with respect to the permutation of the component labels. When

the mixture components have different types of distributions, such as a mixture of Poisson

and negative Binomial distributions, label switching problems will still occur, since the

likelihood function may still have symmetries. This is because the sampler cannot identify

the constraints in the parameter space of the mixture components. The existing methods,

however, for dealing with this problem may not be suitable any more.

The second aspect is the identification of the number of components, K. Many au-

thors have devised different methodologies for estimating the number of components in a
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Bayesian finite mixture models, for example reversible jump MCMC (Richardson & Green

1997) and Birth and Death MCMC (Nobile & Fearnside 2007, Stephens 2000a). Another

approach to deal with the unknown number of components is to use a mixture of Dirichlet

processes (Antoniak 1974, Escobar & West 1995), which allows for an infinite number of

components.

The challenges mentioned above limit the applicability of mixture models in the areas

involving large data sets and a large number of components. This motivates our study, as

we discuss in detail in the following subsection.

4.1.1 Motivation of the study

In practice, we are often only interested in classifying the observations into two classes.

For example, in the analysis of ChIP-seq data, we are interested in whether a region of the

genome is bound by the protein in question or not (Bao et al. 2014). There are only two

possible classes for such ChIP-seq (discrete) data, but it is inappropriate to use a mixture

of two known parametric distributions (e.g. Poisson or negative Binomial distributions).

This is because such data sets usually have long tails and the tails may show multi-modal

patterns.

For illustration, consider the ChIP-seq data generated by Ramos et al. (2010) for identi-

fying the genomic regions bound by the histone acetyltransferases p300. The data report

the number of bound fragments that align to each consecutive region in the genome. A

higher value means that the corresponding region is most likely to be bound by the protein

in question. Table 4.1 provides the summary statistics for the data set, where we consider

the data for 1000 contiguous base pairs long regions along the genome on chromosome
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Table 4.1: Summary statistics of the ChIP-seq data of Ramos et al. (2010) for one experiment on the
protein p300 on chromosome21.

Sample size min max Mean Variance
33916 0 282 2.24 18.70

21 (Bao et al. 2013). Figure 4.1 shows a histogram of the count data. The left plot shows

that the data set has a very long tail. If we zoom in the tail of the distribution (right plot),

we see possible multi-modal patterns, suggesting that the distribution of the data is likely

to consist of several component distributions. The interest, however, is that of classifying

each region into two possible classes: bound or not bound by the protein in question.
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Figure 4.1: Distribution of ChIP-seq data (p300) for one experiment (left), with zoom on the tail
(right).

The above situation has been observed also for other ChIP-seq experiments (see Spyrou

et al. (2009) and Kuan et al. (2011)), where a two-component parametric mixture model

appears to be too restrictive for the analysis of these data. An alternative approach is to

use K components, with K > 2. In the context of ChIP-seq data analysis, this is considered

by Kuan et al. (2011), who allow the signal distribution to be a mixture of two negative

Binomial distributions (i.e. K = 3). However, it is very challenging to justify what the true

value of K is. Although the reversible-jump Markov chain Monte Carlo method (Green
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1995) is readily available, the justification of reversible-jump MCMC convergence is non-

trivial and it requires heavy computational costs. Another challenge of using K components

is that it is non-trivial to determine what the component distributions are. For instance, all

components may be chosen as Poisson distributions, or only some components are chosen

as Poisson distributions and the others are chosen as negative Binomial (NB) distributions.

Finally, since we are only interested in predicting two classes, using a mixture distribution

with K components seems unnecessary. The above arguments and the motivating example

have led us to consider a two-component mixture model for discrete observations, with

one parametric distribution and one non-parametric distribution.

There are some existing non-Bayesian methods based on EM-type algorithms which can

deal with a two-component mixture model with one parametric component and one non-

parametric component. Those methods, however, require strong assumptions and cannot

be applied to this study. For example, Song et al. (2010) proposed a mixture model for

sequential clustering of observations. Their approach requires a component with known

location parameter and the classification algorithm relies on this center parameter. In our

study, the location parameter for the noise component is unknown. Xiang et al. (2014)

extended the method of Song et al. (2010) by developing an approach which does not

require the location parameter to be known. The asymptotic results were not available for

the full model as the identifiability problem was not justified in Xiang et al. (2014). We

therefore, focus on the Bayesian approach in this study, where large sample properties

for the estimates are not our concern since simulation from the posterior distribution is

generally the main task in Bayesian analysis. The challenges of Bayesian analysis for

mixture models are the label switching problem and the determination of the number of
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components K, and the new method circumvents these challenges.

4.2 The model and the posterior distributions

Suppose that discrete observations x1, · · · , xn are sampled from a mixture of distributions

with two components, where one component is the noise distribution and the other com-

ponent is a signal distribution. We simply use the following density to model the data,

h(x) = π1h1(x;θ1) + π2h2(x;θ2) (4.2)

where h1 is the parametric distribution for the noise, h2 is the signal distribution and π1

and π2 are the corresponding mixture proportions, respectively.

Given in Section 2.5.2 that zi (i = 1, ..,n) is an indicator or latent variable associated with

each observation xi, i.e. zi = k (k = 1, 2) means that the observation xi is from component k.

The complete likelihood function for (θ1,θ2) given the full data is

l(θ1,θ2|x, z) ∝
n∏

i=1

{
[π1h1(xi;θ1)]I[zi=1] [π2h2(xi;θ2)]I[zi=2]

}
. (4.3)

The noise distribution h1 is usually simpler to determine. A Poisson distribution is a

natural choice for the noise distribution in ChIP-seq studies, since a genomic region not

bound by the protein in question is a rare event. Zero-inflated Poisson distributions have

been found to fit the noise distribution very well in cases where small window sizes are

considered for the regions, as they account for large number of zeros (Bao et al. 2014). This

is considered further in Chapter 6.
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The signal distribution can show complicated patterns. As explained in Section 4.1.1,

it may be difficult to find a suitable parametric distribution to model h2. If h2 is further

modelled by a mixture of distributions, it may not be easy to deal with the challenges

involved in Bayesian mixture models, such as the label switching problem, determining the

number of mixture components and to determine the component distributions. Since we

are only interested in distinguishing the signal and the noise, it is not necessary to identify

how many components the signal distribution is formed of and what these component

distributions are. We therefore, consider to use a non-parametric model for the signal

component.

The data is discrete and so we can denote with x(1), · · · , x(L) the L distinct values of the

observations x1, · · · , xn. Define

h∗2(x( j)) = p j,
L∑

j=1

p j = 1 (4.4)

where p js ( j = 1, · · · ,L) are the unknown parameters. Here p j can be interpreted as the

probability of x = x( j) given that x is drawn from the signal component. This can be viewed

as a non-parametric distribution. The distribution of x under this model is given by

h(x) = π1h1(x;θ1) + π2

L∑
j=1

h∗2(x)I[x = x( j)]. (4.5)

We have the following likelihood function based on the distribution in (4.4), given (xi, zi)
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(i = 1, · · · ,n),

l(θ1,p,π|x, z) ∝
n∏

i=1

[π1h1(xi;θ1)]I[zi=1]

π2

L∑
j=1

p jI[xi = x( j)]


I[zi=2]

= πn1
1 π

n2
2

n∏
i=1

[h1(xi;θ1)]I[zi=1]
·

L∏
j=1

p
∑n

i=1 I[zi=2,xi=x( j)]
j (4.6)

where nk =
∑

i I[zi = k], k = 1, 2.

If we choose uniform priors forπ and p and denote the prior forθ1 as g(θ1), we have that

π, p and θ1 are independent under the posterior distributions. The posterior distribution

of π, in particular, is given by the Beta distribution

f (π|x, z) ∝ πn1
1 π

n2
2 := Beta (π; n1 + 1,n2 + 1). (4.7)

The posterior of p is given by the Dirichlet distribution

f (p|x, z) ∝
L∏

j=1

p
∑n

i=1 I[zi=2,xi=x( j)]
j

:= Dirichlet (p; 1 +

n∑
i=1

I[zi = 2, xi = x( j)]), (4.8)

and the posterior for θ1 by

f (θ1|x, z) ∝
n∏

i=1

[h1(xi;θ1)]I[zi=1] g(θ1). (4.9)
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We also have that the posterior probability of zi given x,π,p and θ1 as

Pr(zi = 1|x,π,p,θ1) ∝ π1h1(xi;θ1)

Pr(zi = 2|x,π,p,θ1) ∝ π2

L∑
j=1

p jI[xi = x( j)]. (4.10)

4.2.1 The interpretation of the model

The signal component in (4.5) can be viewed as a non-parametric component since we

allocate a probability to each x( j). The probabilities p j can be viewed as the empirical

probabilities estimated via a sampling approach. It is easy to interpret the idea of this non-

parametric component in the following way. If the Poisson component has λ = 5, say, then

the probability that an observation with value 30 comes from the Poisson (noise) component

will be very small (about e−13). If the empirical distribution (the signal distribution) tells

that P(X = 30) ≈ 0.00001, then we should indeed classify the observation 30 into the signal

component, provided that the component proportion values (π1 and π2) are in a similar

scale.

The posterior predictive distribution of the new model also has a reasonable interpre-

tation, which is actually linked with the Dirichlet process distribution. If we assume that

the latent variable z is known, then the posterior predictive distribution is given by

fpre(y|x, z)

=

∫
θ1,p,π

π1h1(y;θ1) + π2

L∑
j=1

p jI[y = x( j)]

 l(θ1,p,π|x, z)g(θ1)
c

dθ1dpdπ

where c, depending on x, z, is the normalising constant for the full posterior distribution.
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Then we have that

fpre(y|x, z) ∝∫
θ1,p,π

π1h1(y;θ1) + π2

L∑
j=1

p jI[y = x( j)]

πn1
1 π

n2
2

n∏
i=1

[h1(xi;θ1)]I[zi=1]
·

L∏
j=1

p
∑n

i=1 I[zi=2,xi=x( j)]
j g(θ1)dθ1dpdπ

∝

∫
π

(
π1[πn1

1 π
n2
2 ]

)
dπ ·

∫
θ1

h1(y;θ1)

 n∏
i=1

[h1(xi;θ1)]I[zi=1]

 g(θ1)dθ1

+

∫
π

(
π2[πn1

1 π
n2
2 ]

)
dπ ·

∫
p

 L∑
j=1

p jI[y = x( j)]

 L∏
j=1

p
∑n

i=1 I[zi=2,xi=x( j)]
j dp

The posterior predictive distribution can further be written as

fpre(y|x, z) =

∝ E(π1)
∫
θ1

h1(y;θ1)

 n∏
i=1

[h1(xi;θ1)]I[zi=1]

 g(θ1)dθ1

+E(π2)
∫

p

 L∑
j=1

p jI[y = x( j)]

 L∏
j=1

p
∑n

i=1 I[zi=2,xi=x( j)]
j dp

:= E(π1) · E1(h1(y;θ1)) + E(π2) ·
L∑

j=1

I[y = x( j)]E2(p j)

where E(π1) and E(π2) are the posterior expectation of π, E1(h1(y;θ1)) is a posterior expec-

tation conditional on all observations allocated to the first component (zi = 1) and E2(p j)

is the posterior expectation for p conditional on all observations allocated to the second

component (zi = 2).

Based on (4.8) we know that

E2(p j) =
1 +

∑
i I[zi = 2, xi = x( j)]

L +
∑

i I[zi = 2]
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and based on (4.7) we know that

E(πk) =
nk + 1
n + 2

, k = 1, 2.

Then with further calculations we have

fpre(y|x, z) ∝
n1 + 1
n + 2

· E1(h1(y;θ1)) +
n2 + 1
n + 2

·
1 +

∑
i I[zi = 2, xi = y]

L + n2
(4.11)

which has a very close connection with the posterior predictive distribution for Dirichlet

process distributions in Ferguson (1973).

Suppose that a random sample X1, · · · ,Xn is from a probability space (R,B) with a

random probability measure P, which is a Dirichlet process with a base measure parameter

α. Ferguson (1973) showed that the conditional distribution of P given X1, · · · ,Xn is still

a Dirichlet process with parameter α +
∑

i δXi , where δu denotes the measure giving mass

one to the point u. Ferguson (1973) used the result to derived the posterior predictive

distribution for a new variable Y from P, as

Ppre(·|X1, · · · ,Xn) =
α(R)

α(R) + n
·
α(·)
α(R)

+

(
1 −

α(R)
α(R) + n

)
α(·) +

∑
i δXi(·)

α(R) + n
(4.12)

which is a mixture of the prior beliefα and the empirical distribution. Comparing (4.11) and

(4.12) we can see that the posterior predictive distribution of our model is a mixture of the

parametric predictive distribution E1(h1(y;θ1)) conditional on all observations allocated in

the first component, and the empirical distribution conditional on all observations allocated

in the second component.
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Therefore, under our modelling framework and given all observations xi with its clas-

sification indicator zi, a new observation can be viewed as from a random probability

measure P, which is a Dirichlet process with a base measure parameter proportional to

E1(h1(y;θ1)). Ferguson (1973) uses the base measure parameter α as the prior information

and the predictive distribution converges to the empirical distribution as the sample size

n → ∞. In our study, the base measure parameter can be viewed as the information for

the noise component. The latent variable zi determines the proportion of samples in each

component and it can be sampled via the proposed Gibbs sampler algorithm. If we fix all

zi = 2, our model degenerates to Ferguson’s Bayesian non-parametric model, which can-

not deal with classification since the target distribution is estimated via a non-parametric

distribution.

4.2.2 The Gibbs sampler

We can use the Gibbs sampler to draw realisations from the posterior distributions (4.7),

(4.8), (4.9) and (4.10) and carry out a Bayesian Monte Carlo analysis. We need to update the

unknown parameters and the latent variable z by sampling from the conditional posterior

distributions in (4.7), (4.8), (4.9) and (4.10) in order to implement the Gibbs sampler. This

leads to Algorithm 4:
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Algorithm 4: The proposed method.

Initialization, select, z(0),π(0), p(0) and θ(0)
1 ;

Set m = 1 ;
repeat

for i = 1 to n do
Update zi with probability (4.10)

end
Update π from the posterior in (4.7);
Update p from the posterior in (4.8);
Update θ1 from the posterior in (4.9) ;
m = m + 1

until enough MCMC steps have been simulated;

4.3 Simulation studies

4.3.1 Scenario 1

We simulate a data set of n = 500 observations from a mixture of Poisson and negative

Binomial distributions. The true model is

h(x) = π1Poi(x;λ) + π2NB(x; r, v), (4.13)

where λ is a Poisson distribution parameter defined in (3.1), r and v are parameters for

the negative Binomial distribution defined in (3.2). We choose different values of the true

parameters in order to study the performance of our proposed method under different

situations. We consider three cases, (a) the means of the two components are far apart, (b)

the means of the two components are very close and (c) the means of the two components

are neither too close nor too far apart. We choose π1 = 0.8, i.e. having a larger proportion

for the noise component, to reflect our real ChIP-seq data. We also consider the case where

the signal and noise have the same component weights, π1 = π2 = 0.5.

The simulation studies are based on 20,000 iterations with 10,000 burn-in iterations,
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Figure 4.2: Trace plots for π1 and for λ, with different starting values. The true parameter values
are π1 = 0.8, λ = 2, r = 15 and ν = 0.4.

repeated for 100 times. Different starting values for the Gibbs sampler are chosen to justify

the convergence of the Markov chains. From Figure 4.2 we can see that 20,000 steps are

enough to guarantee the convergence for the Markov chains. We also choose different prior

distributions to study the sensitivity of our model to the prior used. The results provided

in Appendix A demonstrate that the method is robust to different priors.

Table 4.2 show the posterior means of the parameters of the proposed model under

a number of different cases. We can see that the estimates are very good when the two

components are clearly separated (Set 1 case). There is some bias in the estimate of π1 for

Set 2 and Set 3 as the two component means are very close and many observations from the

signal are treated as a sample from the noise component, leading to an inflated estimate of

π1. This kind of bias occurs in all analyses based on mixture models when the component

densities are very close, i.e. the two components are not easily identifiable. We can see that

label switching does not occur from Figure 4.2. In fact we did not find any label switching
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Table 4.2: Simulation results (posterior means and 95% credible intervals) where the true model is
(4.13).

True value True π1 = 0.8 True π1 = 0.5
λ r v E(λ) E(π1) E(λ) E(π1)

Set 1a 6 10 0.3 5.9271 0.7547 6.3299 0.4207
(5.6054,6.2460) (0.6895,0.8092) (5.7362,6.9172) (0.3362,0.4922)

10 20 0.2 9.6081 0.7489 9.8108 0.4061
(8.9084,10.1492) (0.6723,0.8114) (9.0310,10.3848) (0.3322,0.4665)

2 15 0.4 1.8425 0.7722 1.9963 0.4171
(1.6765,2.0060) (0.7136,0.8202) (1.7091,2.2801) (0.3355,0.4828)

Set 2b 2 5 0.6 2.0375 0.9300 2.3493 0.8285
(1.8412,2.2088) (0.8344,0.9823) (2.0519,2.6615) (0.7175,0.9115)

4 2 0.4 3.6699 0.8019 3.2550 0.7131
(3.1780,4.0766) (0.6320,0.9201) (2.5142,3.9011) (0.5582,0.8262)

6 5 0.5 5.6248 0.8854 5.3592 0.7631
(5.2943,5.9334) (0.7899,0.9552) (4.6386,5.9127) (0.6155,0.8681)

Set 3c 1 7 0.6 1.0527 0.8276 1.2148 0.5316
(0.8823,1.2257) (0.7379,0.8961) (0.8289,1.9641) (0.3769,0.6317)

2.5 6 0.5 2.7537 0.8969 3.0378 0.7282
(2.5479,2.9584) (0.8171,0.9479) (2.6840,3.4131) (0.6246,0.8061)

3 5 0.4 3.2014 0.8828 3.7587 0.7137
(2.9778,3.4199) (0.8151,0.9313) (3.3226,4.2288) (0.6093,0.7937)

aComponent means are far apart
bComponent means are close
cComponents means are neither too close nor too far apart
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Figure 4.3: MCMC trace plots for λ, π1, r and v by using a mixture of Poisson and NB distributions;
the true model is (4.13) with λ = 2, π1 = 0.8, r = 15 and v = 0.4.

in the trace plots based on all simulations in Table 4.2. The label switching problem still

exists if we use a mixture model with a Poisson component and a NB component (the true

underlying model) to analyse the data, although the two components are different. This is

shown in Figure 4.3, which is the simulation results for a mixture with two components:

one Poisson component with a small mean value 2 and an NB component with a larger

mean value around 22.5. We can see from the trace plots that in this case the MCMC

chain manages to estimate λ and π1 close to their true values, 2 and 0.8 respectively. The

algorithm, however, sometimes returns estimates of λ around 20 and very small estimates

of π1, meaning that the Poisson distribution is used to model observations with large

values but the NB distribution is used to model observations with small values. Such a

label switching is due to the fact that the algorithm can not identify the constraints in the

parameter space of the mixture component, making the likelihood function symmetry, and

makes it impossible to draw conclusions from the MCMC chains without some form of
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relabelling. All existing methods, however, cannot deal with such label switching problems

since they require the component distributions to be of the same type. Here we cannot

simply relabel a Poisson parameter say λ = 20 to the pair of NB parameters (r, v). For

simplicity of presentation we did not provide any results (such as posterior means and

credible intervals) based on a mixture of Poisson and NB distribution here, since those

results are severely biased.

