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Abstract

Multi-objective problems are a category of optimization problem that contain more

than one objective function and these objective functions must be optimized simulta-

neously. Should the objective functions be conflicting, then a set of solutions instead of

a single solution is required. This set is known as Pareto optimal.

Multi-objective optimization problems arise in many real world applications where

several competing objectives must be evaluated and optimal solutions found for them,

in the presence of trade offs among conflicting objectives. Maximizing returns while

minimizing the risk of stock market investments, or maximizing performance whilst

minimizing fuel consumption and hazardous gas emission when buying a car are typical

examples of real world multi-objective optimization problems. In this case a number of

optimal solutions can be found, known as non-dominated or Pareto optimal solutions.

Pareto optimal solutions are reached when it is impossible to improve one objective

without making the others worse.

Classical ways to address this problem used direct or gradient based methods that

rendered them insufficient or computationally expensive for large scale or combinatorial

problems. Other difficulties attended the classical methods, such as problem knowl-

edge, which may not be available, or sensitivity to some problem features. For example,

finding solutions on the entire Pareto optimal set can only be guaranteed for convex

problems. Classical methods for generating the Pareto front set aggregate the objectives

into a single or parametrized function before search. Thus, several runs and parame-

ter settings are performed to achieve a set of solutions that approximate the Pareto

optimals.

Subsequently new methods have been developed, based on computer experiments

with meta-heuristic algorithms. Most of these meta-heuristics implement some sort

of stochastic search method, amongst which the ‘Evolutionary Algorithm’ is garnering

much attention. It possesses several characteristics that make it a desirable method for

confronting multi-objective problems. As a result, a number of studies in recent decades

have developed or modified the Multi-objective Optimization Evolutionary Algorithm
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(MOEA) for different purposes. This algorithm works with a population of solutions

which are capable of searching for multiple Pareto optimal solutions in a single run. At

the same time, only the fittest individuals in each generation are offered the chance for

reproduction and representation in the next generation. The fitness assignment function

is the guiding system of MOEA. Fitness value represents the strength of an individual.

Unfortunately, many real world applications bring with them a certain degree of noise

due to natural disasters, inefficient models, signal distortion or uncertain information.

This noise affects the performance of the algorithm’s fitness function and disrupts the

optimization process. This thesis explores and targets the effect of this disruptive noise

on the performance of the MOEA.

In this thesis, we study the noisy Multi-objective Optimization Problem (MOP) and

modify the Multi-objective Optimization Evolutionary Algorithm based on Decomposi-

tion (MOEA/D) to improve its performance in noisy environments. To achieve this, we

will combine the basic MOEA/D with the ‘Ordinal Optimization’ technique to handle

uncertainties. The major contributions of this thesis are as follows.

• First, MOEA/D is tested in a noisy environment with different levels of noise, to

give us a deeper understanding of where the basic algorithm fails to handle the

noise.

• Then, we extend the basic MOEA/D to improve its noise handling by employing

the ordinal optimization technique. This creates MOEA/D+OO, which will out-

perform MOEA/D in terms of diversity and convergence in noisy environments.

It is tested against benchmark problems of varying levels of noise.

• Finally, to test the real world application of MOEA/D+OO, we solve a noisy

portfolio optimization with the proposed algorithm. The portfolio optimization

problem is a classic one in finance that has investors wanting to maximize a port-

folio’s return while minimizing risk of investment. The latter is measured by

standard deviation of the portfolio’s rate of return. These two objectives clearly

make it a multi-objective problem.
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1
Introduction

Many real life applications involve multiple (potentially conflicting) objective functions

that must be optimized simultaneously. In the case of conflicting objectives, no single

solution can be optimal to all objectives. Thus, a strong and powerful optimization

algorithm is required to be capable of finding a set of solutions that will represent the

best tradeoffs amongst the all objectives. This set of solutions is known as the Pareto

optimal solution.

Evolutionary algorithms fall within a class of stochastic search methods that are

capable of estimating Pareto optimal solutions in a single run. They are able to do

this because the algorithms update their population of solutions at each generation.

As a result, this method is proving itself to be very effective at solving complicated

multi-objective optimization problems.

Finding a good Pareto-optimal estimation is not the only challenge facing the opti-

1
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mization algorithm, however. Uncertainty is also a disruptive phenomenon that char-

acterizes many real world optimization problems in various forms. In recent decades

numerous studies [4–6] have been conducted into different types of uncertainty and these

are listed in the next section.

1.1 Sources of Uncertainty

• Uncertainty of environment: for example, temperature, moisture, perturbation in

speed or dynamic fitness function.

• Uncertainty of optimization parameters: for instance, parameters of a solution

subject to change or perturbation after implementation, but still required to func-

tion for manufacturing tolerance. This type of uncertainty is known as a search

for robust solution.

• Uncertainty introduced due to unavailability of original fitness function or where

the analytical fitness function is computationally very expensive. In this instance,

the solution must be approximated.

The work presented in this thesis addresses this third version of uncertainty, also

known as the optimization of noisy problems.

1.2 Thesis Motivation

A very important and also very sensitive research area is the study of noise, and the

ways to cope with it, in the evolutionary multi-objective optimization algorithm. There

are a number of studies that suggest different strategies or noise handling techniques

for tackling disruptive noise by very well known MOEA. For instance,

• Strength Pareto Evolutionary Algorithm (SPEA) introduced by Zitzler in 1999 [7].

A Noise Tolerant Version of SPEA (NTSPEA) by Buche [8]. Zitzler and Buche

proposed three modifications for handling noise for this particular dominance

based MOEA, namely i) Domination dependent lifetime, which defines a lifetime
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for the solution that is related to the solution’s dominance. ii) Re-evaluation of so-

lution: instead of deleting the expired solutions, they are added to the population,

giving them a second chance to reach a good solution and survive. iii) Extended

update of the secondary population, which reduces loss of information by updating

all non-expired lifetime solutions rather than only the current population. [8]

• A Robust Feature Multi-objective Evolutionary Algorithm (MOEA-RF). Goh

and Tan proposed three noise handling techniques and incorporated them into a

simple MOEA, naming the new algorithm MOEA-RF. The three noise handling

features are the Experimental Learning Directed Perturbation (ELDP), the Gene

Adaptation Selection Strategy (GASS) and a possibilistic archiving methodology

[9].

• A Modified Non-dominated Sorting Genetic Algorithm-II (MNSGA-II). Deb in-

troduced the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and Babbar

introduced a modification of its ranking scheme to handle noise. The new scheme

allows the algorithm to expand its Rank 1 frontier by adding close neighbour-

ing solutions to the rank. It also incorporates a procedure to keep only reliable

solutions in the final non-dominated solution set. [10].

MOEA/D, which is a very well established decomposition-based MOEA, introduced for

the first time by Zhang and Li in 2007 [11], will be utilised in this thesis to confront

noise problems.

As with the other algorithms detailed in Section 1.2, this thesis will investigate

MOEA/D in a noisy environment. In order to reach our stated goal certain steps must

be taken, the first of which being an answer to the following questions.

• How effective is MOEA/D in the presence of noise?

It is important to analyse the performance of MOEA/D in the presence of different

levels of noise, from low to medium to high. Will its performance deteriorate with

increased noise? if so, by how much? In order to measure these qualities, different

performance metrics will be implemented (see section 3.4).
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• What technique best assists MOEA/D to handle noise?

Due to the fact that most of the studies on noisy environments explore MOEAs

that are based on dominance their noise-handling methods will not be useful for

MOEA/D, which is a decomposition-based algorithm. Furthermore, their results

are not comparable because parameter settings have a bearing on different algo-

rithms’ performance. Thus, in this work, we are seeking a novel technique for

handling noise in conjunction with the basic MOEA/D. Our technique will ideally

cope with noisy problems and estimate more reliable solutions for them.

Finally, we will assess the new algorithm as to its suitability for real life application.

1.3 Thesis Contribution

As previously mentioned, this work will study MOEA/D in the presence of different

levels of noise. The major contributions of this thesis are listed as follows:

1. This is the first piece of research that studies the effect of noise on the performance

of MOEA/D.

2. We will prove that the performance of MOEA/D deteriorates as noise levels in-

tensify.

3. In Chapter 4 a new algorithm, MOEA/D+OO, based on the MOEA/D framework

will be introduced. This is a modified version of MOEA/D that is significantly

better suited to handling noise.

4. We will prove that MOEA/D+OO significantly outperforms MOEA/D in the

noisy multi-objective optimization problem.

5. We study noisy portfolio optimization for the first time by adding noise only to

the return values of the objective function.

6. In this thesis, the noisy portfolio optimization problem is used as a real world

application to test the algorithms’ performance.
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7. We will demonstrate that MOEA/D+OO is better than MOEA/D at handling

noise in the portfolio optimization problem.

8. Finally we illustrate that the portfolio optimization problem is very sensitive to

noise.

1.4 Thesis Outline

The organization of this thesis is as follows:

Chapter 2 provides a review of multi-objective evolutionary algorithms. In this

chapter, the fundamentals of evolutionary algorithms and MOP will be summarized.

Chapter 3 assesses the performance of MOEA/D in a noisy environment. This chapter

explains the theory and methodologies that have been used to examine and assess the

algorithm. Chapter 4 proposes a noise handling technique to handle noisy problems. A

new algorithm is developed that combines Ordinal Optimization (OO) with MOEA/D.

Chapter 5 details the introduction of the algorithm into a real life problem: a classical

finance problem in a noisy environment. Finally Chapter 6 presents conclusions, which

will wrap up this thesis and propose possible future works.



2
Background and Literature Review

This chapter will briefly discuss the principals of optimization theory and the different

types of optimization problem. A literature review of previous research studies into

multi-objective optimization problems is delivered, along with a discussion of the tradi-

tional methods and evolutionary algorithms used for solving multi-objective problems.

Thereafter, the major issues in multi-objective optimization evolutionary algorithms

(MOEAs) are discussed, alongside a classification of the different MOEAs.

The base algorithm used in this thesis is MOEA/D. A detailed review of it has been

prepared in Section 2.4, followed by a look at the literature on noisy MOEAs.

In conclusion, this chapter details the principals of ordinal optimization theory (OO)

that are going to be used for noise handling in this study to assist MOEA/D in solving

noisy multi-objective problems.

6
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2.1 Optimization Theory

In the face of limited resources such as funds, time, space and so on, optimization has

become an important area of research within the computational sciences. Different

disciplines clearly need to optimize different quantities or possibilities, subject to the

specific constraints of their area.

In this section, a succinct general summary and classification of the optimization

problem is provided, alongside a look at other issues in this area such as different optima

types or different problems.

2.1.1 Elements of an Optimization Problem

There are three major elements which are common to any optimization problem as

follows [12]:

• An objective function. A system model, representing the quantity to be opti-

mized.

• A set of variables. These impact the value of the objective function.

• A set of constraints. These restrict the values that can be assigned to the

variables.

The goal of any optimization method is to assign values, from a given domain, to the

variables of the objective function to be optimized such that all constraints are satisfied.

In this research, the search space is denoted by Ω . In the case of a constraint problem,

a solution is found in the feasible space that is denoted by F . Always, F ⊆ Ω .

2.1.2 Classification of Optimization Methods

The different classifications are made according to the specific characteristics of the

methods used. For instance, optimization methods can be divided into two major

classes [12], dictated by the solutions found, as follows.
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• Local search algorithm: information local to the current solution is used to

produce a new solution.

• Global search algorithm: the entire domain is searched for optima.

Further classifications can be introduced as follows:

• Stochastic: this method uses random elements to transform a candidate solution

into a new solution.

• Deterministic: in which no random elements are applied.

2.1.3 Classification of Optimization Problems

Optimization problems can have many characteristics and classifications of these can

be proposed according to the following [12]:

• Number of variables: single variable to multi-variable.

• Type of variable: continuous or discrete.

• Degree of non-linearity: linear, quadratic, etc.

• Type of constraint: boundary, equality and/or inequality.

• Number of optima: optimization problems can have one (unimodal) or many

(multimodal) solutions.

• Number of optimization criteria: if only one objective function requires op-

timization, it is a ‘Single Objective Problem’. If more than one objective function

must be optimised simultaneously, the problem becomes ‘Multi-objective’.

2.1.4 Multi-objective Optimization Problems

Most real-world search and optimization problems naturally involve multiple objectives.

The extremist principle mentioned above cannot only be applied to one objective when

the rest of the objectives are just as important. Different solutions may produce tradeoffs
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(conflicting scenarios) among different objectives. A solution that is extreme (in a better

sense) with respect to one objective requires a compromise on other objectives.

Definition 1 (The Multi-Objective Optimization Problem) A general MOP com-

prises a set of n decision variables, a set of m objective functions and a set of r con-

straints. Objective functions and constraints are functions of the decision variables. The

optimization goal is to

min y = F (x) = (f1(x), f2(x), ..., fm(x))

s.t C(x) = (c1(x), c2(x), ..., cr(x)) ≤ 0

x = (x1, x2, ..., xn) ∈ Ω

x
(L)
i ≤ xi ≤ x(U)

i for i = 1, 2, ..., n

y = (y1, y2, ..., ym) ∈ Λ

(2.1)

where x is the decision vector, y is the objective vector, Ω is denoted as the decision

space, and Λ is the objective space. Mapping between the solution space and the objective

space is illustrated in Figure 2.1. The constraints C(x) ≤ 0 determine the set of feasible

solutions [2].

The solutions x ∈ Ω of continuous MOPs are a vector of n real variables. Neverthe-

less the solutions of discrete MOPs are vectors of n integer variables.

Figure 2.1: Mapping between the solution space and the objective space [1]
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The definition of optimality is not straightforward, due to totally conflicting, non-

conflicting or partially conflicting objective functions. It is therefore necessary to outline

the specific definition of ‘optimum’ for the MOP: for an MOP the optimum means a

balance point between all of the objectives. In other words, improving any one objective

may bring about the degrading of other objectives. Thus, our task is to find solutions

that balance these tradeoffs. A significant number of solutions may exist for our MOP,

so in order to tackle this task, it is necessary to put forward a set of definitions.

Most multi-objective optimization algorithms use the concept of dominance in their

search.

Definition 2 (Dominance) A solution x1 is said to dominate another solution x2 ,

if both conditions 1 and 2 are true:

1. The solution x1 is no worse than x2 in all objectives, or fi(x1) ≤ fi(x2) for all

i = 1, 2, ...,m.

2. The solution x1 is strictly better than x2 in at least one objective, or fj(x1) <

fj(x2) for at least one j ∈ {1, 2, · · ·m}.

If either of the above conditions is violated, the solution x1 does not dominate

solution x2. If x1 does dominate solution x2 (or mathematically x1 � x2), it is customary

to note any of the following [13]:

• x2 is dominated by x1

• x1 is non-dominated by x2

• x1 is non-inferior to x2.

Definition 3 (Pareto Optimal Set) For a given MOP 2.1, the Pareto Optimal Set

(see Figure 2.2), P ∗, is defined as:

P ∗ := {x ∈ Ω | @ x′ ∈ Ω F (x′) � F (x)}. (2.2)

The Pareto-optimal Set (PS) contains all balanced tradeoffs which represent the MOP

solutions.
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Definition 4 (Pareto Front) For a given MOP 2.1, and a Pareto Optimal Set, P ∗,

the Pareto Front PF ∗ is defined as:

PF ∗ := {u = F (x) | x ∈ P ∗}. (2.3)

The Pareto front contains all the objective vectors corresponding to the decision vectors

that are not dominated by any other decision vector (see Figure 2.2).

Figure 2.2: Illustration of Pareto front and Pareto set [2].

It is appropriate to note the characteristics of a Pareto front:

1. The Pareto front contains the Pareto-optimal solution and, in the case of a con-

tinuous front, divides the objective function space into two parts: non-optimal

solutions and infeasible solutions.

2. A Pareto front is not necessarily continuous.

3. The Pareto front can be concave, convex, or a combination of either.

5. The Pareto front may continue towards infinity, even in the case of boundary

constrained decision variables.

6. Due to mapping, neighbouring points in a Pareto front (objective function space)

are not necessarily neighbours in the decision variable space.
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2.1.4.1 Ideal and Nadir Points (Objective Vectors)

We assume that the objective functions are bounded over a feasible region, with two

special objective vectors ideal and nadir point to define the lower and upper bounds

of PF. Figure 2.3 illustrates both points in the objective space of a hypothetical two

objective minimization problem. Definitions of both points are given below.

Definition 5 (Ideal point) A point zidl = {z1, · · · , zm} in the objective space is called

an ideal point if it has the best value for each objective: zidli = min
x∈Ω

fi(x) ∀ i = {1, ...,m}

for problem 2.1.

Definition 6 (Nadir point) A point znad = {z1, · · · , zm} in the objective space is

called a nadir point if it has the worst value for each objective: znadi = max
x∈Ω

fi(x) ∀ i =

{1, ...,m} for problem 2.1.

Figure 2.3: Illustration of Nadir and Ideal points [1].

2.1.5 Classification of an MOP

Multi-objective optimization problems have been around for at least the last four

decades and many algorithms have been evolved to solve them. Researchers have at-

tempted to classify these algorithms according to various considerations. Cohon [14]

classified them into the following two types:

• Generating methods.
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• Preference-based methods.

