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Abstract

Multi-objective problems are a category of optimization problem that contain more
than one objective function and these objective functions must be optimized simulta-
neously. Should the objective functions be conflicting, then a set of solutions instead of
a single solution is required. This set is known as Pareto optimal.

Multi-objective optimization problems arise in many real world applications where
several competing objectives must be evaluated and optimal solutions found for them,
in the presence of trade offs among conflicting objectives. Maximizing returns while
minimizing the risk of stock market investments, or maximizing performance whilst
minimizing fuel consumption and hazardous gas emission when buying a car are typical
examples of real world multi-objective optimization problems. In this case a number of
optimal solutions can be found, known as non-dominated or Pareto optimal solutions.
Pareto optimal solutions are reached when it is impossible to improve one objective
without making the others worse.

Classical ways to address this problem used direct or gradient based methods that
rendered them insufficient or computationally expensive for large scale or combinatorial
problems. Other difficulties attended the classical methods, such as problem knowl-
edge, which may not be available, or sensitivity to some problem features. For example,
finding solutions on the entire Pareto optimal set can only be guaranteed for convex
problems. Classical methods for generating the Pareto front set aggregate the objectives
into a single or parametrized function before search. Thus, several runs and parame-
ter settings are performed to achieve a set of solutions that approximate the Pareto
optimals.

Subsequently new methods have been developed, based on computer experiments
with meta-heuristic algorithms. Most of these meta-heuristics implement some sort
of stochastic search method, amongst which the ‘Evolutionary Algorithm’ is garnering
much attention. It possesses several characteristics that make it a desirable method for
confronting multi-objective problems. As a result, a number of studies in recent decades

have developed or modified the Multi-objective Optimization Evolutionary Algorithm

v



(MOEA) for different purposes. This algorithm works with a population of solutions
which are capable of searching for multiple Pareto optimal solutions in a single run. At
the same time, only the fittest individuals in each generation are offered the chance for
reproduction and representation in the next generation. The fitness assignment function
is the guiding system of MOEA. Fitness value represents the strength of an individual.

Unfortunately, many real world applications bring with them a certain degree of noise
due to natural disasters, inefficient models, signal distortion or uncertain information.
This noise affects the performance of the algorithm’s fitness function and disrupts the
optimization process. This thesis explores and targets the effect of this disruptive noise
on the performance of the MOEA.

In this thesis, we study the noisy Multi-objective Optimization Problem (MOP) and
modify the Multi-objective Optimization Evolutionary Algorithm based on Decomposi-
tion (MOEA/D) to improve its performance in noisy environments. To achieve this, we
will combine the basic MOEA /D with the ‘Ordinal Optimization’ technique to handle

uncertainties. The major contributions of this thesis are as follows.

e First, MOEA/D is tested in a noisy environment with different levels of noise, to
give us a deeper understanding of where the basic algorithm fails to handle the

noise.

e Then, we extend the basic MOEA /D to improve its noise handling by employing
the ordinal optimization technique. This creates MOEA /D+0O, which will out-
perform MOEA/D in terms of diversity and convergence in noisy environments.

It is tested against benchmark problems of varying levels of noise.

e Finally, to test the real world application of MOEA/D+0OO, we solve a noisy
portfolio optimization with the proposed algorithm. The portfolio optimization
problem is a classic one in finance that has investors wanting to maximize a port-
folio’s return while minimizing risk of investment. The latter is measured by
standard deviation of the portfolio’s rate of return. These two objectives clearly

make it a multi-objective problem.
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Introduction

Many real life applications involve multiple (potentially conflicting) objective functions
that must be optimized simultaneously. In the case of conflicting objectives, no single
solution can be optimal to all objectives. Thus, a strong and powerful optimization
algorithm is required to be capable of finding a set of solutions that will represent the
best tradeoffs amongst the all objectives. This set of solutions is known as the Pareto
optimal solution.

Evolutionary algorithms fall within a class of stochastic search methods that are
capable of estimating Pareto optimal solutions in a single run. They are able to do
this because the algorithms update their population of solutions at each generation.
As a result, this method is proving itself to be very effective at solving complicated
multi-objective optimization problems.

Finding a good Pareto-optimal estimation is not the only challenge facing the opti-
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mization algorithm, however. Uncertainty is also a disruptive phenomenon that char-
acterizes many real world optimization problems in various forms. In recent decades
numerous studies [4-6] have been conducted into different types of uncertainty and these

are listed in the next section.

1.1 Sources of Uncertainty

e Uncertainty of environment: for example, temperature, moisture, perturbation in

speed or dynamic fitness function.

e Uncertainty of optimization parameters: for instance, parameters of a solution
subject to change or perturbation after implementation, but still required to func-
tion for manufacturing tolerance. This type of uncertainty is known as a search

for robust solution.

e Uncertainty introduced due to unavailability of original fitness function or where
the analytical fitness function is computationally very expensive. In this instance,

the solution must be approximated.

The work presented in this thesis addresses this third version of uncertainty, also

known as the optimization of noisy problems.