4.3.2 Scenario 2

We now consider a more general mixture distribution with five-components, where the

noise component is a Poisson distribution and the signal components are NB distributions.

The sample size is also chosen as n = 500. The aim here is to show that our method

outperforms the fully parametric mixture model, under general mixture distributions, in

terms of estimation and classification. The true model for this simulation is given by

h(x) = π1Poi(x;λ) +

5∑
k=2

πkNB(x; rk, vk). (4.14)

We chose different values for the parameters λ, rk and vk in order to compare our method

with existing methods under different settings. In the first case, we choose the set of

true parameters (Set 1) as λ = 2, π1 = 0.6, π2 = · · · = π5 = 0.1, r = (15, 13, 10, 8) and

v = (0.9, 0.7, 0.6, 0.5). This choice of r and v for the NB components gives the corresponding

component means as (1.68, 5.57, 6.67, 8.00). Such a choice implies that the means of Poisson

component and all the other NB components are not too far apart. From Table 4.3 we can

see that our method has clear posterior estimates, which approximate the true parameter
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Figure 4.4: MCMC trace plots for λ, π1 for our new model for the true parameter values in Table 4.3

value. The trace plot confirms that our method does not suffer from the label switching

problem (see Figure 4.4).

However, for the Poisson component and other NB components, the above situation

causes some identifiability problems when traditional Gibbs sampling method is used.

The MCMC trace plots in Figure 4.5 for π1 and λ clearly show the occurrence of the label

switching problem. This issue severely distorts the posterior estimates, see Table 4.3. For

example the posterior mean for λ is 2.4371 (the true value is 2) and the posterior mean for

π1 is 0.2952 (the true value is 0.6). On the contrary, if we use the proposed method, the

estimates forλ andπ1 are 2.2514 and 0.6987, respectively, which are closer to the true values.

We did not provide the estimates for r and v since the main aim here is classification and

under the new model r and v are not involved. Instead we compare the misclassification

rate (the ratio of the number of wrongly classified observations over the total number of

observations) for the two methods. This can be easily obtained as the Bayesian approach

provides the simulated z from the full posterior. From the last column of Table 4.3 we can

see that our method has smaller misclassification rate than the parametric mixture model.

In the second set of the simulation the choice of the true parameters are λ = 7, π1 = 0.6,

π2 = · · · = π5 = 0.1, r = (15, 20, 40, 30) and v = (0.4, 0.3, 0.3, 0.2). This choice of r and v for
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Figure 4.5: MCMC trace plots for λ, π1 for a mixture of a Poisson and four NB distributions for the
true parameter values in Table 4.3

Table 4.3: Parameter Set 1. (i) the new method; (ii) true mixture model of five components.

Model True value Posterior mean Error rate
λ π1 r1 r2 r3 r4 v1 v2 v3 v4 E(λ) E(π1) e

(i) 2 0.6 15 13 10 8 0.9 0.7 0.6 0.5 2.2514 0.6987 0.31
(1.8881,2.6680) (0.5680,0.7885)

(ii) 2 0.6 15 13 10 8 0.9 0.7 0.6 0.5 2.4371 0.2952 0.46
(1.0576,4.9958) (0.0249,0.7433)

the NB components gives the corresponding component means as (22.5, 46.7, 93, 120). This

gives very different component means with the Poisson component having the smallest

mean. This situation is similar to the real ChIP-seq data in terms of the long tail and

the noise component having the smallest mean value. From Table 4.4 we can see that our

method gives posterior mean estimate forπ1 with smaller bias and shorter credible interval

than the parametric mixture approach, and our method gives competitive result with the

fully parametric mixture model when estimating the λ. The larger bias and variation in

the estimates in the existing methods contrarily, is due to the label switching problem, see

Figure 4.6. The new method still performs better in terms of classification rate (see Table

4.4).

We ran the Gibbs sampler for 20,000 steps with 10,000 steps as burn-in iterations over

100 simulations. We further use a Metropolis-Within-Gibbs sampler to simulate from the

posterior distributions for the parametric mixtures given the difficulty in simulating the
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Figure 4.6: MCMC trace plots for λ, π1 for a mixture of a Poisson and four NB distributions for the
true parameter values in Table 4.4

Table 4.4: Parameter Set 2. (i) the new method; (ii) the true mixture model of five components.

Model True value Posterior mean Error rate
λ π1 r1 r2 r3 r4 v1 v2 v3 v4 E(λ) E(π1) e

(i) 7 0.6 15 20 40 30 0.4 0.3 0.3 0.2 6.8676 0.5787 0.06
(6.4998,7.2305) (0.5226,0.6292)

(ii) 7 0.6 15 20 40 30 0.4 0.3 0.3 0.2 6.9622 0.5349 0.10
(6.4599,7.4080) (0.2279,0.6329)

parameters r and v for NB distributions.

4.3.3 Scenario 3

We still consider the true model in (4.14) and generate n = 500 observations. The aim

here is to further justify the classification performance of our methodology under different

settings. Just as in the second scenario, we choose the set of true parameters (Set 1) as λ = 1,

π1 = 0.6, π2 = · · · = π5 = 0.1, r = (3, 5, 8, 10) and v = (0.3, 0.5, 0.7, 0.8). This choice of r and v

for the NB components gives the corresponding component means as (7, 5, 3.43, 2.5). Such a

choice imply that the means of all components are not too far away, with Poisson component

having the smallest mean value. We can use the posterior probability distribution for z as

the classification criteria to justify the classification performance of the new method. The
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posterior probability of zi = 1 is given by

gi = P(zi = 1|x,θ) :=
π1h1(xi;θ1)

π1h1(xi;θ1) + π2
∑L

j=1 p jI[xi = x( j)]
. (4.15)

If gi is less than a threshold, say ρ, the value xi will be classified into class 2. Based on

this idea, the false discovery rate (FDR) is commonly used to justify the performance of a

classifier and was for example used by Bao et al. (2013) in the context of mixture models.

It is defined as

FDR =
#{false positive discovery}

#{declared positive}

=
#{false positive discovery}∑

i I[gi < ρ]
. (4.16)

We fixed the FDR at level 0.01 and find the threshold ρ and further calculate the false

non-discovery rate (FNDR) based on the existing method and our new proposed method.

The FNDR is defined as

FNDR =
#{false negative discovery}

#{declared negative}

The FNDR values are shown on the last column of Table 4.5. The new method has smaller

FNDR.

We ran the Gibbs sampler for 20,000 steps with 10,000 steps as burn-in iterations for all

the simulation results. We choose a Gamma(2, 1) prior distribution for λ and a uniform

prior distribution for π for both methods. We choose uniform priors for p for the new

method, whereas we choose a Gamma(20, 1) prior for the elements of r and a uniform
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Figure 4.7: MCMC trace plots for λ, π1 by using the true model, a mixture of a Poisson and four NB
distributions for the true parameter values in Table 4.5.

Table 4.5: Parameter Set 1. (i) the new method; (ii) existing mixture model, the true mixture model
of five components is used. FDR is controlled at level 0.01.

Model True value Posterior mean FNDR
λ π1 r1 r2 r3 r4 v1 v2 v3 v4 E(λ) E(π1)

(i) 1 0.6 3 5 8 10 0.3 0.5 0.7 0.8 1.3516 0.7488 0.078
(1.0855,1.6115) (0.6385,0.8260)

(ii) 1 0.6 3 5 8 10 0.3 0.5 0.7 0.8 1.9227 0.3101 0.406
(0.6301,3.6701) (0.0368,0.7504)

distribution for the elements in v for the Poisson-NB mixture. The choice of Gamma

prior for r, since it can be viewed as a shape parameter of Gamma distribution (see (3.3)).

Gamma prior for r has been used, for example, by Bradlow et al. (2002). As in Scenario

2, a Metropolis-Within-Gibbs sampler is used to simulate from the posterior distributions

for the parametric mixture models given the difficulty in simulating the parameters r and

v for the NB distributions.

In a second simulation (Set 2) we consider the following true parameters as λ = 5,

π1 = 0.6, π2 = · · · = π5 = 0.1, r = (5, 7, 10, 14) and v = (0.4, 0.6, 0.8, 0.9). This choice of r and

v for the NB components gives the corresponding component means as (7.5, 4.67, 2.5, 1.56).

Such a choice still gives very close means for each component but now the Poisson com-

ponent does not have the smallest mean. The posterior estimates based on the traditional
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parametric mixture model are still very poor and our method returns a smaller FNDR (see

Table 4.6).

Table 4.6: Parameter Set 2. (i) the new method; (ii) existing mixture model, the true mixture model
of five components is used. FDR is controlled at level 0.01.

Model True value Posterior mean FNDR
λ π1 r1 r2 r3 r4 v1 v2 v3 v4 E(λ) E(π1)

(i) 5 0.6 5 7 10 14 0.4 0.6 0.8 0.9 4.5530 0.8010 0.24
(4.1507,4.9451) (0.6720,0.8930)

(ii) 5 0.6 5 7 10 14 0.4 0.6 0.8 0.9 4.1706 0.4278 0.52
(0.6884,5.7709) (0.0082,0.8059)

In the final simulation we choose the set of true parameters (Set 3) as λ = 6, π1 = 0.6,

π2 = · · · = π5 = 0.1, r = (8, 12, 30, 40) and v = (0.3, 0.3, 0.4, 0.3). This choice of r and v for

the NB components gives the corresponding component means as (18.7, 28, 45, 93.3). Just

as in set 3 of the second scenario such a choice will give very different component means

with the Poisson component having the smallest mean. As argued in the second scenario,

the choice of the true parameter values gives similar situation to the real ChIP-seq data in

terms of tailed distribution. From Table 4.7 we can see that our method gives posterior

mean estimate for π1 with smaller bias and shorter credible interval than the parametric

mixture approach. The new method gives competitive result for the estimate of λ (see

Table 4.7). Once again, the larger bias and variation in the estimates given by the existing

methods is due to the label switching problem. Since the signal and the noise components

are far apart, in this case however, the new method did not gain an advantage in terms of

FNDR, when controlling the FDR at level 0.01.
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Table 4.7: Parameter Set 3. (i) the new method; (ii) existing mixture model, the true mixture model
of five components is used. FDR is controlled at level 0.01.

Model True value Posterior mean FNDR
λ π1 r1 r2 r3 r4 v1 v2 v3 v4 E(λ) E(π1)

(i) 6 0.6 8 12 30 40 0.3 0.3 0.4 0.3 5.7662 0.5799 0.10
(5.4113,6.1190) (0.5227,0.6325)

(ii) 6 0.6 8 12 30 40 0.3 0.3 0.4 0.3 5.8718 0.5372 0.03
(5.0773,6.5490) (0.0548,0.6376)

4.4 Conclusion

We developed a mixture model with a parametric component for modelling noise and a

non-parametric component for modelling signal. The new method can still distinguish

whether an observation is signal or noise, which is the main research interest in the studies

that we consider, and it can do so with higher accuracy than a mixture of two parametric

distributions, since it fits the data better. We showed several advantages for using a non-

parametric distribution for the signal component. Firstly, we neither need to specify the

distributions for the signal component nor to consider how many components there are.

Secondly, the method does not incur the label switching problem. Results on simulated

data verify the validity of the approach and show a better performance of the method

compared to fully parametric mixture distributions under general cases.

In Chapter 5, we show the applicability of the new method to ChIP-seq data on two

Histone AcetylTransferases (HATs) proteins, p300 and CREB binding protein (CBP) for a

single experiment, with the aim to identify enriched gene regions. The performance of our

new method is assessed by comparing with parametric models.



CHAPTER 5

ANALYSIS OF CHIP-SEQ DATA VIA
BAYESIAN FINITE MIXTURE MODELS

WITH A NON-PARAMETRIC
COMPONENT

5.1 Introduction

Chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq) is

an efficient process for genome-wide profiling of DNA-protein interactions. ChIP-seq

technologies have became a popular tool in biomedical research for studying transcription

factors binding sites and histone modifications (Park 2009). As a result of large amount of

sequence tags and the complexities of the signal, statistical analysis of ChIP-seq data poses

a great challenge (Mo 2012). Several approaches have been proposed for the analysis of

ChIP-seq data with the aim of identifying genome-wide binding sites. Some approaches

involved the use of non-parametric methods and focus mainly on peak calling algorithms

(see Nix et al. (2008), Zhang et al. (2008) and Wang et al. (2010)). Other attempts also

exist for the analysis of ChIP-seq data using latent mixture model approach by assuming

67
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a parametric signal distribution mixed with a parametric noise distribution. Kuan et al.

(2011) for example, propose a mixture of negative Binomial distributions for the signal

component and a negative Binomial distribution for the noise component, and Bao et al.

(2014) propose a zero-inflated Poisson/NB distributions for noise and a NB distribution for

the signal. Section 4.1.1 provided the limitations of parametric mixture model approach.

In this study, therefore, we consider Bayesian mixture model approach with a parametric

and a non-parametric components.

5.2 Motivation

For illustration, we use ChIP-seq data generated by Ramos et al. (2010) for the experiments

on p300 and CREB binding protein (CBP) for identifying the genomic regions bound by

the histone acetyltransferases. The data report the number of bound fragments that align

to each region in the genome. For the CREB binding protein (CBP), the data set consist

of 33,916 regions. The lowest count is zero, imply a region is not bound by the protein

of interest, and the highest count is 214, means a particular region is bound by enough

protein of interest. The mean and the variance are 2.13 and 8.76 respectively. Consider

Table 4.1 and Figure 4.1 for the distribution and histogram of the count data for p300

protein. The plot shows that the data set has a very long tail. When the plot is zoomed

(right plot), the tailed distribution shows possible multi-modal patterns, suggesting that

the distribution of the data is likely to consist of several component distributions. One can

adopt the Poisson distribution as a choice for the noise component, since the count is a rare

event. But the signal distribution show a complicated pattern. We therefore consider using
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a non-parametric distribution for the signal component.

5.3 The method

Suppose that the discrete observations x1, · · · , xn are sampled from a mixture of distribu-

tions with two components, where one component is the noise distribution and the other

component is a signal distribution. The complete likelihood function for (θ1,θ2) conditional

on the full data as given in (4.3) is

l(θ1,θ2|x, z) ∝
n∏

i=1

{
[π1h1(xi;θ1)]I[zi=1] [π2h2(xi;θ2)]I[zi=2]

}
. (5.1)

In order to develop a non-parametric distribution for the signal component h2, denote

x(1), · · · , x(L) as the L distinct values of the observations x1, · · · , xn, and let p j be defined in

(4.4), where p js ( j = 1, · · · ,L) are the unknown parameters. Based on (4.4), the distribution

of x under the non-parametric component is given in (4.5) as

h(x) = π1h1(x;θ1) + π2

L∑
j=1

h∗2(x)I[x = x( j)], (5.2)

with likelihood function in (4.6), given (xi, zi) as

l(θ1,p,π|x, z) ∝
n∏

i=1

[π1h1(xi;θ1)]I[zi=1]

π2

L∑
j=1

p jI[xi = x( j)]


I[zi=2]

= πn1
1 π

n2
2

n∏
i=1

[h1(xi;θ1)]I[zi=1]
·

L∏
j=1

p
∑n

i=1 I[zi=2,xi=x( j)]
j ;

where nk =
∑

i I[zi = k], k = 1, 2.



5.4. Data analysis 70

Based on the posterior distributions in (4.7), (4.8), (4.9) and (4.10), the Gibbs sampler for

our proposed method in Algorithm 4 can be employed to draw realisations.

5.4 Data analysis

We now show the applicability of the new method to ChIP-seq data. In a ChIP-seq ex-

periment the DNA is sheared into smaller fragments that are then sequenced. The final

data generated by the experiment report the number of aligned DNA fragments in the

sample for each position along the genome. Due to noise and the size of the genome, it is

common to summarise the raw counts by dividing the genome into consecutive regions,

typically with a length between 200 and 1000 base pairs. The datasets considered in this

analysis are the p300T301.1000bp and the CBPT301.1000bp from the R package enRich (Bao

& Vinciotti 2013), which are both size-selected into 1000 base pairs. For more description

of the ChIP-seq technology and these particular datasets see Chapter 3 and the references

therein. The aim of the analysis is to detect the regions in the genome bound by the histone

acetyltransferases p300 and CBP, and so it is a two-component mixture model problem

with a background noise and a signal components.

The posterior classification probability in (4.15) can be computed based on the posterior

distributions to predict whether a region is enriched or not. The region i will be classified

as an enriched region if gi < ρ. The threshold value ρ is determined by controlling the false

discovery rate at a predefined level (Bao et al. 2014), say 0.001. We controlled the FDR at the

smallest value of 0.1% in order to exclude genomic regions that showed unstructured and

anomalous read counts from the analysis. The expected false discovery rate corresponding
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to the threshold value ρ is given in (4.16) by

0.001 = F̂DR =

∑
i∈enriched region(gi)∑

i I[gi < ρ]
.

Figure 5.1 show Venn diagrams of the regions detected as enriched by p300 and CBP

using the model proposed, compared with a mixture of two Poisson distributions and a

mixture of two NB distributions at 0.1% false discovery rate. For the Poisson and NB

mixtures we use the implementation in the enRich R package (Bao & Vinciotti 2013). At

the same FDR, our method detects more enriched regions than the existing methods. In

order to validate the enriched regions identified by the three methods, we use ChromHMM

(Ernst & Kellis 2010). In other words, further analysis is done to ascertain that the additional

enriched regions identified are not just false positives but likely functional transcriptional

activators. These regions are also assessed for the presence of Transcription Start Sites

(TSSs) of annotated genes and other chromatin features using ChromHMM (Ernst & Kellis

2010). Figure 5.2 illustrates the results based on ChromHMM with 3 chromatin states. The

top plots demonstrates the emission probabilities in respect of the various analyses, which

indicates the observed enrichment probability, conditional on each of the three states. The

plots therefore, tend to indicate that majority of the identified enrichment pattern were

explained by two of the three states. In addition, the relative fold enrichment for various

annotations are presented in the bottom plot. In general, the pattern in which these two

states are enriched with active and weak promoters, strong enhancers and TSSs are revealed

in the plots. The plots further illustrate how the second state, which is mainly identified by

our method, reflects a larger degree of enrichment of active and weak promoters. We can,
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Figure 5.1: Number of enriched regions identified by the proposed model, Poisson-Poisson mixture
model and NB-NB mixture model for p300 (left plot) and CBP (right plot) datasets on
chromosome21 at the 0.1% FDR.

therefore, conclude that under the same FDR, our proposed method detect more regions

which are generally of the same quality with the ones found by existing methods.