In the former, a few non-dominated solutions are generated for the decision-maker,

who then chooses one solution from the obtained non-dominated solutions. No a priori

knowledge of any objective is used. On the other hand, in the preference-based methods,

some known preference for each objective is used in the optimization process. Hwang

and Masud [15] and later Miettinen [1] fine-tuned the above classification and suggested

the following four classes:

• No-preference methods.

• A posteriori methods.

• A priori methods.

• Interactive methods.

The no-preference methods assume no information about the importance of objec-

tives, but a heuristic is used to find a single optimal solution. It is important to note

that although no preference information is used, these methods do not make any at-

tempt to find multiple Pareto-optimal solutions. Posteriori methods do use preference

information on each objective and iteratively generate a set of Pareto-optimal solutions.

The classical method of generating Pareto optimal solutions requires some knowledge of

the algorithmic parameters that will guarantee the finding of a Pareto-optimal solution.

On the other hand, A priori methods use more information about the preferences of

objectives and usually find one preferred Pareto-optimal solution. Interactive meth-

ods use the preference information progressively during the optimization process as the

decision-maker interacts with the optimization program during the optimization process.

Typically the system provides an updated set of solutions and lets the decision-maker

consider whether or not to change the weighting of individual objective functions.

The popularity of using a weighted sum of objective functions is obvious: it is

trivial to implement and it effectively converts a multi-objective problem into a single

objective one. A known drawback is that in the case of a high number of objective
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functions, the appropriate weighting is painful to choose a priori by the decision-maker.

Furthermore, scaling of the individual objective function values is often required due to

different function value ranges. With regard to the popularity of a posteriori techniques,

especially Pareto-optimization techniques, there are two obvious candidate explanations:

1. The decision-makers are willing to perform unbiased searches.

2. The decision-makers are unwilling or unable to assign priorities without having

further information about the other potential/effective solutions.

2.2 Traditional Methods of Solving MOPs

Classical ways to address this problem used direct or gradient based methods that

rendered them insufficient or computationally expensive for large scale or combinatorial

problems. Other difficulties attended the classical methods, such as problem knowledge,

which may not be available, or sensitivity to some problem features. For example,

finding solutions on the entire Pareto optimal set can only be guaranteed for convex

problems. Classical methods for generating the Pareto front set aggregate the objectives

into a single or parametrized function before search. Thus, several runs and parameter

settings are performed to achieve a set of solutions that approximate the Pareto optimal.

2.2.1 The Weighted Sum Method

The idea behind this method is to associate each objective function with a weighting

coefficient and minimize the weighted sum of the objective. In this way, multiple ob-

jective functions are transformed into a single objective function. More accurately, the

multi-objective optimization problem is modified into the following problem, known as

a weighted problem:

minimize

m∑
i=1

wifi(x)

s.t x ∈ Ω

(2.4)
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where wi ≥ 0 for all i = {1, ...,m} and
∑m

i=1wi = 1.

Theorem 1 The solution of the weighted problem (2.4) is weakly Pareto optimal.

Theorem 2 The solution of the weighted problem (2.4) is Pareto optimal if the weight-

ing coefficient is positive, that is wi > 0 for all i = 1, ...,m

Theorem 3 Let the multi-objective optimization problem be convex if x∗ is Pareto op-

timal, then there exists a weighting vector w (wi ≥ 0 , i = {1, ...,m} ,
∑k

i=1wi = 1.)

such that x∗ is a solution of the weighted problem (2.4).

For the proof of all theorems, refer to [1].

Theorem 1 to 3 state the solution of the weighting method is Pareto optimal if

the weight coefficients are all positive [1]. The disadvantage of this method is that

it is limited solely to convex problems, because a whole solution cannot be found for

non-convex problems.

2.2.2 ε-Constraint Method

In the ε-constraint method one of the objective functions is selected to be optimized

and all the other objective functions are converted into constraints by setting an upper

bound to each of them. The problem to be solved is now of the following form

minimize fl(x)

s.t fi(x) ≤ εi, ∀ i = 1, ...,m , i 6= l

s.t x ∈ Ω

(2.5)

where l ∈ {1, ...,m}. Problem (2.5) is called an ε− constraint problem.

Theorem 4 The solution of ε− constraint problem (2.5) is weakly Pareto optimal.

Proof in [1].
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Theorem 4 states that the solutions of equation 2.5 are weakly Pareto optimal with-

out any additional assumptions. After this the theorem 5 regarding the proper Pareto

optimality of the solutions of the ε− constraint problem can be introduced as follows,

Theorem 5 A decision vector x∗ ∈ Ω is Pareto optimal if and only if it is a solution

of ε-constraint problem (2.5) for every l = 1, ...,m, where εi = fi(x
∗) for i =

1, ...,m, i 6= l.

Proof in [1].

2.2.3 Value Function Method

In this method, the decision maker must be able to give an accurate and explicit math-

ematical form of the value function U : Rm → R that represents his or her preferences

globally. This function provides a complete ordering in the objective space.

maximize U(f(x))

s.t x ∈ Ω

(2.6)

The value function problem is then ready to be solved by any single objective optimization

method.

Theorem 6 Let the value function U : Rm → R be strongly decreasing. Let U attain

its maximum at f∗. Then, f∗ is Pareto optimal.

Proof in [1].

2.3 Multi-objective Evolutionary Algorithm

2.3.1 Evolutionary Algorithm

Evolution is an optimization process that improves the ability of a system to survive

in competitive environments [12]. Inspired by Charles Darwin’s theory of ‘natural se-
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lection’, evolutionary computation has adopted the following principles of Darwinian

natural selection theory.

• Selection ⇐⇒ Survival of the fittest.

• Two parents generate two offspring ⇐⇒ Crossover or Recombination.

• Small changes in the location (decision variables) of the offspring ⇐⇒ Mutation.

The evolutionary algorithm (EA) is a stochastic optimization method. The earliest

study in this field dates back to the 1950s and, since the 1970s, several evolutionary

methodologies have been proposed. All of these approaches operate on a set of candi-

date solutions. Using strong simplifications, this set is subsequently modified by two

basic principles: selection and variation. While ‘selection’ mimics the natural world’s

competition for reproduction and resources among living beings, the other principle,

variation, imitates the natural ability to create new beings by means of recombination

and mutation.

Evolutionary algorithms such as evolution strategies and genetic algorithms are of-

ten used for solving optimization problems that are too complex to be solved using

traditional mathematical programming methods [12]. EAs require little knowledge of

the problem to be solved and are easy to implement, robust, and inherently parallel.

2.3.2 Multi-objective Optimization Problems using EAs

To solve an optimization problem by EA, one must be able to evaluate the objective

(cost/loss) functions for a given set of input variables. Due to their ease of implementa-

tion, and fitness for parallel computing, EAs are eminently suited to complex problems.

Most real-world problems involve simultaneous optimization of several often conflicting

objectives. Multi-objective EAs are able to find a set of optimal trade-offs in a single

run [2, 13].

EAs work with ‘individuals’ in a population. The number of individuals in the

population is called ‘popsize’ and each individual has two properties:

• Location, known as ‘decision variables’.
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• Quality, known as ‘fitness value’.

After obtaining the fitness values of all individuals, the selection process generates

a ‘mating pool’. Only individuals with higher fitness values are allowed into the mating

pool. Selected individuals are called ‘parents’.

Then, two parents might be selected randomly from the mating pool to generate

two ‘offspring’. After which, the newly generated individuals replace the old ‘parents’

and another generation starts.

2.3.3 Major Issues in MOEAs

MOEAs regulate the following processes in order to achieve a good approximation of a

Pareto front.

2.3.3.1 Reproduction Operators

Reproduction is the process of producing offspring from selected parents. Thus an

operator needs to combine or change the value of the parents in the decision space to

create new individuals.

The operator that combines the genome of the parents to produce a new individual

is called the ‘Crossover’. ‘Mutation’ changes the value of genes in a chromosome ran-

domly. From the first evolutionary algorithm introduced to the current day, different

reproduction operators have been proposed, including:

(i) Binary reproduction operators such as, one point, two point or uniform crossover

and Gaussian or uniform mutation [2, 13].

(ii) Floating point operators such as, simulated binary crossover (SBX) [16], uni-

modal normal distribution operator (UNDX) [17], deferential evolution (DE) [18] and

simplex crossover (SPX) [19] or polynomial mutation [13] and Gaussian mutation oper-

ator [20]. The floating point operator shows better performance when decision variables

are floating point values (Real numbers).

In this thesis we will use the DE and Gaussian mutation operators.
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2.3.3.1.1 Deferential Evolution (DE) In our study we employ DE to create new

individuals. DE is a parallel direct search method which creates new candidate solutions

by choosing three random individuals from the neighbourhood. DE generates new

decision vectors by adding the weighted difference between two parental vectors to a

third one. This step is called mutation [18]. The mutated vectors are then mixed

with the decision variables from another predetermined vector to create a trial vector.

Parameter mixing is often referred to as ‘crossover’. There are two predetermined

parameters, differential weight (F ∈ [0, 2]) and crossover probability (CR ∈ [0, 1]), that

need to be set up either by practice or through a specific method, for instance rules of

thumb for selecting parameters [18]. The basic DE algorithm is described in Algorithm

2.1.

Algorithm 2.1 DE

Input: 1) Three randomly selected individuals x1, x2, x3 = (x1, x2, ...xn).
2) F differential weight.
3) CR crossover probability

Output: New individual x′ = (x′1, x
′
2, ..., x

′
n).

Step 1) Create vector U with uniformly distributed number U = (u1, u2, ..., un)
Step 2) if ui < CR then x′i = x1

i + F × (x3
i − x2

i )
Step 3) otherwise set x′i = x1

i for i = 1, 2, ..., n.

Sometimes, the newly created candidate falls out of the bounds of the decision

variable space. We address this problem by simply replacing the candidate value that

violated the boundary constraints with the closest boundary value [21].

2.3.3.1.2 Gaussian Mutation If the uniformly distributed number u ∼ U(0, 1)

is greater than the mutation probability (Pmu) then this operator adds a Gaussian

distributed random value to the decision variables of the chosen individual. If it falls

out of the boundary of the decision variables then the violating values are replaced with

the closest boundary value [22,23]. The Gaussian density function is

fG(0,σ2)(x) =
1√

2πσ2
e−

x2

2σ2

where σ2 is the variance [23].



Chapter2. Background and Literature Review 20

2.3.3.2 Fitness Assignment

As only the best performing individuals get the chance to reproduce, it is important

to generate a function that will determine the fitness of each individual, known as

‘Fitness Function’. A fitness function maps a fitness vector to a single value, which

represents the quality or rank of the individual in the population. Moreover, the fitness

function guides the MOEA to search into promising areas in the search space. Pareto

dominance ranking, indicator-based and decomposition-based rankings are three major

fitness assignment strategies used in MOEAs.

2.3.3.3 Convergence

It is important for any optimization framework to find actual solutions to optimization

problems or to make a good estimation of a solution. This process is called convergence.

As with any optimization technique, converging to the true Pareto front is important

for all MOEAs. Algorithms are comparative in their converging speed [24,25].

2.3.3.4 Diversity

Obtaining a good distribution of generated solutions along the Pareto front is called

‘Diversity’. A diversity maintenance technique avoids convergence of a population to

a single solution. Therefore, it is very important. It is a fact that an even spread of

discovered solutions is more desirable and different techniques have been established to

preserve the diversity of solutions along the Pareto front such as, niche sharing [26],

clustering [27], crowding density estimation [28], and nearest neighbour method [29].

2.3.3.5 Elitism

The process that guarantees survival of the best individual in the current population to

the next generation is called ‘Elitism’. To ensure this, a copy of the current population

will be kept, without being mutated; in other words, elitism in MOEAs makes sure that

the best (or elite) solutions are kept in a safe place between generations.
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2.3.4 Classification of MOEAs

There are a diverse range of MOEA classifications in the literature, classified according

to the mode of determining fitness function or specific techniques, such as a Priori,

Progressive(Interactive) or a Posteriori [2].

In this study we classify the MOEA according to their fitness assignment methods

and divide these into three categories including:

2.3.4.1 MOEAs based on Pareto Dominance

One of the most popular approaches to fitness assignment appears to be the Pareto-based

ranking. Since its inception, Pareto-based MOEAs such as MOGA [30], PAES [31],

NSGA-II [32], SPEA-II [33] have emerged as the most widely used. However, both

Fonseca and Fleming [34], [30] have highlighted the inadequacy of an MOEA based on

Pareto assignment in high dimensional objectives. In this situation, the Pareto-based

MOEA may not be able to produce sufficient selection pressure and also its performance

does not scale well with respect to the number of objectives [35].

2.3.4.2 MOEAs Based on Decomposition

This approach aggregates the objectives into a single scalar to approximate the Pareto

front. It was in fact the failure of Pareto-based MOEAs in the high dimensional ob-

jective space that turned attention to decomposition-based methods. MOGLS [36] and

MOEA/D [11] are the two most successful algorithms in this category.

2.3.4.3 MOEAs Based on Indication

Here, the fitness function seeks to rank population members according to their perfor-

mance in relation to the optimization goal. MOEAs then introduce a utility function

to be maximized. For example, one possibility would be to sum up the indicator val-

ues for each population member with respect to the rest of the population [37], [38].

IBEA, which was introduced by Zitzler and Künzli, is an example of an indicator-based

evolutionary algorithm. For more information see [37].
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The Non-dominated Sorting Genetic Algorithm, NSGA-II, is undoubtedly the most

well-known and referenced algorithm in the multi-objective literature. It is a GA with

random mating of individuals within a population. It is based on obtaining a new

population from the original one by applying the typical genetic operators (selection,

crossover and mutation); then, the individuals in the two populations are sorted ac-

cording to their rank, and the best solutions are chosen to create a new population. In

the case of having to select some individuals with the same rank, a density estimation

based on measuring the crowding distance to the surrounding individuals belonging to

the same rank is used to get the most promising solutions [32]. In 2014 a new version

of this algorithm was introduced based on adaptive updating and including new refer-

ence points on the fly. The resulting adaptive NSGA-III is shown to provide a denser

representation of the Pareto-optimal front [39,40].

The Strength Pareto Evolutionary Algorithm, SPEA2, works on the same random

mating of individuals within a population as NSGA-II. In this algorithm, each individual

has a fitness value assigned, which is the sum of its strength raw fitness and a density

estimation. The algorithm applies the selection, crossover, and mutation operators to

fill an archive of individuals; then, the non-dominated individuals of both the original

population and the archive are copied into a new population. If the number of non-

dominated individuals is greater than the population size, a truncation operator, based

on calculating the distances to the (k − th) nearest neighbour, is used [29].

2.4 MOEA/D as a Framework

In this thesis, MOEA/D has been studied for handling noisy MOP and this framework

will be reviewed as follows:

In order to find a set of N Pareto optimal solutions, MOEA/D decomposes an MOP

to N Single-objective Optimization Problem (SOP) (see Figure 2.4). It then solves each

subproblem independently. (See Figure 2.5).
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Figure 2.4: Decomposing MOP to N Subproblems.

Figure 2.5: MOEA/D solve N subproblems simultaneously.

2.4.1 Decomposition Methods

Decomposition is a general approach to solving a problem by breaking it up into smaller

ones and solving each of the smaller ones separately, either in parallel or sequentially.

[41].

Decomposition in optimization is an old idea and appears in early work on large-

scale LPs [42]. The original primary motivation behind decomposition methods was to

solve very large problems that were beyond the reach of standard techniques.

Decomposition of an MOP can be done at different levels. i) Decision variables: in

[43] the authors introduced a Dynamical Multi-Objective Evolutionary Algorithm with

Domain Decomposition (DMOEA-DD) by using a domain decomposition technique.

The decomposition of decision variables is implemented by splitting the original set
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of decision variables into subgroups and optimizing each group as a subproblem. ii)

Objective functions: in [11, 44] the authors introduced algorithms that decompose an

MOP into multiple scalar optimization subproblems.

In the following the Tchebycheff decomposition method is introduced. This will be

used later in this thesis.

2.4.1.1 Tchebycheff Decomposition Method

The Tchebycheff approach was introduced in [45]. The aggregation function of this

method is mathematically defined as follows,

minimize gte(x|λ, z∗) = max
i∈1,··· ,m

λi|fi(x)− z∗i |

subject to x ∈ Ω ⊂ Rn.
(2.7)

where z∗ = (z∗1 , · · · , z∗m) is the reference point. z∗i = min{fi(x) | x ∈ Ω} for each

i = 1, · · · ,m. The reference point guides the search procedure to converge. (see Figure

2.6).

According to the following theorem for any Pareto optimal solution x∗ there is a

weight vector (λ1, λ2) such that x∗ is the optimal solution to (2.7).

Theorem 7 If the Tchebycheff problem 2.7 has a unique solution, then it is Pareto-

optimal.

Proof of this theorem is available in [1].

