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NUMERICAL INSTABILITY OF RESULTANT METHODS FOR

MULTIDIMENSIONAL ROOTFINDING

VANNI NOFERINI∗ AND ALEX TOWNSEND†

Abstract. Hidden-variable resultant methods are a class of algorithms for solving multidimen-
sional polynomial rootfinding problems. In two dimensions, when significant care is taken, they are
competitive practical rootfinders. However, in higher dimensions they are known to miss zeros, cal-
culate roots to low precision, and introduce spurious solutions. We show that the hidden variable
resultant method based on the Cayley (Dixon or Bézout) matrix is inherently and spectacularly
numerically unstable by a factor that grows exponentially with the dimension. We also show that
the Sylvester matrix for solving bivariate polynomial systems can square the condition number of
the problem. In other words, two popular hidden variable resultant methods are numerically unsta-
ble, and this mathematically explains the difficulties that are frequently reported by practitioners.
Regardless of how the constructed polynomial eigenvalue problem is solved, severe numerical dif-
ficulties will be present. Along the way, we prove that the Cayley resultant is a generalization of
Cramer’s rule for solving linear systems and generalize Clenshaw’s algorithm to an evaluation scheme
for polynomials expressed in a degree-graded polynomial basis.
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1. Introduction. Hidden variable resultant methods are a popular class of al-
gorithms for global multidimensional rootfinding [1, 17, 27, 35, 39, 40]. They compute
all the solutions to zero-dimensional polynomial systems of the form:



p1(x1, . . . , xd)

...
pd(x1, . . . , xd)


 = 0, (x1, . . . , xd) ∈ C

d, (1.1)

where d ≥ 2 and p1, . . . , pd are polynomials in x1, . . . , xd with complex coefficients.
Mathematically, they are based on an elegant idea that converts the multidimensional
rootfinding problem in (1.1) into one or more eigenvalue problems [6]. At first these
methods appear to be a practitioner’s dream as a difficult rootfinding problem is
solved by the robust QR or QZ algorithm. Desirably, these methods have received
considerable research attention from the scientific computing community [10, 18, 30,
46].

Despite this significant interest, hidden variable resultant methods are notoriously
difficult, if not impossible, to make numerically robust. Most naive implementations
will introduce unwanted spurious solutions, compute roots inaccurately, and unpre-
dictably miss zeros [8]. Spurious solutions can be removed by manually checking that
all the solutions satisfy (1.1), inaccurate roots can usually be polished by Newton’s
method, but entirely missing a zero is detrimental to a global rootfinding algorithm.

The higher the polynomial degree n and the dimension d, the more pronounced
the numerical difficulties become. Though our conditioning bounds do hold for small
n and d, this paper deals with a worst-case analysis. Hence, our conclusions are
not inconsistent with the observation that (at least when n and d are small) resultant
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methods can work very well in practice for some problems. When d = 2 and real finite
solutions are of interest, a careful combination of domain subdivision, regularization,
and local refinement has been successfully used together with the Cayley resultant
(also known as the Dixon or Bézout resultant) for large n [35]. This is the algorithm
employed by Chebfun for bivariate global rootfinding [45]. Moreover, for d = 2,
randomization techniques and the QZ algorithm have been combined fruitfully with
the Macaulay resultant [27]. There are also many other ideas [4, 33]. However, these
techniques seem to be less successful in higher dimensions.

In this paper, we show that any plain vanilla hidden variable resultant method
based on the Cayley or Sylvester matrix is a numerically unstable algorithm for solving
a polynomial system. In particular, we show that the hidden variable resultant method
based on the Cayley resultant matrix is numerically unstable for multidimensional
rootfinding with a factor that grows exponentially with d. We show that for d = 2
the Sylvester matrix leads to a hidden variable resultant method that can also square
the conditioning of a root.

We believe that this numerical instability has not been analyzed before because
there are at least two other sources of numerical issues: (1) The hidden variable
resultant method is usually employed with the monomial polynomial basis, which
can be devastating in practice when n is large, and (2) Some rootfinding problems
have inherently ill-conditioned zeros and hence, one does not always expect accurate
solutions. Practitioners can sometimes overcome (1) by representing the polynomials
p1, . . . , pd in another degree-graded polynomial basis1 [8]. However, the numerically
instability that we identify can be observed even when the roots are well-conditioned
and for degree-graded polynomial basis (which includes the monomial, Chebyshev,
and Legendre bases).

We focus on the purely numerical, as opposed to symbolic, algorithm. We take
the view that every arithmetic operation is performed in finite precision. There are
many other rootfinders that either employ only symbolic manipulations [9] or some
kind of symbolic-numerical hybrid [19]. Similar careful symbolic manipulations may
be useful in overcoming the numerical instability that we identify. For example, it
may be possible to somehow transform the polynomial system (1.1) into one that the
resultant method treats in a numerical stable manner.

This paper may be considered as a bearer of bad news. Yet, we take the opposite
and more optimistic view. We are intrigued by the potential positive impact this
paper could have on rootfinders based on resultants since once a numerical instability
has been identified the community is much better placed to circumvent the issue.

We use the following notation. The space of univariate polynomials with complex
coefficients of degree at most n is denoted by Cn[x], the space of d-variate polynomials
of maximal degree n in the variables x1, . . . , xd is denoted by Cn[x1, . . . , xd], and if V
is a vector space then the Cartesian product space V × · · · × V (d-times) is denoted
by (V)d. Finally, we use vec(V) to be the vectorization of the matrix or tensor V to
a column vector (this is equivalent to V(:) in MATLAB).

Our setup is as follows. First, we suppose that a degree-graded polynomial basis
for Cn[x], denoted by φ0, . . . , φn, has been selected. All polynomials will be repre-
sented using this basis. Second, a region of interest Ωd ⊂ Cd is chosen such that
Ωd, where Ωd is the tensor-product domain Ω × · · · × Ω (d times), contains all the
roots that would like to be computed accurately. The domain Ω ⊂ C can be a real

1A polynomial basis {φ0, . . . , φn} for Cn[x] is degree-graded if the degree of φk(x) is exactly k

for 0 ≤ k ≤ n.
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interval or a bounded region in the complex plane. Throughout, we suppose that
supx∈Ω |φk(x)| = 1 for 0 ≤ k ≤ n, which is a very natural normalization.

Our two main results are in Theorem 3.7 and Theorem 4.6. Together they show
that there exist p1, . . . , pd in (1.1) such that

κ(x∗
d, R)︸ ︷︷ ︸

Cond. no. of the eigenproblem

≥ ( ‖J(x∗)−1‖2︸ ︷︷ ︸
Cond. no. of x∗

)d,

where R is either the Cayley (for any d ≥ 2) or Sylvester (for d = 2) resultant matrix.
Such a result shows that in the absolute sense the eigenvalue problem employed by
these two resultant-based methods can be significantly more sensitive to perturbations
than the corresponding root. Together with results about relative conditioning, we
conclude that these rootfinders are numerically unstable (see Section 5).

In the next section we first introduce multidimensional resultants and describe
hidden variable resultant methods for rootfinding. In Section 3 we show that the
hidden variable resultant method based on the Cayley resultant suffers from numerical
instability and in Section 4 we show that the Sylvester matrix has a similar instability
for d = 2. In Section 5 we explain why our absolute conditioning analysis leads to
an additional twist when considering relative conditioning. Finally, in Section 6 we
present a brief outlook on future directions.

2. Background material. This paper requires some knowledge of multidimen-
sional rootfinding, hidden variable resultant methods, matrix polynomials, and con-
ditioning analysis. In this section we briefly review this material.

2.1. Global multidimensional rootfinding. Global rootfinding in high di-
mensions can be a difficult and computationally expensive task. Here, we are con-
cerned with the easiest situation where (1.1) has only simple finite roots.

Definition 2.1 (Simple root). Let x∗ = (x∗
1, . . . , x

∗
d) ∈ Cd be a solution to

the zero-dimensional polynomial system (1.1). Then, we say that x∗ is a simple root
of (1.1) if the Jacobian matrix J(x∗) is invertible, where

J(x∗) =




∂p1

∂x1
(x∗) . . . ∂p1

∂xd

(x∗)

...
. . .

...

∂pd

∂x1
(x∗) . . . ∂pd

∂xd

(x∗)


 ∈ C

d×d. (2.1)

If J(x∗) is not invertible then the problem is ill-conditioned, and a numerically
stable algorithm working in finite precision arithmetic may introduce a spurious solu-
tion or may miss a non-simple root entirely. We will consider the roots of (1.1) that
are well-conditioned (see Proposition 2.9), finite, and simple.