1.2 Thesis Motivation

A very important and also very sensitive research area is the study of noise, and the
ways to cope with it, in the evolutionary multi-objective optimization algorithm. There
are a number of studies that suggest different strategies or noise handling techniques

for tackling disruptive noise by very well known MOEA. For instance,

e Strength Pareto Evolutionary Algorithm (SPEA) introduced by Zitzler in 1999 [7].
A Noise Tolerant Version of SPEA (NTSPEA) by Buche [8]. Zitzler and Buche
proposed three modifications for handling noise for this particular dominance

based MOEA, namely i) Domination dependent lifetime, which defines a lifetime
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for the solution that is related to the solution’s dominance. i) Re-evaluation of so-
lution: instead of deleting the expired solutions, they are added to the population,
giving them a second chance to reach a good solution and survive. i) Extended
update of the secondary population, which reduces loss of information by updating

all non-expired lifetime solutions rather than only the current population. [8]

e A Robust Feature Multi-objective Evolutionary Algorithm (MOEA-RF). Goh
and Tan proposed three noise handling techniques and incorporated them into a
simple MOEA, naming the new algorithm MOEA-RF. The three noise handling
features are the Experimental Learning Directed Perturbation (ELDP), the Gene
Adaptation Selection Strategy (GASS) and a possibilistic archiving methodology
[9].

e A Modified Non-dominated Sorting Genetic Algorithm-II (MNSGA-II). Deb in-
troduced the Non-dominated Sorting Genetic Algorithm-IT (NSGA-II) and Babbar
introduced a modification of its ranking scheme to handle noise. The new scheme
allows the algorithm to expand its Rank 1 frontier by adding close neighbour-
ing solutions to the rank. It also incorporates a procedure to keep only reliable

solutions in the final non-dominated solution set. [10].

MOEA /D, which is a very well established decomposition-based MOEA, introduced for
the first time by Zhang and Li in 2007 [11], will be utilised in this thesis to confront
noise problems.

As with the other algorithms detailed in Section 1.2, this thesis will investigate
MOEA/D in a noisy environment. In order to reach our stated goal certain steps must

be taken, the first of which being an answer to the following questions.

e How effective is MOEA /D in the presence of noise?

It is important to analyse the performance of MOEA /D in the presence of different
levels of noise, from low to medium to high. Will its performance deteriorate with
increased noise? if so, by how much? In order to measure these qualities, different

performance metrics will be implemented (see section 3.4).
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e What technique best assists MOEA /D to handle noise?

Due to the fact that most of the studies on noisy environments explore MOEAs
that are based on dominance their noise-handling methods will not be useful for
MOEA /D, which is a decomposition-based algorithm. Furthermore, their results
are not comparable because parameter settings have a bearing on different algo-
rithms’ performance. Thus, in this work, we are seeking a novel technique for
handling noise in conjunction with the basic MOEA /D. Our technique will ideally

cope with noisy problems and estimate more reliable solutions for them.

Finally, we will assess the new algorithm as to its suitability for real life application.

1.3 Thesis Contribution

As previously mentioned, this work will study MOEA /D in the presence of different

levels of noise. The major contributions of this thesis are listed as follows:

1. This is the first piece of research that studies the effect of noise on the performance

of MOEA/D.

2. We will prove that the performance of MOEA /D deteriorates as noise levels in-

tensify.

3. In Chapter 4 a new algorithm, MOEA /D400, based on the MOEA /D framework
will be introduced. This is a modified version of MOEA /D that is significantly

better suited to handling noise.

4. We will prove that MOEA/D+OO significantly outperforms MOEA/D in the

noisy multi-objective optimization problem.

5. We study noisy portfolio optimization for the first time by adding noise only to

the return values of the objective function.

6. In this thesis, the noisy portfolio optimization problem is used as a real world

application to test the algorithms’ performance.
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7. We will demonstrate that MOEA/D+OO is better than MOEA/D at handling

noise in the portfolio optimization problem.

8. Finally we illustrate that the portfolio optimization problem is very sensitive to

noise.

1.4 Thesis Outline

The organization of this thesis is as follows:

Chapter 2 provides a review of multi-objective evolutionary algorithms. In this
chapter, the fundamentals of evolutionary algorithms and MOP will be summarized.
Chapter 3 assesses the performance of MOEA/D in a noisy environment. This chapter
explains the theory and methodologies that have been used to examine and assess the
algorithm. Chapter 4 proposes a noise handling technique to handle noisy problems. A
new algorithm is developed that combines Ordinal Optimization (OO) with MOEA/D.
Chapter 5 details the introduction of the algorithm into a real life problem: a classical
finance problem in a noisy environment. Finally Chapter 6 presents conclusions, which

will wrap up this thesis and propose possible future works.




Background and Literature Review

This chapter will briefly discuss the principals of optimization theory and the different
types of optimization problem. A literature review of previous research studies into
multi-objective optimization problems is delivered, along with a discussion of the tradi-
tional methods and evolutionary algorithms used for solving multi-objective problems.
Thereafter, the major issues in multi-objective optimization evolutionary algorithms
(MOEAs) are discussed, alongside a classification of the different MOEAs.

The base algorithm used in this thesis is MOEA /D. A detailed review of it has been
prepared in Section 2.4, followed by a look at the literature on noisy MOEAs.

In conclusion, this chapter details the principals of ordinal optimization theory (OO)
that are going to be used for noise handling in this study to assist MOEA /D in solving

noisy multi-objective problems.




Chapter2. Background and Literature Review 7

2.1 Optimization Theory

In the face of limited resources such as funds, time, space and so on, optimization has
become an important area of research within the computational sciences. Different
disciplines clearly need to optimize different quantities or possibilities, subject to the
specific constraints of their area.

In this section, a succinct general summary and classification of the optimization
problem is provided, alongside a look at other issues in this area such as different optima

types or different problems.

2.1.1 Elements of an Optimization Problem

There are three major elements which are common to any optimization problem as

follows [12]:

e An objective function. A system model, representing the quantity to be opti-

mized.
e A set of variables. These impact the value of the objective function.

e A set of constraints. These restrict the values that can be assigned to the

variables.

The goal of any optimization method is to assign values, from a given domain, to the
variables of the objective function to be optimized such that all constraints are satisfied.
In this research, the search space is denoted by €2 . In the case of a constraint problem,

a solution is found in the feasible space that is denoted by F. Always, F C (2 .