5.5 Conclusion

In this Chapter we illustrated the proposed method on ChIP-seq data to detect the enriched

regions bound by the proteins in question. The value of L was not too large, in the scale

of 100 for the data sets analyzed in this Chapter, and therefore the method was efficient.

The method may not be practical, however, if L is up to several thousands. In the context

of ChIP-seq data one solution for this is to consider smaller window sizes for genomic

regions, e.g. 200 base pairs long, which will automatically reduce the value of L. When

smaller genomic regions are considered, however, the true enriched regions could easily

cross two or more adjacent windows. In this case, the spatial dependencies between

neighbouring windows along the genome should be taken into account. A large proportion

of the genome is expected to be not enriched, resulting in an excess of zeros in the noise

component for smaller genomic regions. In order to account for spatial dependencies
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Figure 5.2: Validation of the enriched bins detected. The top plots show heatmaps of the proba-
bilities (in percentages) that the p300 detected bins are enriched given each identified
chromatin-state. The bottom plot shows the relative percentage of the genome repre-
sented by each chromatin state (first column) and the relative fold enrichment for several
types of annotation (remaining columns).
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along the genome and the excess of zeros, zero-inflated models (e.g. zero-inflated Poisson

or zero-inflated negative Binomial) are a better choice for the noise component combined

with more elaborate models which account for Markov properties, such as HMMs or

Markov random fields, of the type developed by Spyrou et al. (2009) and Bao et al. (2014).

The extension of the proposed methodology is implemented in Chapter 6.



CHAPTER 6

MARKOV RANDOM FIELD MODEL FOR
THE ANALYSIS OF MIXTURES OF

DISCRETE DISTRIBUTIONS WITH A
NON-PARAMETRIC COMPONENT

6.1 Introduction

The output from ChIP-seq experiments report the number of aligned DNA fragments in

the sample for each position along the genome. The total count is summarized by dividing

the genome arbitrarily into consecutive fixed-size regions of length 200 base pairs long (Bao

et al. 2014). For such window sizes, as argued in Chapter 3, the counts of neighbouring

windows are typically correlated. Consequently, there is expectation that the data will

have spatial dependencies between neighbouring windows along the genome. The true

enriched regions may cross over some adjacent windows. There is the need, therefore, to

adopt statistical models with a Markov property that entails using the transitions between

hidden states to model the spatial relationship. In addition, majority of the regions in the

genome are expected not to be enriched with a significantly larger proportion of empty
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regions. This form the noise distribution and motivates researchers in ChIP-seq studies to

consider more elaborate distributions to model the noise component.

In the context of ChIP-seq studies, several researchers adopted HMM-based method-

ologies to detect the enriched genomic regions with different distributions chosen for the

mixtures. For example, Qin et al. (2010) used a ZIP distribution for the noise component

and a generalized Poisson distribution for the signal component. Spyrou et al. (2009) used

negative Binomial (NB) distribution for the noise component, and the sum of two NB dis-

tributions for the signal component. Bao et al. (2014) proposed ZIP or ZINB distributions

for noise component and Poisson or NB distributions for the signal component.

We argued in Chapter 4 that it is too restrictive to use a parametric mixture model of

two-component distribution, taking into account the nature of the signal distribution for a

ChIP-seq data (see Figure 4.1), which is likely to consist of several component distributions.

If a mixture of several components are used for the signal distribution, it is computationally

very difficult to deal with the challenges involved in Bayesian analysis for mixture models,

like label switching problem and determining the number of components. In this study,

therefore, we proposed the use of one-dimensional Markov random field (MRF) model

with a NB distribution or a zero-inflated distribution (ZIP or ZINB distributions) for the

noise component and the proposed non-parametric distribution for the signal component.

The proposed MRF model account for the spatial dependencies in the observations. The

methodology is described below.
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6.2 Methods

6.2.1 A one-dimensional MRF model

In this section we describe one-dimensional Markov random field model as implemented

in Bao et al. (2014). The latent variable zi satisfies one-dimensional Markov properties

given in (2.28) as

h(zi = m|z−i) = h(zi = m|zi−1, zi+1), m ∈ {1, 2}, (6.1)

where z−i = {z1, . . . , zi−1, zi+1, . . . , zn}. The Markov assumption in (6.1) leads to a classical

two states Markov chain defined as

h(z1, · · · , zn) = δ0(z1)
n−1∏
i=1

δzi, zi+1

= δ0(z1)δn2,2

2,2 δ
n2,1

2,1 δ
n1,2

1,2 δ
n1,1

1,1 , (6.2)

where δ0(z1) is the initial state distribution and δm,s = h(zi+1 = s|zi = m); m, s ∈ {1, 2} are the

transition probabilities. This is a classical one-dimensional Markov random field model,

often referred to as a hidden Markov model (HMM). Unlike the above model, in this study,

the joint density of the latent variables can be presented as

h(z1, . . . , zn) =

n−1∏
i=1

h(zi, zi+1)

n−1∏
i=2

h(zi)
, (6.3)

where h(zi, zi+1) is the joint probability of zi and zi+1, and h(zi) is the marginal probability of

zi. And we also have that h(zi) =
∑
zi+1

h(zi; zi+1). For binary variables, zi = m ∈ {1, 2}, as in our
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case, model (6.3) becomes

h(z1, . . . , zn) = q1
I(z1=1)qI(z1=2)

2

(
q1,1

q1

)n1,1
(

q1,2

q1

)n1,2
(

q2,1

q2

)n2,1
(

q2,2

q2

)n2,2

, (6.4)

where qm,s = h(zi = m, zi+1 = s),m, s ∈ {1, 2}, i = 1, . . . ,n − 1, nm,s = #{zi = m, zi+1 = s},

q2 = h(zi = 2) = q2,1 + q2,2, q1 = h(zi = 1) = 1 − q2 and q1,2 = q2,1. Since
∑

m,s∈{1,2}
qm,s = 1, then

q1,2 = q2,1 = (1 − q2,2 − q1,1)/2.

We can show that the model in (6.4) satisfies the Markov property in (6.1) and is a

one-dimensional MRF model. We can also show that the initial state distribution under

(6.3) is the stationary distribution. The quantities qm,s can further be written in terms of

transition probabilities satisfying δm,s =
qm,s

qm
as

h(z1, . . . , zn) =

(
δ2,1

δ1,2 + δ2,1

)I(z1=1) (
δ1,2

δ1,2 + δ2,1

)I(z1=2)

δn1,1

1,1 δ
n1,2

1,2 δ
n2,1

2,1 δ
n2,2

2,2 . (6.5)

Therefore, (6.5) can be viewed as a one-dimensional MRF model with initial state distribu-

tion as the stationary distribution.

6.2.2 Parameter Estimation

6.2.2.1 Negative Binomial distribution for the noise component

Let δ2,2 and δ1,2, as defined in (6.2), be the probability that the current state is 2 (enriched)

given that the left of it is 2 (enriched) and 1 (not enriched) respectively. We consider a NB

distribution for the noise component and the non-parametric distribution for the signal

component, and the parameters to be estimated are Θ = (θ1, δ2,2, δ1,2). The joint likelihood
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function given the latent states z1, . . . , zn and the data x1, . . . , xn is given as

l(Θ,p|z, x) = h(z|Θ)h(x|z,p,Θ) (6.6)

∝

(
δ1,2

δ1,2 + 1 − δ2,2

)I(z1=2) ( 1 − δ2,2

δ1,2 + 1 − δ2,2

)I(z1=1) (
δ2,2

)n2,2(1 − δ2,2
)n2,1

(
δ1,2

)n1,2
(
1 − δ1,2

)n1,1

×

n∏
i=1

[
Γ(r1 + xi)

Γ(r1)Γ(xi + 1)
vr1

1 (1 − v1)xi

]I[zi=1]

·

L∏
j=1

p
∑n

i=1 I[zi=2,xi=x( j)]
j .

6.2.2.2 Zero-inflated distribution for the noise component

Zero-inflated distributions allow one to model the mass zero and count distribution sep-

arately. The zero-inflated Poisson distribution or the zero-inflated negative Binomial dis-

tribution is a mixture of degenerate zero mass distribution and a Poisson distribution or a

NB distribution. Let yi be an inner latent variable, such that h(yi = 1|zi = 1) = π, where π

is defined in (3.7). The likelihood functions for ZIP distribution and ZINB distribution are

described below.

Zero-inflated Poisson distribution

We can estimate the parameters Θ = (θ1, δ2,2, δ1,2) assuming we consider a ZIP distribution

for the noise component and the proposed non-parametric distribution for the signal com-

ponent. The joint likelihood function given the latent states z, the inner latent variables y
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and the observations x, therefore, is given by

l(Θ,p|z, x, y) = h(z|Θ)h(y|z = 1,Θ)h(x|z, y,p,Θ) (6.7)

∝

(
δ1,2

δ1,2 + 1 − δ2,2

)I(z1=2) ( 1 − δ2,2

δ1,2 + 1 − δ2,2

)I(z1=1) (
δ2,2

)n2,2(1 − δ2,2
)n2,1

(
δ1,2

)n1,2
(
1 − δ1,2

)n1,1

×

n∏
i=1

πI[yi=1,xi=0]

(
(1 − π)

e−λ

xi!
λxi

)I[yi=2]I[zi=1]

·

L∏
j=1

p
∑n

i=1 I[zi=2,xi=x( j)]
j

Zero-inflated NB distribution

If we assume that the noise component follows a ZINB distribution and the signal com-

ponent follows the non-parametric distribution, then the following parameters can be

estimated: Θ = (θ1, δ2,2, δ1,2), where θ1 are the parameters for the ZINB distribution de-

fined in (3.11). The likelihood function given the latent states z, the inner latent variables

y and the observations x is given by

l(Θ,p|z, x, y) = h(z|Θ)h(y|z = 1,Θ)h(x|z, y,p,Θ) (6.8)

∝

(
δ1,2

δ1,2 + 1 − δ2,2

)I(z1=2) ( 1 − δ2,2

δ1,2 + 1 − δ2,2

)I(z1=1) (
δ2,2

)n2,2(1 − δ2,2
)n2,1

(
δ1,2

)n1,2
(
1 − δ1,2

)n1,1

×

n∏
i=1

πI[yi=1,xi=0]

(
(1 − π)

Γ(r + xi)
Γ(r)Γ(xi + 1)

vr(1 − v)xi

)I[yi=2]I[zi=1]

·

L∏
j=1

p
∑n

i=1 I[zi=2,xi=x( j)]
j

6.2.2.3 The posterior and Gibbs sampler

The likelihood functions for the proposed method, when the noise component follows

different distributions, such as NB, ZIP, and ZINB distributions have now been introduced.

This section now discuses the posterior and the Gibbs sampler for the three distributions.

If we assume a uniform prior for δ2,2, δ1,2 and p, and assume the prior for θ1 as g(θ1),
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the full conditionals for the parameters δ2,2 and δ1,2 are proportional to

f (δ2,2|x, z) ∝ h(x, z|δ2,2)g(δ2,2)

∝
(
δ2,2

)n2,2(1 − δ2,2
)n2,1
· (δ2,2)α−1(1 − δ2,2)(β−1)

∝
(
δ2,2

)α+n2,2−1(1 − δ2,2
)β+n2,1−1

:= Beta(δ2,2; 1 + n2,2, 1 + n2,1), (6.9)

f (δ1,2|x, z) ∝ h(x, z|δ1,2)g(δ1,2)

∝
(
δ1,2

)n1,2
(
1 − δ1,2

)n1,1
· (δ1,2)α−1(1 − δ1,2)(β−1)

∝
(
δ1,2

)α+n1,2−1(1 − δ1,2
)β+n1,1−1

:= Beta(δ1,2; 1 + n1,2, 1 + n1,1), (6.10)

and the posterior for θ1 given in (4.9) by

f (θ1|x, y, z) ∝
n∏

i=1

[h1(xi;θ1)]I[zi=1] g(θ1). (6.11)

The posterior of p is a Dirichlet distribution as given in (4.8)

f (p|x, z) ∝
L∏

j=1

p
∑n

i=1 I[zi=2,xi=x( j)]
j

:= Dirichlet(p; 1 +

n∑
i=1

I[zi = 2, xi = x( j)]). (6.12)

The full conditional distribution from which we draw the latent states z (Bao et al. 2014,
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Scott 2002) is

Pr(zi = m|z−i, x,p,Θ) ∝ h(xi|zi = m,p,Θ)h(zi−1,m)h(m, zi+1), (6.13)

where the normalizing constant is the sum over all possible values of m. The full conditional

distribution from which we draw the inner latent variable yi, given the latent variable zi = 1

is given by

Pr(yi = m|zi = 1, x,Θ,p) ∝ h(xi|zi = 1, yi = m,Θ,p)h(yi = m|zi = 1). (6.14)

The Bayesian Gibbs sampling technique can be used to draw realisations from their

conditional distributions to estimate the parameters based on all the posterior distributions.

The Metropolis-within-Gibbs technique is carried out to estimate the parameters for NB

and ZINB distributions, just like the case in Chapter 4. The sampling scheme is summarise

in Algorithm 5.

Algorithm 5: Gibbs sampler for the proposed model.

Initialization, select, z(0), y(0), θ(0)
1 , p(0), δ(0)

2,2, and δ(0)
1,2;

Set m = 1;
repeat

for i = 1 to n do
Update zi with probability in (6.13);
Update yi with probability in (6.14);

end
Update δ2,2 and δ1,2 from the posterior in (6.9) and (6.10) respectively;
Update θ1 from the posterior in (6.11);
Update p from the posterior in (6.12);
m = m + 1

until enough MCMC steps have been simulated;
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6.3 Simulation studies

This section discusses simulation studies with different distributions chosen for the noise

component and the non-parametric distribution for the signal component. The aim is to

justify the convergence of the Markov chain. The simulation framework is presented in

three scenarios. In each of these three scenarios, two sets are considered: set 1 and set 2,

based on, when the means of the two components are not too far apart and when they are

far apart.

6.3.1 Scenario 1

A sample of n = 500 observations is drawn from a Markov mixture model of two NB

distributions, where δ0 = (0.5, 0.5), δ1,2 = 0.2 and δ2,2 = 0.7.

In set 1 of this simulation study, the means of the two components are considered

not clearly separated. First, we chose the following true parameters; (r1, v1) = (3, 0.2)

and (r2, v2) = (5, 0.2). These true parameters give the corresponding means for the two

components as (12, 20). In the second case, the true parameter values chosen are; (r1, v1) =

(5, 0.6) and (r2, v2) = (10, 0.5), and these give the means for the two components as, (3.33, 10).

And finally, we chose the true parameters as (r1, v1) = (5, 0.4) and (r2, v2) = (7, 0.3). These

give the corresponding means for the two components as (7.5, 16.33) respectively. In all the

cases, the noise component having a smaller means.

The observations are analysed using MRF model with NB distribution and the non-

parametric distribution. The simulation studies for the two sets (sets 1 and 2) are based on

20,000 MCMC steps discarding the first 10,000 steps as burn-in iterations, repeated for 100
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times. Different starting values for the Gibbs sampler are used to justifying the convergence

of the Markov chains. From Figure 6.1 we can see that the 20,000 MCMC steps are enough

to guarantee the convergence for the Markov chains. We present the results of set 1 on

Table 6.1. The results show similarity with the simulation on Table 4.2, in terms of bias in

the estimate. We posit that the bias in the estimates happen in most mixture related models

when the component densities are too close. We calculate the error rate (ratio of incorrectly

classified observations to the total number of observations) to justify the performance of

the model in terms of classification.

Table 6.1: The posterior means (with 95% credible intervals) and error rate for set 1 where the true
model is a Markov mixture model of two NB distributions.

True value Posterior mean Error rate
r1 r2 v1 v2 E(r1) E(v1) E(δ1,2) E(δ2,2) e

3 5 0.2 0.2 3.5097 0.2197 0.4695 0.4705 0.44
(2.6094,4.6835) (0.1677,0.2831)(0.3877,0.5544)(0.3803 0.5581)

5 100.6 0.5 6.2322 0.5784 0.4652 0.5080 0.39
(3.0733,11.0559)(0.3987,0.7480)(0.3780,0.5559)(0.4150,0.5977)

5 7 0.4 0.3 5.0968 0.3778 0.4639 0.4909 0.38
(3.3177,7.6712) (0.2741,0.4954)(0.3812,0.5500)(0.4023,0.5768)

The set 2 of this study considers when the components means are far apart. We chose

the true parameters for the first simulation in set 2 as (r1, v1) = (5, 0.6) and (r2, v2) = (12, 0.1).

These return the corresponding means for the two components as (3.33, 108). Again, the

true parameters chosen for the second case are (r1, v1) = (7, 0.8) and (r2, v2) = (14, 0.2).

These give the means for the two components as (1.75, 56). And finally, the true parameter

values chosen for the third case are (r1, v1) = (10, 0.7) and (r2, v2) = (15, 0.3). These give

the corresponding means of (4.29, 35). Such choices of true parameters give very different

component means, with the noise component having a smaller mean value. Table 6.2 show
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Figure 6.1: Trace plots for r1 and for ν1, with different starting values. The true parameter values
are r1 = 0.4, ν1 = 0.6, r2 = 25 and ν2 = 0.2.

the simulation results for the different true parameters in the model. It revealed that the

estimates are very good when the component means are clearly separated. The algorithm

also returns a smaller classification errors.

Table 6.2: The posterior means (with 95% credible intervals) and error rate for set 2 where the true
model is a Markov mixture model of two NB distributions.

True value Posterior mean Error rate
r1 r2 v1 v2 E(r1) E(v1) E(δ1,2) E(δ2,2) e

5 120.60.1 5.4363 0.6355 0.2941 0.6640 0.09
(3.5952,7.9964) (0.5374,0.7288)(0.2249,0.3702)(0.5964,0.7292)

7 140.80.2 7.4998 0.8258 0.3004 0.6695 0.09
(4.5709,11.4066)(0.7453,0.8862)(0.2297,0.3786)(0.6022,0.7341)

10150.70.3 10.5023 0.7158 0.3217 0.6631 0.11
(7.0839,14.8326)(0.6309,0.7881)(0.2477,0.4023)(0.5955,0.7281)

6.3.2 Scenario 2

In this scenario, 500 observations are generated from a Markov mixture model of ZIP and

NB distributions, where δ0 = (0.1, 0.9), δ1,2 = 0.3 and δ2,2 = 0.8.