Our focus is on the accuracy of hidden variable resultant methods, not compu-
tational speed. In general, one cannot expect to have a “fast” algorithm for global
multidimensional rootfinding. This is because the zero-dimensional polynomial sys-
tem in (1.1) can potentially have a large number of solutions. To say exactly how
many solutions there can be, we first must be more precise about what we mean by
the degree of a polynomial in the multidimensional setting [38].

Definition 2.2 (Polynomial degree). A d-variate polynomial p(x1, . . . , xd) has
total degree ≤ n if

p(x1, . . . , xd) =
∑

i1+···+id≤n

Ai1,...,id

d∏

k=1

φik (xk)
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for some tensor A. It is of total degree n if one of the terms Ai1,...,id with i1+· · ·+id =
n is nonzero. Moreover, p(x1, . . . , xd) has maximal degree ≤ n if

p(x1, . . . , xd) =

n∑

i1,...,id=0

Ai1,...,id

d∏

k=1

φik(xk)

for some tensor A indexed by 0 ≤ i1, . . . , id ≤ n. It is of maximal degree n if one of
the terms Ai1,...,id with max(i1, . . . , id) = n is nonzero.

Bézout’s Lemma says that if (1.1) involves polynomials of total degree n, then
there are at most nd solutions [29, Chap. 3]. For polynomials of maximal degree we
have the following analogous bound (see also [44, Thm. 5.1]).

Lemma 2.3. The zero-dimensional polynomial system in (1.1), where p1, . . . , pd
are of maximal degree n, can have at most d!nd solutions.

Proof. This is the multihomogeneous Bézout bound, see [38, Thm. 8.5.2]. For
polynomials of maximal degree n the bound is simply perm(nId) = d!nd, where Id is
the d× d identity matrix and perm(A) is the permanent of A.

We have selected maximal degree, rather than total degree, because maximal
degree polynomials are more closely linked to tensor-product constructions and make
later analysis in the multidimensional setting easier. We do not know how to repeat
the same analysis when the polynomials are represented in a sparse basis set.

Suppose that the polynomial system (1.1) contains polynomials of maximal degree
n. Then, to verify that d!nd candidate points are solutions the polynomials p1, . . . , pd
must be evaluated, costing O(n2d) operations. Thus, the optimal worst-case complex-
ity is O(n2d). For many applications global rootfinding is computationally unfeasible
and instead local methods such as Newton’s method and homotopy continuation meth-
ods [3] can be employed to compute a subset of the solutions. Despite the fact that
global multidimensional rootfinding is a computationally intensive task, we still de-
sire a numerically stable algorithm. A survey of numerical rootfinders is given in [44,
Chap. 5].

When d = 1, global numerical rootfinding can be done satisfactorily even with
polynomial degrees in the thousands. Excellent numerical and stable rootfinders can
be built using domain subdivision [7], eigenproblems with colleague or comrade ma-
trices [23], and a careful treatment of dynamic range issues [7].

2.2. Hidden variable resultant methods. The first step of a hidden variable
resultant method is to select a variable, say xd, and regard the d-variate polynomials
p1, . . . , pd in (1.1) as polynomials in x1, . . . , xd−1 with complex coefficients that depend
on xd. That is, we “hide” xd by rewriting pk(x1, . . . , xd) for 1 ≤ k ≤ d as

pk(x1, . . . , xd−1, xd) = pk[xd](x1, . . . , xd−1) =

n∑

i1,...,id−1=0

ci1,...,id−1
(xd)

d−1∏

s=1

φis(xs),

where {φ0, . . . , φn} is a degree-graded polynomial basis for Cn[x]. This new point of
view rewrites (1.1) as a system of d polynomials in d − 1 variables. We now seek all
the x∗

d ∈ C such that p1[x
∗
d], . . . , pd[x

∗
d] have a common root in Ωd−1. Algebraically,

this can be achieved by using a multidimensional resultant [20, Chap. 13].
Definition 2.4 (Multidimensional resultant). Let d ≥ 2 and n ≥ 0. A func-

tional R : (Cn[x1, . . . , xd−1])
d → C is a multidimensional resultant if, for any set

of d polynomials q1, . . . , qd ∈ Cn[x1, . . . , xd−1], R(q1, . . . , qd) is a polynomial in the
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Fig. 1. Mathematically, the zeros of R(p1[xd], . . . , pd[xd]) are the dth component of the solutions

to (1.1). However, numerically the polynomial R(p1[xd], . . . , pd[xd]) can be numerically close to zero

everywhere. Here, we depict the typical behavior of the polynomial R(p1[xd], . . . , pd[xd]) when d = 2,
where the black dots are the exact zeros and the squares are the computed roots. In practice, it can

be difficult to distinguish between spurious solutions and roots that are computed inaccurately.

coefficients of q1, . . . , qd and R(q1, . . . , qd) = 0 if and only if there exists an x∗ ∈ C̃d−1

such that qk(x
∗) = 0 for 1 ≤ k ≤ d, where C̃ denotes the extended complex plane2.

Definition 2.4 defines R up to a nonzero multiplicative constant [11, Thm. 1.6.1].
In the monomial basis it is standard to normalize R so that R(xn

1 , . . . , x
n
d−1, 1) =

1 [11, Thm. 1.6.1(ii)]. For nonmonomial bases, we are not aware of any standard
normalization.

Assuming (1.1) only has finite solutions, if R is a multidimensional resultant then
for any x∗

d ∈ C we have

R(p1[x
∗
d], . . . , pd[x

∗
d])=0 ⇐⇒ ∃(x∗

1, . . . , x
∗
d−1) ∈ C

d−1 s.t. p1(x
∗)= · · ·=pd(x

∗)=0,

where x∗ = (x∗
1, . . . , x

∗
d) ∈ Cd. Thus, we can calculate the dth component of all the

solutions of interest by computing the roots of R(p1[xd], . . . , pd[xd]) and discarding
those outside of Ω. In principle, since R(p1[xd], . . . , pd[xd]) is a univariate polynomial
in xd it is an easy task. However, numerically, R is typically near-zero in large
regions of C, and spurious solutions as well as missed zeros plague this approach in
finite precision arithmetic (see Figure 1). Thus, directly computing the roots of R
is spectacularly numerically unstable for almost all n and d. This approach is rarely
advocated in practice.

Instead, one often considers an associated multidimensional resultant matrix
whose determinant is equal to R. Working with matrices rather than determinants is
beneficial for practical computations, especially when d = 2 [17, 35, 39]. Occasionally,
this variation on hidden variable resultant methods is called numerically confirmed
eliminants to highlight its improved numerical behavior [38, Sec. 6.2.2]. However, we
will show that even after this significant improvement the hidden variable resultant
methods based on the Cayley and Sylvester resultant matrices remain numerically
unstable.

Definition 2.5 (Multidimensional resultant matrix). Let d ≥ 2, n ≥ 0, N ≥ 1,
and R be a multidimensional resultant (see Defintion 2.4). A matrix-valued function

2To make sense of solutions at infinity one can work with homogeneous polynomials [11].
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R : (Cn[x1, . . . , xd−1])
d → CN×N is a multidimensional resultant matrix associated

with R if for any set of d polynomials q1, . . . , qd ∈ Cn[x1, . . . , xd−1] we have

det (R(q1, . . . , qd)) = R(q1, . . . , qd).

There are many types of resultant matrices including Cayley (see Section 3),
Sylvester (see Section 4), Macaulay [27], and others [18, 28, 32]. In this paper we only
consider two of the most popular choices: Cayley and Sylvester resultant matrices.

Theoretically, we can calculate the dth component of the solutions by finding all
the x∗

d ∈ C such that det(R(p1[x
∗
d], . . . , pd[x

∗
d])) = 0. In practice, our analysis will

show that this dth component cannot always be accurately computed.
Each entry of the matrix R(p1[xd], . . . , pd[xd]) is a polynomial in xd of finite

degree. In linear algebra such objects are called matrix polynomials (or polynomial
matrices) and finding the solutions of det(R(p1[xd], . . . , pd[xd])) = 0 is related to a
polynomial eigenproblem [5, 31, 43].

2.3. Matrix polynomials. Since multidimensional resultant matrices are ma-
trices with univariate polynomial entries, matrix polynomials play an important role
in the hidden variable resultant method. A classical reference on matrix polynomials
is the book by Gohberg, Lancaster, and Rodman [22].

Definition 2.6 (Matrix polynomial). Let N ≥ 1 and K ≥ 0. We say that P (λ)
is a (square) matrix polynomial of size N and degree K if P (λ) is an N ×N matrix
whose entries are univariate polynomials in λ of degree ≤ K, where at least one entry
is of degree exactly K.