2.1.2 Classification of Optimization Methods

The different classifications are made according to the specific characteristics of the
methods used. For instance, optimization methods can be divided into two major

classes [12], dictated by the solutions found, as follows.
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e Local search algorithm: information local to the current solution is used to

produce a new solution.
e Global search algorithm: the entire domain is searched for optima.
Further classifications can be introduced as follows:

e Stochastic: this method uses random elements to transform a candidate solution

into a new solution.

e Deterministic: in which no random elements are applied.

2.1.3 Classification of Optimization Problems

Optimization problems can have many characteristics and classifications of these can

be proposed according to the following [12]:
e Number of variables: single variable to multi-variable.
e Type of variable: continuous or discrete.
e Degree of non-linearity: linear, quadratic, etc.
e Type of constraint: boundary, equality and/or inequality.

e Number of optima: optimization problems can have one (unimodal) or many

(multimodal) solutions.

e Number of optimization criteria: if only one objective function requires op-
timization, it is a ‘Single Objective Problem’. If more than one objective function

must be optimised simultaneously, the problem becomes ‘Multi-objective’.

2.1.4 Multi-objective Optimization Problems

Most real-world search and optimization problems naturally involve multiple objectives.
The extremist principle mentioned above cannot only be applied to one objective when

the rest of the objectives are just as important. Different solutions may produce tradeoffs
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(conflicting scenarios) among different objectives. A solution that is extreme (in a better

sense) with respect to one objective requires a compromise on other objectives.

Definition 1 (The Multi-Objective Optimization Problem) A general MOP com-
prises a set of n decision variables, a set of m objective functions and a set of r con-
straints. Objective functions and constraints are functions of the decision variables. The

optimization goal is to

min y = F(z) = (fi(z), f2(2), s fn(2))

st C(x) = (c1(2), ea(2), ooy cr(2)) < O
z = (1,22, ..., 2n) €N (2.1)
2B <ai < for i=1,2,..n

Y= (Y1,92, -1 Ym) € A

where x is the decision vector, y is the objective vector, ) is denoted as the decision
space, and A is the objective space. Mapping between the solution space and the objective
space is illustrated in Figure 2.1. The constraints C(x) < 0 determine the set of feasible

solutions [2].

The solutions x € Q of continuous MOPs are a vector of n real variables. Neverthe-

less the solutions of discrete MOPs are vectors of n integer variables.

2 A Solution space b A Obiectivis?pace
e N
[ T~ !
" =
X '/ “‘I\ \\.. f \
. /‘ |
{ -~ - /
\/ —
> >
X, 1

Figure 2.1: Mapping between the solution space and the objective space [1]
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The definition of optimality is not straightforward, due to totally conflicting, non-
conflicting or partially conflicting objective functions. It is therefore necessary to outline
the specific definition of ‘optimum’ for the MOP: for an MOP the optimum means a
balance point between all of the objectives. In other words, improving any one objective
may bring about the degrading of other objectives. Thus, our task is to find solutions
that balance these tradeoffs. A significant number of solutions may exist for our MOP,
so in order to tackle this task, it is necessary to put forward a set of definitions.

Most multi-objective optimization algorithms use the concept of dominance in their

search.

Definition 2 (Dominance) A solution 1 is said to dominate another solution zo ,

if both conditions 1 and 2 are true:

1. The solution x1 is no worse than xs in all objectives, or fi(x1) < fi(x2) for all

i=1,2,...m.

2. The solution x1 is strictly better than xo in at least one objective, or fj(x1) <

fi(x2) for at least one j € {1,2,---m}.

If either of the above conditions is violated, the solution x; does not dominate
solution x. If 21 does dominate solution x5 (or mathematically 1 < x2), it is customary

to note any of the following [13]:

e 15 is dominated by z;
e 17 is non-dominated by 2
e 17 is non-inferior to zs.

Definition 3 (Pareto Optimal Set) For a given MOP 2.1, the Pareto Optimal Set

(see Figure 2.2), P*, is defined as:

Pr={zeQ | 12/ €Q F@) = F(x)} (2.2)

The Pareto-optimal Set (PS) contains all balanced tradeoffs which represent the MOP

solutions.
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Definition 4 (Pareto Front) For a given MOP 2.1, and a Pareto Optimal Set, P*,

the Pareto Front PF* is defined as:

PF* = {u=F(z) |z € P*}. (2.3)

The Pareto front contains all the objective vectors corresponding to the decision vectors

that are not dominated by any other decision vector (see Figure 2.2).

A ‘o Optimal Pareto set] [. Pareto front |
Xz - fz 4
ACR™
ﬂ g Rn
f:R™ — R™
— T
Pareto front
X1 f]
Decision variable space Objective function space

Figure 2.2: Tllustration of Pareto front and Pareto set [2].

It is appropriate to note the characteristics of a Pareto front:

1. The Pareto front contains the Pareto-optimal solution and, in the case of a con-
tinuous front, divides the objective function space into two parts: non-optimal

solutions and infeasible solutions.
2. A Pareto front is not necessarily continuous.
3. The Pareto front can be concave, convex, or a combination of either.

5. The Pareto front may continue towards infinity, even in the case of boundary

constrained decision variables.

6. Due to mapping, neighbouring points in a Pareto front (objective function space)

are not necessarily neighbours in the decision variable space.
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2.1.4.1 Ideal and Nadir Points (Objective Vectors)

We assume that the objective functions are bounded over a feasible region, with two
special objective vectors ideal and nadir point to define the lower and upper bounds
of PF. Figure 2.3 illustrates both points in the objective space of a hypothetical two

objective minimization problem. Definitions of both points are given below.

Definition 5 (Ideal point) A point 2’ = {z1,--- , 2, } in the objective space is called
an ideal point if it has the best value for each objective: 21U = mig filz) ¥V i={1,..,m}
xe

for problem 2.1.

Definition 6 (Nadir point) A point 2" = {z,---  z,} in the objective space is

called a nadir point if it has the worst value for each objective: 2% = max file) V i=
HAS

i

{1,...,m} for problem 2.1.