2.4.2 Subproblems

Generating a diverse set of weight vectors is intransitive for the decomposition of the

multi-objective problem into multiple single objective problems in order to achieve a

good representation of Pareto Front (PF). Table 2.1 shows the process of creating sub-

problems based on an aggregation function. Every weight vector defines a subproblem

and a diverse set of weight vectors leads to a diverse range of subproblems. This results

in a diversity of Pareto optimal solutions because, as is mentioned in Section 2.4.1.1,
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Figure 2.6: Tchebycheff Decomposition Method.

Table 2.1: Create subproblems with evenly distributed weight vectors

Weight Vectors Subproblems

λ1 = (1, 0) g(x, λ1) = 1× f1 + 0× f2

λ2 = (0.9, 0.1) g(x, λ2) = 0.9× f1 + 0.1× f2

λ3 = (0.8, 0.2) g(x, λ3) = 0.8× f1 + 0.2× f2

. .

. .

. .

λN = (0, 1) g(x, λN ) = 0× f1 + 1× f2

the optimal solution of 2.7 is a Pareto optimal solution for 2.1. This fact is clearly illus-

trated in Figure 2.7. The authors in [11] introduced a method for generating uniform

weight vectors.

Figure 2.7: Pareto front constructed by optimal solutions of each subproblems.
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2.4.3 Neighbourhood

Neighbourhood relation in MOEA/D is introduced by computing the Euclidean dis-

tances between any two weight vectors and then working out the T closest weight

vectors to each weight vector. T is the size of neighbourhood which is set by the deci-

sion makers. For each i = 1, · · · , N set B(i) = {i1, · · · , iT } where λi1 , · · · , λiT are the

closest weight vectors to λi. Note that each weight vector is the closest vector to itself

and the neighbourhoods of weight vectors remain unchanged during the whole search

process. Figure (2.8) illustrates the neighbouring relations in MOEA/D. T is a major

Figure 2.8: Illustration of neighbouring relation in MOEA/D.
(T is the size of neighbourhood)

control parameter in MOEA/D [11] because it is a mating restriction. Two solutions

have a mating chance if they are in the same neighbourhood.

2.4.4 General Framework

In the framework of MOEA/D, a population of scalar optimization subproblems is

maintained and each subproblem is formed by the following components:

• Solution x: is the current best solution of this subproblem.

• Weight λ: is the weight vector that characterizes this subproblem and determines

its search direction.

• Neighbourhood B: the list for each subproblem that contains the indexes of neigh-

bouring subproblems.
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After initialization, MOEA/D starts the search process in its main loop. An

offspring is generated for each subproblem i by applying the selection, crossover

and mutation operators. Then, two neighbouring subproblems of subproblem i

are selected randomly from B(i). The selected solutions produce a new solution

y by applying genetic operators (crossover and mutation); y is then offered to all

subproblems within the neighbourhood of subproblem i. If y is fitter than any

neighbours, then y will replace that particular neighbour.

A stopping criteria is necessary to stop the algorithm from searching. In this

thesis, the stopping criteria employed is a predetermined number of generations.

An external population that holds the best solutions is not practical in continuous

MOPs, however. This is because the final generation of this population represents

the best result found by MOEA/D an inherent elitism that plays an important

role in discrete MOPs. However, in our experiments we focus purely on continuous

MOP and for this reason the next chapters will not employ the external population.

Finally, the reference point is a vector which directs the algorithm towards the

optimal solution. A reference point constructed as z∗ = (z∗1 , · · · , z∗m) where z∗i =

min {fi(x) | x ∈ Ω} for each i = 1, · · · ,m. This can be updated during the

search or can be fixed as a predetermined parameter. Algorithm 2.2 describes

MOEA/D in detail and more information is available in [11].

In the less than a decade since Zhang and Li introduced MOEA/D in 2007 [11] it

has attracted much interest and numerous research studies have been published

on the following aspects [46]:

1. Combining MOEA/D with other meta-heuristics, such as simulated anneal-

ing [47], colony optimization [48], particle swarm optimization [49, 50], tabu

search [51], guided local search [52]and deferential evolution [53].

2. Changing the reproducing operators, such as guided mutation operator [54],

nonlinear crossover and mutation operator [55], differential evolution schemes

[53], and a new mating parent selection mechanism [46,56].
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3. Research on decomposition techniques. An NBI-style Tchebycheff decom-

position approach is proposed to solve portfolio optimization problems by

the authors in [57]. In [58, 59] different decomposition approaches are used

simultaneously.

4. Improvement on weight vectors. Predetermined, uniformly distributed weight

vectors are used to define scaler subproblems in MOEA/D. This reveals that

the fixed weight vectors used in MOEA/D might not be able to cover the

whole PF very well [47]. Therefore, in [60], the authors create weight vec-

tors predictably based on the distribution of the current weight set. In [61],

another weight adjustment method is developed by sampling the regression

curve of the objective vectors of the solutions in an external population. The

authors in [46] introduce (MOEA/D-AWA), which is an improved version of

MOEA/D with an adaptive weight vector adjustment.

5. Applications of MOEA/D like the combinatorial optimization problem, known

as the knapsack problem, [47, 58], the travelling salesman problem [47], the

flow-shop scheduling problem [51,62] and the capacitated arc routing problem

[63]. Or practical engineering problems like antenna array synthesis [64, 65],

wireless sensor networks [66], robot path planning [67], missile control [68],

a multi-objective optimization for rest-to-rest manoeuvres of flexible space-

craft [69], portfolio management [57] and rule mining in machine learning [70]

have also been investigated.
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Algorithm 2.2 MOEA/D

Input:

• A stopping criterion.

• N: the number of subproblems considered in MOEA/D.

• A uniform spread of the weight vectors: λ1, · · · , λN .

• T: the number of weight vectors in the neighbourhood of each weight vector.

Output:

• EP or {F (x1), · · · , F (xN )}.

Step 1) Initialization:
Step 1.1) Set EP = ∅.
Step 1.2) Compute the Euclidean distances between any two weight vectors.
For each subproblem i = 1, ..., N , set the neighbourhood B(i) = {i1, ..., iT }. where
λi1 , ..., λiT are the T closest weight vectors to λi.
Step 1.3) Generate an initial population x1, ..., xN randomly.
Step 1.4) Evaluate the population.
Step 1.5) Set the reference point z = (z1, ..., zm) (see Section 2.4.4).

Step 2) Update:
For i = 1, · · · , N do
Step 2.1) Reproduction: Randomly select two solutions from B(i) to generate
a new solution y by using genetic operators.
Step 2.2) Improvement: Apply a problem-specific (repair/ improvement
heuristic) on y to produce y′.
Step 2.3) Update of z: Update the reference point z.
Step 2.4) Update of Neighbouring Solutions: For each index j ∈ B(i), set
xj = y′ if xj is not fitter than y′ regarding to the subproblem j.
Step 2.5) Update of EP: Add F (y′) to EP if no vector in EP dominates F (y′)
and remove all dominated vectors by F (y′) from EP.

Step 3) Stopping Criteria:
If stopping criteria is satisfied stop and return EP or {F (x1), · · · , F (xN )} Otherwise,
go to Step 2.



Chapter2. Background and Literature Review 30

2.5 Ordinal Optimisation Technique.

Ordinal optimization is a ranking and selection approach to solve a simulated optimiza-

tion problem [71].

2.5.1 Introduction

Ordinal optimization concentrates on ordinal comparison and achieves a much faster

convergence rate [3]. The idea behind ordinal optimization is to effect a strategic change

of goals.

2.5.1.1 Problem Statement

Suppose a general simulation optimization problem was defined as follows:

min
x∈Ω

J(x) ≡ E[f(x, ε)] (2.8)

Where J(x) is the performance measure of the problem, L(x, ε) is the sample perfor-

mance, x is a system solution and Ω is the set containing all the feasible solutions.

If J(x) is a scalar function, the problem is a single objective optimization problem;

whereas if it were to be a vector valued function, the problem would become a multi-

objective optimization problem. The standard approach for estimating the expectation

of performance E[f(x, ε)] is the mean performance measure as follows,

J̄ ≡ 1

n

n∑
i=1

f(x, εi) (2.9)

Where, n shows the number of simulation samples for solution i.

Due to its huge search space, lack of structure and high uncertainty, solving problem

2.8 is very challenging, either computationally or analytically. The fact that many real

world optimization problems remain unsolved is partly due to these very issues. A large

number of human-made systems imply combinatorics, symbolic or categorical variables

which make the calculus or real variable-based methods less applicable. Search-based
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methods are required to tackle the difficulty of those models. These allow for a narrowing

of the search for the optimum to a ‘good enough’ subset, rather than the perfect best.

After all, real world solutions to real world problems all involve compromise towards

‘good enough’ rather than perfect.

Further more, it is undoubtedly much easier to simply determine which solution is

better than to struggle to find out how much better.

2.5.1.2 Basic Ideas

The fundamental principles of the ordinal optimization method are as follows [3, 72]:

1. Goal softening.

2. Ordinal Comparison.

3. ‘Order’ converges exponentially fast.

4. ‘Order’ is much more robust against noise than ‘value’.

The first principle, goal softening, holds that it is much easier to find a top-n solution

than to find out the global best.

The second principle, namely ordinal comparison, holds that it is much easier to

determine which solution is better than how much better. For example, were you to

receive two parcels, it would be far easier to identify which one was heavier than to

work out the exact weight difference between them.

The third principle, in which order converges faster than value, has been analysed

in [73] (pp. 160-163). In addition, the interested reader could refer to [3].

2.5.1.3 Notifications and Concepts

Assume that a subset of search space Ω, defined as ‘Good enough’ and denoted by G,

which could be the top-g solution or top-n% of the solutions of the sampled set of M

solutions. The size of the number G is denoted as g (|G| = g). Moreover, by selecting

some other members of the population, either blindly or by some rule, another subset
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is defined called ‘Selected Subset’. It is denoted by ‘S’ with the same cardinality as G

(|G| = |S| = g). Figure 2.9 illustrates the concept of ordinal optimization.

The question here is: what is the probability that among the set ‘S’ we have at least

‘k’ of the members of G, which is P{|G ∩ S| ≥ k} and represents another concept of

ordinal optimization known as ‘Alignment Probability’. It is a measure of the rightness

of our selection rules. Alternatively there are some special cases of alignment probability

which are denoted by P (CS) and stand for probability of ‘Correct Selection’ [72]. This

probability is calculated for discrete systems with blink picking in [3, 72].

Figure 2.9: Generalized concept of Ordinal Optimization [3].

2.5.1.4 Definitions, Terminologies and Concepts of OO

Ordinal optimization uses a crude system model to order the solutions in the search

space. A crude model is one with a lower computational cost that allows the simulation

to converge faster.

In addition, it utilizes a different method to select set S. A selection rule is a

procedure that selects the set S based on observed performance of the solutions, such

as blind picking or horse racing etc.

The ordinal optimization (OO) procedure is summarized in Algorithm 2.3 [3]. As

we study the multi-objective optimization problem, the concept of OO by itself is not
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Algorithm 2.3 Ordinal Optimization Procedure

Require: Search Space Ω
Step 1 : Pick M random solutions from Ω
Step 2 : Specify the size of the good enough set G and alignment level k.
Step 3 : Use crude model to estimate the performance of N solutions.
Step 4 : Estimate the noise level and the problem type.
Step 5 : Calculate s, the size of selected set.
Step 6 : Select the observed top-s solutions.
Step 7 : Then employ OO theory to ensure there are at least k truly good enough
solutions in S with a certain probability.

helpful. However in [74] the authors extended the concept of OO for vector optimization

problems and called it Vector Ordinal Optimization (VOO). We will implement VOO

later in this research.

2.5.2 Vector Ordinal Optimization

When ordinal optimization was first developed it was initially proposed to solve a

stochastic simulation optimization with a single objective and no constraints [3, 74].

Very soon, however, the idea was extended to multi-objective problems, constrained

optimization problems and so on [74].

2.5.2.1 Definitions, terminologies and concepts of VOO

Practical problems in the finance or industry sectors involve multiple simulation-based

objective functions and, in most cases, decision makers have no prior knowledge as to

priority nor appropriate weighting amongst the objective functions.

Different studies have proposed various ways to introduce order amongst the solu-

tions in vector ordinal optimization. The first and most common way is to follow the

definition of Pareto front.

Definition 7 (Dominance) Assume that we have two solutions, x1 and x2. x2 dom-

inates x1, denoted by x2 ≺ x1, if both the following conditions hold:

∀ i ∈ {1, 2, ...,m}, Ji(x2) ≤ Ji(x1)



Chapter2. Background and Literature Review 34

∃ j ∈ {1, 2, ...,m}, Jj(x2) < Jj(x1)

where m is the number of objective functions in the simulation-based optimization

problem.

Definition 8 (Pareto frontier) A set of solutions L1 is called the Pareto frontier if

it contains only the non-dominated solutions,

L1 ≡ {x | x ∈ Ω, 6 ∃ x′ ∈ Ω, s.t. x′ ≺ x}

Figure 2.10: Illustration of Layers [3].

The concept of Pareto frontier introduces an operator ω that maps the solution space

to the set of Pareto fronts with respect to the objective functions as L1 = ω(Ω) [74].

The concept of Pareto frontier can extend to a sequence of layers. This can be seen in

Figure 2.10.

Definition 9 (Layers) A series of solutions Ls+1 = ω(Ω\
⋃
i=1,2,...,s Li) , s = 1, 2, ....

are called layers. A\B denotes the set containing all the solutions included in the set A

but not included in the set B.

Without any additional problem information, there are no preferences as to objective

function and no preferences as to solution in the same layer.
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The procedure of VOO is summarized in Algorithm 2.4 that will be used later in

this thesis.

Algorithm 2.4 Vector Ordinal Optimization

Require: Search Space Ω
Step 1 : Pick M random solutions from Ω
Step 2 : Use crude model (computationally fast) to estimate the performance of N
solutions.
Step 3 : Select the observed top-s layers. (selected set S).
Step 4 : Evaluate the selected layers with exact model (more refined model) to esti-
mate the optimal solutions.

The second method for introducing order among the solutions is to count the number

of solutions that dominate a solution x, denoted as n(x), then to sort all the solutions

according to n(x) in ascending order [75]. Solution xi is deemed better than xj if

n(xi) < n(xj). And solutions xi and xj are regarded as equally good solutions if

n(xi) = n(xj).

An Order Based Genetic Algorithm (OGA) was introduced in [76], based on the idea

of ordinal optimization, to ensure the quality of the solution found with a reduction in

computational effort.

The authors in [77] combine OO and Optimal Computing Budget Allocation (OCBA)

within the search framework of GA to propose a novel Genetic Ordinal Optimiza-

tion (GOO) algorithm to solve the stochastic travelling salesman problem.

In [78] the authors incorporate particle swarm along with OO for a stochastic simula-

tion optimization problem. The new algorithm Combined Particle Swarm with Ordinal

Optimization (CPSOO) is applied to solve the centralized broadband wireless network

problem.

The authors in [78] combine evolution strategy with ordinal optimization to solve a

wafer testing problem. They called this new algorithm (ES+OO). In another study [79]

they solve the same problem with (GA+OO), which is a combination of a genetic

algorithm with ordinal optimization.

An ordinal optimization-based algorithm is also used for the hotel booking limits

problem in [80]. The authors construct a crude mode as a fitness evaluation function
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in Particle Swarm Optimization (PSO) Algorithm to select M candidate solutions and

then use OCBA to search for a good enough solution.

In this thesis we will use the ordinal optimization technique to handle uncertainty

for the first time.

2.6 Noisy MOEAs

In real-world problems characterized by noise, precise determination of the fitness value

for individual solutions is a major challenge. This is because the noise may be associated

with different sources, including erroneous sensory measurements and randomized simu-

lations. Such noise causes an uncertainty in the fitness evaluation of potential solutions

and eventually adversely affects the search efficiency, convergence and self-adaptation

of evolutionary algorithms (EAs) and other heuristic search algorithms.

Uncertainty in the context of evolutionary optimisation can be divided into four

major categories [4], as follows:

1. Noise: The noisy fitness function (F (X)) may be described as:

F (X) = f(X) + ζ

where X denotes the parameter-vector, f(X) the fitness function without noise,

and ζ the additive noise. In that, though ζ is often assumed to have a Gaussian

distribution, it may have non-Gaussian distributions as well. Notably, given the

randomness associated with the noise, different fitness values may be obtained for

the same solution in different evaluations.

2. Robustness: Here, the parameter-vector is perturbed after the optimal solution

has been obtained, and a solution is still required to work satisfactorily. In this

case, the expected fitness function (F (X)), as below, may be used:

F (X) = f(X + δ)
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where δ represents the perturbation.

3. Fitness approximation: In situations where either an analytical fitness function

may not be available or its evaluation may be very expensive, the fitness function

may need to be approximated based on experimental or simulation data. The

approximated fitness function, often referred to as the meta-model ought to be

used together with the original fitness function as follows:

F (X) =

 f(X), if the original fitness function is used

f(X) + E(X) if the meta-model is used

where, E(X) is the approximation error.