In fact, since (1.1) is a zero-dimensional polynomial system it can only have a
finite number of isolated solutions and hence, the matrix polynomials we consider are
regular [22].

Definition 2.7 (Regular matrix polynomial). We say that a square matrix
polynomial P (λ) is regular if det(P (λ)) 6= 0 for some λ ∈ C.

A matrix polynomial P (λ) of size N and degree K can be expressed in a degree-
graded polynomial basis as

P (λ) =

K∑

i=0

Aiφi(λ), Ai ∈ C
N×N . (2.2)

When the leading coefficient matrix AK in (2.2) is invertible the eigenvalues of P (λ)
are all finite, and they satisfy det(P (λ)) = 0.

Definition 2.8 (Eigenvector of a regular matrix polynomial). Let P (λ) be a
regular matrix polynomial of size N and degree K. If λ ∈ C is finite and there exists
a non-zero vector v ∈ CN×1 such that P (λ)v = 0 (resp. vTP (λ) = 0), then we say
that v is a right (resp. left) eigenvector of P (λ) corresponding to the eigenvalue λ.

For a regular matrix polynomial P (λ) we have the following relationship between
its eigenvectors and determinant [22]: For any finite λ ∈ C,

det(P (λ)) = 0 ⇐⇒ ∃v ∈ C
N×1 \ {0}, P (λ)v = 0.

In multidimensional rootfinding, one sets P (λ) = R(p1[λ], . . . , pd[λ]) and solves
det(P (λ)) = 0 via the polynomial eigenvalue problem P (λ)v = 0. There are various
algorithms for solving P (λ)v = 0 including linearization [22, 31, 43], the Ehrlich–
Aberth method [5, 21, 41], and contour integration [2]. However, regardless of how
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the polynomial eigenvalue problem is solved in finite precision, the hidden variable
resultant method based on the Cayley or the Sylvester matrix is numerically unstable.

For the popular resultant matrices, such as Cayley and Sylvester, the first d − 1
components of the solutions can be determined from the left or right eigenvectors of
R(p1[x

∗
d], . . . , pd[x

∗
d]). For instance, if linearization is employed, the multidimensional

rootfinding problem is converted into one (typically very large) eigenproblem, which
can be solved by the QR or QZ algorithm. Practitioners often find that the computed
eigenvectors are not accurate enough to adequately determine the d− 1 components.
However, the blame for the observed numerical instability is not only on the eigen-
vectors, but also the eigenvalues. Our analysis will show that the dth component may
not be computed accurately either.

2.4. Conditioning analysis. Not even a numerically stable algorithm can be
expected to accurately compute a simple root of (1.1) if that root is itself sensitive
to small perturbations. Finite precision arithmetic almost always introduces roundoff
errors and if these can cause large perturbations in a root then that solution is ill-
conditioned.

The absolute condition number of a simple root measures how sensitive the loca-
tion of the root is to small perturbations in p1, . . . , pd.

Proposition 2.9 (The absolute condition number of a simple root). Let x∗ =
(x∗

1, . . . , x
∗
d) ∈ C

d be a simple root of (1.1). The absolute condition number of x∗

associated with rootfinding is ‖J(x∗)−1‖2, i.e., the matrix 2-norm of the inverse of
the Jacobian.

Proof. See [35].
As a rule of thumb, a numerically stable rootfinder should be able to compute a

simple root x∗ ∈ Cd to an accuracy of O(max(‖J(x∗)−1‖2, 1)u), where u is the unit
machine roundoff. In contrast, regardless of the condition number of x∗, a numerically
unstable rootfinder may not compute it accurately. Worse still, it may miss solutions
with detrimental consequences.

A hidden variable resultant method computes the dth component of the solutions
by solving the polynomial eigenvalue problem R(p1[xd], . . . , pd[xd])v = 0. The follow-
ing condition number tells us how sensitive an eigenvalue is to small perturbations in
R [35, (12)] (also see [42]):

Definition 2.10 (The absolute condition number of an eigenvalue of a regular
matrix polynomial). Let x∗

d ∈ C be a finite eigenvalue of R(xd)=R(p1[xd], . . . , pd[xd]).
The condition number of x∗

d associated with the eigenvalue problem R(xd)v = 0 is

κ(x∗
d, R) = lim

ǫ→0+
sup

{
1

ǫ
min |x̂d − x∗

d| : det(R̂(x̂d)) = 0

}
, (2.3)

where the supremum is taken over the set of matrix polynomials R̂(xd) such that

maxxd∈Ω ‖R̂(xd)−R(xd)‖2 ≤ ǫ.
A numerical polynomial eigensolver can only be expected to compute the eigen-

value x∗
d satisfying R(x∗

d)v = 0 to an accuracy of O(max(κ(x∗
d, R), 1)u), where u is

unit machine roundoff. We will be interested in how κ(x∗
d, R) relates to the condition

number, ‖J(x∗)−1‖2, of the corresponding root.
It can be quite difficult to calculate κ(x∗

d, R) directly from (2.3), and is usually
more convenient to use the formula below. (Related formulas can be found in [35,
Thm. 1] for symmetric matrix polynomials and in [42, Thm. 5] for general matrix
polynomials.)
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Lemma 2.11. Let R(xd) be a regular matrix polynomial with finite simple eigen-
values. Let x∗

d ∈ C be an eigenvalue of R(xd) with corresponding right and left eigen-
vectors v, w ∈ CN×1. Then, we have

κ(x∗
d, R) =

‖v‖2‖w‖2
|wTR′(xd)v|

,

where R′(xd) denotes the derivative of R with respect to xd.
Proof. The first part of the proof follows the analysis in [42]. Let R(xd) be a

regular matrix polynomial with a simple eigenvalue x∗
d ∈ C and corresponding right

and left eigenvectors v, w ∈ CN×1. A perturbed matrix polynomial R̂(x) = R(x) +
∆R(x) will have a perturbed eigenvalue x̂d and a perturbed eigenvector v̂ = v + δv
such that R(x̂d)v̂ +∆R(x̂d)v̂ = 0, where ‖∆R(x)‖2 ≤ ǫ.

Expanding, keeping only the first order terms, and using R(x∗
d)v = 0 we obtain

(x̂d − x∗
d)R

′(x∗
d)v +R(x∗

d)δv +∆R(x∗
d)v = O(ǫ2).

Multiplying by wT on the left, rearranging, and keeping the first order terms, we
obtain

x̂d = x∗
d −

wT∆R(x∗
d)v

wTR′(x∗
d)v

,

where the derivative in R′(x∗
d) is taken with respect to xd. Thus, from (2.3) we see

that

κ(x∗
d, R) ≤ ‖v‖2‖w‖2

|wTR′(x∗
d)v|

. (2.4)

We now show that the upper bound in (2.4) can be attained. Take ∆R(xd) =
ǫwvT /(‖v‖2‖w‖2). Then, maxxd∈Ω ‖∆R(xd)‖2 = ǫ and

wT∆R(x∗
d)v

wTR′(x∗
d)v

= ǫ
‖v‖2‖w‖2
wTR′(x∗

d)v
.

The result follows by Definition 2.10.
For the Cayley resultant matrix (see Section 3), we will show that κ2(x

∗
d, R) can

be as large as ‖J(x∗)−1‖d2 (see Theorem 3.7). Thus, there can be an exponential
increase in the conditioning that seems inherent to the methodology of the hidden
variable resultant method based on the Cayley resultant matrix. In particular, once
the polynomial eigenvalue problem has been constructed, a backward stable numerical
eigensolver may not compute accurate solutions to (1.1).

We now must tackle the significant challenge of showing that the Cayley and
Sylvester resultant matrices do lead to numerical unstable hidden variable resultant
methods, i.e., for certain solutions x∗ the quantity κ2(x

∗
d, R) can be much larger than

‖J(x∗)−1‖2.
3. The Cayley resultant is numerically unstable for multidimensional

rootfinding. The hidden variable resultant method when based on the Cayley re-
sultant [12] finds the solutions to (1.1) by solving the polynomial eigenvalue problem
given by RCayley(xd)v = 0, where RCayley(xd) is a certain matrix polynomial. To
define it we follow the exposition in [13] and first introduce a related Cayley function
fCayley.
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Definition 3.1 (Cayley function). The Cayley function associated with the poly-
nomials q1, . . . , qd ∈ Cn[x1, . . . , xd−1] is a multivariate polynomial in 2d− 2 variables,
denoted by fCayley = fCayley(q1, . . . , qd), and is given by

fCayley = det




q1(s1, s2, . . . , sd−1) . . . qd(s1, s2, . . . , sd−1)

q1(t1, s2, . . . , sd−1) . . . qd(t1, s2, . . . , sd−1)

...
. . .