Zz z

ll zl

Figure 2.3: Illustration of Nadir and Ideal points [1].

2.1.5 Classification of an MOP

Multi-objective optimization problems have been around for at least the last four
decades and many algorithms have been evolved to solve them. Researchers have at-
tempted to classify these algorithms according to various considerations. Cohon [14]

classified them into the following two types:

e Generating methods.
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e Preference-based methods.

In the former, a few non-dominated solutions are generated for the decision-maker,
who then chooses one solution from the obtained non-dominated solutions. No a priori
knowledge of any objective is used. On the other hand, in the preference-based methods,
some known preference for each objective is used in the optimization process. Hwang
and Masud [15] and later Miettinen [1] fine-tuned the above classification and suggested

the following four classes:

No-preference methods.

A posteriori methods.

e A priori methods.

Interactive methods.

The no-preference methods assume no information about the importance of objec-
tives, but a heuristic is used to find a single optimal solution. It is important to note
that although no preference information is used, these methods do not make any at-
tempt to find multiple Pareto-optimal solutions. Posteriori methods do use preference
information on each objective and iteratively generate a set of Pareto-optimal solutions.
The classical method of generating Pareto optimal solutions requires some knowledge of
the algorithmic parameters that will guarantee the finding of a Pareto-optimal solution.
On the other hand, A priori methods use more information about the preferences of
objectives and usually find one preferred Pareto-optimal solution. Interactive meth-
ods use the preference information progressively during the optimization process as the
decision-maker interacts with the optimization program during the optimization process.
Typically the system provides an updated set of solutions and lets the decision-maker
consider whether or not to change the weighting of individual objective functions.

The popularity of using a weighted sum of objective functions is obvious: it is
trivial to implement and it effectively converts a multi-objective problem into a single

objective one. A known drawback is that in the case of a high number of objective
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functions, the appropriate weighting is painful to choose a priori by the decision-maker.
Furthermore, scaling of the individual objective function values is often required due to
different function value ranges. With regard to the popularity of a posteriori techniques,

especially Pareto-optimization techniques, there are two obvious candidate explanations:
1. The decision-makers are willing to perform unbiased searches.

2. The decision-makers are unwilling or unable to assign priorities without having

further information about the other potential/effective solutions.

2.2 Traditional Methods of Solving MOPs

Classical ways to address this problem used direct or gradient based methods that
rendered them insufficient or computationally expensive for large scale or combinatorial
problems. Other difficulties attended the classical methods, such as problem knowledge,
which may not be available, or sensitivity to some problem features. For example,
finding solutions on the entire Pareto optimal set can only be guaranteed for convex
problems. Classical methods for generating the Pareto front set aggregate the objectives
into a single or parametrized function before search. Thus, several runs and parameter

settings are performed to achieve a set of solutions that approximate the Pareto optimal.

2.2.1 The Weighted Sum Method

The idea behind this method is to associate each objective function with a weighting
coefficient and minimize the weighted sum of the objective. In this way, multiple ob-
jective functions are transformed into a single objective function. More accurately, the
multi-objective optimization problem is modified into the following problem, known as

a weighted problem:

minimize Z wj fi(x)
i=1 (2.4)

s.t x €N
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where w; > 0 for all ¢ = {1,...,m} and > /" | w; = 1.

Theorem 1 The solution of the weighted problem (2.4) is weakly Pareto optimal.

Theorem 2 The solution of the weighted problem (2.4) is Pareto optimal if the weight-

ing coefficient is positive, that is w; > 0 for all i =1,....,m

Theorem 3 Let the multi-objective optimization problem be convex if x* is Pareto op-
timal, then there exists a weighting vector w (w; > 0 , i = {1,....,m} , Zle w; = 1.)

such that x* is a solution of the weighted problem (2.4).

For the proof of all theorems, refer to [1].

Theorem 1 to 3 state the solution of the weighting method is Pareto optimal if
the weight coefficients are all positive [1]. The disadvantage of this method is that
it is limited solely to convex problems, because a whole solution cannot be found for

non-convex problems.

2.2.2 e-Constraint Method

In the e-constraint method one of the objective functions is selected to be optimized
and all the other objective functions are converted into constraints by setting an upper

bound to each of them. The problem to be solved is now of the following form

minimize  fi(x)
st filx)<e, Vi=1,..m, i#l (2.5)

st xefd
where [ € {1,...,m}. Problem (2.5) is called an & — constraint problem.
Theorem 4 The solution of € — constraint problem (2.5) is weakly Pareto optimal.

Proof in [1].
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Theorem 4 states that the solutions of equation 2.5 are weakly Pareto optimal with-
out any additional assumptions. After this the theorem 5 regarding the proper Pareto

optimality of the solutions of the € — constraint problem can be introduced as follows,

Theorem 5 A decision vector x* €  is Pareto optimal if and only if it is a solution
of e-constraint problem (2.5) for every | = 1,...,m, where &; = fi(z*) for i =

1,....m, ©#I.

Proof in [1].

2.2.3 Value Function Method

In this method, the decision maker must be able to give an accurate and explicit math-
ematical form of the value function U : R”™ — R that represents his or her preferences

globally. This function provides a complete ordering in the objective space.

maximize U(f(z)) (2.6)

st xze

The value function problem is then ready to be solved by any single objective optimization

method.

Theorem 6 Let the value function U : R™ — R be strongly decreasing. Let U attain

its mazimum at f*. Then, f* is Pareto optimal.

Proof in [1].

2.3 Multi-objective Evolutionary Algorithm

2.3.1 Evolutionary Algorithm

Evolution is an optimization process that improves the ability of a system to survive

in competitive environments [12]. Inspired by Charles Darwin’s theory of ‘natural se-
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lection’, evolutionary computation has adopted the following principles of Darwinian

natural selection theory.
e Selection <= Survival of the fittest.
e Two parents generate two offspring <= Crossover or Recombination.
e Small changes in the location (decision variables) of the offspring <= Mutation.