6.3. Simulation studies 86

In Set 1 the means of the two components are not well separated. First, the true

parameter values (λ, π) = (5, 0.4) and (r2, v2) = (15, 0.4) provide a corresponding means for

the two components as (3, 22.5). Again, we chose the true parameter values (λ, π) = (2, 0.3)

and (r2, v2) = (5, 0.2). These give the means as (1.4, 20). And finally, for the true values

(λ, π) = (1, 0.5) and (r2, v2) = (19, 0.5) provide a corresponding means of (0.5, 19). The

posterior mean estimates for the true parameters are presented on Table 6.3.

Table 6.3: Set 1 simulation results (posterior means and 95% credible intervals) where the true model
is a Markov mixture model of ZIP and NB distributions.

True value Posterior mean Error rate
λ π r2 v2 E(λ) E(π) E(δ1,2) E(δ2,2) e

5 0.415 0.4 4.9522 0.3664 0.3449 0.7923 0.04
(4.4469,5.4917)(0.2987,0.4368)(0.2745,0.4196)(0.7424,0.8382)

2 0.3 5 0.2 2.2703 0.2857 0.3617 0.7720 0.05
(1.9126,2.6555)(0.2093,0.3631)(0.2922,0.4353)(0.7198,0.8203)

1 0.519 0.5 0.9113 0.4163 0.3190 0.8227 0.008
(0.6346,1.2574)(0.2563,0.5530)(0.2514,0.3913)(0.7786,0.8628)

Set 2 of this simulation studies considers when the component means are far apart.

The first set of true parameters are (λ, π) = (4, 0.2) and (r2, v2) = (20, 0.2) for the two

components. The means are 3.2 and 80.0, for noise and signal components respectively.

Again, another set of true parameters are (λ, π) = (7, 0.3) and (r2, v2) = (55, 0.4) and the

means respectively are (4.9, 82.5). Finally the true values for the last case are (λ, π) = (2, 0.5)

and (r2, v2) = (75, 0.6) with the means of the components as (1.0, 50.0) respectively.

The observations are modelled using the MRF model with ZIP distribution and the

non-parametric distribution. We sample 20,000 MCMC steps with 10,000 as burn-in steps,

repeated 100 times. From Table 6.4, it could be seen that the estimates for the true parameters

are precise. We also have a smaller classification errors.
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Figure 6.2 shows trace plots and autocorrelation plots for the last set of parameter values

in simulation Set 2. Each row of Figure 6.2 corresponds to two parameters, so there are two

plots for each parameter. The left plot for a parameter is a trace plot - it shows the values the

parameter took during the runtime of the chain. The right plot is the autocorrelation plot

- values of autocorrelation against lag t (where lag t is the correlation between g(θ(s)) and

g(θ(s+t)) - elements that are t time steps apart). If the chain is mixing adequately, the value

of the autocorrelation decreases to zero as the tag value increases (Albert 2009). Figure 6.2

show the convergence of the Markov chain to the stationary distribution. In each of the

autocorrelation plots on Figure 6.2, the value of the autocorrelation decreases to zero as the

tag value increases, which indicates that the chain is mixing adequately.

Table 6.4: Set 2 simulation results (posterior means and 95% credible intervals) where the true model
is a Markov mixture model of ZIP and NB distributions.

True value Posterior mean Error rate
λ π r2 v2 E(λ) E(π) E(δ1,2) E(δ2,2) e

4 0.220 0.2 4.0004 0.1820 0.3212 0.8231 0.009
(3.6641,4.3480)(0.1271,0.2432)(0.2521,0.3954)(0.7790,0.8634)

7 0.355 0.4 6.8380 0.2912 0.3204 0.8247 0.01
(6.3798,7.3102)(0.2277,0.3590)(0.2512,0.3949)(0.7808,0.8648)

2 0.575 0.6 2.0266 0.4956 0.3097 0.8224 0.006
(1.6767,2.3965)(0.4078,0.5803)(0.2422,0.3820)(0.7786,0.8624)
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(a) True value λ = 2 (b) True value π = 0.5

(c) True value δ1,2 = 0.3 (d) True value δ2,2 = 0.8

Figure 6.2: Trace and autocorrelation plots for simulation in set 2 for true parameters λ = 2, π = 0.5,
δ1,2 = 0.3 and δ2,2 = 0.8 where the true model is a Markov mixture model of ZIP and NB
distributions.

6.3.3 Scenario 3

In this last Scenario, we generate n = 500 observations from the true Markov mixture model

of Zero-inflated NB distribution and NB distribution, where δ0 = (0.1, 0.9), δ1,2 = 0.3 and

δ2,2 = 0.8.

As in the previous scenarios, the simulation represents two sets; when the means

of the two components are not too far apart, and when the component means are far

apart. In set 1 of the simulation, we chose the following true parameters; (r1, v1, π) =

(6, 0.4, 0.4) for the first component, and (r2, v2) = (8, 0.2) for the second component. These

give the respective means of (5.4, 32). We again chose true parameter values for the two

components as (r1, v1, π) = (5, 0.5, 0.3) and (r2, v2) = (7, 0.2), and the corresponding means
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for the two components are (3.5, 28). And finally, we consider true parameter values for two

components as (r1, v1, π) = (3, 0.2, 0.5) and (r2, v2) = (37, 0.6), which give the corresponding

means as (6, 24.67). The results of the analysis are shown on Table 6.5.

Table 6.5: Set 1 simulation results (posterior means and 95% credible intervals) where the true model
is a Markov mixture model of ZINB and NB distributions.

True value Posterior mean Error rate
r1 r2 v1 v2 π E(r1) E(v1) E(π) E(δ1,2) E(δ2,2) e

6 8 0.40.20.4 5.9595 0.4389 0.3565 0.3930 0.7449 0.09
(3.7747,9.0510)(0.3615,0.5126)(0.2820,0.4376)(0.3161,0.4744)(0.6561,0.8157)

5 7 0.50.20.3 4.9454 0.4334 0.2762 0.4021 0.7332 0.11
(2.9206,8.2085)(0.3484,0.5190)(0.2067,0.3485)(0.3234,0.4860)(0.6324,0.8015)

3 370.20.60.5 3.2171 0.4425 0.4983 0.3405 0.8054 0.03
(1.7119,6.5786)(0.3316,0.5469)(0.4132,0.5844)(0.2663,0.4202)(0.7402,0.8531)

Table 6.6 shows simulation results for set 2 when the component means are clearly

separated. First, we consider the true parameter values (r1, v1, π) = (3, 0.5, 0.3) for the first

component and (r2, v2) = (25, 0.2) for the second component, which give the corresponding

means for the two components as (2.1, 100). Again we chose the true values for the

two components as (r1, v1, π) = (7, 0.5, 0.7) and (r2, v2) = (45, 0.4). The corresponding

means for the two components are (2.1, 67.5). Finally, the true parameters for the last

set are (r1, v1, π) = (5, 0.6, 0.5) and (r2, v2) = (35, 0.2). The means for the two components

are respectively (1.67, 140). Such choices, as stated earlier, give the means for the two

components clearly separated, with the noise component having smaller mean value

The above observations are modelled using the MRF model with ZINB distribution

and the non-parametric distribution. This is based on 20,000 MCMC iterations with 10,000

as burn-in steps, repeated for 100 times. The results of these simulations also give clear

estimates, and return smaller classification errors (see Table 6.6).
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Table 6.6: Set 2 simulation results (posterior means and 95% credible intervals) where the true model
is a Markov mixture model of ZINB and NB distributions.

True value Posterior mean Error rate
r1 r2 v1 v2 π E(r1) E(v1) E(π) E(δ1,2) E(δ2,2) e

3 250.50.20.3 4.0310 0.5730 0.3084 0.3220 0.8229 0.01
(2.1144,7.3757) (0.4360,0.7063)(0.2161,0.3985)(0.2538,0.3961) (0.7784,0.8637)

7 450.50.40.7 7.5537 0.5029 0.7423 0.3415 0.8190 0.02
(4.3211,12.8086)(0.3928,0.6119)(0.6707,0.8088)(0.2678,0.4202)(0.7744,0.8603 )

5 350.60.20.5 5.0258 0.4858 0.5349 0.3426 0.8178 0.02
(2.8026,8.5564) (0.3751,0.6079)(0.4579,0.6105)(0.2652,0.4266) (0.7725,0.8590)

Finally, the simulation plots for the observations for all the scenarios are displayed in

Appendix B.

6.4 Data analysis

In this section we analyse ChIP-seq data set obtained from the R package enRich (Bao

& Vinciotti 2013) generated by Ramos et al. (2010) for the detection of histone acetyl-

transferases for a single ChIP-seq experiment. The data set, p300T301, is one of the two

technical replicates of p300, a transcriptional activator. The data set considered is only for

chromosome21 and is fully described in Chapter 3 and the reference therein.

6.4.1 The proposed method

Available literature in ChIP-seq studies allow parametric distributions for the noise com-

ponent to follow either Poisson distribution, NB distribution or zero-inflated distributions

(see for example, Qin et al. (2010), Bao et al. (2013), Spyrou et al. (2009), Kuan et al. (2011)

and Bao et al. (2014)). The fit for Poisson model is always inferior to NB model (Bao

et al. 2013). Here, we show the application of the proposed MRF model with NB or zero-
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inflated distributions (e.g. ZIP or ZINB distributions) for the noise component and the

non-parametric distribution for the signal component on the ChIP-seq data.

Based on the posterior probabilities in (6.13), such that gi = Pr(zi = 1|x), a region i is

considered enriched if gi < ρ, where ρ is a threshold determined by controlling the FDR

in (4.16) at a predefined level (Bao et al. 2014, Scott 2002). Here, we controlled the FDR at

0.1% and determined the threshold ρ. As in the previous Chapter, the FDR is controlled at

the smallest value of 0.1% to avoid including genomic regions that exhibits unstructured

and anomalous read counts from the analysis. Figure 6.3 shows the result for the proposed

method. It can be seen that the overlap between the zero-inflated models for the noise

component is greater than the NB model. The ZIP distribution for the noise component,

furthermore, detected more enriched regions than the ZINB distribution at the same FDR

as shown on Figure 6.3.

Figure 6.3: Number of enriched regions identified by the proposed methods: NB distribution for
the noise component (NB-NPAR), ZIP distribution for the noise component (ZIP-NPAR),
and ZINB distribution for the noise component (ZIP-NPAR) at 0.1% FDR.

6.4.2 Model comparison

For the purpose of comparison, ChIP-seq data is analysed using existing one-dimesional

Markov random field models, where parametric distributions are considered for the two
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components. The parametric distributions used to model the noise and the signal compo-

nents are respectively: (1) ZIP distribution and Poisson distribution (ZIP-Poisson mixture),

(2) ZIP and NB distribution (ZIP-NB mixture) and (3) ZINB distribution and NB distri-

bution (ZINB-NB mixture). All the existing methods account for spatial dependencies by

assuming first-order Markov property. We compared these existing methods with our

proposed MRF model where the noise component follows ZIP distribution and the signal

component follows the non-parametric distribution. Figure 6.4 show the enriched regions

detected by the four models when FDR is controlled at 0.1%. From Figure 6.4, it can be

seen how the overlap between the proposed method and ZIP-Poisson mixture and ZIP-NB

mixture are both larger than the overlap between ZIP-Poisson mixture and ZIP-NB mixture

at the same FDR. Furthermore, the proposed method detected more enriched regions than

the existing methods.

Figure 6.4: Number of enriched regions identified by the proposed method (ZIP-NPAR), mixture
of ZIP and Poisson distributions (ZIP-POISSON), mixture of ZIP and NB distributions
(ZIP-NB) and mixture of ZINB and NB distributions (ZINB-NB) at 0.1% FDR.

We again use the enRich R package (Bao & Vinciotti 2013) implementation for the

existing methods. The enriched regions have the same quality as those found by the finite

mixture model approach in Chapter 5.
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6.5 Conclusion

We followed the existing works of Bao et al. (2014) and Mo (2012) which capture the

spatial dependencies by first-order Markov property assumptions. Based on the empirical

results using simulation studies, we have justified that our proposed model is sound in

terms of precise estimate and classification. We demonstrated the applicability of the

proposed method on real data for the detection of enriched regions for histone proteins of

transcriptional activator from ChIP-seq experiment. We compared our result with existing

methods, and found that our method detected more enriched regions than the existing

methods at the same FDR.



CHAPTER 7

CONCLUSION AND FUTURE
DIRECTION

7.1 Introduction

This research work has developed a mixture model with parametric and non-parametric

components for classifying observations into noise and signal. The advantage of this new

method is that it bypasses the challenges involved in the Bayesian mixture models, such as

the label switching problem and the determination of the number of components K. This

Chapter summarizes the contributions of the thesis, and outlines future direction.

7.2 Mixture model

The challenges in Bayesian analysis for mixture models are the label switching problem

and the determination of the number of components K. The existing methods of dealing

with these problems have a large computational cost, which made them unsuitable for

large data sets and models with several components. Furthermore, these methods are only
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suitable when the component distributions are of the same type. We proposed a mixture

model approach when the interest is classifying the observations into two classes, signal

and noise. For illustration, we used discrete data generated by ChIP-seq experiments,

where the interest lies in whether a region of the genome is bound by the protein of

interest or not. It is shown empirically, using simulation studies, that the new method

can distinguish whether an observation is signal or noise, and it can do so with higher

accuracy than a mixture of parametric distributions. The new method is robust to different

priors as demonstrated in Appendix A. Finally, in ChIP-seq data application, where we

considered 1000 contiguous base pairs regions on chromosome 21, the proposed method

showed superiority when compared to similar models. We used enRich R package (Bao

& Vinciotti 2013) implementation for the existing methods. ChromHMM (Ernst & Kellis

2010) was used to validate the enriched regions identified by the methods.

In the new proposed method, the first component h1 could be any parametric discrete

distribution of the mixture component. In ChIP-seq data for 1000 contiguous base pairs

regions for example, the Poisson distribution is a natural choice. The second component

h2 is modelled as a non-parametric distribution. The non-parametric component involved

L unknown parameters with p j as the probabilities for distinct observations values in the

enriched regions, interpreted as the probability of x = x j given that x is drawn from the

enriched region. Here, p j, j = 1, . . . ,L are still unknown parameters because any non-

parametric estimator uses a certain number of parameters. The number of parameters

depends on the number of observations and usually much more than the number of

parameters for a parametric estimator. For example, the empirical distribution uses n

parameters (the jumps in the empirical distribution estimate) if there are n observations.
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Our proposed signal component is non-parametric since the number of parameters P j, j =

1, . . . ,L will increase when the sample size n increases. Also P j is the weight (probability)

for the jth ordered statistic, which will also vary for different data set. It is purely non-

parametric. In this discrete example, the number of parameters is less than the sample size

n, but this is because for discrete data there are ties: therefore, the method is efficient.

7.3 Markov random model

As noted earlier, the unknown parameters p j, j = 1, . . . ,L increase as the sample size n

increases. When L becomes large, the method may not be practical due to computational

cost. Overcoming this problem, in ChIP-seq data for example, is achieved by considering

smaller window sizes for the genomic regions, e.g. 200 base pairs long, which is also

the fragments size used in ChIP-seq experiments, thus reducing the value of L automati-

cally. In addition to the spatial dependencies between the neighbouring windows in the

data, a larger part of the genome contains an excess of zeros. This requires models that

account for spatial dependencies with distributions that carter for the excess of zeros in

the noise component. This is our motivation to use one-dimensional Markov random field

model, with negative Binomial distribution or zero-inflated distributions (e.g. zero-inflated

Poisson or zero-inflated negative Binomial distributions) for the noise component and the

non-parametric distribution for the signal component.

The developed method satisfy the assumption of first-order Markov property on the

latent states, which effects conditional dependencies over a long range on the observations.

The empirical results, from simulations, have shown the efficiency of the method. The ap-
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plications of the proposed method on ChIP-seq data, to detect enriched regions for histone

proteins, using three different distributions for the noise component, are demonstrated.

We found that ZIP distribution for the noise component detected more enriched regions

than the other two distributions (NB distribution and ZINB distribution) at the same FDR.

Furthermore, the new method outperformed similar existing methods at the same FDR.

For the existing methods, enRich R package implementation was used. These enriched

regions are of the same quality as those detected by the mixture model approach.

7.4 Contributions of the study

The non-parametric component achieved several advantages: one does not need to estimate

the number of components for the mixture, neither do we need to justify distributions for

the signal component, nor consider the label switching problem.

The detected gene enriched regions in a DNA sequence are of interest to Bioinformati-

cians. They can be use to understand epigenetic modifications during normal development

and disease states. Transcription binding sites can also be use to understand cell differ-

entiation, environmental and drug responses, and alterations to these responses during

disease states.

7.5 Limitations of the proposed methods

The proposed method may not be efficient if L values become very large, since the non-

parametric signal component may have n parameters, which will not be computationally

efficient. Another limitation of the proposed method is that it is only valid for discrete
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observations, since p js are probabilities for the distinct values of the observations. In

addition, the posterior (4.10) of zi in Algorithm 4 will not be valid for continuous cases.

7.6 Future direction

Following the successful completion of this study, there still remain a number of potential

areas for future direction. The current project is based on a two-dimensional DNA sequence,

but in reality the long DNA chain is folded and genes could interact even if they are far

away. One can use this methodology on a three-dimensional sequencing data, which have

the information of long-range interaction between genes. The future direction is to use our

proposed model, but the latent variable should be extended to several hidden layers. This

will deal with such genetic problems.

Our proposed method can be used in other application areas for classification. For

example, in signal processing applications, where the interest lies in distinguishing a

speech signal from a corrupted noise and transmission distortion, our model can provide

an avenue that will optimally process the signal to achieve a desired output. In machine

learning, developing a reliable feature selection method is an active research area. Another

potential application area of our methodology in machine learning, therefore, is that of

classifying informative and non-informative features for discrete data. It will explicitly

assist the learner to focus on relevant features and ignore irrelevant ones prior to learning.

Finally, another future research direction is to improve on the limitations of the proposed

method. This is to allow the non-parametric signal component to have n parameters (just

like the empirical likelihood). The possibility here is to consider a kernel density fitting.
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Such method can deal with the continuous cases.
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APPENDIX A

PRIOR SENSITIVITY ANALYSIS AND
DATA ANALYSIS TRACE PLOTS FOR

THE PROPOSED METHOD

A.1 Prior sensitivity analysis

We show the sensitivity analysis of our model to the priors used. We demonstrate that the

model is robust to different priors. We draw observations of size 500 from two-component

mixture of Poisson and Negative Binomial distributions. The true model is;

f (x) = π1Poi(x;λ) + π2NB(x; r, v) (A.1)

where λ is the mean of the Poisson distribution, r is the nonnegative dispersion parameter

and v is the probability parameter for the Negative Binomial distribution. We choose

different priors and run traditional Gibbs sampling algorithm for 20,000 samples with

10,000 as burn-in iterations. We consider when π1 = 0.8 and π1 = 0.5. The results are

presented in Tables(A.1 and A.2) and Figures (A.1 and A.2). We can see that the estimates
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are robust under different priors. In all simulation studies there is no label switching

problem.