...

q1(t1, t2, . . . , td−1) . . . qd(t1, t2, . . . , td−1)




/
d−1∏

i=1

(si − ti). (3.1)

In two dimensions the Cayley function (also known as the Bézoutian function [34])
takes the more familiar form of

fCayley =
1

s1 − t1
det

(
q1(s1) q2(s1)

q1(t1) q2(t1)

)
=

q1(s1)q2(t1)− q2(s1)q1(t1)

s1 − t1
,

which is of degree at most n− 1 in s1 and t1. By carefully applying Laplace’s formula
for the matrix determinant in (3.1), one can see that fCayley is a polynomial of degree
τk ≤ kn− 1 in sk and td−k for 1 ≤ k ≤ d− 1.

Note that fCayley is not the multidimensional resultant (except when τk = 0 for
all k). Instead, fCayley is a function that is a convenient way to define the Cayley
resultant matrix.

Let {φ0, φ1, . . . , } be the selected degree-graded polynomial basis. The Cayley
resultant matrix depends on the polynomial basis and is related to the expansion
coefficients of fCayley in a tensor-product basis of {φ0, φ1, . . . , }. That is, let

fCayley =

τ1∑

i1=0

· · ·
τd−1∑

id−1=0

τd−1∑

j1=0

· · ·
τ1∑

jd−1=0

Ai1,...,id−1,j1,...,jd−1

d−1∏

k=1

φik(sk)

d−1∏

k=1

φjk (tk) (3.2)

be the tensor-product expansion of the polynomial fCayley, where A is a tensor of
expansion coefficients of size (τ1 + 1)× · · · × (τd−1 + 1)× (τd−1 + 1)× · · · × (τ1 + 1).
The Cayley resultant matrix is the following unfolding (or matricization) of A [36,
Sec. 2.3]:

Definition 3.2 (Cayley resultant matrix). The Cayley resultant matrix asso-
ciated with q1, . . . , qd ∈ Cn[x1, . . . , xd−1] with respect to the basis {φ0, φ1, . . . , } is

denoted by RCayley and is the
(∏d−1

k=1(τk + 1)
)
×
(∏d−1

k=1(τk + 1)
)
matrix formed by

the unfolding of the tensor A in (3.2). This unfolding is often denoted by Ar×c, where
r = {1, . . . , d− 1} and c = {d, . . . , 2d− 2} [36, Sec. 2.3].

For example, when τk = kn−1 for 1 ≤ k ≤ d−1 we have for 0 ≤ ik, jd−k ≤ kn−1

RCayley

(
d−1∑

k=1

(k − 1)!ikn
k−1,

d−1∑

k=1

jd−k
(d− 1)!

(d− k)!
nk−1

)
= Ai1,...,id−1,j1,...,jd−1

.

This is equivalent to N = factorial(d-1)*n^(d-1); R = reshape(A, N, N); in
MATLAB, except here the indexing of the matrix RCayley starts at 0.

For rootfinding, we set q1 = p1[xd], . . . , qd = pd[xd] (thinking of xd as the “hid-
den” variable). Then, RCayley = RCayley(xd) is a square matrix polynomial (see
Section 2.3). If all the polynomials are of maximal degree n, then RCayley is of size
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(d − 1)!nd−1 and of degree at most dn. The fact that (d − 1)!nd−1 × dn = d!nd is
the maximum number of possible solutions that (1.1) can possess (see Lemma 2.3) is
a consequence of RCayley being a resultant matrix. In particular, the eigenvalues of
RCayley(xd) are the dth components of the solutions to (1.1) and the remaining d− 1
components of the solutions can in principle be obtained from the eigenvectors.

It turns out that evaluating fCayley at t∗1, . . . , t
∗
d−1 is equivalent to a matrix-vector

product with RCayley . This relationship between RCayley and fCayley will be essential
in Section 3.2 for understanding the eigenvectors of RCayley.

Lemma 3.3. Let d ≥ 2, t∗ ∈ Cd−1, and fCayley and RCayley be the Cayley
function and matrix associated with q1, . . . , qd ∈ Cn[x1, . . . , xd−1], respectively. If V

is the tensor satisfying Vj1,...,jd−1
=
∏d−1

k=1 φjk (t
∗
k) for 0 ≤ jd−k ≤ τk, then we have

RCayleyvec(V ) = vec(Y ),

where Y is the tensor that satisfies

fCayley(s1, . . . , sd−1, t
∗
1, . . . , t

∗
d−1) =

τ1∑

i1=0

· · ·
τd−1∑

id−1=0

Yi1,...,id−1

d−1∏

k=1

φik(sk).

Proof. The matrix-vector product RCayleyvec(V ) = vec(Y ) is equivalent to the
following sums:

τd−1∑

j1=0

· · ·
τ1∑

jd−1=0

Ai1,...,id−1,j1,...,jd−1

d−1∏

k=1

φjk(t
∗
k) = Yi1,...,id−1

for some tensor Y . The result follows from (3.2).

3.1. The Cayley resultant as a generalization of Cramer’s rule. In this
section we show that for systems of linear polynomials, i.e., of total degree 1, the
Cayley resultant is precisely Cramer’s rule. We believe this connection is folklore, but
we have been unable to find an existing reference that provides a rigorous justification.
It gives a first hint that the hidden variable resultant method in full generality may
be numerically unstable.

Theorem 3.4. Let A be a matrix of size d× d, x = (x1, . . . , xd)
T , and b a vector

of size d × 1. Then, solving the linear polynomial system Ax + b = 0 by the hidden
variable resultant method based on the Cayley resultant is equivalent to Cramer’s rule
for calculating xd.

Proof. Let Ad be the last column of A and B = A−Ade
T
d +beTd , where ed is the dth

canonical vector. Recall that Cramer’s rule computes the entry xd in Ax = −b via the
formula xd = − det(B)/ det(A). We will show that for the linear polynomial system
Ax + b = 0 we have fCayley = det(B) + xd det(A). Observe that this, in particular,
implies that (since fCayley has degree 0 in si, ti for all i) fCayley = RCayley = RCayley .
Hence, the equivalence between Cramer’s rule and rootfinding based on the Cayley
resultant.

First, using (3.1), we write fCayley = det(M)/ det(V ) where the matrices M and
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V are

V =




s1 t1 t1 . . . t1

s2 s2 t2 . . . t2
...

...
...

. . .
...

sd−1 sd−1 sd−1 . . . td−1

1 1 1 . . . 1




, M = BV + xdAde
T ,

where e is the d × 1 vector of all ones. (It can be shown by induction on d that

det(V ) =
∏d−1

i=1 (si − ti), as required.) Using the matrix determinant lemma, we have

det(M) = det(B) det(V ) + xde
T adj(BV )Ad,

where adj(BV ) is the algebraic adjugate matrix of BV . Now, recall that adj(BV ) =
adj(V ) adj(B) and observe that eT adj(V ) = det(V )eTd . Hence, we obtain

det(M)

det(V )
= det(B) + xd(e

T
d adj(B)Ad).

Using eTd adj(B)b = det(B) and the matrix determinant lemma one more time, we
conclude that

det(A) = det(B) + eTd adj(B)Ad − eTd adj(B)b = eTd adj(B)Ad.

Thus, fCayley = det(B) + xd det(A) and the resultant method calculates xd via
Cramer’s formula.

It is well-known in the literature that Cramer’s rule is a numerically unstable
algorithm for solving Ax = b [24, Sec. 1.10.1]. Thus, Theorem 3.4 casts significant
suspicion on the numerical properties of the hidden variable resultant method based
on the Cayley resultant.

3.2. The eigenvector structure of the Cayley resultant matrix. Ulti-
mately, we wish to use Lemma 2.11 to estimate the condition number of the eigen-
values of the Cayley resultant matrix. To do this we need to know the left and right
eigenvectors of RCayley. The following lemma shows that the eigenvectors of RCayley

are in Vandermonde form3. To show this we exploit the convenient relationship be-
tween evaluation of fCayley and matrix-vector products with RCayley .

Lemma 3.5. Suppose that x∗ = (x∗
1, . . . , x

∗
d) ∈ Cd is a simple root of (1.1). Let

V and W be tensors of size (τd−1 +1)× · · · × (τ1 +1) and (τ1 +1)× · · · × (τd−1 +1),
respectively, defined by

Vj1,...,jd−1
=

d−1∏

k=1

φjk (x
∗
k), 0 ≤ jk ≤ τd−k

and

Wi1,...,id−1
=

d−1∏

k=1

φik(x
∗
k), 0 ≤ ik ≤ τk.