The evolutionary algorithm (EA) is a stochastic optimization method. The earliest
study in this field dates back to the 1950s and, since the 1970s, several evolutionary
methodologies have been proposed. All of these approaches operate on a set of candi-
date solutions. Using strong simplifications, this set is subsequently modified by two
basic principles: selection and variation. While ‘selection’ mimics the natural world’s
competition for reproduction and resources among living beings, the other principle,
variation, imitates the natural ability to create new beings by means of recombination
and mutation.

Evolutionary algorithms such as evolution strategies and genetic algorithms are of-
ten used for solving optimization problems that are too complex to be solved using
traditional mathematical programming methods [12]. EAs require little knowledge of

the problem to be solved and are easy to implement, robust, and inherently parallel.

2.3.2 Multi-objective Optimization Problems using EAs

To solve an optimization problem by EA, one must be able to evaluate the objective
(cost/loss) functions for a given set of input variables. Due to their ease of implementa-
tion, and fitness for parallel computing, EAs are eminently suited to complex problems.
Most real-world problems involve simultaneous optimization of several often conflicting
objectives. Multi-objective EAs are able to find a set of optimal trade-offs in a single
run [2,13].

EAs work with ‘individuals’ in a population. The number of individuals in the

population is called ‘popsize’ and each individual has two properties:

e Location, known as ‘decision variables’.
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e Quality, known as ‘fitness value’.

After obtaining the fitness values of all individuals, the selection process generates
a ‘mating pool’. Only individuals with higher fitness values are allowed into the mating
pool. Selected individuals are called ‘parents’.

Then, two parents might be selected randomly from the mating pool to generate
two ‘offspring’. After which, the newly generated individuals replace the old ‘parents’

and another generation starts.

2.3.3 Major Issues in MOEAs

MOEAs regulate the following processes in order to achieve a good approximation of a

Pareto front.

2.3.3.1 Reproduction Operators

Reproduction is the process of producing offspring from selected parents. Thus an
operator needs to combine or change the value of the parents in the decision space to
create new individuals.

The operator that combines the genome of the parents to produce a new individual
is called the ‘Crossover’. ‘Mutation’ changes the value of genes in a chromosome ran-
domly. From the first evolutionary algorithm introduced to the current day, different
reproduction operators have been proposed, including:

(i) Binary reproduction operators such as, one point, two point or uniform crossover
and Gaussian or uniform mutation [2,13].

(ii) Floating point operators such as, simulated binary crossover (SBX) [16], uni-
modal normal distribution operator (UNDX) [17], deferential evolution (DE) [18] and
simplex crossover (SPX) [19] or polynomial mutation [13] and Gaussian mutation oper-
ator [20]. The floating point operator shows better performance when decision variables
are floating point values (Real numbers).

In this thesis we will use the DE and Gaussian mutation operators.
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2.3.3.1.1 Deferential Evolution (DE) In our study we employ DE to create new
individuals. DE is a parallel direct search method which creates new candidate solutions
by choosing three random individuals from the neighbourhood. DE generates new
decision vectors by adding the weighted difference between two parental vectors to a
third one. This step is called mutation [18]. The mutated vectors are then mixed
with the decision variables from another predetermined vector to create a trial vector.
Parameter mixing is often referred to as ‘crossover’. There are two predetermined
parameters, differential weight (F' € [0, 2]) and crossover probability (CR € [0, 1]), that
need to be set up either by practice or through a specific method, for instance rules of
thumb for selecting parameters [18]. The basic DE algorithm is described in Algorithm

2.1.

Algorithm 2.1 DE
2 .3

Input: 1) Three randomly selected individuals o', 22, 2% = (21, 22, ...2,).
2) F differential weight.
3) CR crossover probability

Output: New individual 2’ = (2, 2%, ..., 2}).

Step 1) Create vector U with uniformly distributed number U = (u1, uz, ..., un)
Step 2) if u; < OR then o, = 2} + F x (23 — 2?)

i
Step 3) otherwise set o} = z} for i = 1,2, ..., n.

Sometimes, the newly created candidate falls out of the bounds of the decision
variable space. We address this problem by simply replacing the candidate value that

violated the boundary constraints with the closest boundary value [21].

2.3.3.1.2 Gaussian Mutation If the uniformly distributed number u ~ U(0,1)
is greater than the mutation probability (P,) then this operator adds a Gaussian
distributed random value to the decision variables of the chosen individual. If it falls
out of the boundary of the decision variables then the violating values are replaced with

the closest boundary value [22,23]. The Gaussian density function is

1 _a?
(& 202
2

fG(O,Uz) (I‘) -

2ro

where o is the variance [23].
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2.3.3.2 Fitness Assignment

As only the best performing individuals get the chance to reproduce, it is important
to generate a function that will determine the fitness of each individual, known as
‘Fitness Function’. A fitness function maps a fitness vector to a single value, which
represents the quality or rank of the individual in the population. Moreover, the fitness
function guides the MOEA to search into promising areas in the search space. Pareto
dominance ranking, indicator-based and decomposition-based rankings are three major

fitness assignment strategies used in MOEAs.

2.3.3.3 Convergence

It is important for any optimization framework to find actual solutions to optimization
problems or to make a good estimation of a solution. This process is called convergence.
As with any optimization technique, converging to the true Pareto front is important

for all MOEAs. Algorithms are comparative in their converging speed [24, 25].