Table A.1: Simulation results under different priors with true value of λ = 5, r = 3 and v = 0.2,
where the true model is a two-component mixture distributions

Prior True π1 = 0.8 True π1 = 0.5
E(λ) E(π1) E(λ) E(π1)

α = 2, β = 1 5.0699 0.8555 5.7305 0.6505
(4.7802,5.3536) (0.7876,0.9061) (5.1844,6.313) (0.5643,0.723)

α = 1, β = 2 5.0431 0.8554 5.6367 0.6491
(4.760,5.3244) (0.784,0.9073) (5.1126,6.1895) (0.5645,0.7219)

α = 4, β = 2 5.0546 0.8543 5.6994 0.6519
(4.7703,5.3355) (0.7838,0.9057) (5.1595,6.2788) (0.5661,0.7244)

α = 2, β = 4 5.0051 0.8536 5.5077 0.6452
(4.706,5.2853) (0.715,0.9063) (4.9652,6.0488) (0.5572,0.7181)

(a) True value: π1 = 0.5, α = 2, β = 1 (b) True value: π1 = 0.5, α = 4, β = 2

(c) True value: π1 = 0.8, α = 2, β = 1 (d) True value: π1 = 0.8, α = 4, β = 2

Figure A.1: Prior sensitivity plots for π1 with true value λ = 5, r = 3, v = 0.2 where the true model
is a two-component mixture distributions.
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Table A.2: Simulation results for the prior sensitivity with true value of λ = 2, r = 15 and v = 0.5,
where the true model is a two-component mixture distributions

Prior True π1 = 0.8 True π1 = 0.5
E(λ) E(π1) E(λ) E(π1)

α = 2, β = 1 1.867 0.772 1.8184 0.4112
(1.694,0.8239) (0.7079,0.8239) (1.4753,2.1851) (0.3123,0.4837)

α = 1, β = 2 1.8597 0.7734 1.7515 0.4086
(1.6869,2.031) (0.7122,0.824) (1.3659,2.0890) (0.2962,0.4832)

α = 4, β = 2 1.8683 0.7722 1.8229 0.4117
(1.6960,2.0416) (0.7093,0.8235) (1.4889,2.1851) (0.3126,0.4841)

α = 2, β = 4 1.8441 0.7718 1.728 0.410
(1.6751,2.0139) (0.7082,0.8228) (1.3646,2.063) (0.3169,0.480)

(a) True value: π1 = 0.5, α = 1, β = 2 (b) True value: π1 = 0.5, α = 4, β = 2

(c) True value: π1 = 0.8, α = 1, β = 2 (d) True value: π1 = 0.8, α = 4, β = 2

Figure A.2: Prior sensitivity plots for π1, with true value λ = 2, r = 15, v = 0.5 where the true model
is a two-component mixture distributions.
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A.2 ChIP-sequence data plot

Figures A.3 and A.4 show the trace plots for the ChIP-seq data sets analysed using our

proposed method for p300T301.1000bp amd CBPT301.1000bp respectively.

Figure A.3: Trace plots for the ChIP-sequence data (p300T301.1000bp) for chromosome21 for our
proposed method for parameters λ and π1

Figure A.4: Trace plots for the ChIP-sequence data (CBPT301.1000bp) for chromosome21 for our
proposed method for parameters λ and π1



APPENDIX B

SIMULATION PLOTS FOR ONE
DIMENSIONAL MARKOV RANDOM

FIELD MODEL

B.1 Simulation plots

We demonstrate graphically the observations generated in Section 6.3 for the three scenar-

ios.
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B.1.1 Scenario 1
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Figure B.1: Set 1 simulation plots for the true model of two-component Markov mixture model of
NB distributions, where δ1,2 = 0.2 and δ2,2 = 0.7 for (a) (r1, v1) = (3, 0.2), (r2, v2) = (5, 0.2),
(b) (r1, v1) = (5, 0.6), (r2, v2) = (10, 0.5) and (c) (r1, v1) = (5, 0.4), (r2, v2) = (7, 0.3).
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Figure B.2: Set 2 simulation plots for the true model of two-component Markov mixture model of
NB distributions, where δ1,2 = 0.2 and δ2,2 = 0.7 for (a) (r1, v1) = (5, 0.6), (r2, v2) = (12, 0.1),
(b) (r1, v1) = (7, 0.8), (r2, v2) = (14, 0.2) and (c) (r1, v1) = (10, 0.7), (r2, v2) = (15, 0.3).
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B.1.2 Scenario 2
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Figure B.3: Set 1 simulation plots for the true model of two-component Markov mixture model of
ZIP and NB distributions, where δ1,2 = 0.3 and δ2,2 = 0.8 for (a) (λ, π) = (5, 0.4), (r2, v2) =
(15, 0.4), (b) (λ, π) = (2, 0.3), (r2, v2) = (5, 0.2) and (c) (λ, π) = (1, 0.5), (r2, v2) = (19, 0.5).
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Figure B.4: Set 2 simulation plots for the true model of two-component Markov mixture model
of ZIP and NB distributions, where δ1,2 = 0.3 and δ2,2 = 0.8 for (a) (λ, π) = (4, 0.2),
(r2, v2) = (20, 0.2), (b) (λ, π) = (7, 0.3), (r2, v2) = (55, 0.4), and (c) (λ, π) = (2, 0.5) and
(r2, v2) = (75, 0.6).
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B.1.3 Scenario 3
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Figure B.5: Set 1 simulation plots for the true model of two-component Markov mixture model of
ZINB and NB distributions, where δ1,2 = 0.3 and δ2,2 = 0.8 for (a) (r1, v1, π) = (6, 0.4, 0.4),
(r2, v2) = (8, 0.2), (b) (r1, v1, π) = (5, 0.5, 0.3), (r2, v2) = (7, 0.2) and (c) (r1, v1, π) =
(3, 0.2, 0.5) and (r2, v2) = (37, 0.6).
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Figure B.6: Set 2 simulation plots for the true model of two-component Markov mixture model of
ZINB and NB distributions, where δ1,2 = 0.3 and δ2,2 = 0.8 for (a) (r1, v1, π) = (3, 0.5, 0.3),
(r2, v2) = (25, 0.2), (b) (r1, v1, π) = (7, 0.5, 0.7), (r2, v2) = (45, 0.4) and (c) (r1, v1, π) =
(5, 0.6, 0.5), (r2, v2) = (35, 0.2).
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B.2 Distributions of ChIP-seq data

Table B.1: Summary statistics of ChIP-seq data for one experiment on the protein p300T301.200bp
on chromosome21.

Sample size min max Mean Variance
234,721 0 145 0.328 1.278
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Figure B.7: Distribution of ChIP-seq data (p300T301.200bp) for one experiment (left), with zoom on
the tail (right) for 200bp windows length.



APPENDIX C

THE R CODES

C.1 R code for mixture models

C.1.1 Scenario 1 (Section 4.3.1) simulation studies

C.1.1.1 The proposed method

1 rm( l i s t = l s ( ) )
2 l i b r a r y ( ” g t o o l s ” )
3 l i b r a r y ( ” Rlab ” )
4 generate . data <− func t ion ( truep = c ( 0 . 8 , 0 . 2 ) , truelambda =2 ,v =0 .4 , r =15 ,n = 500)
5 {

6 x<−rep ( 0 , n )
7 truez<−rep ( 0 , n )
8 u<−r u n i f ( n )
9 f o r ( i in 1 : n )

10 {

11 i f ( u [ i ]< truep [ 1 ] ) {
12 x [ i ]= rpo is ( 1 , truelambda )
13 t ruez [ i ]=0
14 }

15 e l s e
16 {

17 x [ i ]=rnbinom ( 1 , r , v )
18 t ruez [ i ]=1
19 }

120
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20 }

21 data<− l i s t ( s=truez , o=x )
22 re turn ( data )
23 }

24 ndata <− generate . data ( truep = c ( 0 . 8 , 0 . 2 ) , truelambda =2 ,v =0 .4 , r =15 ,n = 500)
25 x <−ndata$o
26 t ruez <− ndata$s
27

28 Newrbern = func t ion ( prob )
29 {

30 U = r u n i f ( length ( prob ) )
31 re turn (1 ∗ (U<prob ) )
32 }

33 scenar io1<−func t ion ( x , MCMCsteps=20000 , burnin =10000 , pr iora lpha =1 , p r i o r b e t a =2)
34 {

35 p s t a r t=c ( 0 . 5 , 0 . 5 )
36 lambda star t= 1
37 z s t a r t =1−(x<=5)
38 n = length ( x )
39 lambda=lambda star t
40 p=p s t a r t
41 z= z s t a r t
42 CHAIN lambda=lambda
43 CHAIN p=p [ 1 ]
44

45 f o r ( s tep in 1 : MCMCsteps)
46 {

47 p r i n t ( c ( ” i t e r a t i o n ” , s tep ) )
48 s tep
49 subxz1=subset ( x , z==1)
50 f reqmatr ix = as . matrix ( subxz1 )%∗%matrix ( 1 , 1 , n )
51 f reqx = rowSums ( t ( f reqmatr ix )==x )
52 Nprob = unique ( cbind ( x , f reqx +1) )
53 f t 2 = r d i r i c h l e t ( 1 , Nprob [ , 2 ] )
54 f2 = colSums ( t ( as . matrix ( f t 2 ) )%∗%matrix ( 1 , 1 , n ) ∗ ( t ( as . matrix ( x )
55 %∗%matrix ( 1 , 1 , length ( f t 2 ) ) )==Nprob [ , 1 ] ) )
56

57 a = p [ 1 ] ∗ dpois ( x , lambda )
58 b = p [ 2 ] ∗ f2 + rep ( 0 , n )
59 pq= a / ( a+b )
60 z = 1 − Newrbern ( pq )
61

62 GammaA=sum( x ∗ ( z==0) )+priora lpha
63 GammaB = sum( z==0) + p r i o r b e t a
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64 lambda = rgamma ( 1 , GammaA+1 , GammaB)
65 CHAIN lambda = c ( CHAIN lambda , lambda )
66

67 BetaA = sum( z==0)
68 BetaB = sum( z==1)
69 p [ 1 ] = rbe ta ( 1 , BetaA+1 , BetaB +1)
70 p [ 2 ] = 1−p [ 1 ]
71 CHAIN p = c (CHAIN p, p [ 1 ] )
72 }

73 para . samples=as . matrix ( cbind ( ( CHAIN lambda [ ( burnin +1) : MCMCsteps ] ) , (CHAIN p [ (
burnin +1) : MCMCsteps ] ) ) )

74 colnames ( para . samples ) <− c ( ”lambda” , ” pie ” )
75 para=round ( apply ( para . samples , 2 , mean) , 4 )
76 quan <− cbind ( q u a n t i l e ( CHAIN lambda [ ( burnin +1) : MCMCsteps ] , prob=c ( 0 . 0 2 5 , 0 . 9 7 5 )

) , q u a n t i l e (CHAIN p [ ( burnin +1) : MCMCsteps ] , prob=c ( 0 . 0 2 5 , 0 . 9 7 5 ) ) )
77 colnames ( quan ) <− c ( ”lambda” , ” pie ” )
78 re turn ( l i s t ( parameters=para . samples , means=para , q u a n t i l e s=quan ) )
79 }

80 scene1 <−scenar io1 ( x , MCMCsteps=20000 , burnin =10000 , pr iora lpha =1 , p r i o r b e t a =2)
81 para <−scene1$means
82 lambda<−scene1$parameters [ , 1 ]
83 pie<−scene1$parameters [ , 2 ]
84 ## ############ p l o t s ################################
85 par ( mfrow=c ( 1 , 2 ) )
86 p l o t ( lambda , type=” l ” , ylab=”lambda” , xlab=” i t e r a t i o n s ” , c o l=” red ” )
87 p l o t ( pie , type=” l ” , ylab=” pie ” , xlab=” i t e r a t i o n s ” , c o l=” red ” )

C.1.1.2 Two-components mixture of Poisson and negative Binomial distributions

1 rm( l i s t = l s ( ) )
2 l i b r a r y ( ” g t o o l s ” )
3 l i b r a r y ( ” Rlab ” )
4 generate . data <− func t ion ( truep=c ( 0 . 8 , 0 . 2 ) , truelambda =2 , r =15 ,v= 0 . 4 , n=500)
5 {

6 x<−rep ( 0 , n )
7 truez<−rep ( 0 , n )
8 u<−r u n i f ( n )
9 f o r ( i in 1 : n ) {

10 i f ( u [ i ]<= truep [ 1 ] )
11 {

12 x [ i ]= rpo is ( 1 , truelambda )
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13 t ruez [ i ]=0
14 }

15 e l s e {
16 x [ i ]=rnbinom ( 1 , r , v )
17 t ruez [ i ]=1
18 }

19 }

20 data<− l i s t ( s=truez , o=x )
21 re turn ( data )
22 }

23 ndata <− generate . data ( truep = c ( 0 . 8 , 0 . 2 ) , truelambda =2 , r =15 ,v =0 .4 , n = 500)
24 x <−ndata$o
25 t ruez <− ndata$s
26

27 Newrbern = func t ion ( prob )
28 {

29 U = r u n i f ( length ( prob ) )
30 re turn (1 ∗ (U<prob ) )
31 }

32 POISNB <− func t ion ( x , MCMCsteps=20000 , burnin = 10000 , pr iora lpha =2 , p r i o r b e t a =4 ,
gammaprior=c ( 1 5 , 1 ) )

33 {

34 p s t a r t=c ( 0 . 8 , 0 . 2 )
35 lambda star t=1
36 r s t a r t =5
37 v s t a r t =0.3
38 z s t a r t =1−(x<=5)
39 Ncomponent=2
40 n =length ( x )
41 lambda=lambda star t
42 p=p s t a r t
43 z= z s t a r t
44 r r = r s t a r t
45 vv = v s t a r t
46 CHAIN lambda=lambda star t
47 CHAIN p=p s t a r t
48 CHAIN r= r s t a r t
49 CHAIN v=v s t a r t
50 z= z s t a r t
51

52 f o r ( s tep in 1 : MCMCsteps)
53 {

54 p r i n t ( c ( ” i t e r a t i o n ” , s tep ) )
55 s tep
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56

57 GammaA=sum( x ∗ ( z==0) )+priora lpha
58 GammaB = sum( z==0) + p r i o r b e t a
59 lambda = rgamma ( 1 , GammaA+1 , GammaB)
60 CHAIN lambda = c ( CHAIN lambda , lambda )
61

62 Beta=NULL
63 f o r ( k in 1 : Ncomponent ) {
64 Beta = c ( Beta , sum( z==k−1) )
65 }

66 p = r d i r i c h l e t ( 1 , Beta +1)
67 CHAIN p = cbind ( as . matrix (CHAIN p) , t ( p ) )
68

69 cpost = sum( dnbinom ( subset ( x , z==k ) , rr , vv , log=T ) ) + log ( vv ∗ (1−vv ) ) +

dgamma( rr , gammaprior [ 1 ] , gammaprior [ 2 ] , log=T )
70 rprop = rgamma ( 1 , r r ∗ 3 , 3 )
71 vprop = r d i r i c h l e t ( 1 , 30 ∗ c ( vv , 1−vv ) )
72 npost = sum( dnbinom ( subset ( x , z==k ) , rprop , vprop [ 1 ] , log=T ) ) + log ( vprop [ 1 ] ∗

(1−vprop [ 1 ] ) ) + dgamma( rprop , gammaprior [ 1 ] , gammaprior [ 2 ] , log=T )
73 tempn = npost − dgamma( rprop , r r ∗ 3 , 3 , log=T )− log ( d d i r i c h l e t ( vprop , 30 ∗ c ( vv ,

1−vv ) ) )
74 tempc = cpost − dgamma( rr , rprop ∗ 3 , 3 , log=T )− log ( d d i r i c h l e t ( c ( vv , 1−vv ) , 30 ∗

vprop ) )
75 i f ( log ( r u n i f ( 1 ) ) < tempn − tempc )
76 {

77 r r = rprop [ 1 ]
78 vv = vprop [ 1 ]
79 }

80 CHAIN r = c ( CHAIN r , r r )
81 CHAIN v = c (CHAIN v , vv )
82

83 PP = matrix ( 0 , n , Ncomponent )
84 PP [ , 1 ] = p [ 1 ] ∗ dpois ( x , lambda )
85 PP [ , 2 ] = p [ 2 ] ∗ dnbinom ( x , rr , vv )
86

87 PP = PP / rowSums ( PP )
88 f o r ( i in 1 : n ) {
89 z [ i ] = sample ( 1 : Ncomponent , s i z e =1 , r e p l a c e=T , PP [ i , ] ) −1
90 }

91 }

92 para . samples=as . matrix ( cbind ( ( CHAIN lambda [ ( burnin +1) : MCMCsteps ] ) , (CHAIN p
[ 1 , ( burnin +1) : MCMCsteps ] ) , ( CHAIN r [ ( burnin +1) : MCMCsteps ] ) , ( CHAIN v [ ( burnin
+1) : MCMCsteps ] ) ) )

93 colnames ( para . samples ) <− c ( ”lambda” , ” pie ” , ” r ” , ”v” )
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94 para=round ( apply ( para . samples , 2 , mean) , 4 )
95 quan <− cbind ( q u a n t i l e ( CHAIN lambda [ ( burnin +1) : MCMCsteps ] , prob=c

( 0 . 0 2 5 , 0 . 9 7 5 ) ) , q u a n t i l e (CHAIN p [ 1 , ( burnin +1) : MCMCsteps ] , prob=c ( 0 . 0 2 5 , 0 . 9 7 5 )
) , q u a n t i l e ( CHAIN r [ ( burnin +1) : MCMCsteps ] , prob=c ( 0 . 0 2 5 , 0 . 9 7 5 ) ) , q u a n t i l e (
CHAIN v [ ( burnin +1) : MCMCsteps ] , prob=c ( 0 . 0 2 5 , 0 . 9 7 5 ) ) )

96 colnames ( quan ) <− c ( ”lambda” , ” pie ” , ” r ” , ”v” )
97 re turn ( l i s t ( parameters=para . samples , means=para , q u a n t i l e s=quan ) )
98 }

99 scene1 <−POISNB( x , MCMCsteps=20000 , burnin = 10000 , pr iora lpha =2 , p r i o r b e t a =4 ,
gammaprior=c ( 1 5 , 1 ) )

100 para <−scene1$means
101 lambda<−scene1$parameters [ , 1 ]
102 pie<−scene1$parameters [ , 2 ]
103 r<−scene1$parameters [ , 3 ]
104 v<−scene1$parameters [ , 4 ]
105 ## ############ p l o t s ################################
106 p l o t ( lambda , type=” l ” , ylab=”lambda” , xlab=” i t e r a t i o n s ” , c o l=” red ” )
107 p l o t ( pie , type=” l ” , ylab=” pie ” , xlab=” i t e r a t i o n s ” , c o l=” red ” )
108 p l o t ( r , type=” l ” , ylab=” r ” , xlab=” i t e r a t i o n s ” , c o l=” red ” )
109 p l o t ( v , type=” l ” , ylab=”v” , xlab=” i t e r a t i o n s ” , c o l=” red ” )