3In one dimension we say that an N × 1 vector v is in Vandermonde form if there is an x ∈ C

such that vi = φi(x) for 0 ≤ i ≤ N − 1. In higher dimensions, the vector vec(A) is in Vandermonde

form if Ai1,...,id =
∏d

k=1
φik (xk) for some x1, . . . , xd ∈ C.
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Then, the vectors vec(V ) and vec(W ) are the right and left eigenvectors of the matrix
RCayley(p1[x

∗
d], . . . , pd[x

∗
d]) that correspond to the eigenvalue x∗

d.
Proof. Let fCayley = fCayley(p1[x

∗
d], . . . , pd[x

∗
d]) be the Cayley function associated

with p1[x
∗
d], . . . , pd[x

∗
d]. From (3.1) we find that fCayley(s1, . . . , sd−1, x

∗
1, . . . , x

∗
d−1) = 0

because the determinant of a matrix with a vanishing last row is zero. Moreover, by
Lemma 3.3 we have

0 = fCayley(s1, . . . , sd−1, x
∗
1, . . . , x

∗
d−1) =

τ1∑

i1=0

· · ·
τd−1∑

id−1=0

Yi1,...,id−1

d−1∏

k=1

φik (sk).

Since {φ0, φ1, . . . , } is a polynomial basis we must conclude that Y = 0, and hence,
RCayley(x

∗
d)v = 0 with v = vec(V ). In other words, v is a right eigenvector of RCayley

corresponding to the eigenvalue x∗
d (see Definition 2.8).

An analogous derivation shows that vec(W ) is a left eigenvector of RCayley.

3.3. On the generalized Rayleigh quotient of the Cayley resultant ma-

trix. To bound κ(x∗
d, RCayley) we need to bound the absolute value of the generalized

Rayleigh quotient of R′
Cayley(xd) (see Lemma 2.11), whenever x∗ ∈ Cd is such that x∗

d

is a simple eigenvalue of RCayley(xd), i.e., there are no other solutions to (1.1) with
the same dth component. In a similar style to the proof of Lemma 3.5 we show this by
exploiting the relation between evaluating the derivative of fCayley and matrix-vector
products with R′

Cayley(xd).

Theorem 3.6. Let p1, . . . , pd be the polynomials in (1.1), x∗ ∈ Cd a solution
of (1.1), and fCayley(xd) the Cayley function associated with q1 = p1[xd], . . . , qd =
pd[xd]. We have

f ′
Cayley(x

∗
d)
∣∣∣
s
k
=t

k
=x∗

k

1≤k≤d−1

= det(J(x∗
d)),

where J(x∗) is the Jacobian matrix in (2.1). That is, f ′
Cayley(x

∗
d) evaluated at sk =

tk = x∗
k for 1 ≤ k ≤ d− 1 is equal to the determinant of the Jacobian.

Proof. Recall from (3.1) that fCayley(xd) is a polynomial in s1, . . . , sd−1 and
t1, . . . , td−1 written in terms of a matrix determinant, and set q1 = p1[xd], . . . , qd =
pd[xd]. The determinant in (3.1) for fCayley(xd) can be expanded to obtain

fCayley(xd) =
1

∏d−1
i=1 (si − ti)

∑

σ∈Sd

(−1)σ
d∏

i=1

pσi
[xd](t1, . . . , ti−1, si, . . . , sd−1),

where Sd is the symmetric group of {1, . . . , d} and (−1)σ is the signature of the
permutation σ. When we evaluate fCayley(xd) at sk = tk = x∗

k for 1 ≤ k ≤ d − 1
the denominator vanishes, and hence, so does the numerator because fCayley(xd) is
a polynomial. Thus, by L’Hospital’s rule, f ′

Cayley(x
∗
d) evaluated sk = tk = x∗

k for
1 ≤ k ≤ d− 1 is equal to

∂d

∂s1 · · ·∂sd−1∂xd

∑

σ∈Sd

(−1)σ
d∏

i=1

pσi
[xd](t1, . . . , ti−1, si, . . . , sd−1) (3.3)

evaluated at sk = x∗
k, tk = x∗

k, and xd = x∗
d. In principle, one could now apply the

product rule and evaluate the combinatorially many terms in (3.3). Instead, we note
that after applying the product rule a term is zero if it contains pσi

(x∗) for any σ ∈ Sd
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and 1 ≤ i ≤ d (since x∗ is a solution to (1.1)). There are precisely d partial derivatives
and d terms in each product so that any nonzero term when expanding 3.3 has each
pk differentiated precisely once. Finally, note that for each 1 ≤ k ≤ d − 1 only the
1 ≤ i ≤ k terms in the product depend on sk. Hence, from (3.3) we obtain

f ′
Cayley(x

∗
d)

∣∣∣∣
s
k
=t

k
=x∗

k

1≤k≤d−1

=
∑

σ∈Sd

(−1)σ
d∏

i=1

∂pσi

∂xi
(x∗).

The result follows because the last expression is the determinant of the Jacobian
matrix evaluated at x∗.

As a consequence of Theorem 3.6 we have the following unavoidable conclusion
that mathematically explains the numerical difficulties that practitioners have been
experiencing with hidden variable resultant methods based on the Cayley resultant.

Theorem 3.7. Let d ≥ 2. Then, there exist p1, . . . , pd in (1.1) with a simple root
x∗ ∈ Cd such that

κ(x∗
d, RCayley) ≥ ‖J(x∗)−1‖d2

and ‖J(x∗)−1‖2 > 1. Thus, an eigenvalue of RCayley(xd) can be more sensitive to
perturbations than the corresponding root by a factor that grows exponentially with d.

Proof. Using Lemma 3.3, Theorem 3.6 has the following equivalent matrix form:

wTR′
Cayley(x

∗
d)v = det(J(x∗)),

where v = vec(V ), w = vec(W ), and V and W are given in Lemma 3.5. Since φ0 = 1,
we know that ‖v‖2 ≥ 1 and ‖w‖2 ≥ 1. Hence, by Lemma 2.11

κ(x∗
d, RCayley) ≥ | det(J(x∗))|−1.

Denoting the singular values [26, Sec. 7.3] of the matrix J(x∗) by σi , select p1, . . . , pd
and x∗ ∈ Cd such that |det(J(x∗))| = ∏d

i=1 σi = σd
d . Such polynomial systems do

exist, for example, linear polynomial systems where Mx−Mx∗ = 0 and M is a matrix
with singular values σ1 = σ2 = · · · = σd. To ensure that ‖J(x∗)−1‖2 > 1 we also
require σd < 1. Then, we have

κ(x∗
d, RCayley)

−1 ≤ |det(J(x∗))| =
d∏

i=1

σi = σd
d = ‖J(x∗)−1‖−d

2 .

The result follows.
Example 3.8. Let Q be a d× d orthogonal matrix, QQT = Id, having elements

qij for i, j = 1, . . . , d, and let σ < 1. Consider the system of polynomial equations

pi = x2
i + σ

d∑

j=1

qijxj = 0, i = 1, . . . , d.

The origin, x∗ = 0 ∈ C
d, is a simple root of this system of equations. The Jacobian

of the system at 0 is J = σQ, and hence, the absolute conditioning of the problem is
‖J−1‖ = σ−1. Constructing the Cayley resultant matrix polynomial in the monomial
basis, one readily sees that for this example the right and left eigenvectors for the
eigenvalue x∗

d = 0 satisfy ‖v‖ = ‖w‖ = 1. As a consequence, κ(x∗
d, RCayley) = σ−d.
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We emphasize that this numerical instability is truly spectacular, affects the ac-
curacy of x∗

d, and can grow exponentially with the dimension d.
Moreover, Theorem 3.7 holds for any degree-graded polynomial basis selected

to represent p1, . . . , pd as long as φ0 = 1. In particular, the associated numerical
instability cannot be resolved in general by a special choice of polynomial basis.

Theorem 3.7 is pessimistic and importantly does not imply that the resultant
method always loses accuracy, just that it might. In general, one must know the
solutions to (1.1) and the singular values of the Jacobian matrix to be able to predict
if and when the resultant method will be accurate.

One should note that Theorem 3.7 concerns absolute conditioning and one may
may wonder if a similar phenomenon also occurs in the relative sense. In Section 5
we show that the relative conditioning can also be increased by an exponential factor
with d.

4. The Sylvester matrix is numerically unstable for bivariate rootfind-

ing. A popular alternative in two dimensions to the Cayley resultant matrix is the
Sylvester matrix [15, Chap. 3], denoted here by RSylv. We now set out to show that
the hidden variable resultant based on RSylv is also numerically unstable. However,
since d = 2 the instability has only a moderate impact in practice as the conditioning
can only be at most squared. With care, practical bivariate rootfinders can be based
on the Sylvester resultant [39] though there is the possibility that a handful digits are
lost.