2.3.3.4 Diversity

Obtaining a good distribution of generated solutions along the Pareto front is called
‘Diversity’. A diversity maintenance technique avoids convergence of a population to
a single solution. Therefore, it is very important. It is a fact that an even spread of
discovered solutions is more desirable and different techniques have been established to
preserve the diversity of solutions along the Pareto front such as, niche sharing [26],

clustering [27], crowding density estimation [28], and nearest neighbour method [29].

2.3.3.5 Elitism

The process that guarantees survival of the best individual in the current population to
the next generation is called ‘Elitism’. To ensure this, a copy of the current population
will be kept, without being mutated; in other words, elitism in MOEAs makes sure that

the best (or elite) solutions are kept in a safe place between generations.
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2.3.4 Classification of MOEAs

There are a diverse range of MOEA classifications in the literature, classified according
to the mode of determining fitness function or specific techniques, such as a Priori,
Progressive(Interactive) or a Posteriori [2].

In this study we classify the MOEA according to their fitness assignment methods

and divide these into three categories including:

2.3.4.1 MOEASs based on Pareto Dominance

One of the most popular approaches to fitness assignment appears to be the Pareto-based
ranking. Since its inception, Pareto-based MOEAs such as MOGA [30], PAES [31],
NSGA-II [32], SPEA-II [33] have emerged as the most widely used. However, both
Fonseca and Fleming [34], [30] have highlighted the inadequacy of an MOEA based on
Pareto assignment in high dimensional objectives. In this situation, the Pareto-based
MOEA may not be able to produce sufficient selection pressure and also its performance

does not scale well with respect to the number of objectives [35].

2.3.4.2 MOEAs Based on Decomposition

This approach aggregates the objectives into a single scalar to approximate the Pareto
front. It was in fact the failure of Pareto-based MOEAs in the high dimensional ob-
jective space that turned attention to decomposition-based methods. MOGLS [36] and

MOEA/D [11] are the two most successful algorithms in this category.

2.3.4.3 MOEAs Based on Indication

Here, the fitness function seeks to rank population members according to their perfor-
mance in relation to the optimization goal. MOEAs then introduce a utility function
to be maximized. For example, one possibility would be to sum up the indicator val-
ues for each population member with respect to the rest of the population [37], [38].
IBEA, which was introduced by Zitzler and Kiinzli, is an example of an indicator-based

evolutionary algorithm. For more information see [37].
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The Non-dominated Sorting Genetic Algorithm, NSGA-II, is undoubtedly the most
well-known and referenced algorithm in the multi-objective literature. It is a GA with
random mating of individuals within a population. It is based on obtaining a new
population from the original one by applying the typical genetic operators (selection,
crossover and mutation); then, the individuals in the two populations are sorted ac-
cording to their rank, and the best solutions are chosen to create a new population. In
the case of having to select some individuals with the same rank, a density estimation
based on measuring the crowding distance to the surrounding individuals belonging to
the same rank is used to get the most promising solutions [32]. In 2014 a new version
of this algorithm was introduced based on adaptive updating and including new refer-
ence points on the fly. The resulting adaptive NSGA-III is shown to provide a denser
representation of the Pareto-optimal front [39,40].

The Strength Pareto Evolutionary Algorithm, SPEA2, works on the same random
mating of individuals within a population as NSGA-II. In this algorithm, each individual
has a fitness value assigned, which is the sum of its strength raw fitness and a density
estimation. The algorithm applies the selection, crossover, and mutation operators to
fill an archive of individuals; then, the non-dominated individuals of both the original
population and the archive are copied into a new population. If the number of non-
dominated individuals is greater than the population size, a truncation operator, based

on calculating the distances to the (k — th) nearest neighbour, is used [29].

2.4 MOEA/D as a Framework

In this thesis, MOEA /D has been studied for handling noisy MOP and this framework
will be reviewed as follows:

In order to find a set of N Pareto optimal solutions, MOEA /D decomposes an MOP
to IV Single-objective Optimization Problem (SOP) (see Figure 2.4). It then solves each

subproblem independently. (See Figure 2.5).
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Figure 2.4: Decomposing MOP to N Subproblems.
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Figure 2.5: MOEA /D solve N subproblems simultaneously.

2.4.1 Decomposition Methods

Decomposition is a general approach to solving a problem by breaking it up into smaller
ones and solving each of the smaller ones separately, either in parallel or sequentially.
[41].

Decomposition in optimization is an old idea and appears in early work on large-
scale LPs [42]. The original primary motivation behind decomposition methods was to
solve very large problems that were beyond the reach of standard techniques.

Decomposition of an MOP can be done at different levels. i) Decision variables: in
[43] the authors introduced a Dynamical Multi-Objective Evolutionary Algorithm with
Domain Decomposition (DMOEA-DD) by using a domain decomposition technique.

The decomposition of decision variables is implemented by splitting the original set
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of decision variables into subgroups and optimizing each group as a subproblem. ii)
Objective functions: in [11,44] the authors introduced algorithms that decompose an
MOP into multiple scalar optimization subproblems.

In the following the Tchebycheff decomposition method is introduced. This will be

used later in this thesis.

2.4.1.1 Tchebycheff Decomposition Method

The Tchebycheff approach was introduced in [45]. The aggregation function of this
method is mathematically defined as follows,
minimize  ¢"(x|)\, 2*) = max \|fi(z) — ]|
icl,,m

(2.7)
subject to x € Q C R".

where z* = (2], -, z,) is the reference point. 2z = min{fj(z) | x € Q} for each
i=1,---,m. The reference point guides the search procedure to converge. (see Figure
2.6).

According to the following theorem for any Pareto optimal solution x* there is a

weight vector (A1, A2) such that =* is the optimal solution to (2.7).

Theorem 7 If the Tchebycheff problem 2.7 has a unique solution, then it is Pareto-

optimal.

Proof of this theorem is available in [1].