C.1.2 Simulation studies in Scenario 2 (Section 4.3.2) and Scenario 3

(Section 4.3.3)

C.1.2.1 The proposed method

1 rm( l i s t = l s ( ) )
2 l i b r a r y ( ” g t o o l s ” )
3 l i b r a r y ( ” Rlab ” )
4 Newrbern = func t ion ( prob ) {
5 U = r u n i f ( length ( prob ) )
6 re turn (1 ∗ (U<prob ) )
7 }

8 generate . data <− func t ion ( truep=c ( 0 . 6 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 ) , truelambda =1 , r=c
( 3 , 5 , 8 , 1 0 ) , v=c ( 0 . 3 , 0 . 5 , 0 . 7 , 0 . 8 ) ,n=500)

9 {

10 x<−rep ( 0 , n )
11 truez<−rep ( 0 , n )
12 u<−r u n i f ( n )
13 f o r ( i in 1 : n ) {
14 i f ( u [ i ] <=0.6)
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15 {

16 x [ i ]= rpo is ( 1 , truelambda )
17 t ruez [ i ]=0
18 }

19 e l s e
20 i f (0 .6 <u [ i ]&u [ i ] <=0.7) {
21 x [ i ]=rnbinom ( 1 , r [ 1 ] , v [ 1 ] )
22 t ruez [ i ]=1
23 }

24 e l s e
25 i f (0 .7 <u [ i ]&u [ i ] <=0.8) {
26 x [ i ]=x [ i ]=rnbinom ( 1 , r [ 2 ] , v [ 2 ] )
27 t ruez [ i ]=1
28 }

29 e l s e
30 i f (0 .8 <u [ i ]&u [ i ] <=0.9) {
31 x [ i ]=rnbinom ( 1 , r [ 3 ] , v [ 3 ] )
32 t ruez [ i ]=1
33 }

34 e l s e {
35 x [ i ]=x [ i ]=rnbinom ( 1 , r [ 4 ] , v [ 4 ] )
36 t ruez [ i ]=1
37 }

38 }

39 data<− l i s t ( s=truez , o=x )
40 re turn ( data )
41 }

42 ndata <− generate . data ( truep=c ( 0 . 6 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 ) , truelambda =1 , r=c ( 3 , 5 , 8 , 1 0 ) ,
v=c ( 0 . 3 , 0 . 5 , 0 . 7 , 0 . 8 ) ,n=500)

43 x <−ndata$o
44 t ruez <− ndata$s
45

46 scenar io2<−func t ion ( x , MCMCsteps=20000 , burnin =10000 , pr iora lpha =1 , p r i o r b e t a =2)
47 {

48 p s t a r t=c ( 0 . 8 , 0 . 2 )
49 lambda star t=3
50 z s t a r t =1−(x<=5)
51 n = length ( x )
52 lambda=lambda star t
53 p=p s t a r t
54 z= z s t a r t
55 CHAIN lambda=lambda
56 CHAIN p=p [ 1 ]
57
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58 f o r ( s tep in 1 : MCMCsteps)
59 {

60 p r i n t ( c ( ” i t e r a t i o n ” , s tep ) )
61 s tep
62

63 subxz1=subset ( x , z==1)
64 f reqmatr ix = as . matrix ( subxz1 )%∗%matrix ( 1 , 1 , n )
65 f reqx = rowSums ( t ( f reqmatr ix )==x )
66 Nprob = unique ( cbind ( x , f reqx +1) )
67 f t 2 = r d i r i c h l e t ( 1 , Nprob [ , 2 ] )
68 f2 = colSums ( t ( as . matrix ( f t 2 ) )%∗%matrix ( 1 , 1 , n ) ∗ ( t ( as . matrix ( x )%∗%matrix

( 1 , 1 , length ( f t 2 ) ) )==Nprob [ , 1 ] ) )
69

70 a = p [ 1 ] ∗ dpois ( x , lambda )
71 b = p [ 2 ] ∗ f2 + rep ( 0 , n )
72 pq= a / ( a+b )
73 z = 1 − Newrbern ( pq )
74

75 GammaA=sum( x ∗ ( z==0) )+priora lpha
76 GammaB = sum( z==0) + p r i o r b e t a
77 lambda = rgamma ( 1 , GammaA+1 , GammaB)
78 CHAIN lambda = c ( CHAIN lambda , lambda )
79

80 BetaA = sum( z==0)
81 BetaB = sum( z==1)
82 p [ 1 ] = rbe ta ( 1 , BetaA+1 , BetaB +1)
83 p [ 2 ] = 1−p [ 1 ]
84 CHAIN p = c (CHAIN p, p [ 1 ] )
85 }

86 para . samples=as . matrix ( cbind ( ( CHAIN lambda [ ( burnin +1) : MCMCsteps ] ) , (CHAIN p [ (
burnin +1) : MCMCsteps ] ) ) )

87 colnames ( para . samples ) <− c ( ”lambda” , ” pie ” )
88 para=round ( apply ( para . samples , 2 , mean) , 4 )
89 quan <− cbind ( q u a n t i l e ( CHAIN lambda [ ( burnin +1) : MCMCsteps ] , prob=c ( 0 . 0 2 5 , 0 . 9 7 5 )

) , q u a n t i l e (CHAIN p [ ( burnin +1) : MCMCsteps ] , prob=c ( 0 . 0 2 5 , 0 . 9 7 5 ) ) )
90 colnames ( quan ) <− c ( ”lambda” , ” pie ” )
91 c l a s s r a t e <− 1−(sum( diag ( t a b l e ( truez , z ) ) ) / sum( t a b l e ( truez , z ) ) )
92 re turn ( l i s t ( parameters=para . samples , pq=pq , means=para , q u a n t i l e s=quan , r a t e=

c l a s s r a t e ) )
93 }

94 scene2 <−scenar io2 ( x , MCMCsteps=20000 , burnin =10000 , pr iora lpha =1 , p r i o r b e t a =2)
95 errorRate<−scene2$ra te
96 pq <−scene2$pq
97 lambda<−scene2$parameters [ , 1 ]
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98 pie<−scene2$parameters [ , 2 ]
99 quant i l es <−s ce n e2 $ qu a nt i l e s

100 ## ############ p l o t s ################################
101 par ( mfrow=c ( 1 , 2 ) )
102 p l o t ( lambda , type=” l ” , ylab=”lambda” , xlab=” i t e r a t i o n s ” , c o l=” red ” )
103 p l o t ( pie , type=” l ” , ylab=” pie ” , xlab=” i t e r a t i o n s ” , c o l=” red ” )
104 ## ## FDR ####################################
105 scene2FDR <− func t ion ( pq , thr =0 .06 ) {
106 fdr<−sum( subset ( pq , pq<thr ) / sum( pq<thr ) )
107 re turn ( fdr=fdr )
108 }

109 FDR<−scene2FDR ( pq , thr =0 .06 )
110 ## ############## FNDR #######################
111 scene2FNDR <− func t ion ( pq , thr =0 .06 ) {
112 fndr<−sum( subset ((1−pq ) , pq>=thr ) ) / sum( pq>=thr )
113 re turn ( fndr=fndr )
114 }

115 FNDR<−scene2FNDR ( pq , thr =0 .06 )

C.1.2.2 Five-components mixture distribution

1 rm( l i s t = l s ( ) )
2 l i b r a r y ( g t o o l s )
3 l i b r a r y ( Rlab )
4 Newrbern = func t ion ( prob )
5 {

6 U = r u n i f ( length ( prob ) )
7 re turn (1 ∗ (U<prob ) )
8 }

9 generate . data <− func t ion ( truep=c ( 0 . 6 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 ) , truelambda =1 , r=c
( 3 , 5 , 8 , 1 0 ) , v=c ( 0 . 3 , 0 . 5 , 0 . 7 , 0 . 8 ) ,n=500)

10 {

11 x<−rep ( 0 , n )
12 truez<−rep ( 0 , n )
13 u<−r u n i f ( n )
14 Ncomponent=5
15 f o r ( i in 1 : n ) {
16 i f ( u [ i ] <=0.6)
17 {

18 x [ i ]= rpo is ( 1 , truelambda )
19 t ruez [ i ]=0
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20 }

21 e l s e
22 i f (0 .6 <u [ i ]&u [ i ] <=0.7) {
23 x [ i ]=rnbinom ( 1 , r [ 1 ] , v [ 1 ] )
24 t ruez [ i ]=1
25 }

26 e l s e
27 i f (0 .7 <u [ i ]&u [ i ] <=0.8) {
28 x [ i ]=rnbinom ( 1 , r [ 2 ] , v [ 2 ] )
29 t ruez [ i ]=2
30 }

31 e l s e
32 i f (0 .8 <u [ i ]&u [ i ] <=0.9) {
33 x [ i ]=rnbinom ( 1 , r [ 3 ] , v [ 3 ] )
34 t ruez [ i ]=3
35 }

36 e l s e {
37 x [ i ]=rnbinom ( 1 , r [ 4 ] , v [ 4 ] )
38 t ruez [ i ]=4
39 }

40 }

41 data<− l i s t ( s=truez , o=x )
42 re turn ( data )
43 }

44 ndata <− generate . data ( truep=c ( 0 . 6 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 ) , truelambda =1 , r=c ( 3 , 5 , 8 , 1 0 ) ,
v=c ( 0 . 3 , 0 . 5 , 0 . 7 , 0 . 8 ) ,n=500)

45 x <−ndata$o
46 t ruez <− ndata$s
47

48 scenar io2 <− func t ion ( x , MCMCsteps=20000 , burnin =10000 , pr iora lpha =2 , p r i o r b e t a =1 ,
gammaprior=c ( 2 0 , 1 ) )

49 {

50 p s t a r t=c ( 0 . 6 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 )
51 lambda star t=3
52 r s t a r t =c ( 8 , 1 0 , 11 , 12)
53 v s t a r t=c ( 0 . 2 , 0 . 4 , 0 . 3 , 0 . 5 )
54 z s t a r t =1−(x<=5)
55 n = length ( x )
56 Ncomponent = 5
57 lambda=lambda star t
58 p=p s t a r t
59 z= z s t a r t
60 r r = r s t a r t
61 vv = v s t a r t
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62 CHAIN lambda=lambda star t
63 CHAIN p=p s t a r t
64 CHAIN r= r s t a r t
65 CHAIN v=v s t a r t
66 z= z s t a r t
67

68 f o r ( s tep in 1 : MCMCsteps)
69 {

70 p r i n t ( c ( ” i t e r a t i o n ” , s tep ) )
71 s tep
72

73 GammaA=sum( x ∗ ( z==0) )+priora lpha
74 GammaB = sum( z==0) + p r i o r b e t a
75 lambda = rgamma ( 1 , GammaA+1 , GammaB)
76 CHAIN lambda = c ( CHAIN lambda , lambda )
77

78 Beta=NULL
79 f o r ( k in 1 : Ncomponent ) {
80 Beta = c ( Beta , sum( z==k−1) )
81 }

82 p = r d i r i c h l e t ( 1 , Beta +1)
83

84 CHAIN p = cbind ( as . matrix (CHAIN p) , t ( p ) )
85

86 f o r ( k in 1 : ( Ncomponent−1) ) {
87 cpost = sum( dnbinom ( subset ( x , z==k ) , r r [ k ] , vv [ k ] , log=T ) ) + log ( vv [ k ] ∗

(1−vv [ k ] ) ) + dgamma( r r [ k ] , gammaprior [ 1 ] , gammaprior [ 2 ] , log=T )
88 rprop = rgamma ( 1 , r r [ k ] ∗ 3 , 3 )
89 vprop = r d i r i c h l e t ( 1 , 50 ∗ c ( vv [ k ] , 1−vv [ k ] ) )
90 npost = sum( dnbinom ( subset ( x , z==k ) , rprop , vprop [ 1 ] , log=T ) ) + log ( vprop

[ 1 ] ∗ (1−vprop [ 1 ] ) ) + dgamma( rprop , gammaprior [ 1 ] , gammaprior [ 2 ] , log=T )
91 tempn = npost − dgamma( rprop , r r [ k ] ∗ 3 , 3 , log=T )−log ( d d i r i c h l e t ( vprop , 50 ∗

c ( vv [ k ] , 1−vv [ k ] ) ) )
92 tempc = cpost − dgamma( r r [ k ] , rprop ∗ 3 , 3 , log=T )−log ( d d i r i c h l e t ( c ( vv [ k ] ,

1−vv [ k ] ) , 50 ∗vprop ) )
93 i f ( log ( r u n i f ( 1 ) ) < tempn − tempc )
94 {

95 r r [ k ] = rprop [ 1 ]
96 vv [ k ] = vprop [ 1 ]
97 }

98 }

99 CHAIN r = cbind ( CHAIN r , r r )
100 CHAIN v = cbind (CHAIN v , vv )
101



C.1. R code for mixture models 131

102 PP = matrix ( 0 , n , Ncomponent )
103 PP [ , 1 ] = p [ 1 ] ∗ dpois ( x , lambda )
104 f o r ( k in 2 : Ncomponent )
105 {

106 PP [ , k ] = p [ k ] ∗ dnbinom ( x , r r [ k−1] , vv [ k−1] )
107 }

108 PP = PP / rowSums ( PP )
109 f o r ( i in 1 : n ) {
110 z [ i ] = sample ( 1 : Ncomponent , s i z e =1 , r e p l a c e=T , PP [ i , ] ) −1
111 }

112 }

113 para . samples=as . matrix ( cbind ( ( CHAIN lambda [ ( burnin +1) : MCMCsteps ] ) , (CHAIN p
[ 1 , ( burnin +1) : MCMCsteps ] ) ) )

114 colnames ( para . samples ) <− c ( ”lambda” , ” pie ” )
115 para=round ( apply ( para . samples , 2 , mean) , 4 )
116 quan <− cbind ( q u a n t i l e ( CHAIN lambda [ ( burnin +1) : MCMCsteps ] , prob=c ( 0 . 0 2 5 , 0 . 9 7 5 )

) , q u a n t i l e (CHAIN p [ 1 , ( burnin +1) : MCMCsteps ] , prob=c ( 0 . 0 2 5 , 0 . 9 7 5 ) ) )
117 colnames ( quan ) <− c ( ”lambda” , ” pie ” )
118 c l a s s r a t e <− ( ( sum( t a b l e ( z , t ruez ) [ 1 , ] ) +sum( t a b l e ( z , t ruez ) [ , 1 ] ) − 2 ∗ t a b l e ( z ,

t ruez ) [ 1 , 1 ] ) / ( sum( t a b l e ( z , t ruez ) ) ) )
119 re turn ( l i s t ( parameters=para . samples , PP=PP , means=para , q u a n t i l e s=quan , r a t e=

c l a s s r a t e ) )
120 }

121 scene2 <−scenar io2 ( x , MCMCsteps=20000 , burnin = 10000 , pr iora lpha =2 , p r i o r b e t a =1)
122 para <−scene2$means
123 errorRate<−scene2$ra te
124 PP <−scene2$PP
125 lambda<−scene2$parameters [ , 1 ]
126 pie<−scene2$parameters [ , 2 ]
127 quant i l es <−s ce n e2 $ qu a nt i l e s
128 ## ###### p l o t s ########################
129 p l o t ( lambda , type=” l ” , ylab=”lambda” , xlab=” i t e r a t i o n s ” , c o l=” red ” )
130 p l o t ( pie , type=” l ” , ylab=” pie ” , xlab=” i t e r a t i o n s ” , c o l=” red ” )
131 ## ## FDR ####################################
132 scene2FDR <− func t ion ( PP , thr =0 .08 ) {
133 fdr<−sum( subset ( PP [ , 1 ] , PP[ ,1 ] < thr ) / sum( PP[ ,1 ] < thr ) )
134 re turn ( fdr=fdr )
135 }

136 FDR<−scene2FDR ( PP , thr =0 .08 )
137 ## ############## FNDR #######################
138 scene2FNDR <− func t ion ( PP , thr =0 .08 ) {
139 fndr<−sum( subset ((1−PP [ , 1 ] ) ,PP[ ,1]>= thr ) ) / sum( PP[ ,1]>= thr )
140 re turn ( fndr=fndr )
141 }
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142 FNDR<−scene2FNDR ( PP , thr =0 .08 )

C.1.3 Data analysis for mixture model

1 rm( l i s t = l s ( ) )
2 l i b r a r y ( enRich )
3 data ( p300cbp .1000 bp )
4 genet i c data <−p300cbp .1000 bp
5 write . csv ( genet i c data , ” g e n e t i c data . csv ” )
6

7 Chrome21<−read . t a b l e ( ” g e n e t i c data . csv ” , sep= ’ , ’ , header=TRUE)
8 s t r ( Chrome21 )
9 summary ( Chrome21 )

10 x <− Chrome21$count . CBPT301
11 n = length ( x )
12

13 scenar io1<−func t ion ( x , MCMCsteps=20000 , burnin =10000 , pr iora lpha =1 , p r i o r b e t a =2)
14 {

15 n=length ( x )
16 p s t a r t=c ( 0 . 8 , 0 . 2 )
17 lambda star t= 10
18 z s t a r t =1−(x<=8)
19 lambda=lambda star t
20 p=p s t a r t
21 z= z s t a r t
22 CHAIN lambda=lambda
23 CHAIN p=p [ 1 ]
24

25 Newrbern = func t ion ( prob )
26 {

27 U = r u n i f ( length ( prob ) )
28 re turn (1 ∗ (U<prob ) )
29 }

30 f o r ( s tep in 1 : MCMCsteps)
31 {

32 p r i n t ( c ( ” i t e r a t i o n ” , s tep ) )
33 s tep
34 subxz1=subset ( x , z==1)
35 f reqmatr ix = as . matrix ( subxz1 )%∗%matrix ( 1 , 1 , n )
36

37 f reqx = rowSums ( t ( f reqmatr ix )==x )
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38 Nprob = unique ( cbind ( x , f reqx +1) )
39 f t 2 = r d i r i c h l e t ( 1 , Nprob [ , 2 ] )
40 f2 = colSums ( t ( as . matrix ( f t 2 ) )%∗%matrix ( 1 , 1 , n ) ∗ ( t ( as . matrix ( x )
41 %∗%matrix ( 1 , 1 , length ( f t 2 ) ) )==Nprob [ , 1 ] ) )
42

43 a = p [ 1 ] ∗ dpois ( x , lambda )
44 b = p [ 2 ] ∗ f2 + rep ( 0 , n )
45 pq= a / ( a+b )
46 z = 1 − Newrbern ( pq )
47

48 GammaA=sum( x ∗ ( z==0) )+priora lpha
49 GammaB = sum( z==0) + p r i o r b e t a
50 lambda = rgamma ( 1 , GammaA+1 , GammaB)
51 CHAIN lambda = c ( CHAIN lambda , lambda )
52