4. Time-varying fitness functions: Here, the fitness function is deterministic at any

point in time but is dependent on time t, and may be described by:

F (X) = ft(X)

Among the above categories, the issue of handling noise in fitness evaluations is often

an important one in several domains, including evolutionary robotics [81], evolutionary

process optimization [82], and evolution of en-route cashing strategies [83]. In order to

address this issue, three major approaches have been identified [4], as follows:

1. Explicit Averaging (Fitness Averaging): This calls for estimating the fitness by

averaging over a number of samples taken over time. Notably, each sampling may

be quite expensive, hence a balance between the sample size and performance

becomes critical. The authors in [84, 85] suggested two adaptation schemes: i)

increasing the sample size with generation number and using a higher sample size

for individuals with higher estimated variance. The author in [86] concludes that

for small population sizes, sampling is able to improve the learning performance.

Moreover it is also mentioned that sampling does not help if the population size

is generously large.

2. Implicit Averaging (Population Sizing): This calls for negating the effect of noise
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by increasing the population size. For instance, the authors in [87] have demon-

strated that when the population size is infinite, proportional selection is not

affected by noise.

3. Modifying Selection: This calls for modifying the selection process in order to

cope with noise. For instance, the authors in [88] proposed to de-randomize the

selection process, and demonstrated that the effect of noise could be significantly

reduced without a proportional increase in computational cost. Notably, this

approach has also been studied in the context of multi-objective optimization,

where Pareto-dominance is used for selection. In the latter, the authors in [89]

and [90, 91] have proposed that an individual solutions Pareto-rank be replaced

by its probability of being dominated.

A number of approaches have also been proposed to reduce the disruptive effect of

noise such as population sizing [92,93], fitness averaging and fitness estimation [94–96],

specific selection method [97–99], and Kalman filtering [100].

A few noise handling techniques in MOEAs have been introduced which include

periodic re-evaluation of achieved solutions [8], probabilistic Pareto ranking [90], the

extended averaging scheme [101], experiential learning directed perturbation [102] and

gene adaptation selection strategy [102].

There are some MOEAs which are facilitated by specific noise handling techniques to

tackle the disruptive impact of noise, for instance NTSPEA [8], Multi-objective Prob-

abilistic Selection Evolutionary Algorithm (MOPSEA) [103], a robust feature multi-

objective evolutionary algorithm (MOEA-RF) [9] and MNSGA-II [10].

The authors in [104] examined the effect of noise on both local search and genetic

search to understand the potential effects of noise on the search space.

Optimization in noisy and uncertain environments is regarded as one of the favourite

application domains of evolutionary algorithms [6]. Research in the field of noisy

MOEAs is still in its infancy. Compared to its practical relevance, the effect of noise

and its influence on the performance of MOEAs has gained relatively little attention in

EA research [8, 90,105].
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2.7 Conclusions

In this chapter we briefly reviewed the basic concepts of optimization theory by fo-

cusing on the multi-objective optimization problem. Having discussed the traditional

approaches used to solve these problems, we outlined a modern heuristic method, the

‘Evolutionary Algorithm’, for solving multi-objective optimisation. Then followed a

detailed discussion of the major issues confronting multi-objective evolutionary algo-

rithms.

MOEA/D was reviewed in this chapter as a framework for optimizing multiobjective

problem. We will use MOEA/D as a base algorithm for further research. A literature

review on noisy MOEAs was provided.

Furthermore, an introduction to the ordinal optimization technique has been ex-

plored, covering both single and multi-objective optimization problems. We will com-

bine this technique with the MOEA/D algorithm to handle noise.



3
MOEA/D in Noisy Environments

In the previous chapter we discussed MOEA and its major issues. Noise is one of these.

It poses a significant challenge to MOEA because the noise, spread as it is from different

sources, causes uncertainty in the fitness evaluation of potential solutions and eventu-

ally adversely affects search efficiency, elitism, convergence and the self-adaptation of

Evolutionary Algorithms (EAs) and other heuristic search algorithms.

Does noise matter in the case of MOEA/D? Will its performance be affected by

noise? If so, how seriously? Results obtained in this chapter do reveal a meaningful

deterioration in the performance of MOEA/D when noise intensifies. Thus, this chapter

will provide answers to the above questions, but in order to get to that point we will

first define some common concepts in noisy multi-objective optimization.

40
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3.1 Multi-objective Optimization Problems in Noisy En-

vironments

A noisy MOP is an MOP whose objective function is disrupted by noisy terms. A noisy

multi-objective problem can be described as follows:

minF (x) = (f1(x) + δ1, · · · , fm(x) + δm)

s.t x ∈ Ω

(3.1)

where x is a ‘decision vector’ and δi for i = 1, 2, ...,m are disruptive noises with

scalar values.

In this study, an unbiased (zero mean) Gaussian perturbation is added to the ob-

jective functions [102].

F (X) = f(X) + δ

δ ∼ N(0, σ2)

(3.2)

where σ2 denotes the level of noise, while F (x) and f(x) represent the objective

functions with and without noise respectively.

In this thesis, it is assumed that noise has a disruptive influence on the value of each

individual in the objective space and it is common practice as used in [9,90,91,95,96,106].

3.2 Evolutionary Multi-objective Optimization in Noisy

Environments

In this section, we explain how the research reported in this chapter relates to other

work in the literature.

To begin with, there are different ways to model noise. The majority of them,

including this research, use the Gaussian model. In [107], Arnold and Beyer conducted
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a comparison of the influence of Gaussian, Cauchy and χ2 distributed noise on the

performance of evolutionary strategy (ES) .

Secondly, most research into noisy optimization focuses on single objective problems

[107]. In this thesis, we focus on MOP.

Thirdly, studies on EA for noisy MOPs have been conducted, [5,9], and a number of

approaches have been proposed in recent decades by different studies aimed at decreasing

the impact of noise on MOEA such as population sizing [93], fitness estimation [96] and

modified selection schemes [9, 98].

The aim of this thesis is to improve MOEA/D in noisy MOPs. We are not comparing

the performance of proposed methods to others in the literature at this stage. In any

case, a beauty contest would not be straightforward or meaningful because different

methods could perform better in different problems. Besides, performance could also

be affected by the parameters and fitness measures used in different algorithms.

3.3 MOEA/D Algorithm

MOEA/D is a population-based algorithm that decomposes the MOP to N scalar opti-

mization problems and optimizes them simultaneously rather than seeking to solve the

MOP as a whole. All traditional mathematical decomposition techniques are applicable

such as Weighted Sum, Tchebycheff Approach and so on.

Diversity in the subproblems naturally brings diversity to the population. A properly

chosen weight vector and decomposition method can result in an evenly distributed

solution along the PF as described in Section 2.4 [108].

In MOEA/D a neighbourhood of subproblems is defined as T closest subproblems.

The closeness of subproblems is measured by the Euclidean distance of weight vectors

between each subproblem. Subproblems share information such as optimal points with

neighbouring subproblems.

In this research, we use MOEA/D with the Tchebycheff decomposition method that

is described in Section 2.4.1.1. All the steps of this framework are listed in Algorithm

3.1 and further details are available in [11] and Section 2.4.
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Algorithm 3.1 MOEA/D for Solving Noisy MOP

Input:

• MOP 3.1.

• A stopping criterion;

• N: the number of subproblems considered in MOEA/D.

• A uniform spread of the weight vectors: λ1, · · · , λN .

• T: the number of the weight vectors in the neighbourhood of each weight vector.

Output:

• {F (x1), · · · , F (xN )}.

Step 1) Initialization:
Step 1.1) Compute the Euclidean distances between any two weight vectors.
For each subproblem i = 1, ..., N , set the neighbourhood B(i) = {i1, ..., iT }. where
λi1 , ..., λiT are the T closest weight vectors to λi.
Step 1.2) Generate an initial population x1, ..., xN randomly.
Step 1.3) Evaluate the population.
Step 1.4) Set the reference point z = (z1, ..., zm) (see Section 2.4.4).

Step 2) Update:
For i = 1, · · · , N , do
Step 2.1) Reproduction: Randomly select two solutions from B(i) to generate
a new solution y by using genetic operators.
Step 2.2) Update of z: Update the reference point z.
Step 2.3) Update of Neighbouring Solutions: For each index j ∈ B(i), set
xj = y if xj is not fitter than y regarding to the subproblem j.

Step 3) Stopping Criteria:
If stopping criteria is satisfied stop and return {F (x1), · · · , F (xN )}. Otherwise, go
to Step 2.

3.4 Performance Metrics

Performance metrics play an important role in returning a scalar value to represent

the quality of a solution set with respect to a given measure. Due to the nature of

MOP several performance metrics are needed to gauge the performance of an algorithm

[13,109].

1. Proximity Indicator: The generation gap between PFtrue and PFapprox indicates

the closeness of the approximated Pareto front and true Pareto front. The true

Pareto front is the global Pareto optimal set [9, 110]. For ZDT problems, Zitzler
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and others produced a very good approximation of the true Pareto front on their

website1. Their approximation is also covered in Appendix A. Mathematically,

generational distance(GD) is formalized as:

GD = (
1

nPF

nPF∑
i=1

d2
i )

1/2 (3.3)

where nPF is the number of elements in PFtrue and di is the Euclidean distance (in

objective space) between member i of PFtrue and its nearest member of PFapprox.

Notably, a lower value of GD implies a better approximation of the Pareto front.

2. Diversity Indicator (Maximum Spread): MS measures how well the true Pareto

front is covered by the approximated Pareto front [9,110]. To assess the diversity

of solutions in PFapprox vis-à-vis PFtrue, the following metric will be used:

MS =

√
1
m

∑m
i=1

[
min(fmaxi ,Fmaxi )−max(fmini ,Fmini )

Fmaxi −Fmini

]2
(3.4)

where:

m is the number of objective functions.

fmini &fmaxi are the minimum and maximum of fi in PF approx.

Fmini &Fmaxi are the minimum and maximum of fi in PF true.

Notably, by converging to 1, MS shows that the approximated Pareto front prop-

erly covers the true Pareto front.

3. Distribution Indicator (Spacing): To assess the uniformity of distribution between

solutions along PF approx [9, 110] the following metric will be used:

S =

[
1

nPF − 1

nPF∑
i=1

(di − d̄)2

] 1
2

(3.5)

where

d̄ =
1

nPF

nPF∑
i=1

di

1http://www.tik.ee.ethz.ch/sop/download/supplementary/testproblems/
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Figure 3.1: HV: Area that is dominated by solution set.

di is the Euclidean distance between the i-th member and its nearest neighbour

in PF and nPF is the number of elements in PF approx. Notably, a smaller value of

spacing implies a more uniform distribution of solutions in PF approx.

4. General Quality Indicator: the hypervolume(HV ) metric indicates the general

quality of a solution set by taking into account its performance in diversity and

proximity [9,110]. Hypervolume indicates the size of area that is dominated by a

solution set as in Fig.3.1 below. A reference point O′ = (o1, o2, ..., om) is defined

where oi represents the worst values for objective function i. Finally HV metrics

can be defined as follow:

HV = volume

nPF⋃
i=1

vi (3.6)

where vi is a hypercube between solution i and the reference point which is con-

structed as the diagonal corner of the hypercube. Veldhuizen and Lamont ex-

pressed this metric as a ratio between the PF approx and PF true

HV R =
HV (PF approx)

HV (PF true)
(3.7)

Notably, PF approx is a good approximation of PF true if its hypervolume metric

value is close enough to the hypervolume metric value of PF true. Consequently it
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is desirable that the HV R metric should merge to a value of 1 .

3.5 Experiment

The purpose of this experiment is to find the impact of noise on the performance of the

MOEA/D. The behaviour of the MOEA/D is tested on different levels of noise, which

helps us to detect the destructive effects of noise with some scale. Noises are added to

the test functions that are summarized in Section 3.5.2, in the form that is mentioned

in Section 3.1.

3.5.1 Design of Experiment

In order to study the impact of noise on MOEA/D, an experiment has been designed to

challenge the algorithm in the presence of different levels of noise, from low (1%, 2%),

to medium (5%) to high (10%, 20%).

In this thesis we implement the DE operation, along with a Gaussian mutation

operator to generate new individuals. Both of these operators are reviewed in Sections

2.3.3.1.1 and 2.3.3.1.2. In our experiment, DE parameters are set as (F = 0.5) for

differential weight and (CR = 0.5) for crossover probability. This setting has been

implemented before (see MOEA/D homepage), meaning we are therefore using the

same settings as those used by the original authors of MOEA/D. The new offspring just

produced by the DE operator then undergoes the Gaussian mutation with the following

mutation probability:

Pmu =
1

Number of Decesion V ariables

Finally, this mutated offspring will be referred as a new individual to the optimization

framework.

The performance of MOEA/D is affected by its parameter settings. The most in-

fluential parameters are population size and neighbourhood size, as well as maximum

iterations. We adopt the following set up in the experiment:
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• Number of subproblems and population size: as MOEA/D decomposes the MOP

into N scalar subproblems and a population of N solutions x1, ..., xN is main-

tained, where xi is the best solution found so far for the i−th subproblem. With-

out loss of generality, a fixed population of one hundred individuals (N = 100)

has been considered sufficient for this study. The amount is entirely arbitrary.

• Neighbourhood size: To ensure better exploration and exploitation, attention

should be paid to the size of neighbourhood. As a result, twenty percent of the

population is considered as the neighbourhood size, which offers a good chance

for neighbouring solutions to mate [108].

• Number of iterations: The algorithms will stop when maximum generation is

reached. In our study a total of 150 iterations will complete the search process.

It has been empirically observed that there are no significant improvements after

150 iterations, hence our setting up the algorithm to stop at that point to reduce

the computational cost.

Finally, fifty independent simulation runs are conducted for each of the noisy prob-

lems. We run our experiments in Matlab.

No other study covers computational cost in noisy research. For instance, see [9].

At this stage finding a proper and trustworthy method for handling noise is the primary

concern in noisy optimization research. Computational cost and time remain minor

considerations for the moment.

3.5.2 Benchmark Problems

To reveal capabilities, possible pitfalls and specific characteristics of the algorithms, re-

searchers use benchmark problems. These have different features such as multi-modality,

convexity, discontinuity and non uniformity of the Pareto front. These features may pre-

vent the MOEAs from finding a diverse set of solutions.

Six benchmark problems, FON, KUR, ZDT1, ZDT3, ZDT4 and ZDT6 have been

selected to be used in this research. Many researchers have applied these test problems
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Table 3.1: Definition of the test functions.

Problems

(Characteristics)

Variables

Number (n); bounds
Objective Functions

FON

Non-convex
3; [-4 , 4]

f1(x) = 1− exp(−
∑3

i=1(xi − 1√
3
)2)

f2(x) = 1− exp(−
∑3

i=1(xi + 1√
3
)2)

KUR

Non-convex

Disconnected

3; [-5 , 5]
f1(x) =

∑n−1
i=1 (−10 exp(−0.2

√
x2
i + x2

i+1))

f2(x) =
∑n

i=1(|xi|0.8 + 5 sin(x3
i ))

ZDT1

Convex
30; [0 , 1]

f1(x) = x1

f2(x) = g(x)[1−
√
x1/g(x)]

g(x) = 1 + 9(
∑n

i=1 xi)/(n− 1)

ZDT3

Non-convex

Disconnected

30; [0 , 1]

f1(x) = x1

f2(x) = g(x)[1−
√
x1/g(x)− x1

g(x) sin(10πx1)

g(x) = 1 + 9(
∑n

i=2 xi)/(n− 1)

ZDT4

Non-convex

Multimodal

10; x1 ∈ [0, 1]

xi ∈ [− 5, 5]

i = 2, · · · , n

f1(x) = x1

f2(x) = g(x)[1−
√
x1/g(x)]

g(x) = 1 + 10(n− 1) +
∑n

i=2[x2
i − 10 cos(4πxi)]

ZDT6

Non-convex

Non-uniformly

distributed

10; [0 , 1]

f1(x) = 1− exp(−4x1) sin6(6πx1)

f2(x) = g(x)[1− (f1(x)/g(x))2]

g(x) = 1 + 9[(
∑n

i=2 xi)/(n− 1)]0.25

to assess the effectiveness of their proposed algorithms [9, 11, 28, 29, 32, 111–114]. The

definitions of the selected problems are outlined in the following and in Table 3.1.

• FON is a non-convex, non-linear problem. It is difficult for algorithms to maintain

a stable evolving population for FON [9]. The challenge this problem poses to

algorithms is finding and maintaining a uniform Pareto front [115,116]. Thus, for

this problem, the algorithms’ performance can be easily assessed and compared

via observations of the Pareto front.

• KUR uses two complicated objectives with a non-convex and disconnected Pareto

front. There are a total of three distinct disconnected regions on the Pareto

frontier. Furthermore, the decision variables are also disconnected in the decision

space and difficult to discover. This challenges the algorithm’s ability to cope with

discontinuities and non-convexities. [117]

• ZDT1 is a problem with a large number of decision variables (30) to be optimized.
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It has a convex Pareto front. This problem challenges the algorithm’s ability to

converge and maintain a diverse solution on a convex Pareto frontier

• ZDT3 is a problem with 30 variables to be optimized. Its Pareto front has several

noncontiguous convex parts that represent the discreteness feature. These features

challenge the algorithm to find the optimal. However, there is no discontinuity in

the parameter space.