2.4.2 Subproblems

Generating a diverse set of weight vectors is intransitive for the decomposition of the
multi-objective problem into multiple single objective problems in order to achieve a
good representation of Pareto Front (PF). Table 2.1 shows the process of creating sub-
problems based on an aggregation function. Every weight vector defines a subproblem
and a diverse set of weight vectors leads to a diverse range of subproblems. This results

in a diversity of Pareto optimal solutions because, as is mentioned in Section 2.4.1.1,
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Figure 2.6: Tchebycheff Decomposition Method.

Table 2.1: Create subproblems with evenly distributed weight vectors

Weight Vectors Subproblems

A =(1,0) g, X)) =1x fi +0x fo

A2 =(0.9,0.1) | g(x,A?) =09 x f1 +0.1 x fo
A =(0.8,02) | g(x,A3) =08x f1 +0.2 x fo

AN = (0,1) 9@, AV) =0x fi+1x fp

the optimal solution of 2.7 is a Pareto optimal solution for 2.1. This fact is clearly illus-
trated in Figure 2.7. The authors in [11] introduced a method for generating uniform

weight vectors.

min g(x, A' )| ‘min g(x, /’,‘)l o0 o

/

/

/

Figure 2.7: Pareto front constructed by optimal solutions of each subproblems.
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2.4.3 Neighbourhood

Neighbourhood relation in MOEA /D is introduced by computing the Euclidean dis-
tances between any two weight vectors and then working out the T' closest weight
vectors to each weight vector. T is the size of neighbourhood which is set by the deci-
sion makers. For each i = 1,---, N set B(i) = {i1,--- ,ir} where A1, ... AT are the
closest weight vectors to A’. Note that each weight vector is the closest vector to itself
and the neighbourhoods of weight vectors remain unchanged during the whole search

process. Figure (2.8) illustrates the neighbouring relations in MOEA /D. T is a major

— BO={1.2345 |
— BO@={253456 |
—— B®=3.4567 |

'MOP

Decomposing a MOP
to N Subproblems

B = {NN-1..., N-4|

Figure 2.8: Illustration of neighbouring relation in MOEA/D.
(T is the size of neighbourhood)

control parameter in MOEA/D [11] because it is a mating restriction. Two solutions

have a mating chance if they are in the same neighbourhood.

2.4.4 General Framework

In the framework of MOEA/D, a population of scalar optimization subproblems is

maintained and each subproblem is formed by the following components:
e Solution x: is the current best solution of this subproblem.

e Weight \: is the weight vector that characterizes this subproblem and determines

its search direction.

e Neighbourhood B: the list for each subproblem that contains the indexes of neigh-

bouring subproblems.
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After initialization, MOEA /D starts the search process in its main loop. An
offspring is generated for each subproblem i by applying the selection, crossover
and mutation operators. Then, two neighbouring subproblems of subproblem 4%
are selected randomly from B(i). The selected solutions produce a new solution
y by applying genetic operators (crossover and mutation); y is then offered to all
subproblems within the neighbourhood of subproblem i. If y is fitter than any

neighbours, then y will replace that particular neighbour.

A stopping criteria is necessary to stop the algorithm from searching. In this

thesis, the stopping criteria employed is a predetermined number of generations.

An external population that holds the best solutions is not practical in continuous
MOPs, however. This is because the final generation of this population represents
the best result found by MOEA/D an inherent elitism that plays an important
role in discrete MOPs. However, in our experiments we focus purely on continuous

MOP and for this reason the next chapters will not employ the external population.

Finally, the reference point is a vector which directs the algorithm towards the
optimal solution. A reference point constructed as z* = (z7,--- ,z}) where 2z =
min {f;(x) | = € Q} for each i = 1,--- ,m. This can be updated during the

search or can be fixed as a predetermined parameter. Algorithm 2.2 describes

MOEA/D in detail and more information is available in [11].

In the less than a decade since Zhang and Li introduced MOEA /D in 2007 [11] it
has attracted much interest and numerous research studies have been published

on the following aspects [46]:

1. Combining MOEA /D with other meta-heuristics, such as simulated anneal-
ing [47], colony optimization [48], particle swarm optimization [49,50], tabu
search [51], guided local search [52]and deferential evolution [53].

2. Changing the reproducing operators, such as guided mutation operator [54],

nonlinear crossover and mutation operator [55], differential evolution schemes

[53], and a new mating parent selection mechanism [46, 56].
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3. Research on decomposition techniques. An NBl-style Tchebycheff decom-
position approach is proposed to solve portfolio optimization problems by
the authors in [57]. In [58,59] different decomposition approaches are used

simultaneously.

4. Improvement on weight vectors. Predetermined, uniformly distributed weight
vectors are used to define scaler subproblems in MOEA /D. This reveals that
the fixed weight vectors used in MOEA /D might not be able to cover the
whole PF very well [47]. Therefore, in [60], the authors create weight vec-
tors predictably based on the distribution of the current weight set. In [61],
another weight adjustment method is developed by sampling the regression
curve of the objective vectors of the solutions in an external population. The
authors in [46] introduce (MOEA /D-AWA), which is an improved version of

MOEA/D with an adaptive weight vector adjustment.

5. Applications of MOEA /D like the combinatorial optimization problem, known
as the knapsack problem, [47,58], the travelling salesman problem [47], the
flow-shop scheduling problem [51,62] and the capacitated arc routing problem
[63]. Or practical engineering problems like antenna array synthesis [64, 65],
wireless sensor networks [66], robot path planning [67], missile control [68],
a multi-objective optimization for rest-to-rest manoeuvres of flexible space-
craft [69], portfolio management [57] and rule mining in machine learning [70]

have also been investigated.
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Algorithm 2.2 MOEA/D
Input:

e A stopping criterion.

e N: the number of subproblems considered in MOEA /D.

e A uniform spread of the weight vectors: \',--- AN,

e T: the number of weight vectors in the neighbourhood of each weight vector.
Output:

e EP or {F(z!),---, F(z™)}.