A neat way to define the Sylvester matrix that accommodates nonmonomial poly-
nomial bases is to define the matrix one row at a time.

Definition 4.1 (Sylvester matrix). Let q1 and q2 be two univariate polynomials
in Cn[x1] of degree exactly τ1 and τ2, respectively. Then, the Sylvester matrix RSylv ∈
C(τ1+τ2)×(τ1+τ2) associated with q1 and q2 is defined row-by-row as

RSylv (i, : ) = Y i,1, 0 ≤ i ≤ τ2 − 1,

where Y i,1 is the row vector of coefficients such that q1(x)φi(x) =
∑τ1+τ2−1

k=0 Y i,1
k φk(x)

and

RSylv (i+ τ2, : ) = Y i,2, 0 ≤ i ≤ τ1 − 1,

where Y i,2 is the row vector of coefficients such that q2(x)φi(x) =
∑τ1+τ2−1

k=0 Y i,2
k φk(x).

In the monomial basis, i.e., φk(x) = xk, Definition 4.1 gives the Sylvester4 matrix
of size (τ1 + τ2)× (τ1 + τ2) as [15, Chap. 3]:

RSylv =




a0 a1 . . . aτ1
. . .

. . .
. . .

. . .

a0 a1 . . . aτ1

b0 b1 . . . bτ2
. . .

. . .
. . .

. . .

b0 b1 . . . bτ2








τ2 rows





τ1 rows

(4.1)

4Variants of (4.1) include its transpose or a permutation of its rows and/or columns. Our
analysis still applies after these aesthetic modifications with an appropriate change of indices. We
have selected this variant for the convenience of indexing notation.
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where q1(x) =
∑τ1

k=0 akx
k and q2(x) =

∑τ2
k=0 bkx

k.

4.1. A generalization of Clenshaw’s algorithm for degree-graded poly-

nomial bases. Our goal is to use Lemma 2.11 to bound the condition number of the
eigenvalues of the Sylvester matrix. It turns out the right eigenvectors of RSylv are
in Vandermonde form. However, the left eigenvectors have a more peculiar structure
and are related to the byproducts of a generalized Clenshaw’s algorithm for degree-
graded polynomial bases (see Lemma 4.4). We develop a Clenshaw’s algorithm for
degree-graded bases in this section with derivations of its properties in Appendix A.

The selected polynomial basis φ0, φ1, . . . , is degree-graded and hence, satisfies a
recurrence relation of the form

φk+1(x) = (αkx+ βk)φk(x) +

k∑

j=1

γk,jφj−1(x), k ≥ 1, (4.2)

where φ1(x) = (α0x + β0)φ0(x) and φ0(x) = 1. If φ0, φ1, . . . , is an orthogonal poly-
nomial basis, then (4.2) is a three-term recurrence and it is standard to employ Clen-
shaw’s algorithm [14] to evaluate polynomials expressed as p(x) =

∑n
k=0 akφk(x).

This procedure can be extended to any degree-graded polynomial basis.
Let p(x) be expressed as p(x) =

∑n
k=0 akφk(x), where φ0, . . . , φn is a degree-

graded polynomial basis. One can evaluate p(x) via the following procedure: Let
bn+1[p](x) = 0, and calculate bn[p](x), . . . , b1[p](x) from the following recurrence rela-
tion:

bk[p](x) = ak + (αkx+ βk)bk+1[p](x) +

n−1∑

j=k+1

γj,k+1bj+1[p](x), 1 ≤ k ≤ n. (4.3)

We refer to the quantities b1[p](x), . . . , bn+1[p](x) as Clenshaw shifts (in the monomial
case they are called Horner shifts [16]). The value p(x) can be written in terms of the
Clenshaw shifts5.

Lemma 4.2. Let n be a positive integer, x ∈ C, φ0, . . . , φn a degree-graded
basis satisfying (4.2), p(x) =

∑n
k=0 akφk(x), and bn+1[p](x), . . . , b1[p](x) the Clenshaw

shifts satisfying (4.3). Then,

p(x) = a0φ0(x) + φ1(x)b1[p](x) +

n−1∑

i=1

γi,1bi+1[p](x). (4.4)

Proof. See Appendix A.
Clenshaw’s algorithm for degree-graded polynomial bases is summarized in Fig-

ure 2. We note that because of the full recurrence in (4.3) the algorithm requires
O(n2) operations to evaluate p(x). Though this algorithm may not be of significant
practical importance, it is of theoretical interest for the conditioning analysis of some
linearizations from the so-called L1- or L2-spaces [31] when degree-graded bases are
employed [34].

There is a remarkable and interesting connection between Clenshaw shifts and the
quotient (p(x)−p(y))/(x−y), which will be useful when deriving the left eigenvectors
of RSylv.

5Note that, although Lemma 4.2 is stated in a general form and holds for any degree-graded
basis, in this paper we fix the normalization maxx∈Ω |φj(x)| = 1, that implies in particular φ0 = 1
simplifying (4.2).
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Clenshaw’s algorithm for degree-graded polynomial bases

Let φ0, φ1, . . . , satisfy (4.2) and p(x) =
∑n

k=0 akφk(x).

Set bn+1[p](x) = 0.

for k = n, n− 1, . . . , 1 do

bk[p](x) = ak +(αkx+βk)bk+1[p](x)+
∑n−1

j=k+1 γj,k+1bj+1[p](x)
end

p(x) = a0φ0(x) + φ1(x)b1[p](x) +
∑n−1

j=1 γj,1bj+1[p](x).

Fig. 2. Clenshaw’s algorithm for evaluating polynomials expressed in a degree-graded basis.

Theorem 4.3. With the same set up as Lemma 4.2 we have

p(x)− p(y)

x− y
=

n−1∑

i=0

αibi+1[p](y)φi(x), x 6= y (4.5)

and

p′(x) =
n−1∑

i=0

αibi+1[p](x)φi(x). (4.6)

Proof. See Appendix A.
The relation between the derivative and Clenshaw shifts in (4.6) has been noted

by Skrzipek for orthogonal polynomial bases in [37], where it was used to construct a
so-called extended Clenshaw’s algorithm for evaluating polynomial derivatives. Using
Theorem 4.3 and [37] an extended Clenshaw’s algorithm for polynomials expressed in
a degree-graded basis is immediate.

4.2. The eigenvector structure of the Sylvester matrix. We now set q1 =
p1[x2] and q2 = p2[x2] (considering x2 as the hidden variable), and we are interested
in the eigenvectors of the matrix polynomial RSylv(x

∗
2), when (x∗

1, x
∗
2) is a solution

to (1.1) when d = 2. It turns out that the right eigenvectors of RSylv(x
∗
2) are in

Vandermonde form, while the left eigenvectors are related to the Clenshaw shifts (see
Section 4.1).

Lemma 4.4. Suppose that x∗ = (x∗
1, x

∗
2) is a simple root of (1.1) and that

p1[x2] and p2[x2] are of degree τ1 and τ2, respectively, in x1. The right eigenvec-
tor of RSylv(x

∗
2) corresponding to the eigenvalue x∗

2 is

vk = φk(x
∗
1), 0 ≤ k ≤ τ1 + τ2 − 1,

and the left eigenvector is defined as

wi =

{
−αibi+1[q2](x

∗
1), 0 ≤ i ≤ τ2 − 1,

αi−τ2bi−τ2+1[q1](x
∗
1), τ2 ≤ i ≤ τ1 + τ2 − 1,

where qj = pj [x
∗
2] and bk[qj ](x

∗
1) are the Clenshaw shifts with respect to {φ0, φ1, . . . , },

while the coefficients αi are defined as in (4.2).
Proof. By construction we have, for 0 ≤ i ≤ τ2 − 1,

RSylv (i, :) v =

τ1+τ2−1∑

k=0

Y i,1
k (x∗

2)φk(x
∗
1) = q1(x

∗
1)φi(x

∗
1) = 0
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and, for 0 ≤ i ≤ τ1 − 1,

RSylv (i+ τ2, :) v =

τ1+τ2−1∑

k=0

Y i,2
k (x∗

2)φk(x
∗
1) = q2(x

∗
1)φi(x

∗
1) = 0.