• ZDT4 is a problem with 10 variables where the first variable is in [0, 1] and the

rest are in [-5 , 5]. This problem contains 219 local Pareto optimals that challenge

the ability of the algorithms to deal with multimodality [113,114].

• ZDT6 is a problem with 10 variables and a non-convex formed Pareto front. This

presents two difficulties. First, the Pareto optimal solutions are non-uniformly

distributed along the global Pareto front and, second, the density of solutions is

lowest near the Pareto front and highest away from the front. [113,114]

The characteristics of these problems are highlighted in Table 3.1. These test functions

are modified in the form of 3.1 in order to include the impact of noise.

3.5.3 Results

True Pareto front is the best recent estimation of each problem, therefore we plot our

results on the true Pareto front to illustrate how the algorithms work.

For a convenient evaluation of the results, the desirable values of the performance

metrics are restated here: for the GD and S metrics 0 is the goal, and for the MS and

HVR metrics 1 is the desirable value. Closeness of the performance metric values to the

desirable values indicates the quality of the estimated solutions.

• FON: Figure 3.2 shows the true Pareto front and estimated Pareto front of the

noisy FON problem by MOEA/D. Table 3.2 includes the performance metric

values of MOEA/D in the presence of different levels of noise. It is desirable that

performance metrics GD and S converge to 0 and MS and HVR converge to 1 as

indicated in Section 3.4. As can be seen from Table 3.2, the performance of the
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MOEA/D algorithm deteriorates sharply when noise intensity increases. This is

due to the fact that, when the noise level is 20%, the performance metric values

are far from acceptable.

• KUR: Figure 3.3 shows the obtained result from the benchmark problem KUR.

Table 3.3 represents the performance metric values of this benchmark problem in

the presence of different noise levels. Similar to FON, it can be seen from the

values in the table for this problem (KUR) that MOEA/D does not perform well

when noise levels increase. For example, the GD values rocket up from 0.0326 to

0.05098 when noise levels vary from 1% to 20%. The gap between the estimated

Pareto front and true Pareto front increases dramatically in Figure 3.3 and the

performance metric values degenerate when noise levels increase. However, the

obtained results would indicate that noise effects its most gentle impact on the

performance of MOEA/D in this specific problem.

• ZDT1: Figure 3.4 shows the estimated Pareto front of ZDT1 found by MOEA/D

in the presence of different levels of noise in comparison with the true Pareto

front. An evolutionary algorithm, by its very nature, can handle low level noise,

as is illustrated in Parts (a) and (b) of Figure 3.4. However, the algorithm fails

to approximate a good solution in the presence of medium and high levels of

noise. The solutions are not evenly distributed along the Pareto front and in some

places we can see that dominated solutions are still present in the Pareto front.

Performance metric values detailed in Table 3.4 also show the level of vulnerability

of MOEA/D in a noisy environment.

• ZDT3: Figure 3.5 shows the true and estimated Pareto fronts for benchmark

problem ZDT3. This problem has a discontinuous Pareto front. As can be clearly

seen, even two percent of noise (low level noise) degrades the performance of

MOEA/D. Table 3.5 shows the values of MOEA/D’s performance metrics for this

benchmark problem. They become far from desirable when noise levels increase.

For example when 1% noise is present, GD returns 0.0369, a value relatively
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Table 3.2: Performance metric values of estimated Pareto front by MOEA/D for noisy
FON

FON GD MS S HVR

1% Noise 0.0200 0.9938 0.0072 1.0745

2% Noise 0.0520 0.9672 0.0115 1.1526

5% Noise 0.1731 0.6445 0.0247 0.9985

10% Noise 0.2429 0.5937 0.0359 1.0805

20% Noise 0.2616 0.7515 0.0773 1.4873

close to 0. However, when noise levels increase to 20% the GD returns 0.6540,

a significantly large value for this performance metric that shows how bad the

situation is.

• ZDT4: Figure 3.6 shows the true and estimated Pareto fronts for benchmark prob-

lem ZDT4. This is a benchmark problem with a multimodal feature as discussed

in Section 3.5.2. From Diagrams (a) to (e) it would appear that the performance

of MOEA/D is quite satisfactory in the presence of only one percent of noise.

However, the algorithm is challenged even by two percent noise, which is still

considered low level noise. Table 3.6 includes the performance metric values of

MOEA/D for noisy ZDT4. From the values of this table it can be seen that the

performance of MOEA/D deteriorates when noise intensifies. For instance, HVR’s

value drops by 50% when noise levels increase to 20%.

• ZDT6: Figure 3.7 shows the behaviour of MOEA/D in the objective space for noisy

benchmark problem ZDT6. The obtained result, with only one percent of noise, is

near optimal, although the diversity and quality of solutions reduces as the noise

level increases. Table 3.7 illustrates the performance metric values of MOEA/D

for noisy ZDT6. It can be seen that MOEA/D’s performance degenerates with

respect to the performance metrics applied so far. For example the S metric value

increases tenfold when noise levels reach 20% from 1%.
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Table 3.3: Performance metric values of estimated Pareto front by MOEA/D for noisy
KUR

KUR GD MS S HVR

1% Noise 0.0326 0.9963 0.0828 1.0067

2% Noise 0.0506 0.9957 0.0825 1.0149

5% Noise 0.1146 0.9944 0.0791 1.0484

10% Noise 0.2384 0.9898 0.1059 1.1072

20% Noise 0.5098 0.9838 0.1630 1.2316

Table 3.4: Performance metric values of estimated Pareto front by MOEA/D for noisy
ZDT1

ZDT1 GD MS S HVR

1% Noise 0.0396 0.9963 0.0352 1.0317

2% Noise 0.0596 0.9948 0.0424 1.0563

5% Noise 0.2004 0.9052 0.0501 0.7948

10% Noise 0.6336 0.7341 0.0655 0.2626

20% Noise 1.1114 0.7081 0.0957 0.0799

Table 3.5: Performance metric values of estimated Pareto front by MOEA/D for noisy
ZDT3

ZDT3 GD MS S HVR

1% Noise 0.0396 0.9963 0.0352 1.0317

2% Noise 0.0779 0.9711 0.0552 1.0547

5% Noise 0.1942 0.9240 0.0711 0.9390

10% Noise 0.5900 0.7745 0.0738 0.4446

20% Noise 0.9540 0.7075 0.1114 0.2764

Table 3.6: Performance metric values of estimated Pareto front by MOEA/D for noisy
ZDT4

ZDT4 GD MS S HVR

1% Noise 0.0396 0.9963 0.0352 1.0317

2% Noise 1.6368 0.9828 1.5954 1.0053

5% Noise 1.7076 0.8800 1.5809 0.9344

10% Noise 2.9027 0.7153 2.5614 0.6479

20% Noise 3.5134 0.6301 2.4304 0.5033

Table 3.7: Performance metric values of estimated Pareto front by MOEA/D for noisy
ZDT6

ZDT6 GD MS S HVR

1% Noise 0.0396 0.9963 0.0352 1.0317

2% Noise 0.1675 0.9998 0.1399 1.1227

5% Noise 0.3286 0.9992 0.2014 1.3053

10% Noise 0.5851 0.9988 0.2190 1.6211

20% Noise 1.7030 1.2284 0.3245 1.9502
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Figure 3.2: The evolved Pareto front of FON under the influence of noise levels (a)1%,
(b)2%, (c)5%, (d)10% and (e)20% by MOEA/D.
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Figure 3.3: The evolved Pareto front of KUR under the influence of noise levels (a)1%,
(b)2%, (c)5%, (d)10% and (e)20% by MOEA/D.
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Figure 3.4: The evolved Pareto front of ZDT1 under the influence of noise levels
(a)1%, (b)2%, (c)5%, (d)10% and (e)20% by MOEA/D.
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Figure 3.5: The evolved Pareto front of ZDT3 under the influence of noise levels
(a)1%, (b)2%, (c)5%, (d)10% and (e)20% by MOEA/D.
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Figure 3.6: The evolved Pareto front of ZDT4 under the influence of noise levels
(a)1%, (b)2%, (c)5%, (d)10% and (e)20% by MOEA/D.
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Figure 3.7: The evolved Pareto front of ZDT6 under the influence of noise levels
(a)1%, (b)2%, (c)5%, (d)10% and (e)20% by MOEA/D.
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Figure 3.8: MOEA/D’s trace of performance metrics for (a) FON, (b) KUR, (c)
ZDT1, (d) ZDT3, (e) ZDT4, (f) ZDT6.
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3.5.4 Discussion

From the results of Section 3.5.3, it is clear that the impact of noise on MOEA/D varies

for each different benchmark problem, with their different features and difficulties.

As noise levels intensify, we can observe from Figures 3.2 to 3.7 that the range of

solutions expands and the gap between true Pareto front and the estimated Pareto front

becomes larger. In addition, the diversity of solutions drops badly as illustrated by the

sharp reduction in the number of solutions found.

Similarly from Tables 3.2 to 3.7 it can be clearly seen that the different performance

metrics obtain far from desirable values when noise intensities increase. As mentioned

in Section 3.4, the goal was for the GD and S metrics to converge to 0 and the MS

and HVR metrics to converge to 1. The results in these tables demonstrate that the

performance of MOEA/D deteriorates for each of the tested benchmark problems when

noise levels increase.

The impact of noise is observed to be severe on problems such as ZTD3, with its

discontinued Pareto front, and ZDT4, with multimodality, although MOEA/D does

evolve better solutions for some problems, such as ZTD1, in the presence of low level

noise and the KUR benchmark problem.

Figure 3.8 plots the performance metrics for all the benchmark problems in the

presence of different noise levels. Deterioration in the performance of MOEA/D is

significant: for instance, the generational gap (GD) rockets up as noise intensifies. This

trend is detectable in the other performance metrics as well. In other words, when noise

intensifies the performance of MOEA/D significantly degenerates.

It is not clear why the S metric in some cases (such as Part (f) in Figure 3.8)

behaves as random or why the HVR metric in Part (c) returns zero when noise levels

reach 20%. Applying multiple performance metrics will guarantee that we do not lose

any useful information, but we believe that added noise adversely influences the diversity

of solutions in some problems more than in others. This can lead to the gap between

solutions in approximated Pareto front. As the S metric calculates this gap, it therefore

can be random if the algorithm is not able to keep the best solution during the search
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for the optimal.

3.6 Conclusions

This chapter opened with a description of noisy multi-objective optimization problems,

outlined the challenges to evolutionary algorithms (EA) in handling such noisy problems

and then analysed the decomposition based multi-objective optimization evolutionary

algorithm (MOEA/D) in the presence of noise with different intensities.

Major contribution :

1- This is the first piece of research that studies the effect of noise on the performance

of MOEA/D.

2- We have proved that the performance of MOEA/D deteriorates as noise levels

intensify. [See Section 3.5.3 and section 3.5.4]

Minor contribution: The features of a problem must be taken into account. Problems

with features such as multi-modality or discontinued Pareto fronts are faced with greater

adversity. [See Section 3.5.4]

Significance: This is very important for the development of future algorithms: we

now know that the standard MOEA/D must be modified to handle noise.



4
MOEA/D With Ordinal Optimization for

Handling Noisy Problems

In the previous chapter we showed in detail the impact of noise on the performance of

MOEA/D. The results of our experiments support the fact that MOEA/D deteriorates

rapidly when noise intensities increase.

Ordinal optimization theory ensures that the order of solutions is likely to be pre-

served, even when using a crude model evaluation, in the presence of noise [3]. Thus,

in order to ensure the selection of a set of good enough solutions, but with minimum

computational cost, constructing a crude model is necessary.

In this chapter we will combine the MOEA/D framework with the ordinal optimiza-

tion technique to handle the noisy multi-objective optimization problem.

62
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4.1 Simulation Based Optimization

For computationally intensive objective functions the performance of system F (x,w)

can be measured via simulation [118], where x is a vector of system parameters and w

represents either randomness or noise in the system. For a simulation-based optimiza-

tion problem, an estimation of the expected system performance can be obtained by

applying a Monto Carlo procedure as follows,

J(x) = E[F (x,w)] = lim
n→∞

(
1

n
)

n∑
i=1

F (x,wi)

Limits can be approximated by

J(x) ≡ (
1

n
)

n∑
i=1

F (x,wi) (4.1)

When n is large, this approximation is more accurate.

Thus, the algorithm optimizes as per Equation 4.1 instead of directly on F (x,w),

as the former is either noisy or computationally expensive. This problem, in our case a

multi-objective optimization, can be modelled as follows,

min
x∈Ω

J(x) (4.2)

where Ω is the search space.

The simulation is conducted as a proxy for the actual system in an optimization

process. Real world problems are too complex to be solved analytically, hence studying

them via computer simulation [118]. Recent computer technology advances have moved

simulation methods from a last resort to a primary technique for solving many real

world problems.

Ordinal optimization is one technique among many that has evolved to cope with

this sort of simulation-based evaluation problem [73]. Most of the early research fo-

cused on single objective optimization problems [3], but in the last decade the ordinal

optimization method has been extended to multi-objective optimization problems and
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given the title ‘vector ordinal optimization’ [74], as described in Section 2.5.2.

Algorithm 4.1 MOEA/D with OO

Input:

• MOP (4.2);

• A stopping criterion;

• N: the number of subproblems considered in MOEA/D+OO.

• A uniform spread of the weight vectors: λ1, · · · , λN ;

• T: the number of weight vectors in the neighbourhood of each weight vector.

Output:

• EP : Good enough solutions found by algorithm;

Step 1) Initialization:
Step 1.1) Set EP = ∅ .
Step 1.2) Compute the Euclidean distances between any
two weight vectors and then work out T the closest weight

vectors to each weight vector. For each i = 1, ..., N , set
B(i) = {i1, ..., iT }, where λi1 , ..., λiT are the T closest
weight vectors to λi.
Step 1.3) Generate initial population x1, ..., xN at random.
Step 1.4) Evaluate the population by crude model.
Step 1.5) Initialize reference point z = (z1, ..., zm) (see Section 2.4.4).

Step 2) Update:
For i = 1, · · · , N , do
Step 2.1) Reproduction: Randomly select three solutions
from B(i) to generate a new solution y by using DE and polynomial mutation.
Step 2.2) Update of z: For each j = 1, ...,m, if
zj < Jj(y), then set zj = Jj(y).
Step 2.3) Update of Neighbouring Solutions: For each
index j ∈ B(i), if gte(y|λj , z) ≤ gte(xj |λj , z), then set
xj = y and J(xj) = J(y).

Step 3)Stopping Criteria:
If stopping criteria is satisfied, then stop and go to 4.
Otherwise, go to Step 2.

Step 4) Good Enough Set:
Step 4.1) Select the first layer of solutions.
Step 4.2) Evaluate the selected set with exact model and copy them in EP.
Step 4.3) Return EP.
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4.2 Combining MOEA/D with Ordinal Optimization

Ordinal optimization theory ensures that the order of solutions is likely preserved even

through evaluation with a crude model in the presence of noise [3]. Thus for selecting

a set of good enough solutions with minimum computational cost we need to construct

a crude model to approximate Eq. 4.1. For this purpose, a rough model is constructed,

based on a stochastic simulation with a small amount of test samples.

For a noisy multi-objective problem, similar to the problem in 4.2, we use the ordinal

optimization technique along with the MOEA/D algorithm to handle noise. We call this

new algorithm: Combined MOEA/D algorithm with OO technique (MOEA/D+OO).

In order to solve Equation (4.2), MOEA/D+OO involves three steps that are sum-

marized as follows,

• First, construct a crude model to approximate the objective value for E[f(x)] of

a given x.

• Second, apply MOEA/D assisted by the crude model to solve (4.2) for a good

enough subset of solutions S.

• Third, use the exact model to evaluate the objective value E[f(x)] for each x in

S.

4.2.1 Crude model

Stochastic simulation is lengthy and computationally expensive. However, whilst not

as accurate as a normal model, using a crude model based on stochastic simulation to

approximate E[f(x)] does reduce computational cost and complexity. We settled on

1000 as an appropriate number of test samples for this step.

4.2.2 MOEA/D with crude model

Using a crude model to evaluate the objective values, MOEA/D can efficiently search for

N good enough solutions for Problem 4.2. As the algorithm completes its last iteration,

all final solutions are copied to S as good enough solutions.
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4.2.3 Exact model

Finally the selected solutions S which are obtained by MOEA/D using the crude model

are ready to be evaluated with a more refined model that we call Exact Model. An

exact model can be constructed by a larger number of test samples. A sufficiently large

sampling size is 106 [119], but in this study we apply a model with a sampling size of

104.

4.3 Experiment

The purpose of this experiment is to assess the performance of the new algorithm

(MOEA/D+OO) in the presence of different levels of noise. We compare the perfor-

mance of MOEA/D+OO and the original MOEA/D to see whether the modification

has made the algorithm better at handling noise.

4.3.1 Design of Experiment

To begin with, for computational ease, a crude model is constructed based on stochastic

simulation with a basic number of test samples, let us say 1000, whilst the number of

simulations for the exact model is set at 104.

The results depicted in Tables 4.1 to 4.6 were obtained after 50 runs. They show

that the proposed algorithm does outperform the generic MOEA/D for each problem it

was tested on and with different levels of noise, such as {1%, 2%, 5%, 10%, 20%}. The

tested problems are presented in Table 3.1 and Section 3.5.2.