53 BetaA = sum( z==0)
54 BetaB = sum( z==1)
55 p [ 1 ] = rbe ta ( 1 , BetaA+1 , BetaB +1)
56 p [ 2 ] = 1−p [ 1 ]
57 CHAIN p = c (CHAIN p, p [ 1 ] )
58 }

59 pq=as . matrix ( cbind ( pq ) )
60 re turn ( pq=pq )
61 }

62 scene1 <−scenar io1 ( x , MCMCsteps=20000 , burnin =10000 , pr iora lpha =1 , p r i o r b e t a =2)
63 pq<−scene1
64 ## ############## Enrich regions ##################
65 genome wide <− func t ion ( pq , thr =0 .01 ) {
66 fdr<−sum( subset ( pq , pq<thr ) / sum( pq<thr ) )
67 enrich<−which ( pq<thr )
68 sum . enr ich <−sum( pq<thr )
69 re turn ( l i s t ( fdr=fdr , enr ich=enrich , sum . enr ich=sum . enr ich ) )
70 }

71 genome . mixmod<−genome wide ( pq , thr =0 .01 )
72 fdr<−genome . mixmod$fdr
73 enrich<−genome . mixmod$enrich
74 sum . enrich<−genome . mixmod$sum . enr ich
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C.2 R code for Markov random field model

C.2.1 Simulation studies in Scenario 1: NB distribution for the noise

component

1 rm( l i s t = l s ( ) )
2 l i b r a r y ( ” g t o o l s ” )
3 l i b r a r y ( ”gamlss . d i s t ” )
4 generate . data <− func t ion ( t r u e p i i = c ( 0 . 5 , 0 . 5 ) , truep1=matrix ( c ( 0 . 8 , 0 . 2 , 0 . 3 , 0 . 7 )

, byrow=TRUE, nrow=2) , v=c ( 0 . 6 , 0 . 1 ) , r=c ( 5 , 1 2 ) , n = 500)
5 {

6 truez<−rep ( 0 , n )
7 x<−rep ( 0 , n )
8 t ruez [1]<−rbinom ( 1 , 1 , t r u e p i i [ 1 ] )
9 f o r ( i in 2 : n )

10 {

11 i f ( t ruez [ i −1]==0)
12 t ruez [ i ]<−rbinom ( 1 , 1 , truep1 [ 1 , 2 ] )
13 e l s e
14 t ruez [ i ]<−rbinom ( 1 , 1 , truep1 [ 2 , 2 ] )
15 }

16 f o r ( i in 1 : n )
17 {

18 i f ( t ruez [ i ]==0)
19 {

20 x [ i ]<−rnbinom ( 1 , r [ 1 ] , v [ 1 ] )
21 }

22 e l s e
23 {

24 x [ i ]<−rnbinom ( 1 , r [ 2 ] , v [ 2 ] )
25 }

26 }

27 data<− l i s t ( s=truez , o=x )
28 re turn ( data )
29 }

30 ndata <− generate . data ( t r u e p i i = c ( 0 . 5 , 0 . 5 ) , truep1=matrix ( c ( 0 . 8 , 0 . 2 , 0 . 3 , 0 . 7 ) ,
byrow=TRUE, nrow=2) , v=c ( 0 . 6 , 0 . 1 ) , r=c ( 5 , 1 2 ) , n = 500)

31 x<−ndata$o
32 truez<−ndata$s
33

34 mrf NB<− func t ion ( x , MCMCsteps=20000 , burnin =10000 , Pprior=c ( 1 , 1 , 0 . 5 , 0 . 5 ) ,
gammaprior=c ( 5 , 1 ) )

35 {
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36

37 Ncomponent = 2
38 p 1 s t a r t <− matrix ( c ( 0 . 7 , 0 . 3 , 0 . 4 , 0 . 6 ) , byrow=TRUE, nrow=2)
39 r s t a r t = 3
40 v s t a r t = 0 . 2
41 P 1 s t a r t = 0 . 2
42 P 2 s t a r t = 0 . 4
43 z s t a r t <− 1−(x<=5)
44 n=length ( x )
45 p=p 1 s t a r t
46 r r = r s t a r t
47 vv = v s t a r t
48 P1 = P 1 s t a r t
49 P2 = P 2 s t a r t
50 CHAIN P1 = P 1 s t a r t
51 CHAIN P2 = P 2 s t a r t
52 CHAIN r= r s t a r t
53 CHAIN v=v s t a r t
54 z= z s t a r t
55

56 f o r ( s tep in 1 : MCMCsteps)
57 {

58 p r i n t ( c ( ” i t e r a t i o n ” , s tep ) )
59 s tep
60

61 cpost = sum( dnbinom ( subset ( x , z==0) , rr , vv , log=T ) ) + log ( vv ∗ (1−vv ) ) +

dgamma( rr , gammaprior [ 1 ] , gammaprior [ 2 ] , log=T )
62 rprop = rgamma ( 1 , r r ∗ 2 , 2 )
63 vprop = r d i r i c h l e t ( 1 , 30 ∗ c ( vv , 1−vv ) )
64 npost = sum( dnbinom ( subset ( x , z==0) , rprop , vprop [ 1 ] , log=T ) ) + log ( vprop

[ 1 ] ∗ (1−vprop [ 1 ] ) ) + dgamma( rprop , gammaprior [ 1 ] , gammaprior [ 2 ] , log=T )
65 tempn = npost − dgamma( rprop , r r ∗ 2 , 2 , log=T )− log ( d d i r i c h l e t ( vprop , 30 ∗ c ( vv

, 1−vv ) ) )
66 tempc = cpost − dgamma( rr , rprop ∗ 2 , 2 , log=T )− log ( d d i r i c h l e t ( c ( vv , 1−vv ) ,

30 ∗vprop ) )
67 i f ( log ( r u n i f ( 1 ) ) < tempn − tempc )
68 {

69 r r = rprop [ 1 ]
70 vv = vprop [ 1 ]
71 }

72 CHAIN r = c ( CHAIN r , r r )
73 CHAIN v = c (CHAIN v , vv )
74

75 subxz1=subset ( x , z==1)
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76 f reqmatr ix = as . matrix ( subxz1 )%∗%matrix ( 1 , 1 , n )
77 f reqx = rowSums ( t ( f reqmatr ix )==x )
78 Nprob = unique ( cbind ( x , f reqx +1) )
79 f t 2 = r d i r i c h l e t ( 1 , Nprob [ , 2 ] )
80 f2 = colSums ( t ( as . matrix ( f t 2 ) )%∗%matrix ( 1 , 1 , n ) ∗ ( t ( as . matrix ( x )%∗%matrix

( 1 , 1 , length ( f t 2 ) ) )==Nprob [ , 1 ] ) )
81

82 e s t P i <− t a b l e ( z[− length ( z ) ] , z [ −7] )
83 rowtota l <− e s t P i %∗% matrix ( 1 , nrow=nrow ( p ) , ncol =1)
84 Pi <− diag ( as . vec tor ( 1 / rowtota l ) ) %∗% e s t P i
85

86 BetaA=e s t P i [ 1 , 2 ]+ Pprior [ 1 ]
87 BetaB = e s t P i [ 1 , 1 ]+ Pprior [ 2 ]
88 P1 = rbe ta ( 1 , BetaA+1 , BetaB +1)
89 CHAIN P1 = c (CHAIN P1 , P1 )
90

91 BetaC = e s t P i [ 2 , 2 ]+ Pprior [ 3 ]
92 BetaD = e s t P i [ 2 , 1 ]+ Pprior [ 4 ]
93 P2 = rbe ta ( 1 , BetaC +1 , BetaD+1)
94 CHAIN P2 = c (CHAIN P2 , P2 )
95

96 PP = matrix ( 0 , n , Ncomponent )
97 f o r ( i in 1 : n ) {
98 i f ( i ==1)
99 {

100 PP [ 1 , 1 ] = ( Pi [ 1 , 2 ] ) / ( Pi [ 1 , 2 ]+ Pi [ 2 , 1 ] )
101 PP [ 1 , 2 ] = ( Pi [ 2 , 1 ] ) / ( Pi [ 1 , 2 ]+ Pi [ 2 , 1 ] )
102 }

103 e l s e {
104 PP [ i , 1 ] = Pi [ 1 , 2 ] ∗ Pi [ 1 , 1 ] ∗ dnbinom ( x [ i ] , rr , vv )
105 PP [ i , 2 ] = Pi [ 2 , 2 ] ∗ Pi [ 2 , 1 ] ∗ f2 [ i ]
106 }

107 }

108 PP = PP / rowSums ( PP )
109 f o r ( i in 1 : n ) {
110 z [ i ] = sample ( 1 : Ncomponent , s i z e =1 , r e p l a c e=T , PP [ i , ] ) −1
111 }

112 }

113 para . samples <−as . matrix ( cbind ( ( CHAIN P1 [ ( burnin +1) : MCMCsteps ] ) , ( CHAIN P2 [ (
burnin +1) : MCMCsteps ] ) , ( CHAIN v [ ( burnin +1) : MCMCsteps ] ) , ( CHAIN r [ ( burnin +1) :
MCMCsteps ] ) ) )

114 colnames ( para . samples ) <− c ( ”P1” , ”P2” , ”v” , ” r ” )
115 para <− round ( apply ( para . samples , 2 , mean) , 4 )
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116 quan <− cbind ( q u a n t i l e (CHAIN P1 [ ( burnin +1) : MCMCsteps ] , prob=c ( 0 . 0 2 5 , 0 . 9 7 5 ) ) ,
q u a n t i l e (CHAIN P2 [ ( burnin +1) : MCMCsteps ] , prob=c ( 0 . 0 2 5 , 0 . 9 7 5 ) ) , q u a n t i l e (
CHAIN v [ ( burnin +1) : MCMCsteps ] , prob=c ( 0 . 0 2 5 , 0 . 9 7 5 ) ) , q u a n t i l e ( CHAIN r [ ( burnin
+1) : MCMCsteps ] , prob=c ( 0 . 0 2 5 , 0 . 9 7 5 ) ) )

117 colnames ( quan ) <− c ( ”P1” , ”P2” , ”v” , ” r ” )
118 c l a s s r a t e <− 1−(sum( diag ( t a b l e ( truez , z ) ) ) ) / ( sum( t a b l e ( truez , z ) ) )
119 re turn ( l i s t ( parameters=para . samples , mean=para , q u a n t i l e s=quan , errorRate=

c l a s s r a t e ) )
120 }

121 NB mrf <− mrf NB ( x , MCMCsteps=20000 , burnin =10000 , Pprior=c ( 1 , 1 , 0 . 5 , 0 . 5 ) ,
gammaprior=c ( 5 , 2 ) )

122 NB mrf

C.2.2 Simulation studies in Scenario 2: ZIP distribution for the noise

component

1

2 rm( l i s t = l s ( ) )
3 l i b r a r y ( ” g t o o l s ” )
4 l i b r a r y ( ”gamlss . d i s t ” )
5

6 generate . data<−func t ion ( t r u e p i i = c ( 0 . 1 , 0 . 9 ) , truep1 = matrix ( c ( 0 . 7 , 0 . 3 , 0 . 2 , 0 . 8 )
, byrow=TRUE, nrow=2) , truelambda =2 , t r u e p i e = 0 . 5 , v =0 .6 , r =75 ,n = 500)

7 {

8 truez<−rep ( 0 , n )
9 x<−rep ( 0 , n )

10 t ruez [1]<−rbinom ( 1 , 1 , t r u e p i i [ 1 ] )
11 f o r ( i in 2 : n )
12 {

13 i f ( t ruez [ i −1]==0)
14 t ruez [ i ]<−rbinom ( 1 , 1 , truep1 [ 1 , 2 ] )
15 e l s e
16 t ruez [ i ]<−rbinom ( 1 , 1 , truep1 [ 2 , 2 ] )
17 }

18 f o r ( i in 1 : n )
19 {

20 i f ( t ruez [ i ]==0)
21 {

22 x [ i ]<−rZIP ( 1 , truelambda , t r u e p i e )
23

24 }
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25 e l s e
26 {

27 x [ i ]<−rnbinom ( 1 , r , v )
28 }

29 }

30 data<− l i s t ( s=truez , o=x )
31 re turn ( data )
32 }

33 ndata <− generate . data ( t r u e p i i = c ( 0 . 1 , 0 . 9 ) , truep1 = matrix ( c
( 0 . 7 , 0 . 3 , 0 . 2 , 0 . 8 ) , byrow=TRUE, nrow=2) , truelambda =2 , t r u e p i e = 0 . 5 , v =0 .6 , r
=75 ,n = 500)

34 x <−ndata$o
35 t ruez <− ndata$s
36

37 mrf ZIP <− func t ion ( x , MCMCsteps=20000 , burnin = 10000 , Pprior=c ( 1 , 1 , 0 . 5 , 0 . 5 ) ,
gammaprior= c ( 4 , 2 ) , p i e p r i o r=c ( 4 , 2 ) )

38 {

39 p 1 s t a r t <− matrix ( c ( 0 . 8 , 0 . 2 , 0 . 5 , 0 . 5 ) , byrow=TRUE, nrow=2)
40 p i e s t a r t = 0 . 2
41 lambda star t= 3
42 Ncomponent = 2
43 P 1 s t a r t = 0 . 1
44 P 2 s t a r t = 0 . 2
45 y s t a r t <− 1−(x<=5)
46 z s t a r t <− 1−(x<=5)
47 n = length ( x )
48 p=p 1 s t a r t
49 lambda=lambda star t
50 pie = p i e s t a r t
51 P1 = P 1 s t a r t
52 P2 = P 2 s t a r t
53 CHAIN lambda=lambda
54 CHAIN P1 = P1
55 CHAIN P2 = P2
56 z= z s t a r t
57 y=y s t a r t
58 CHAIN pie=pie
59

60 f o r ( s tep in 1 : MCMCsteps)
61 {

62 p r i n t ( c ( ” i t e r a t i o n ” , s tep ) )
63 s tep
64

65 e s t P i <− t a b l e ( z[− length ( z ) ] , z [ −1] )
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66 rowtota l <− e s t P i %∗% matrix ( 1 , nrow=nrow ( p ) , ncol =1)
67 Pi <− diag ( as . vec tor ( 1 / rowtota l ) ) %∗% e s t P i
68

69 BetaA = e s t P i [ 1 , 2 ]+ Pprior [ 1 ]
70 BetaB = e s t P i [ 1 , 1 ]+ Pprior [ 2 ]
71 P1 = rbe ta ( 1 , BetaA+1 , BetaB +1)
72 CHAIN P1 = c (CHAIN P1 , P1 )
73

74 BetaC = e s t P i [ 2 , 2 ]+ Pprior [ 3 ]
75 BetaD = e s t P i [ 2 , 1 ]+ Pprior [ 4 ]
76 P2 = rbe ta ( 1 , BetaC +1 , BetaD+1)
77 CHAIN P2 = c (CHAIN P2 , P2 )
78

79 subxz1=subset ( x , z==1)
80 f reqmatr ix = as . matrix ( subxz1 )%∗%matrix ( 1 , 1 , n )
81 f reqx = rowSums ( t ( f reqmatr ix )==x )
82 Nprob = unique ( cbind ( x , f reqx +1) )
83 f t 2 = r d i r i c h l e t ( 1 , Nprob [ , 2 ] )
84 f2 = colSums ( t ( as . matrix ( f t 2 ) )%∗%matrix ( 1 , 1 , n ) ∗ ( t ( as . matrix ( x )%∗%matrix

( 1 , 1 , length ( f t 2 ) ) )==Nprob [ , 1 ] ) )
85

86 pieA = sum( z==0&y==0)+p i e p r i o r [ 1 ]
87 pieB = sum( z==0&y==1)+p i e p r i o r [ 2 ]
88 pie = rbe ta ( 1 , pieB +1 , pieA+1)
89 CHAIN pie = c ( CHAIN pie , pie )
90

91 a <− i f e l s e ( x ==0 ,1 ,0) ∗ pie
92 b <− dpois ( x , lambda ) ∗ (1−pie )
93 pq = b / ( a+b )
94 y <−rbinom ( n , 1 , pq )
95

96 PP = matrix ( 0 , n , Ncomponent )
97 f o r ( c in 1 : n ) {
98 i f ( c==1)
99 {

100 PP [ 1 , 1 ] = ( Pi [ 1 , 2 ] ) / ( Pi [ 1 , 2 ]+ Pi [ 2 , 1 ] )
101 PP [ 1 , 2 ] = ( Pi [ 2 , 1 ] ) / ( Pi [ 1 , 2 ]+ Pi [ 2 , 1 ] )
102 }

103 e l s e {
104 PP [ c , 1 ] = P1 ∗ (1−P1 ) ∗ dZIP ( x [ c ] , lambda , pie )
105 PP [ c , 2 ] = P2 ∗ (1−P2 ) ∗ f2 [ c ]
106 }

107 }

108 PP = PP / rowSums ( PP )
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109 f o r ( i in 1 : n ) {
110 z [ i ] = sample ( 1 : Ncomponent , s i z e =1 , r e p l a c e=T , PP [ i , ] ) −1
111 }

112

113 GammaA = sum( x ∗ ( z==0&y==1) )+gammaprior [ 1 ]
114 GammaB = sum( z==0&y==1)+gammaprior [ 2 ]
115 lambda = rgamma ( 1 , GammaA+1 , GammaB)
116 CHAIN lambda = c ( CHAIN lambda , lambda )
117 }

118 para . samples=as . matrix ( cbind ( ( CHAIN P1 [ ( burnin +1) : MCMCsteps ] ) , ( CHAIN P2 [ (
burnin +1) : MCMCsteps ] ) , ( CHAIN lambda [ ( burnin +1) : MCMCsteps ] ) , ( CHAIN pie [ (
burnin +1) : MCMCsteps ] ) ) )

119 colnames ( para . samples ) <− c ( ”P1” , ”P2” , ”lambda” , ” pie ” )
120 para=round ( apply ( para . samples , 2 , mean) , 4 )
121 quan <− cbind ( q u a n t i l e (CHAIN P1 [ ( burnin +1) : MCMCsteps ] , prob=c ( 0 . 0 2 5 , 0 . 9 7 5 ) ) ,

q u a n t i l e (CHAIN P2 [ ( burnin +1) : MCMCsteps ] , prob=c ( 0 . 0 2 5 , 0 . 9 7 5 ) ) , q u a n t i l e (
CHAIN lambda [ ( burnin +1) : MCMCsteps ] , prob=c ( 0 . 0 2 5 , 0 . 9 7 5 ) ) , q u a n t i l e ( CHAIN pie
[ ( burnin +1) : MCMCsteps ] , prob=c ( 0 . 0 2 5 , 0 . 9 7 5 ) ) )