Thus, v is a right eigenvector of RSylv(x
∗
2) corresponding to the eigenvalue x∗

2.
For the left eigenvector, first note that for any vector Φ of the form Φk = φk(x)

for 0 ≤ k ≤ τ1 + τ2 − 1 we have by Theorem 4.3

wTRSylv(x
∗
2)Φ = −

τ2−1∑

i=0

αibi+1[q2](x
∗
1)φi(x)q1(x) +

τ1−1∑

i=0

αibi+1[q1](x
∗
1)φi(x)q2(x)

= −q2(x) − q2(x
∗
1)

x− x∗
1

q1(x) +
q1(x)− q1(x

∗
1)

x− x∗
1

q2(x)

= − q2(x)

x− x∗
1

q1(x) +
q1(x)

x− x∗
1

q2(x) = 0,

where the second from last equality follows because q1(x
∗
1) = q2(x

∗
1) = 0. Since (4.3)

holds for any x and {φ0, φ1, . . . , φτ1+τ2−1} is a basis of Cτ1+τ2−1[x], we deduce that
wTRSylv(x

∗
2) = 0, and hence, w is a left eigenvector of RSylv corresponding to the

eigenvalue x∗
2.

4.3. On the generalized Rayleigh quotient of the Sylvester matrix. To
bound κ(RSylv, x

∗
d) we look at the absolute value of the generalized Rayleigh quo-

tient of R′
Sylv(x

∗
2), whenever x∗ is such that x∗

2 is a simple eigenvalue of RSylv(x2).
Lemma 4.4 allows us to show how the generalized Rayleigh quotient of R′

Sylv(x
∗
2)

relates to the determinant of the Jacobian.
Lemma 4.5. With the same assumptions as in Lemma 4.4, we have

|wTR′
Sylv(x

∗
2)v|

‖v‖2‖w‖2
≤ |det (J(x∗)) |

‖w‖2
,

where w and v are the left and right eigenvectors of RSylv, respectively, and J(x∗) is
the Jacobian matrix in (2.1).

Proof. By Lemma 4.4 we know the structure of v and w. Hence, we have

wTR′
Sylv(x

∗
2)v = −

τ2−1∑

i=0

αibi+1[q2](x
∗
1)φi(x

∗
1)

∂q1
∂x2

(x∗
1) +

τ1−1∑

i=0

αibi+1[q1](x
∗
1)φi(x

∗
1)

∂q2
∂x2

(x∗
1)

= − ∂q1
∂x2

(x∗
1)

∂q2
∂x1

(x∗
1) +

∂q1
∂x1

(x∗
1)

∂q2
∂x2

(x∗
1),

where the last equality used the relation in (4.6). The result now follows since this
final expression equals det (J(x∗)) and since φ0 = 1 we have ‖v‖2 ≥ 1.

Theorem 4.6. There exist p1 and p2 in (1.1) with a simple root x∗ ∈ C2 such
that

κ(x∗
2, RSylv) ≥ ‖J(x∗)−1‖22

and ‖J(x∗)−1‖2 > 1. Thus, an eigenvalue of RSylv(x2) can be squared more sensitive
to perturbations than the corresponding root in the absolute sense.
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Proof. We give an example for which ‖w‖2 ≥ 1 in Lemma 4.5. For some positive
parameter u and for some n ≥ 2 consider the polynomials

p1(x1, x2) = xn
1x

n
2 + u1/2x1, p2(x1, x2) = α−1

n−1(x
n
1 + xn

2 ) + u1/2x2.

One can verify that x∗ = (0, 0) is a common root6. Since |bn[q2](0)| = αn−1α
−1
n−1 = 1

we have ‖w‖2 ≥ 1. The result then follows from | det(J(x∗))| = ‖J(x∗)−1‖−2
2 and

Lemma 4.5.
Example 4.7. Let us specialize Example 3.8 to d = 2, i.e., for some σ < 1 and

α2 + β2 = 1 let us consider the system

p1 = x2
1 + σ(αx1 + βx2) = 0, p2 = x2

2 + σ(−βx1 + αx2) = 0.

Again, for the solution (x∗
1, x

∗
2) = (0, 0) we have ‖J−1‖ = σ−1. Building the Sylvester

matrix in the monomial basis, we obtain

RSylv =




σβx2 σα 1
x2
2 + σαx2 −σβ 0

0 x2
2 + σαx2 −σβ


 .

As predicted by the theory, x∗
2 = 0 is an eigenvalue with corresponding right and left

eigenvectors, respectively, v =
[
1 0 0

]T
and w =

[
σβ σα 1

]T
. Moreover, it is

readily checked that, as expected, wTR′
Sylv(0)v = σ2. Therefore,

κ(x∗
2, RSylv) =

√
1 + σ2

σ2
> σ−2.

Theorem 4.6 mathematically explains the numerical difficulties that practitioners
have been experiencing with hidden variable resultant methods based on the Sylvester
resultant. There are successful bivariate rootfinders based on this methodology [39]
for low degree polynomial systems and it is a testimony to those authors that they
have developed algorithmic remedies (not cures) for the inherent numerical instability.

We emphasize that Theorem 4.6 holds for any normalized degree-graded polyno-
mial basis. Thus, the mild numerical instability cannot, in general, be overcome by
working in a different degree-graded polynomial basis.

The example in the proof of Theorem 4.6 is quite alarming for a practitioner
since if u is the unit machine roundoff, then we have ‖J(0, 0)−1‖2 = u−1/2 and
κ(x∗

2, RSylv) = u−1. Thus, a numerical rootfinder based on the Sylvester matrix may
entirely miss a solution that has a condition number larger than u−1/2. A stable
rootfinder should not miss such a solution.

When d = 2, we can use Theorem 3.7 and Lemma 4.5 to conclude that the
ratio between the conditioning of the Cayley and Sylvester resultant matrices for
the same eigenvalue x∗

2 is equal to ‖v‖2/‖w‖2, where v and w are the right and left
eigenvector of RSylv(x

∗
2) associated with the eigenvalue x∗

2. This provides theoretical
support for the numerical observations in [35]. However, it seems difficult to predict
a priori if the Cayley or Sylvester matrix will behave better numerically. For real
polynomials and d = 2, the Cayley resultant matrix is symmetric and this structure
can be exploited [35]. In the monomial basis, the Sylvester matrix is two stacked
Toeplitz matrices (see (4.1)). It may be that structural differences like these are more
important than their relatively similar numerical properties when d = 2.

6By a change of variables, there is an analogous example with a solution anywhere in the complex
plane.
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5. A discussion on relative and absolute conditioning. Let X(D) be the
solution of a mathematical problem depending on data D. In general, with the very
mild assumption that D and X lie in Banach spaces, it is possible to define the
absolute condition number of the problem by perturbing the data to D + δD and
studying the behaviour of the perturbed solution X̂(D + δD) = X(D) + δX(D, δD):

κabs = lim
ǫ→0

sup
‖δD‖≤ǫ

‖δX‖
‖δD‖ .

Similarly, a relative condition number can be defined by looking at the limit ratios of
relative changes.

κrel = lim
ǫ→0

sup
‖δD‖≤ǫ‖D‖

‖δX‖
‖δD‖

‖D‖
‖X‖ = κabs

‖D‖
‖X‖ .

In this paper, we have compared two absolute condition numbers. One is given
by Proposition 2.9: there, X = x∗ is a solution of (1.1) while D = (p1, . . . , pd) is the
set of polynomials in (1.1). The other is given by Lemma 2.11, where D is a matrix
polynomial and X = x∗

d is the dth component of x∗.
To quote N. J. Higham [25, p. 56]: “Usually, it is the relative condition number

that is of interest, but it is more convenient to state results for the absolute condition
number”. This remark applies to our analysis as well. We have found it convenient to
study the absolute condition number, but when attempting to solve the rootfinding
problem in floating point arithmetic it is natural to allow for relatively small pertur-
bations, and thus to study the relative condition number. Hence, a natural question is
whether the exponential increase of the absolute condition number in Theorem 3.7 and
the squaring in Theorem 4.6 causes a similar effect in the relative condition number.

It is not immediate that the exponential increase of the absolute condition number
leads to the same effect in the relative sense. We have found examples where the
exponential increase of the absolute condition number is perfectly counterbalanced
by an exponentially small Cayley resultant matrix. For instance, linear polynomial
systems, when the Cayley resultant method is equivalent to Cramer’s rule, fall into
this category. In the relative sense, it may be possible to show that the hidden variable
resultant method based on Cayley or Sylvester is either numerically unstable during
the construction of the resultant matrix or the resultant matrix has an eigenvalue
that is more sensitive to small relative perturbations than hoped. We do not know
yet how to make such a statement precise.