For testing MOEA/D+OO we use the same parameter settings (neighbourhood

and population size, maximum iteration and reproduction parameters) as mentioned in

Section 3.5.1 for MOEA/D. We run our experiments in Matlab.

As indicated in Chapter 3, finding a proper and trustworthy method for handling

noise is our primary concern for the noisy optimization problem rather than computa-

tional cost and time with these experiments. Neither was it a concern for the authors

of [9].
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Table 4.1: Performance metrics values of estimated Pareto front by MOEA/D+OO for
noisy FON

FON GD MS S HVR

1% Noise 0.0041 (0.0159) 0.9979 (0.0041) 0.0037 (0.0035) 0.9848 (0.0897)

2% Noise 0.0045 (0.0475) 0.9972 (0.0300) 0.0043 (0.0072) 0.9754 (0.1772)

5% Noise 0.0055 (0.1679) 0.9915 (0.3470) 0.0063 (0.0184) 0.9661 (0.0324)

10% Noise 0.0071 (0.2358) 0.9881 (0.3944) 0.0087 (0.2720) 0.9531 (0.1274)

20% Noise 0.0102 (0.2514) 0.9748 (0.2233) 0.0119 (0.0654) 0.9359 (0.5514)

4.3.2 Results

Results are obtained from fifty independent runs. The average means of the collected

data are represented in the following tables and graphs.

Tables 4.1 to 4.6 trace the values of MOEA/D+OO’s different performance metrics

on the benchmark problems outlined in Section 3.5.2. These tables contain four columns

for the different performance metrics and five rows for the various noise levels. As

mentioned in Section 3.4, a lower value of GD and S compels a better approximation of

the Pareto front. For MS and HVR, a value closer to one is sensible.

The values in parentheses show the difference between the calculated values of the

performance metrics for MOEA/D+OO and its basic version MOEA/D. As can be

clearly seen, these values increase dramatically when noise levels intensify (shown top

to bottom in each column). This indicates that MOEA/D+OO performs far better

than MOEA/D in a noisy environment. Proof of this can be taken from how close to

desirable are the performance metric values (shown in the tables) for MOEA/D+OO:

GD and S are close to zero and MS and HVR are close to one.

The values shown in bold in Tables 4.1 to 4.6 indicate that MOEA/D performs

better than MOEA/D+OO in those specific cases. There are a few instances, mostly in

the presence of low noise levels, in which the performance of MOEA/D is better than

that of MOEA/D+OO.

Figure 4.1 shows the returned values for performance metrics (a) GD, (b) MS, (c) S

and (d) HVR for the benchmark problem FON by MOEA/D+OO under the influence

of different noise levels. The desirable values for these four performance metrics are the

same as those detailed in Section 3.4. As can be seen, the estimated values for GD and
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Table 4.2: Performance metrics values of estimated Pareto front by MOEA/D+OO for
noisy KUR

KUR GD MS S HVR

1% Noise 0.0256 (0.0070) 0.9967 (0.0004) 0.0921 (0.0093) 1.0002 (0.0065)

2% Noise 0.0252 (0.0254) 0.9967 (0.0010) 0.0949 (0.8665) 0.9999 (0.0150)

5% Noise 0.0264 (0.6882) 0.9963 (0.0019) 0.0940 (0.0149) 0.9988 (0.0496)

10% Noise 0.0312 (0.2072) 0.9955 (0.0057) 0.0954 (0.0105) 0.9975 (0.1097)

20% Noise 0.0404 (0.4694) 0.9945 (0.0107) 0.0959 (0.0671) 0.9959 (0.2357)

Table 4.3: Performance metrics values of estimated Pareto front by MOEA/D+OO for
noisy ZDT1

ZDT1 GD MS S HVR

1% Noise 0.03112 (0.01202) 0.99757 (0.00229) 0.03056 (0.02099) 0.99662 (0.03099)

2% Noise 0.03112 (0.02845) 0.99757 (0.00274) 0.03056 (0.01184) 0.99662 (0.05968)

5% Noise 0.03416 (0.16623) 0.99533 (0.09016) 0.02870 (0.02138) 0.98856 (0.19374)

10% Noise 0.07327 (0.56033) 0.99129 (0.25719) 0.04335 (0.02214) 0.97448 (0.71185)

20% Noise 0.14747 (0.95346) 0.98418 (0.27620) 0.06011 (0.03595) 0.93860 (0.85859)

Table 4.4: Performance metrics values of estimated Pareto front by MOEA/D+OO for
noisy ZDT3

ZDT3 GD MS S HVR

1% Noise 0.05602 (0.00227) 0.98389 (0.01614) 0.06642 (0.01157) 0.98661 (0.02569)

2% Noise 0.05602 (0.02185) 0.98389 (0.01277) 0.06642 (0.01127) 0.98661 (0.06805)

5% Noise 0.05366 (0.14058) 0.98303 (0.05900) 0.06113 (0.01000) 0.97909 (0.04012)

10% Noise 0.09590 (0.49413) 0.97811 (0.20363) 0.07335 (0.00047) 0.96164 (0.51703)

20% Noise 0.16674 (0.78728) 0.96492 (0.25743) 0.08411 (0.02729) 0.92042 (0.64400)

Table 4.5: Performance metrics values of estimated Pareto front by MOEA/D+OO for
noisy ZDT4

ZDT4 GD MS S HVR

1% Noise 1.40825 (0.60464) 0.99570 (0.00384) 1.40726 (0.58915) 0.98913 (0.00535)

2% Noise 1.40825 (0.22853) 0.99570 (0.01287) 1.40726 (0.18809) 0.98913 (0.01621)

5% Noise 0.97472 (0.73288) 0.98906 (0.10908) 0.95770 (0.62321) 0.97111 (0.03671)

10% Noise 0.38387 (2.51878) 0.98634 (0.27099) 0.35458 (2.20685) 0.95037 (0.30247)

20% Noise 0.52865 (2.98473) 0.97086 (0.34076) 0.46897 (1.96143) 0.90115 (0.39786)

Table 4.6: Performance metrics values of estimated Pareto front by MOEA/D+OO for
noisy ZDT6

ZDT6 GD MS S HVR

1% Noise 0.10887 (0.07971) 0.99955 (0.00031) 0.10947 (0.08939) 0.99527 (0.05907)

2% Noise 0.10887 (0.05865) 0.99955 (0.00021) 0.10947 (0.03044) 0.99527 (0.12748)

5% Noise 0.07787 (0.25072) 0.99882 (0.00042) 0.07951 (0.12190) 0.99218 (0.31309)

10% Noise 0.02911 (0.55601) 0.99534 (0.00350) 0.02828 (0.19073) 0.99637 (0.62472)

20% Noise 0.10579 (1.59723) 0.98465 (0.24375) 0.05335 (0.27111) 1.07163 (0.87855)
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Figure 4.1: Performance Metrics of MOEA/D+OO in presence of different noise levels
for noisy FON problem.

S are very close to 0 and the values for MS and HVR are converging to 1 in the presence

of different noise levels on this FON benchmark problem.

Figure 4.2 illustrates the performance metrics (a) GD, (b) MS, (c) S and (d) HVR

attained by MOEA/D+OO on the KUR benchmark problem under the influence of

different levels of noise. As can been seen, the performance metrics return sensible

values for all four metrics in the presence of both low and high levels of noise.

Figure 4.3 shows the performance metrics (a) GD, (b) MS, (c) S and (d) HVR

attained by MOEA/D+OO for ZDT1 under the influence of different noise levels over

150 generations. According to this graph, MOEA/D+OO estimated the Pareto front

extremely well for low, medium and high level noises - all except 20%. The spacing

metric (S) and generational distance (GD) show a bit of violation under the influence
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Figure 4.2: Performance Metrics of MOEA/D+OO in presence of different noise levels
for noisy KUR problem.

of 20% noise, which can be caused by bad distribution of solutions and a meaningful

gap between the estimated Pareto front and true Pareto front.

Figure 4.4 details the values for MOEA/D+OO’s performance metrics on the ZDT3

problem, influenced by different levels of noise over 150 generations. According to this

diagram, the algorithm had difficulty in maintaining a diverse and evenly spread solution

set. The challenge to the algorithm on this problem was its disconnected Pareto front.

Figure 4.5 shows how MOEA/D+OO deals with the multimodal noisy ZDT4 prob-

lem. According to this graph, the spacing performance metric (S) gets disturbed when

noise increases to twenty percent. This in turn impacts the diversity of the solution, but

the other performance metrics do indicate that the modified algorithm (MOEA/D+OO)

achieves a very close approximation of the true Pareto front for noisy ZDT4. The rea-
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Figure 4.3: Performance Metrics of MOEA/D+OO in presence of different noise levels
for noisy ZDT1 problem.

sons are not clear as to why the performance metric S returns unfavourable values. This

may be caused by the multi-modality feature of this problem.

Figure 4.6 illustrates the performance metrics of MOEA/D+OO on the noisy ZDT6

problem. For this problem, as with ZDT4, the diversity of the solution is impacted by

high levels of noise with regard to the spacing metrics. Other metrics, however, such

as GD, serve to underline the rightness of the estimated Pareto front. Similar to the

ZDT4 problem, the performance metric S remains unfavourable for unknown reasons.

It is not clear why the S metric seems random in only a few cases (ZDT4 and

ZDT6), but we believe that added noise adversely influences the diversity of solutions

in some problems more than others. This can lead to the gap between solutions in

the approximated Pareto front. As the S metric calculates this gap, it can therefore
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Figure 4.4: Performance Metrics of MOEA/D+OO in presence of different noise levels
for noisy ZDT3 problem.

be random if the algorithm is not able to keep the best solution during the search for

optimality.

True Pareto front is the best recent estimation of each problem, therefore we plot our

results using the true Pareto front to represent how well the algorithms work. Figure

4.7 shows both the estimated and the true Pareto fronts for MOEA/D+OO on the noisy

FON problem. The algorithm shows its ability to handle noise but, in the presence of

twenty percent noise, there are some missing solutions that would indicate the impact

of high noise on the diversity of solutions.

Figure 4.8 draws both the estimated and true Pareto fronts for noisy KUR by

MOEA/D+OO. The algorithm shows its ability to handle noise. As can be seen from

this graph, the algorithm maintains a good diversity and precision between the esti-
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Figure 4.5: Performance Metrics of MOEA/D+OO in presence of different noise levels
for noisy ZDT4 problem.

mated the true Pareto fronts in all scenarios.

Figure 4.9 draws both the estimated and true Pareto fronts for noisy ZDT1 by

MOEA/D+OO. The algorithm shows its ability to handle noise but, in the presence of

twenty percent noise, there are some missing solutions that would indicate the impact

of high noise on the diversity of solutions.

Figure 4.10 depicts the estimated and true Pareto fronts of noisy problem ZDT3

by MOEA/D+OO. This problem has a disconnected Pareto front on which the new

algorithm achieves a better performance than its basic version that failed to cover some

parts of the Pareto front - see Section 3.5.3. As can be seen, even in the presence of

20% noise, the new algorithm finds solutions in all the disconnected parts of the Pareto

front.
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Figure 4.6: Performance Metrics of MOEA/D+OO in presence of different noise levels
for noisy ZDT6 problem.

Figure 4.11 shows how well MOEA/D+OO approximates the Pareto front by com-

parison to the true Pareto front on the noisy ZDT4 problem. As mentioned in Section

3.5.2, the ZDT4 problem is a multimodal one. The algorithm estimates the Pareto front

quite satisfactorily, although some solutions are still missing, which in turn impacts the

diversity of solutions at high levels of noise. In the presence of noise, finding near op-

timal solutions is a big challenge for the MOEA algorithm. In contrast, our modified

algorithm is quite adept at tackling this challenge.

Figure 4.12 represents the approximated Pareto front of noisy ZDT6 by MOEA/D+OO.

The performance of the algorithm is almost that of the true Pareto front, apart from

when the noise gets to twenty percent. However its performance is still satisfactory,

even at that level.
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Figure 4.7: Pareto Front of noisy FON under the influence of noise level at (a)1%,
(b)2%, (c)5%, (d)10%, (e)20% by MOEA/D+OO.
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Figure 4.8: Pareto Front of noisy KUR under the influence of noise level at (a)1%,
(b)2%, (c)5%, (d)10%, (e)20% by MOEA/D+OO.
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Figure 4.9: Pareto Front of noisy ZDT1 under the influence of noise level at (a)1%,
(b)2%, (c)5%, (d)10%, (e)20% by MOEA/D+OO.
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Figure 4.10: Pareto Front of noisy ZDT3 under the influence of noise level at (a)1%,
(b)2%, (c)5%, (d)10%, (e)20% by MOEA/D+OO.
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Figure 4.11: Pareto Front of noisy ZDT4 under the influence of noise level at (a)1%,
(b)2%, (c)5%, (d)10%, (e)20% by MOEA/D+OO.
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Figure 4.12: Pareto Front of noisy ZDT6 under the influence of noise level at (a)1%,
(b)2%, (c)5%, (d)10%, (e)20% by MOEA/D+OO.
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Figure 4.13: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for FON with
1% noise
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Figure 4.14: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for FON with
2% noise
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Figure 4.15: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for FON with
5% noise
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Figure 4.16: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for FON
with10% noise
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Figure 4.17: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for FON with
20% noise
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Figure 4.18: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for KUR with
1% noise
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Figure 4.19: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for KUR with
2% noise
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Figure 4.20: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for KUR with
5% noise
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Figure 4.21: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for KUR
with10% noise
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Figure 4.22: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for KUR with
20% noise
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Figure 4.23: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT1
with 1% noise
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Figure 4.24: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT1
with 2% noise
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Figure 4.25: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT1
with 5% noise
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Figure 4.26: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT1
with10% noise
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Figure 4.27: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT1
with 20% noise
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Figure 4.28: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT3
with 1% noise
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Figure 4.29: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT3
with 2% noise
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Figure 4.30: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT3
with 5% noise
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Figure 4.31: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT3
with10% noise
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Figure 4.32: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT3
with 20% noise
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Figure 4.33: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT4
with 1% noise

0

1

2

3

4

5

6

7

8

MOEA/D MOEA/D+OO
ZDT4 2% Noise

Generetinal Distance (GD)

(a)

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

MOEA/D MOEA/D+OO
ZDT4 2% Noise

Maximum Spread (MS)

(b)

0

1

2

3

4

5

6

7

8

MOEA/D MOEA/D+OO
ZDT4 2% Noise

Spacing (S)

(c)

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

MOEA/D MOEA/D+OO
ZDT4 2% Noise

Hypervolume Ratio (HR)

(d)

Figure 4.34: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT4
with 2% noise
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Figure 4.35: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT4
with 5% noise
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Figure 4.36: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT4
with10% noise
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Figure 4.37: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT4
with 20% noise
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Figure 4.38: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT6
with 1% noise
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Figure 4.39: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT6
with 2% noise
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Figure 4.40: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT6
with 5% noise
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Figure 4.41: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT6
with10% noise
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Figure 4.42: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT6
with 20% noise

4.3.3 Discussion

As we argued in Section 3.5.3 the true Pareto front is the best estimation of each bench-

mark problem. It can be seen from the results of our experiment that MOEA/D+OO

is capable of evolving a near optimal, diverse and uniformly distributed Pareto front for

the different benchmark problems discussed in Section 3.5.2. By comparing the results

of MOEA/D in Section 3.5.3 and MOEA/D+OO in Section 4.3.2 it can be clearly ob-

served that MOEA/D+OO significantly outperforms MOEA/D in noisy environments.

The evidence of MOEA/D+OO’s superiority over its basic version in relation to the

different performance metrics can be established as follows:

4.3.3.1 GD

Generational distance measures the gap between the evaluated Pareto front and true

Pareto front, as outlined in Section 3.4. Looking at the GD values for MOEA/D+OO

in Tables 4.1 to 4.6, they are very small and almost zero in most cases, indicating that
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the new algorithm is able to approximate solutions very close to the true Pareto front.

With the noisy, multimodal featured ZDT4 problem, the algorithm was certainly faced

with a bigger challenge, even in low levels of noises, but in general it performs quite

satisfactorily (See Figure 4.11).

By considering the values in parentheses, we can see how the performance of MOEA/D

deteriorates when noise intensifies because the values increase with noise. As GD is a

proximity indicator its measure shows that MOEA/D+OO converges to solutions much

better than MOEA/D in noisy environments. Thus, the GD metric demonstrates that

MOEA/D+OO outperforms MOEA/D for noisy MOP.

4.3.3.2 MS

MS (Maximum Spread) is a diversity indicator. When it converges to one it means

that the true Pareto front has been properly covered by the approximated Pareto

front. Tables 4.1 to 4.6 in Section 4.3.2 include calculated values for the MS metric

for MOEA/D+OO. Given that the MS values derived by the new algorithm are almost

equal to one, it is clear that the approximated Pareto front covers the true Pareto front

very well.

By contrast, the values reported in parentheses that show the differences between

the two algorithms prove that the MOEA/D cannot maintain diversity of solution in

a noisy environment. Thus, according to the MS indicator, the modified algorithm is

superior to its basic version in the presence of noise.