122 colnames ( quan ) <− c ( ”P1” , ”P2” , ”lambda” , ” pie ” )
123 c l a s s r a t e <− 1−(sum( diag ( t a b l e ( truez , z ) ) ) ) / ( sum( t a b l e ( truez , z ) ) )
124 re turn ( l i s t ( parameters=para . samples , means=para , q u a n t i l e s=quan , r a t e=c l a s s r a t e )

)
125 }

126 ZIP mrf <− mrf ZIP ( x , MCMCsteps=20000 , burnin = 10000 , Pprior=c ( 1 , 1 , 0 . 5 , 0 . 5 ) ,
gammaprior= c ( 4 , 2 ) , p i e p r i o r=c ( 4 , 2 ) )

127 ZIP mrf
128

129 ## ########### p l o t s ################
130 p l o t (CHAIN P1 , type=” l ” , ylab=”P1” , xlab=” i t e r a t i o n s ” , c o l=” red ” )
131 p l o t (CHAIN P2 , type=” l ” , ylab=”P2” , xlab=” i t e r a t i o n s ” , c o l=” red ” )
132 p l o t (V, type=” l ” , ylab=”v” , xlab=” i t e r a t i o n s ” , c o l=” red ” )
133 p l o t ( CHAIN r , type=” l ” , ylab=” r ” , xlab=” i t e r a t i o n s ” , c o l=” red ” )
134 p l o t ( CHAIN pie , type=” l ” , ylab=” pie ” , xlab=” i t e r a t i o n s ” , c o l=” red ” )

C.2.3 Simulation studies in Scenario 3: ZINB distribution for the noise

component

1

2 rm( l i s t = l s ( ) )
3 l i b r a r y ( ” g t o o l s ” )
4 l i b r a r y ( ”gamlss . d i s t ” )
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5 generate . data <− func t ion ( t r u e p i i = c ( 0 . 1 , 0 . 9 ) , truep1=matrix ( c ( 0 . 7 , 0 . 3 , 0 . 2 , 0 . 8 )
, byrow=TRUE, nrow=2) , t r u e p i e =0 .5 , v=c ( 0 . 2 , 0 . 6 ) , r=c ( 3 , 3 7 ) , n =500)

6 {

7 truez<−rep ( 0 , n )
8 x<−rep ( 0 , n )
9 t ruez [1]<−rbinom ( 1 , 1 , t r u e p i i [ 1 ] )

10 f o r ( i in 2 : n )
11 {

12 i f ( t ruez [ i −1]==0)
13 t ruez [ i ]<−rbinom ( 1 , 1 , truep1 [ 1 , 2 ] )
14 e l s e
15 t ruez [ i ]<−rbinom ( 1 , 1 , truep1 [ 2 , 2 ] )
16 }

17 f o r ( i in 1 : n )
18 {

19 i f ( t ruez [ i ]==0)
20 {

21 x [ i ]<−rZINBI ( 1 , r [ 1 ] , v [ 1 ] , t r u e p i e )
22 }

23 e l s e
24 {

25 x [ i ]<−rnbinom ( 1 , r [ 2 ] , v [ 2 ] )
26

27 }

28 }

29 data<− l i s t ( s=truez , o=x )
30 re turn ( data )
31 }

32 ndata <− generate . data ( t r u e p i i = c ( 0 . 1 , 0 . 9 ) , truep1=matrix ( c ( 0 . 7 , 0 . 3 , 0 . 2 , 0 . 8 ) ,
byrow=TRUE, nrow=2) , t r u e p i e =0 .5 , v=c ( 0 . 2 , 0 . 6 ) , r=c ( 3 , 3 7 ) , n =500)

33 x <− ndata$o
34 t ruez <−ndata$s
35

36 mrf ZINB <− func t ion ( x , MCMCsteps=20000 , burnin = 10000 , Pprior=c ( 1 , 1 , 0 . 5 , 0 . 5 )
, p i e p r i o r=c ( 1 , 2 ) , gammaprior=c ( 7 , 1 ) )

37 {

38 Ncomponent = 2
39 p 1 s t a r t <− matrix ( c ( 0 . 7 , 0 . 3 , 0 . 5 , 0 . 5 ) , byrow=TRUE, nrow=2)
40 p i e s t a r t = 0 . 2
41 r s t a r t = 3
42 v s t a r t = 0 . 2
43 P 1 s t a r t = 0 . 2
44 P 2 s t a r t = 0 . 4
45 y s t a r t <− 1−(x<=7)
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46 z s t a r t <− 1−(x<=7)
47 n= length ( x )
48 p=p 1 s t a r t
49 pie = p i e s t a r t
50 r r = r s t a r t
51 vv = v s t a r t
52 P1 = P 1 s t a r t
53 P2 = P 2 s t a r t
54 CHAIN P1 = P1
55 CHAIN P2 = P2
56 CHAIN r=r r
57 CHAIN v=vv
58 z= z s t a r t
59 y=y s t a r t
60 CHAIN pie=pie
61

62 f o r ( s tep in 1 : MCMCsteps)
63 {

64 p r i n t ( c ( ” i t e r a t i o n ” , s tep ) )
65 s tep
66

67 cpost = sum( dnbinom ( subset ( x , z==0&y==1) , rr , vv , log=T ) ) + log ( vv ∗ (1−vv ) )
+ dgamma( rr , gammaprior [ 1 ] , gammaprior [ 2 ] , log=T )

68 rprop = rgamma ( 1 , r r ∗ 2 , 2 )
69 vprop = r d i r i c h l e t ( 1 , 30 ∗ c ( vv , 1−vv ) )
70 npost = sum( dnbinom ( subset ( x , z==0&y==1) , rprop , vprop [ 1 ] , log=T ) ) + log (

vprop [ 1 ] ∗ (1−vprop [ 1 ] ) ) + dgamma( rprop , gammaprior [ 1 ] , gammaprior [ 2 ] , log=T )
71 tempn = npost − dgamma( rprop , r r ∗ 2 , 2 , log=T )− log ( d d i r i c h l e t ( vprop , 30 ∗ c (

vv , 1−vv ) ) )
72 tempc = cpost − dgamma( rr , rprop ∗ 2 , 2 , log=T )− log ( d d i r i c h l e t ( c ( vv , 1−vv ) ,

30 ∗vprop ) )
73 i f ( log ( r u n i f ( 1 ) ) < tempn − tempc )
74 {

75 r r = rprop [ 1 ]
76 vv = vprop [ 1 ]
77 }

78 CHAIN r = c ( CHAIN r , r r )
79 CHAIN v = c (CHAIN v , vv )
80

81 subxz1=subset ( x , z==1)
82 f reqmatr ix = as . matrix ( subxz1 )%∗%matrix ( 1 , 1 , n )
83 f reqx = rowSums ( t ( f reqmatr ix )==x )
84 Nprob = unique ( cbind ( x , f reqx +1) )
85 f t 2 = r d i r i c h l e t ( 1 , Nprob [ , 2 ] )
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86 f2 = colSums ( t ( as . matrix ( f t 2 ) )%∗%matrix ( 1 , 1 , n ) ∗ ( t ( as . matrix ( x )%∗%matrix
( 1 , 1 , length ( f t 2 ) ) )==Nprob [ , 1 ] ) )

87

88 e s t P i <− t a b l e ( z[− length ( z ) ] , z [ −1] )
89 rowtota l <− e s t P i %∗% matrix ( 1 , nrow=nrow ( p ) , ncol =1)
90 Pi <− diag ( as . vec tor ( 1 / rowtota l ) ) %∗% e s t P i
91

92 BetaA=e s t P i [ 1 , 2 ]+ Pprior [ 1 ]
93 BetaB = e s t P i [ 1 , 1 ]+ Pprior [ 2 ]
94 P1 = rbe ta ( 1 , BetaA+1 , BetaB +1)
95 CHAIN P1 = c (CHAIN P1 , P1 )
96

97 BetaC = e s t P i [ 2 , 2 ]+ Pprior [ 3 ]
98 BetaD = e s t P i [ 2 , 1 ]+ Pprior [ 4 ]
99 P2 = rbe ta ( 1 , BetaC +1 , BetaD+1)

100 CHAIN P2 = c (CHAIN P2 , P2 )
101

102 pieA = sum( z==0&y==0)+p i e p r i o r [ 1 ]
103 pieB = sum( z==0&y==1)+p i e p r i o r [ 2 ]
104 pie = rbe ta ( 1 , pieB +1 , pieA+1)
105 CHAIN pie = c ( CHAIN pie , pie )
106

107 a <− i f e l s e ( x ==0 ,1 ,0) ∗ pie
108 b <− (1−pie ) ∗dnbinom ( x , rr , vv )
109 pq = b / ( a+b )
110 y = rbinom ( n , 1 , pq )
111

112 PP = matrix ( 0 , n , Ncomponent )
113 f o r ( c in 1 : n ) {
114 i f ( c==1)
115 {

116 PP [ 1 , 1 ] = ( Pi [ 1 , 2 ] ) / ( Pi [ 1 , 2 ]+ Pi [ 2 , 1 ] )
117 PP [ 1 , 2 ] = ( Pi [ 2 , 1 ] ) / ( Pi [ 1 , 2 ]+ Pi [ 2 , 1 ] )
118 }

119 e l s e {
120 PP [ c , 1 ] = Pi [ 1 , 2 ] ∗ Pi [ 1 , 1 ] ∗ dZINBI ( x [ c ] , rr , vv , pie , log = FALSE)
121 PP [ c , 2 ] = Pi [ 2 , 2 ] ∗ Pi [ 2 , 1 ] ∗ f2 [ c ]
122 }

123 }

124 PP = PP / rowSums ( PP )
125 f o r ( i in 1 : n ) {
126 z [ i ] = sample ( 1 : Ncomponent , s i z e =1 , r e p l a c e=T , PP [ i , ] ) −1
127 }

128 }
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129 para . samples <−as . matrix ( cbind ( ( CHAIN P1 [ ( burnin +1) : MCMCsteps ] ) , ( CHAIN P2 [ (
burnin +1) : MCMCsteps ] ) , ( CHAIN v [ ( burnin +1) : MCMCsteps ] ) , ( CHAIN r [ ( burnin +1) :
MCMCsteps ] ) , ( CHAIN pie [ ( burnin +1) : MCMCsteps ] ) ) )

130 colnames ( para . samples ) <− c ( ”P1” , ”P2” , ”v” , ” r ” , ” pie ” )
131 para <− round ( apply ( para . samples , 2 , mean) , 4 )
132 quan <− cbind ( q u a n t i l e (CHAIN P1 [ ( burnin +1) : MCMCsteps ] , prob=c ( 0 . 0 2 5 , 0 . 9 7 5 ) ) ,

q u a n t i l e (CHAIN P2 [ ( burnin +1) : MCMCsteps ] , prob=c ( 0 . 0 2 5 , 0 . 9 7 5 ) ) , q u a n t i l e (
CHAIN v [ ( burnin +1) : MCMCsteps ] , prob=c ( 0 . 0 2 5 , 0 . 9 7 5 ) ) , q u a n t i l e ( CHAIN r [ ( burnin
+1) : MCMCsteps ] , prob=c ( 0 . 0 2 5 , 0 . 9 7 5 ) ) , q u a n t i l e ( CHAIN pie [ ( burnin +1) : MCMCsteps
] , prob=c ( 0 . 0 2 5 , 0 . 9 7 5 ) ) )

133 colnames ( quan ) <− c ( ”P1” , ”P2” , ”v” , ” r ” , ” pie ” )
134 c l a s s r a t e <− 1−(sum( diag ( t a b l e ( truez , z ) ) ) ) / ( sum( t a b l e ( truez , z ) ) )
135 re turn ( l i s t ( parameters=para . samples , mean=para , q u a n t i l e s=quan , r a t e=c l a s s r a t e ) )
136

137 }

138 ZINB mrf <− mrf ZINB ( x , MCMCsteps=20000 , burnin = 10000 , Pprior=c ( 1 , 1 , 0 . 5 , 0 . 5 )
, p i e p r i o r=c ( 1 , 2 ) , gammaprior=c ( 7 , 1 ) )

139 ZINB mrf

C.2.4 Data analysis for MRF model

1 rm( l i s t = l s ( ) )
2 l i b r a r y ( ” p a r a l l e l ” )
3 l i b r a r y ( ” enRich ” )
4 data ( p300cbp . 2 0 0 bp )
5 genet i c data <−p300cbp . 2 0 0 bp
6 write . csv ( genet i c data , ” g e n e t i c data . csv ” )
7

8 Chrome21<−read . csv ( ” g e n e t i c data . csv ” , sep= ’ , ’ , header=TRUE)
9 s t r ( Chrome21 )

10 summary ( Chrome21 )
11 x <− Chrome21$count . p300T301 [ 1 : 2 3 4 7 2 0 ]
12 n = length ( x )
13

14 mrf ZIP <− func t ion ( x , MCMCsteps=20000 , burnin = 10000 , Pprior=c ( 2 , 2 , 1 , 1 ) ,
p i e p r i o r=c ( 2 , 1 ) , gammaprior=c ( 4 , 2 ) )

15 {

16

17 f o r ( s tep in 1 : MCMCsteps)
18 {

19 p 1 s t a r t <− matrix ( c ( 0 . 8 , 0 . 2 , 0 . 5 , 0 . 5 ) , byrow=TRUE, nrow=2)
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20 p i e s t a r t = 0 .002
21 lambda star t= 4
22 Ncomponent = 2
23 P 1 s t a r t = 0 .001
24 P 2 s t a r t = 0 . 0 4
25 y s t a r t <− 1−(x<=7)
26 z s t a r t <− 1−(x<=7)
27 n = length ( x )
28 p=p 1 s t a r t
29 lambda=lambda star t
30 pie = p i e s t a r t
31 P1 = P 1 s t a r t
32 P2 = P 2 s t a r t
33 CHAIN lambda=lambda
34 CHAIN P1 = P1
35 CHAIN P2 = P2
36 z= z s t a r t
37 y=y s t a r t
38 CHAIN pie=pie
39

40 e s t P i <− t a b l e ( z[− length ( z ) ] , z [ −1] )
41 rowtota l <− e s t P i %∗% matrix ( 1 , nrow=nrow ( p ) , ncol =1)
42 Pi <− diag ( as . vec tor ( 1 / rowtota l ) ) %∗% e s t P i
43

44 BetaA = e s t P i [ 1 , 2 ]+ Pprior [ 1 ]
45 BetaB = e s t P i [ 1 , 1 ]+ Pprior [ 2 ]
46 P1 = rbe ta ( 1 , BetaA+1 , BetaB +1)
47 CHAIN P1 = c (CHAIN P1 , P1 )
48

49 BetaC = e s t P i [ 2 , 2 ]+ Pprior [ 3 ]
50 BetaD = e s t P i [ 2 , 1 ]+ Pprior [ 4 ]
51 P2 = rbe ta ( 1 , BetaC +1 , BetaD+1)
52 CHAIN P2 = c (CHAIN P2 , P2 )
53

54 subxz1=subset ( x , z==1)
55 f reqmatr ix = as . matrix ( subxz1 )%∗%matrix ( 1 , 1 , n )
56 f reqx = rowSums ( t ( f reqmatr ix )==x )
57 Nprob = unique ( cbind ( x , f reqx +1) )
58 f t 2 = r d i r i c h l e t ( 1 , Nprob [ , 2 ] )
59 f2 = colSums ( t ( as . matrix ( f t 2 ) )%∗%matrix ( 1 , 1 , n ) ∗ ( t ( as . matrix ( x )%∗%matrix

( 1 , 1 , length ( f t 2 ) ) )==Nprob [ , 1 ] ) )
60

61 pieA = sum( z==0&y==0)+p i e p r i o r [ 1 ]
62 pieB = sum( z==0&y==1)+p i e p r i o r [ 2 ]
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63 pie = rbe ta ( 1 , pieB +1 , pieA+1)
64 CHAIN pie = c ( CHAIN pie , pie )
65

66 a <− i f e l s e ( x ==0 ,1 ,0) ∗ pie
67 b <− dpois ( x , lambda ) ∗ (1−pie )
68 pq = b / ( a+b )
69 y <−rbinom ( n , 1 , pq )
70

71 GammaA = sum( x ∗ ( z==0&y==1) )+gammaprior [ 1 ]
72 GammaB = sum( z==0&y==1)+gammaprior [ 2 ]
73 lambda = rgamma ( 1 , GammaA+1 , GammaB)
74 CHAIN lambda = c ( CHAIN lambda , lambda )
75

76 PP = matrix ( 0 , n , Ncomponent )
77 f o r ( c in 1 : n ) {
78 i f ( c==1)
79 {

80 PP [ 1 , 1 ] = ( Pi [ 1 , 2 ] ) / ( Pi [ 1 , 2 ]+ Pi [ 2 , 1 ] )
81 PP [ 1 , 2 ] = ( Pi [ 2 , 1 ] ) / ( Pi [ 1 , 2 ]+ Pi [ 2 , 1 ] )
82 }

83 e l s e {
84 PP [ c , 1 ] = P1 ∗ (1−P1 ) ∗ dZIP ( x [ c ] , lambda , pie )
85 PP [ c , 2 ] = P2 ∗ (1−P2 ) ∗ f2 [ c ]
86 }

87 }

88 PP = PP / rowSums ( PP )
89 f o r ( i in 1 : n ) {
90 z [ i ] = sample ( 1 : Ncomponent , s i z e =1 , r e p l a c e=T , PP [ i , ] ) −1
91 }

92 }

93 re turn ( PP=PP )
94 }

95

96 subx <− s p l i t ( x , c e i l i n g ( seq along ( x ) /7 8 2 4 0 ) )
97 mynodes <− makeCluster ( 2 0 )
98 c lusterEvalQ ( mynodes , l i b r a r y ( g t o o l s ) )
99 c lusterEvalQ ( mynodes , l i b r a r y ( gamlss . d i s t ) )

100 parx <− parLapply ( mynodes , subx , mrf ZIP )
101 s topClus ter ( mynodes )
102

103 co l1 <− lapply ( parx , func t ion ( x ) x [ , 1 ] )
104 co l2 <− lapply ( parx , func t ion ( x ) x [ , 2 ] )
105 PPs <− matrix ( cbind ( u n l i s t ( co l1 ) , u n l i s t ( co l2 ) ) , ncol =2)
106
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107 genome wide <− func t ion ( PPs , thr =0 .005) {
108 fdr<−sum( subset ( PPs [ , 1 ] , PPs [ ,1 ] < thr ) / sum( PPs [ ,1 ] < thr ) )
109 enrich<−which ( PPs [ ,1 ] < thr )
110 sum . enr ich <−sum( PPs [ ,1 ] < thr )
111 re turn ( l i s t ( fdr=fdr , enr ich=enrich , sum . enr ich=sum . enr ich ) )
112 }

113 genome . mrf<−genome wide ( PPs , thr =0 .005)
114 fdr<−genome . mrf$fdr
115 enrich<−genome . mrf$enrich
116 sum . enrich<−genome . mrf$sum . enr ich
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