Instead, we provide an example that shows that the hidden variable resultant
method remains numerically unstable in the relative sense. Let u be a sufficiently
small real positive parameter and d ≥ 2. Consider the following polynomial system:

p2i−1(x) = x2
2i−1 + u

(√
2
2 x2i−1 +

√
2
2 x2i

)
,

p2i(x) = x2
2i + u

(√
2
2 x2i −

√
2
2 x2i−1

)
, 1 ≤ i ≤ ⌊d/2⌋,

where if d is odd then take pd(x) = x2
d + uxd. Selecting Ω = [−1, 1]d, we have that

‖pi‖∞ = 1 +
√
2u for 1 ≤ i ≤ d, except possibly ‖pd‖∞ = 1 + u if d is odd. It can be

shown that the origin7, x∗, is a simple root, det(J(x∗)) = ud, ‖J(x∗)−1‖2 = u−1, and

7By a change of variables, there is an analogous example with a solution anywhere in [−1, 1]d.
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that

fCayley(s1, . . . , sd−1, t1, . . . , td−1) =
d−1∏

k=1

(sk + tk)x
2
d +O(u).

Thus, neither the polynomials pi or the resultant matrix RCayley(xd) are small. In
such an example, the relative condition number will exhibit the same behavior as
the absolute condition number. In particular, the relative condition number of an
eigenvalue of RCayley(xd) may be larger than the relative condition number of the
corresponding solution by a factor that grows exponentially with d.

The same example (for d = 2), and a similar argument, applies to the Sylvester
matrix showing the conditioning can be squared in the relative sense too.

6. Future outlook. In this paper we have shown that two popular hidden vari-
able resultant methods based on the Sylvester and Cayley matrices are numerically
unstable. Our analysis is for degree-graded polynomial bases and does not include
the Lagrange basis or certain sparse bases. We believe that the analysis of the Cayley
matrix in Section 3 could be extended to include general polynomial bases, though
the analysis in Section 4 for the Sylvester matrix is more intimately connected to
degree-graded bases. We hesitantly suggest that hidden variable resultant methods
are inherently plagued by numerial instabilities, and that neither other polynomial
bases nor other resultants can avoid a worst-case scenario that we have identified
in this paper. We do not know exactly how to formulate such a general statement,
but we note that practitioners are widely experiencing problems with hidden variable
resultant methods. In particular, we do not know of a numerical multidimensional
rootfinder based on resultants that is robust for polynomial systems of large degree n
and high d.

However, at the moment the analysis that we offer here is limited to the Cayley
and Sylvester matrices. Despite our doubts that it exists, we would celebrate the
discovery of a resultant matrix that can be constructed numerically and that prov-
ably does not lead to a numerically unstable hidden variable resultant method. This
would be a breakthrough in global rootfinding with significant practical applications
as it might allow (1.1) to be converted into a large eigenproblem without confronting
conditioning issues. Solving high-dimensional and large degree polynomial systems
would then be restricted by computational cost rather than numerical accuracy.

Finally, we express again our hope that this paper, while appearing rather nega-
tive, will have a positive long-term impact on future research into numerical rootfind-
ers.
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Appendix A. A generalization of Clenshaw’s algorithm for degree-

graded polynomial bases. This appendix contains the tedious, though necessary,
proofs required in Section 4.1 for Clenshaw’s algorithm for evaluating polynomials
expressed in a degree-graded basis.
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Proof. [Proof of Lemma 4.2] By rearranging (4.3) we have ak = bk[p](x)− (αkx+

βk)bk+1[p](x)−
∑n−1

j=k+1 γj,k+1bj+1[p](x). Thus,

p(x) = a0φ0(x)+

n∑

k=1


bk[p](x)− (αkx+ βk)bk+1[p](x)−

n−1∑

j=k+1

γj,k+1bj+1[p](x)


φk(x).

Now, by interchanging the summations and collecting terms we have

p(x) = a0φ0(x) +
n∑

k=1

φk(x)bk[p](x)−
n∑

k=2

(αk−1x+ βk−1)φk−1(x)bk[p](x)

−
n−1∑

j=2

[
j−1∑

k=1

γj,k+1φk(x)

]
bj+1[p](x)

= a0φ0(x) + φ1(x)b1[p](x)

+
n−1∑

j=1

[
φj+1(x)− (αjx+ βj)φj(x) −

j−1∑

k=1

γj,k+1φk(x)

]
bj+1[p](x)

Finally, using (4.2) we obtain

p(x) = a0φ0(x) + φ1(x)b1[p](x) +

n−1∑

j=1

γj,1φ0(x)bj+1[p](x),

as required.
Section 4.1 also shows that Clenshaw’s algorithm connects to the quotient (p(x)−

p(y))/(x− y). To achieve this we need an immediate result that proves a different re-
currence relation on the Clenshaw shifts to (4.3). The proof involves tedious algebraic
manipulations and mathematical strong induction.

Lemma A.1. Let n be an integer, φ0, . . . , φn a degree-graded basis satisfying (4.2),
and bn+1[p], . . . , b1[p] the Clenshaw shifts satisfying (4.3). Then, for 1 ≤ j ≤ n,

bj [φn+1](x) = (αnx+ βn)bj [φn](x) +

n∑

s=j+1

γn,sbj [φs−1](x).

Proof. We proceed by induction on j. Let j = n. We have, by (4.3),

bn[φn+1](x) = (αnx+ βn)bn+1[φn+1](x) = (αnx+ βn)bn[φn](x),

where the last equality follows because bn+1[φn+1](x) = bn[φn](x) = 1. Now, suppose
the result holds for j = n, n − 1, . . . , k + 1. We have, by (4.3) and the inductive
hypothesis,

bk[φn+1](x) = (αkx+ βk)bk+1[φn+1](x) +

n∑

j=k+1

γj,k+1bj+1[φn+1](x)

= (αkx+ βk)

[
(αnx+ βn)bk+1[φn](x) +

n∑

s=k+2

γn,sbk+1[φs−1](x)

]

+

n−1∑

j=k+1

γj,k+1


(αnx+ βn)bj+1[φn](x) +

n∑

s=j+2

γn,sbj+1[φs−1](x)




+ γn,k+1bn+1[φn+1](x).
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By interchanging the summations and collecting terms we have

bk[φn+1](x) = (αnx+ βn)


(αkx+ βk)bk+1[φn](x) +

n−1∑

j=k+1

γj,k+1bj+1[φn](x)




+

n∑

s=k+3

γn,s


(αkx+ βk)bk+1[φs−1](x) +

s−2∑

j=k+1

γj,k+1bj+1[φs−1](x)




+ γn,k+2(αkx+ βk)bk+1[φk+1](x) + γn,k+1bn+1[φn+1](x)

= (αnx+ βn)bk[φn] +

n∑

s=k+1

γn,sbk[φs−1],

where in the last equality we used (4.3), (αkx+ βk)bk+1[φk+1](x) = bk[φk+1](x), and
bn+1[φn+1](x) = bk[φk](x) = 1.

The recurrence from Lemma A.1 allows us to prove Theorem 4.3.

Proof. [Proof of Theorem 4.3]

Case 1: x 6= y. Since for a fixed y the Clenshaw shifts are linear, i.e., bj[c1φi +
c2φk](y) = c1bj [φi](y) + c2bj [φk](y) for constants c1 and c2, it is sufficient to prove
the theorem for p = φn for n ≥ 1.

We proceed by induction on n. For n = 1 we have

n−1∑

j=0

αjbj+1[φn+1](y)φj = α0b1[φ1](y) = α0 =
φ1(x)− φ1(y)

x− y
.

Assume that the result holds for n = 1, . . . , k− 1. From the inductive hypothesis,
we have

φk+1(x) − φk+1(y)

x− y
= αkφk(x) + (αkx+ βk)

φk(x) − φk(y)

x− y

+

k∑

j=1

γk,j
φj−1(x)− φj−1(y)

x− y

= αkφk(x) + (αkx+ βk)

k−1∑

j=0

αjbj+1[φk](y)φj(x)

+

k∑

j=1

γk,j

j−2∑

s=0

αsbs+1[φj−1](y)φs(x).

Moreover, by interchanging the summations and collecting terms we have

φk+1(x) − φk+1(y)

x− y
= αkφk(x) + (αkx+ βk)αk−1bk[φk](y)φk−1(x)

+
k−2∑

j=0

αj


(αkx+ βk)bj+1[φk](y) +

k∑

s=j+2

γk,sbj+1[φs−1](y)


φj(x).

Finally, since bk+1[φk+1](y) = 1, bk[φk+1](y) = (αkx+ βk)bk[φk](y), and by (4.3), we
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have

φk+1(x)− φk+1(y)

x− y
= αkbk+1[φk+1](y)φk(x) + αk−1bk[φk+1](y)φk−1(x)

+

k−2∑

j=0

αjbj+1[φk+1](y)φj(x)

and the result follows by induction.

Case 2: x = y. Immediately follows from x 6= y by using L’Hospital’s rule
on (4.5).
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