4.3.3.3 S

The spacing metric indicates the distribution of solutions along the Pareto front. This

metric must return a small value close to zero (ideally zero) for a fine and evenly

distributed Pareto front. By studying the value of the S metrics in Tables 4.1 to 4.6,

the success of MOEA/D+OO at obtaining evenly distributed solutions along the Pareto

front can clearly be seen. According to this indicator, MOEA/D+OO can maintain a

better distribution of solutions than basic MOEA/D.
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4.3.3.4 HVR

As described in Section 3.4, this indicator of general quality measures the diversity and

proximity of the approximated Pareto front. It returns one for the ideal estimated solu-

tion. By tracking the HVR values in Tables 4.1 to 4.6, it is evident that MOEA/D+OO

is significantly better than MOEA/D at approximating the near optimal in noisy en-

vironments. For MOEA/D, the HVR values increase on all benchmark problems when

noise intensifies (as shown by the values in parentheses)

4.3.3.5 Shape of Pareto front

Apart from performance metrics, the shape of the Pareto front itself can reveal tes-

timony as to the performance of an algorithm. For this reason, Figures 4.7 to 4.12

represent the relevant Pareto fronts estimated by MOEA/D+OO in noisy problems.

These Pareto fronts show some missing points from the estimated Pareto front in com-

parison with the true Pareto front. This reveals the diversity of solutions influenced by

noise and shows how severe the effects can be. For example, Figures 4.9 and 3.4 show

that MOEA/D+OO maintain better diversity than MOEA/D on the same problem in

presence of different noise levels. These figures, together with the help of the true Pareto

front, offer visual evidence to support the conclusions drawn from the analysis of the

performance metrics.

4.3.4 Analytical Comparison

For this analysis, we draw box plots relating to the performance metrics of both MOEA/D+OO

and MOEA/D in the presence of different levels of noise for each benchmark problem

discussed in Section 3.5.2. MOEA/D+OO’s superiority over MOEA/D on the different

benchmark problems can be established as follows:

4.3.4.1 FON

The two algorithms’ performance metrics for the noisy benchmark problem FON are

compared by box plots in Figures 4.13(a)-(d) to 4.17(a)-(d), from 1% noise to 20%
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noise. It can be observed from Figure 4.13 that MOEA/D+OO outperforms MOEA/D

in all performance metrics. This is because the box plot related to MOEA/D+OO

shows the median of the data set closer to a sensible value for each performance met-

ric. As previously indicated, the sensible value for GD and S is 0 whilst for MS and

HVR it is desirable they converge to 1. Accordingly, Figures 4.14 to 4.17 testify to

MOEA/D+OO’s superiority over its basic version.

4.3.4.2 KUR

The two algorithms’ performance metrics for the noisy benchmark problem KUR are

compared by box plots in Figures 4.18(a)-(d) to 4.22(a)-(d), from 1% noise to 20%

noise. In Figures 4.18, 4.19 and 4.20 only the S metric would indicate that MOEA/D

performed better than MOEA/D+OO. According to all other metrics MOEA/D+OO

outperforms its basic version in all levels of noise.

4.3.4.3 ZDT1

The two algorithms’ performance metrics for the noisy benchmark problem ZDT1 are

compared by box plots in Figures 4.23(a)-(d) to 4.27(a)-(d), from 1% noise to 20% noise.

As can be seen from the box plots related to this problem, MOEA/D+OO outperforms

its basic version in all performance metrics in the presence of different noise levels. This

is because the median of each data set obtained by MOEA/D+OO is closer to the

desirable value of each metric.

4.3.4.4 ZDT3

The two algorithms’ performance metrics for noisy benchmark problem ZDT3 by box

plots in Figures 4.28(a)-(d) to 4.32(a)-(d), from 1% noise to 20% noise. Similar to its per-

formance in problem ZDT1, the revised algorithm proposed in this thesis (MOEA/D+OO)

handles noise better than MOEA/D with respect to all metrics and in the presence of

different levels of noise on the noisy benchmark problem ZDT3 as well.



Chapter4. MOEA/D With Ordinal Optimization for Handling Noisy Problems 92

4.3.4.5 ZDT4

Figures 4.33(a)-(d) to 4.37(a)-(d) compare the two algorithms in box plots, subject to

the results of the different performance metrics on the noisy benchmark problem ZDT4

in 1% to 20% noise. In part (d) of Figure 4.33 MOEA/D has a closer median to 1 in

the presence of 1% noise, but MOEA/D+OO obtains a shorter range for HVR, which is

more sensible. For all other scenarios the results reveal that MOEA/D+OO definitively

outperforms MOEA/D.

4.3.4.6 ZDT6

Figures 4.38(a)-(d) to 4.42(a)-(d) compare the two algorithms in box plots, subject

to the results of the different performance metrics on the noisy benchmark problem

ZDT6 in 1% to 20% noise. From these figures, it can be seen that in the presence of

low noise levels, such as 1% or 2%, MOEA/D’s performance is comparative to that of

MOEA/D+OO. This is due to the fact that in parts (a) and (c) of Figure 4.38 and in

part (c) of Figure 4.39 the estimated value of both algorithms show almost the same

quality. But in other instances MOEA/D+OO outperforms its basic version.

4.4 Conclusions

This chapter introduced a new algorithm called ‘MOEA/D+OO’. This is a modified

version of MOEA/D and is significantly better suited to handling noise. Ordinal opti-

mization (OO) is a technique that softens the goal by compromising on a set of good

enough solutions rather than a best solution. According to this technique the order of

solutions is more robust than their value in noisy environments [3, 74].

The major contribution of this chapter is the proof that MOEA/D+OO significantly

outperforms MOEA/D in the noisy multi-objective optimization problems detailed in

Section 3.5.2, according to the following performance measures,

• GD for proximity of solutions. See Section 4.3.3.1 and 4.3.4.

• MS for diversity of solutions. See Section 4.3.3.2 and 4.3.4.
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• S for distribution of solutions. See Section 4.3.3.3 and 4.3.4.

• HVR, a general quality metric, for diversity and proximity of solutions. See Section

4.3.3.4 and 4.3.4.

• Estimated Pareto front discussed in Sections 4.3.3.5 and 4.3.2.



5
Noisy Portfolio Optimization Problem

Economic noise, or simply noise, describes a theory of pricing developed by Fischer

Black [120]. Black describes noise as the opposite of information. His theory states that

noise is everywhere in the economy and we can rarely tell the difference between it and

information [120].

This chapter studies the impact of noise on the noisy portfolio optimization problem.

This is a classic problem in finance and economics where the goal is to maximize returns

on investment whilst minimizing risk and thereby increasing wealth. Thus, in this

chapter, we are going to solve the problem using both our modified MOEA/D+OO

and basic MOEA/D, followed by a comparison of the performance results for both

algorithms.

94
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5.1 Introduction

Portfolio management is an important research topic in the finance world. A portfolio

includes a number of assets, the returns of which vary in the market according to the

patterns of various stochastic processes.

The objective is to maximize the total wealth of the portfolio by finding an optimal

allocation of capital to a set of assets. Accordingly, an optimal asset weight must be

selected.

The following factors are the key complicators in the portfolio optimization problem.

• Asset interrelationship.

• Decision maker’s preferences.

• Resource allocation.

• Total budget limitation.

There exist several other factors, over and above these elements, that are also involved

in making the portfolio optimization problem a complicated one.

Markowitz was awarded an economic sciences Nobel prize in 1990 for his modelling

of the portfolio optimization problem. He proposed a fundamental answer to this prob-

lem based on the mean-variance model. Markowitz formulated this as an optimization

problem with two criteria: maximize the reward (measured by the mean) and minimize

the risk to the portfolio (measured by the variance of return). The trade-off between

risk and return leads to a set of optimal portfolios that is called an efficient portfolio.

From Markowitz until now enormous amounts of research studies have been published

that either extend or modify the basic model in three major aspects [121,122] as follows:

1. Simplification of the type and amount of input data. When the number of portfo-

lios for selection is large, estimating the covariance will become computationally

impractical. [122–124]



Chapter5. Noisy Portfolio Optimization Problem 96

2. Alternative measure of risk. Value-at-risk (VaR) has become a popular risk mea-

sure since its first recommendation. Unlike most widely used risk measures, which

are based on historical returns, VaR is a forward-looking measure of risk for es-

timating future portfolio losses. When financial crises cause significant loss to

many investors, Conditional value at Risk (CVaR) can be implemented which

brings with it a higher confidence level [125,126].

3. Additional criteria and/or constraints. The portfolio optimization problem can

also be modelled as a tree objectives optimization problem [122,127] with liquidity

or a number of securities in the portfolio along with risk and return.

In our research we use a two objective portfolio optimization based on the Markowitz

mean-variance model.

5.2 Problem Definition

A mean-variance, two objectives portfolio optimization with Q asset problems could be

formulated as follows:

max R(x) =

Q∑
i=1

xiri

min V (x) =

Q∑
i=1

Q∑
j=1

xixjσij

s.t. x ≥ 0 ∈ X
Q∑
i=1

xi = 1

(5.1)

where ri is the expected return for asset i and σij is the covariance between asset i

and j. Finally xi is the decision variable with a value of [0, 1] for i = 1, 2, · · ·Q, denoting

the composition of asset i in the portfolio as a proportion of the total available capital.

Non negativity constraint x ≥ 0 indicates that no short sales are allowed [128].
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As we have established, the portfolio optimization problem is multi-objective with

its two objectives being minimised risk and maximized return. The trade-off between

these represents a Pareto front, which is the set of all non-dominated solutions in the

optimal portfolio.

Despite the existence of many traditional methods for solving multi-objective op-

timization problems, during the last two decades a number of evolutionary algorithms

have been proposed that work with a population of candidate solutions that lead to a

Pareto optimal solution after a specific number of generations in a single run.

Amongst all of these multi-objective optimization evolutionary algorithms (MOEA),

the decomposition based MOEA (MOEA/D) is emerging as a very promising optimiza-

tion framework. This decomposes the MOP into a number of scalar subproblems, the

optimal solutions of which are Pareto optimal to the MOP.

In this chapter we will use the noisy portfolio optimization problem based on Markowitz’s

mean-variance model as an application to test MOEA/D and MOEA/D+OO. MOEA/D

was proposed in [11] and MOEA/D+OO was introduced in Chapter 4 of this thesis.

This algorithm combines the ordinal optimization technique with MOEA/D to handle

noise.

5.3 Uncertainty in Portfolio Optimization Problem

Equation 5.1 outlines a mean-variance portfolio optimization problem. Based on this

problem, we will define the noisy portfolio optimization as follows.

5.3.1 Definition of Uncertainty

The terms ‘Risk’ and ‘Noise’ that represent uncertainty in this real-life problem could

be considered identical, but this would be a mistake. Whilst it is a fact that noise in

our system can lead to a high level of risk for investors, this does not mean that risk

and noise are the same. For this reason we study the impact of noise on the portfolio

optimization problem. For clarity, we emphasise below the definitions of noise and risk.

Risk is the chance that the actual return on investment will be different from the
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expected return. Risk includes the possibility of losing some or all of the original

investment. Different versions of risk are usually measured by calculating the standard

deviation of the historical returns or average returns of a specific investment. High

standard deviation indicates a high degree of risk.

Noise is the opposite of information and, due to the complex nature of the world’s

markets, not all market data is ‘information’. Moreover, many of the price fluctuations

we see on a day-to-day basis are due to random change rather than meaningful trends.

As a result, portfolio optimization is noisy by its nature. Also noise can be caused by

political changes, market policy changes, natural disasters, war and so on.

In this study we add a zero mean normal distributed noise with different standard

divination to the return of the portfolio optimization problem in Equation 5.1. Different

standard divinations are conducted for a diverse level of noises.

R̄(x) = R(x) + δ

δ ∼ N(0, σ2)

(5.2)

Equation 5.2 models noise in the market. In this model we only add noise to the return

in the objective space. This thesis makes a first attempt at a portfolio optimization

with noise. In this thesis, we focus on noises in the return objective function. Note,

that adding noise to risk is a worthy extension of Markowitz mean-variance model. It

will be left for future research.

This study shows how noise could be handled in our financial system by reducing

the effects of noise on the decision making progress. For this purpose, we employ the

ordinal optimization technique to handle uncertainty. A review of ordinal optimization

is provided in Section 2.5

5.4 Experiment

The purpose of this experiment is to assess the performance of the MOEA/D+OO and

MOEA/D algorithms in handling the portfolio optimization problem in the presence

of different levels of noise. We compare the performance of MOEA/D+OO and the
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Table 5.1: Result of portfolio optimization returns with 30 assets by MOEA/D

30 Assets Min Max Range St.D. Mean

No Noise 0.00952 0.02153 0.01200 0.00848 0.01553

1% Noise 0.00773 0.02905 0.02132 0.01507 0.01839

2% Noise 0.01120 0.05778 0.04658 0.03293 0.03449

5% Noise 0.02315 0.12758 0.10443 0.07384 0.07536

10% Noise 0.11287 0.32321 0.21034 0.14873 0.21804

20% Noise 0.31974 0.56067 0.24094 0.17037 0.44020

Table 5.2: Result of portfolio optimization returns with 60 assets by MOEA/D

60 Assets Min Max Range St.D. Mean

No Noise 0.01330 0.03684 0.02354 0.01664 0.02507

1% Noise 0.00816 0.02784 0.01967 0.01391 0.01800

2% Noise 0.01703 0.06242 0.04539 0.03209 0.03972

5% Noise 0.03539 0.13542 0.10003 0.07073 0.08540

10% Noise 0.09729 0.29031 0.19301 0.13648 0.19380

20% Noise 0.35623 0.58276 0.22654 0.16019 0.46950

original MOEA/D to see whether the modification has improved its ability to handle

noise.

The data used in this thesis are the daily returns of 64 different industries over a

period of more than five years. These data are collected from Yahoo Finance.

5.4.1 How to evaluate results?

First it is necessary to clarify the meaning of certain terms such as ‘better performance’

and ‘good solutions’ whilst the true Pareto front is still unknown to us.

We consider Algorithm A better than Algorithm B if, in the presence of noise, A

generates solutions closer to noiseless solutions than B. This is shown in Figure 5.5. The

solutions obtained by the superior algorithm are considered good solutions.

By noiseless solutions, we mean solutions generated in the absence of noise. We use

the noiseless solutions produced by MOEA/D as our basis of comparison.

5.4.2 Discussion

This experiment challenged the algorithms to find optimal portfolios for problems of 30

and 60 assets in turn. They were faced with low noise levels (1% and 2%), medium
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: MOEA/D results for portfolio optimization problem with 60 assets (a)
without noise, (b) 1%, (c) 2%, (d) 5%, (e) 10%, (f) 20%.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: MOEA/D results for portfolio optimization problem with 60 assets (a)
without noise, (b) 1%, (c) 2%, (d) 5%, (e) 10%, (f) 20%.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: MOEA/D+OO results for portfolio optimization problem with 30 assets
(a) without noise, (b) 1%, (c) 2%, (d) 5%, (e) 10%, (f) 20%.



Chapter5. Noisy Portfolio Optimization Problem 103

(a) (b)

(c) (d)

(e) (f)

Figure 5.4: MOEA/D+OO results for portfolio optimization problem with 30 assets
(a) without noise, (b) 1%, (c) 2%, (d) 5%, (e) 10%, (f) 20%.
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Figure 5.5: Algorithm A is better than B

Table 5.3: Result of portfolio optimization returns with 30 assets by MOEA/D+OO

30 Assets Min Max Range St.D. Mean

No Noise 0.00952 0.02153 0.01200 0.008480 0.01553

1% Noise 0.00243 0.01365 0.01121 0.002013 0.01034

2% Noise 0.00141 0.02565 0.02424 0.004022 0.01940

5% Noise 0.00156 0.05987 0.05831 0.015169 0.03520

10% Noise 0.00219 0.11584 0.11364 0.029165 0.06544

20% Noise 0.00940 0.21456 0.20516 0.050858 0.13313

Table 5.4: Result of portfolio optimization returns with 60 assets by MOEA/D+OO

60 Assets Min Max Range St.D. Mean

No Noise 0.01330 0.03684 0.02354 0.01664 0.02507

1% Noise 0.00417 0.01428 0.01010 0.00182 0.01025

2% Noise 0.00440 0.02553 0.02112 0.00461 0.01837

5% Noise 0.00225 0.05075 0.04850 0.01263 0.03661

10% Noise 0.00157 0.12257 0.12100 0.02990 0.07577

20% Noise 0.00659 0.22424 0.21765 0.05679 0.14036
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noise (5%) and high noise levels (10%, 20%). We compared the performance of both

algorithms to see whether the modifications to MOEA/D made the modified algorithm

better at handling noise.

As can be seen from Figure 5.1, without noise, the MOEA/D found solutions with

returns from 0.1% to 1% for the portfolio problem with 30 assets but this range could

not be maintained when noise intensified. Thus, the solutions found by MOEA/D in the

presence of 20% noise are between 0% and 80%, which could easily mislead investors.

On the other hand, the MOEA/D+OO found solutions with returns from 1% to 14% for

the same problem in the presence of 20% noise, as shown in Figure 5.3. This represents

a real solution range. MOEA/D+OO maintains this tendency more or less over the

other noise levels, proving it better than MOEA/D.

By tracking the results in Figures 5.2 and 5.4 for the portfolio optimization prob-

lem with 60 assets, we can see that MOEA/D+OOT maintains its superiority over

MOEA/D.

Figure 5.1 shows MOEA/D faced with an exploration challenge for the portfolio

optimization problem. As can be seen, there is a meaningful reduction in the portfolio

regions explored portfolios. Blue dots represent explored portfolios in Figure 5.1.

The modified algorithm (MOEA/D+OO) might not be the best algorithm for solving

the noisy portfolio optimization problem, but it is the first attempt at handling noise

in this problem. To adequately handle noise in this type of problem, not only does the

algorithm need to be equipped for handling noise but also provided with a modelling

technique developed enough for the problem.

5.4.2.1 Analytical Comparison

In this study, noise is only added to the return in objective space. For this reason,

we have collected statistics purely from the objective function of the returns portion of

the portfolio optimization problem. Tables 5.1 and 5.2 report the minimum, maximum,

range of estimated solutions, standard divination and mean of solutions which have

been found by MOEA/D for portfolios with 30 and 60 assets respectively. We provide
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Figure 5.6: MOEA/D+OO vs. MOEA/D with respect to mean, standard divination
and range of return for noisy portfolio optimization problem
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the same information for MOEA/D+OO in Tables 5.3 and 5.4.

Tables 5.1 to 5.4 show which values of each column increase from top to bottom.

This indicates that the performance of the algorithms deteriorate when noise intensities

increase. In fact, both algorithms show the same trend but MOEA/D+OO obtains

values closer to noiseless evaluation values than MOEA/D. To further illustrate this

point, the respective values are plotted in Figure 5.6 for a clear comparison of both

algorithms.

MOEA/D+OO is compared with its basic version in Figure 5.6 with respect to 1)

the means in Parts (a) and (b) for 30 and 60 asset portfolios respectively, 2) its standard

divination in Parts (c) and (d) for 30 and 60 asset portfolios respectively and 3) its range

of solutions in Parts (e) and (f) for 30 and 60 asset portfolios respectively, against levels

of 0%, 1%, 2%, 5%, 10% and 20% noise. As is clearly demonstrated, MOEA/D+OO

out performs MOEA/D by estimating solutions closer to a noiseless solution (0%) with

respect to mean, standard divination and range of solutions.

5.5 Conclusions

The portfolio optimization problem makes use of historical stock market data to assist

investors in planning future investments. Based on how much risk an investor is willing

to take, for a certain return a proportional investing strategy can be accomplished. Nat-

urally, there is no guarantee on results as this optimization problem produces answers

by looking at the market’s past behaviour. In other words, the predicted returns found

through portfolio optimization are noisy by nature. As a result of this noise, and general

noise in the market, making a profit depends entirely on the robustness of the portfolio

in a noisy environment.

As can be seen by the results of this study, portfolio optimization is very sensitive

to noise - even gentle turbulence has an impact. This fact could render investors very

vulnerable to sudden changes in the market, making a noise handling strategy extremely

important. Their success or failure could depend on the strategy chosen.

In this thesis we have solved the noisy portfolio optimization problem with our
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noise-robust algorithm (MOEA/D+OO). We compared MOEA/D+OO with MOEA/D

to demonstrate the significance of our modification. Thus, the major contributions of

this chapter are listed below:

1. Noisy portfolio optimization has never been done before.

2. Portfolio optimization is very sensitive to noise.

3. MOEA/D+OO is better than MOEA/D at handling noise in the portfolio opti-

mization problem. See Section 5.4.2 and Figure 5.6.



6
Conclusions

This study set out to investigate the performance of decomposition evolutionary

algorithms in noisy multi-objective optimization problems. It is a fact that many real

world problems are both multi-objective and noisy. Noise can be produced from a range

of different sources, as discussed in Section 1.1. As a result, it is necessary to educate

ourselves on this natural phenomenon and to find robust optimization techniques with

which to handle noisy problems.

109



Chapter6. Conclusions 110

6.1 Summary

Our intended aim for this research was to find a modification for MOEA/D that allowed

it to handle noisy problems. This work, therefore, contributes towards understanding

the impact of noise on MOEA/D. As described in Section 3.1, we modelled the noise that

disrupts the objective function on a Gaussian distribution. This is the most common way

to introduce noise, although there are some studies that do consider other distributions

[35].

Following the modelling of noisy problems, we studied the basic MOEA/D for a

deeper understanding of the impact of noise on its performance. In the presence of

noise, the performance of MOEA/D can deteriorate rapidly, as seen in Section ??.The

detrimental effects of noise on selection, elitism and diversity preservation present a

significant challenge to the algorithm in its efforts to achieve a good estimation of the

Pareto front. For this reason, benchmark problems with different characteristics, as

described in Table 3.1, and different performance metrics, as outlined in Section 3.4,

were comprehensively applied.

MOEA/D was modified for handling noisy problems through combination with an

optimization technique known as Ordinal Optimization [3]. Due to the fact that order

of solutions is more robust than their values (see Section 2.5) this technique proves itself

to be highly effective at handling noise. Its performance is discussed in Section 4.3.3.

The new algorithm is called MOEA/D+OO.

For the first time, we investigated the noisy portfolio optimization problem on real

world problems and solved it using both algorithms. In spite of being noisy in nature,

this problem shows high sensitivity to the slightest noise in our experiments, the results

of which can be seen in Section 5.4.2.

6.2 Contributions

The main empirical finding is that the modified algorithm MOEA/D+OO significantly

outperforms the basic MOEA/D.



Chapter6. Conclusions 111

The major contributions of this work can be summarized as follows:

• MOEA/D was studied in the presence of different noise levels to gain a deeper

understanding of the impact of noise deterioration.

• We introduced a new algorithm called ‘MOEA/D+OO’ to handle noisy problems.

It significantly outperformed basic MOEA/D on our diverse selection of bench-

mark problems.

• We employed the proposed algorithm to solve the noisy portfolio optimization

problem with different numbers of assets. This is a classic finance optimization

problem in which the goal is to find an optimal policy to use on all types of available

assets in the market to make the total return maximal by taking a minimum risk.

The efficient portfolios estimated by ‘MOEA/D+OO’ are closer to noiseless than

those found by MOEA/D.
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6.3 Future Work

Several interesting issues remain to be addressed and the most interesting topics for

further study are listed below.

• Using a surrogate model, constructed as a crude model, to evaluate the objective

function. There are various methods to introduce a surrogate model, including

Support Vector Regression (SVR), Artificial Neural Network (ANN) and many

more [78].

• Using a budget allocation technique to reduce the total simulation cost. In this

method, critical designs receive a larger portion of the computing budget to reduce

the estimator variance. Ordinal optimization can significantly reduce the compu-

tational cost, therefore using an intelligent budget controlling process could be a

future improvement [129].

6.4 Conclusion

Despite the many ground breaking studies that have been undertaken on optimization

in noisy environments in recent decades, there still exist many areas for continued

development. This thesis is just the beginning of a long journey and this area demands

greater attention in future studies.
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[22] T. Bäck and H.-P. Schwefel, “An overview of evolutionary algorithms for param-

eter optimization,” Evolutionary computation, vol. 1, no. 1, pp. 1–23, 1993.

[23] A. C. Koenig, “A study of mutation methods for evolutionary algorithms,” Ad-

vanced Topics in Artificial Intelligence, CS, vol. 447, 2002.

[24] A. V. Veldhuizen and B. Lamont, “Evolutionary Computation and Convergence

to a Pareto Front,” in Stanford University, California. Morgan Kaufmann, 1998,

pp. 221–228.

[25] T. Hanne, “On the convergence of multiobjective evolutionary algorithms,” Eu-

ropean Journal of Operational Research, vol. 117, no. 3, pp. 553–564, 1999.

[26] J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched pareto genetic algorithm for

multiobjective optimization,” in Evolutionary Computation, 1994. IEEE World



References 116

Congress on Computational Intelligence., Proceedings of the First IEEE Confer-

ence on. Ieee, 1994, pp. 82–87.

[27] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a comparative

case study and the strength pareto approach,” evolutionary computation, IEEE

transactions on, vol. 3, no. 4, pp. 257–271, 1999.

[28] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjec-

tive genetic algorithm: Nsga-ii,” Evolutionary Computation, IEEE Transactions

on, vol. 6, no. 2, pp. 182–197, 2002.

[29] E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Improving the strength pareto

evolutionary algorithm,” 2001.

[30] C. M. Fonseca and P. J. Fleming, “Genetic algorithms for multiobjective opti-

mization: Formulation, discussion and generalization,” 1993.

[31] J. Knowles and D. Corne, “The pareto archived evolution strategy: a new baseline

algorithm for pareto multiobjective optimisation,” in Evolutionary Computation,

1999. CEC 99. Proceedings of the 1999 Congress on, vol. 1, 1999, pp. –105 Vol. 1.

[32] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multi-

objective genetic algorithm: Nsga-ii,” 2000.

[33] E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Improving the strength pareto

evolutionary algorithm,” Tech. Rep., 2001.

[34] C. Fonseca and P. Fleming, “Multiobjective genetic algorithms made easy: selec-

tion sharing and mating restriction,” in Genetic Algorithms in Engineering Sys-

tems: Innovations and Applications, 1995. GALESIA. First International Con-

ference on (Conf. Publ. No. 414), Sep 1995.

[35] C. Goh and K. Tan, Evolutionary Multi-objective Optimization in Uncertain En-

vironments: Issues and Algorithms, ser. Studies in Computational Intelligence.

Springer, 2009.



References 117

[36] A. Jaszkiewicz, “On the performance of multiple-objective genetic local search on

the 0/1 knapsack problem-a comparative experiment,” Evolutionary Computation,

IEEE Transactions on, vol. 6, no. 4, pp. 402–412, 2002.

[37] E. Zitzler and S. Knzli, “Indicator-based selection in multiobjective search,” in

in Proc. 8th International Conference on Parallel Problem Solving from Nature

(PPSN VIII. Springer, 2004, pp. 832–842.

[38] J. Fieldsend, R. Everson, and S. Singh, “Using unconstrained elite archives for

multiobjective optimization,” Evolutionary Computation, IEEE Transactions on,

vol. 7, no. 3, pp. 305–323, June 2003.

[39] K. Deb and H. Jain, “An evolutionary many-objective optimization algorithm

using reference-point-based nondominated sorting approach, part i: Solving prob-

lems with box constraints,” Evolutionary Computation, IEEE Transactions on,

vol. 18, no. 4, pp. 577–601, 2014.

[40] H. Jain and K. Deb, “An evolutionary many-objective optimization algorithm

using reference-point based nondominated sorting approach, part ii: handling

constraints and extending to an adaptive approach,” Evolutionary Computation,

IEEE Transactions on, vol. 18, no. 4, pp. 602–622, 2014.

[41] S. Boyd, L. Xiao, A. Mutapcic, and J. Mattingley, “Notes on decomposition meth-

ods,” Notes for EE364B, Stanford University, pp. 1–36, 2007.

[42] G. B. Dantzig and P. Wolfe, “Decomposition principle for linear programs,” Op-

erations research, vol. 8, no. 1, pp. 101–111, 1960.

[43] M. Liu, X. Zou, Y. Chen, and Z. Wu, “Performance assessment of dmoea-dd with

cec 2009 moea competition test instances.” in IEEE Congress on Evolutionary

Computation, vol. 1, 2009, pp. 2913–2918.

[44] H. Ishibuchi and T. Murata, “A multi-objective genetic local search algorithm

and its application to flowshop scheduling,” Systems, Man, and Cybernetics, Part



References 118

C: Applications and Reviews, IEEE Transactions on, vol. 28, no. 3, pp. 392–403,

1998.

[45] V. J. Bowman Jr, “On the relationship of the tchebycheff norm and the effi-

cient frontier of multiple-criteria objectives,” in Multiple criteria decision making.

Springer, 1976, pp. 76–86.

[46] Y. Qi, X. Ma, F. Liu, L. Jiao, J. Sun, and J. Wu, “Moea/d with adaptive weight

adjustment,” Evolutionary computation, vol. 22, no. 2, pp. 231–264, 2014.

[47] H. Li and D. Landa-Silva, “An adaptive evolutionary multi-objective approach

based on simulated annealing,” Evolutionary Computation, vol. 19, no. 4, pp.

561–595, 2011.

[48] L. Ke, Q. Zhang, and R. Battiti, “Multiobjective combinatorial optimization by

using decomposition and ant colony,” Working Report, vol. 132, no. 9, pp. 125–

140, 2010.

[49] N. Al Moubayed, A. Petrovski, and J. McCall, “A novel smart multi-objective

particle swarm optimisation using decomposition,” in Parallel Problem Solving

from Nature, PPSN XI. Springer, 2010, pp. 1–10.

[50] S. Zapotecas Mart́ınez and C. A. Coello Coello, “A multi-objective particle swarm

optimizer based on decomposition,” in Proceedings of the 13th annual conference

on Genetic and evolutionary computation. ACM, 2011, pp. 69–76.

[51] A. Alhindi and Q. Zhang, “Moea/d with tabu search for multiobjective permuta-

tion flow shop scheduling problems,” in Evolutionary Computation (CEC), 2014

IEEE Congress on. IEEE, 2014, pp. 1155–1164.

[52] ——, “Moea/d with guided local search: Some preliminary experimental results,”

in Computer Science and Electronic Engineering Conference (CEEC), 2013 5th.

IEEE, 2013, pp. 109–114.



References 119

[53] W. Huang and H. Li, “On the differential evolution schemes in moea/d,” in Natural

Computation (ICNC), 2010 Sixth International Conference on, vol. 6. IEEE,

2010, pp. 2788–2792.

[54] C.-M. Chen, Y.-p. Chen, and Q. Zhang, “Enhancing moea/d with guided mutation

and priority update for multi-objective optimization,” in Evolutionary Computa-

tion, 2009. CEC’09. IEEE Congress on. IEEE, 2009, pp. 209–216.
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A
True Pareto fronts

The approximated Pareto front as proposed by the System Optimization group1 in

Zurich is considered as the true Pareto front for each of the test problems used in this

thesis. The head of this group is Professor Eckart Zitzler who, in conjunction with

Professor K. Deb and Professor L. Thiele [114], devised the ZDT problems . This

information along with more complementary information is available online2.

1http://www.tik.ee.ethz.ch/sop/
2http://www.tik.ee.ethz.ch/sop/download/supplementary/testproblems/
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Figure A.1: True Pareto front of ZDT1.

Figure A.2: True Pareto front of ZDT3.
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Figure A.3: True Pareto front of ZDT4.

Figure A.4: True Pareto front of ZDT6.



B
Ordinal Optimization Demonstration

The following demonstration has been designed by Yu-Chi Ho from the University of

Harvard1 who proposed the ordinal optimization technique.

This demonstration is designed in Microsoft Excel.

• 1. Open a new work sheet.

• 2. Enter the value of “1” in cell A1.

• 3. Enter the formula “=A1+1” in cell A2.

• 4. Copy cell A2.

• 5. Paste into cells A3:A200.

This will yield for column A1 through A200 the values 1, 2, ..., 200 which represents

an Ordered Performance Curve (OPC) of a complex system. Note the OPC must be

1http://people.seas.harvard.edu/ ho/DEDS/OO/Demo/Simple.html
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monotonic and one dimensional regardless of the complexity of the system. The best

performance is “1”, the second best “2”, ..., and so on. You can change the values in

the cell later on if you want.

• 6. Enter the formula “=rand()*100” into cell B1.

• 7. Copy B1 and paste into cells B2 through B200.

This enters a column of random numbers uniformly distributed between 0 and 100.

In column B, note the range of the noise is half as large as the range of the system

performance. You can of course change the value defining the range which is “100”

currently.

• 8. Enter the formula “=A1+B1” in cell C1.

• 9. Copy cell C1 and paste into C2 through C200.

This operations enters the estimated (or noise corrupted) system performance of the

200 design in column C

• 10. Now copy the three-column region from A1 to C200.

• 11. Define another three column region from D1 to F200.

• 12. Use “paste special” command to “value-paste” the contents (not the formula)

of A1 - C200 to D1 - F200.

Because of the design of Excel we cannot just paste A1 - C200 to D1 - F200. You

will note that at the end of step 12, the content of D1-F200 is what was in A1-C200

before the execution of the paste special command. The content of A1-C200 is a NEW

set of noises and estimated system performance.

• 13. Define the region F1-D200, and choose the sort command from the “data”

menu. Now sort the F column in ascending order by rows.

• 14. Now look at column D, and see how many numbers from 1 through n appear

in the top n rows. This correspond to one sample realization of the alignment

between the actual top-n design with the estimated top-n design.
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If you did the above steps correctly, you should see on the average 4 of the true

top-12 in the first twelve rows of column D for the given value of the parameters, i.e.,

• N = total of designs considered and estimated = 200

• W = range of estimation noise = 100

• n = range of good enough subset, the top-n designs = 12

Now you are ready to repeat steps 12-14 again for another sample realization.