Step 1) Initialization:
Step 1.1) Set EP = 0.
Step 1.2) Compute the Euclidean distances between any two weight vectors.
For each subproblem i = 1, ..., N, set the neighbourhood B(i) = {i1,...,i7}. where
A, AT are the T closest weight vectors to AL
Step 1.3) Generate an initial population z!, ...,z
Step 1.4) Evaluate the population.
Step 1.5) Set the reference point z = (21, ..., 2m) (see Section 2.4.4).

Step 2) Update:
Fori=1,---,N do
Step 2.1) Reproduction: Randomly select two solutions from B(i) to generate
a new solution y by using genetic operators.
Step 2.2) Improvement: Apply a problem-specific (repair/ improvement
heuristic) on y to produce y'.
Step 2.3) Update of z: Update the reference point z.
Step 2.4) Update of Neighbouring Solutions: For each index j € B(i), set
ad =y if 27 is not fitter than 3 regarding to the subproblem j.
Step 2.5) Update of EP: Add F(y') to EP if no vector in EP dominates F(y')
and remove all dominated vectors by F(y') from EP.

Step 3) Stopping Criteria:
If stopping criteria is satisfied stop and return EP or {F(z!),--- , F(z™)} Otherwise,
go to Step 2.

N randomly.
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2.5 Ordinal Optimisation Technique.

Ordinal optimization is a ranking and selection approach to solve a simulated optimiza-

tion problem [71].

2.5.1 Introduction

Ordinal optimization concentrates on ordinal comparison and achieves a much faster
convergence rate [3]. The idea behind ordinal optimization is to effect a strategic change

of goals.

2.5.1.1 Problem Statement

Suppose a general simulation optimization problem was defined as follows:

min J(z) = ELf(z, ) (2.8)

Where J(z) is the performance measure of the problem, L(x,¢€) is the sample perfor-
mance, x is a system solution and {2 is the set containing all the feasible solutions.
If J(x) is a scalar function, the problem is a single objective optimization problem;
whereas if it were to be a vector valued function, the problem would become a multi-
objective optimization problem. The standard approach for estimating the expectation

of performance E[f(x,¢)] is the mean performance measure as follows,

J= % > flae) (2.9)

Where, n shows the number of simulation samples for solution i.

Due to its huge search space, lack of structure and high uncertainty, solving problem
2.8 is very challenging, either computationally or analytically. The fact that many real
world optimization problems remain unsolved is partly due to these very issues. A large
number of human-made systems imply combinatorics, symbolic or categorical variables

which make the calculus or real variable-based methods less applicable. Search-based
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methods are required to tackle the difficulty of those models. These allow for a narrowing
of the search for the optimum to a ‘good enough’ subset, rather than the perfect best.
After all, real world solutions to real world problems all involve compromise towards
‘good enough’ rather than perfect.

Further more, it is undoubtedly much easier to simply determine which solution is

better than to struggle to find out how much better.

2.5.1.2 Basic Ideas

The fundamental principles of the ordinal optimization method are as follows [3,72]:
1. Goal softening.
2. Ordinal Comparison.
3. ‘Order’ converges exponentially fast.
4. ‘Order’ is much more robust against noise than ‘value’.

The first principle, goal softening, holds that it is much easier to find a top-n solution
than to find out the global best.

The second principle, namely ordinal comparison, holds that it is much easier to
determine which solution is better than how much better. For example, were you to
receive two parcels, it would be far easier to identify which one was heavier than to
work out the exact weight difference between them.

The third principle, in which order converges faster than value, has been analysed

in [73] (pp. 160-163). In addition, the interested reader could refer to [3].

2.5.1.3 Notifications and Concepts

Assume that a subset of search space €2, defined as ‘Good enough’ and denoted by G,
which could be the top-g solution or top-n% of the solutions of the sampled set of M
solutions. The size of the number G is denoted as g (|G| = g). Moreover, by selecting

some other members of the population, either blindly or by some rule, another subset
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is defined called ‘Selected Subset’. It is denoted by ‘S’ with the same cardinality as G
(|G| = |S| = g). Figure 2.9 illustrates the concept of ordinal optimization.

The question here is: what is the probability that among the set ‘S’ we have at least
‘k> of the members of G, which is P{|G N S| > k} and represents another concept of
ordinal optimization known as ‘Alignment Probability’. It is a measure of the rightness
of our selection rules. Alternatively there are some special cases of alignment probability
which are denoted by P(C'S) and stand for probability of ‘Correct Selection’ [72]. This

probability is calculated for discrete systems with blink picking in [3, 72].

() : Search Space

G : Good Enough Set

S : Selected Set

e : Truly Optimum

o : Estimated Optimum

Figure 2.9: Generalized concept of Ordinal Optimization [3].

2.5.1.4 Definitions, Terminologies and Concepts of OO

Ordinal optimization uses a crude system model to order the solutions in the search
space. A crude model is one with a lower computational cost that allows the simulation
to converge faster.

In addition, it utilizes a different method to select set S. A selection rule is a
procedure that selects the set S based on observed performance of the solutions, such
as blind picking or horse racing etc.

The ordinal optimization (OO) procedure is summarized in Algorithm 2.3 [3]. As

we study the multi-objective optimization problem, the concept of OO by itself is not
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Algorithm 2.3 Ordinal Optimization Procedure

Require: Search Space €
Step 1 : Pick M random solutions from 2
Step 2 : Specify the size of the good enough set G and alignment level k.
Step 3 : Use crude model to estimate the performance of NV solutions.
Step 4 : Estimate the noise level and the problem type.
Step 5 : Calculate s, the size of selected set.
Step 6 : Select the observed top-s solutions.
Step 7 : Then employ OO theory to ensure there are at least k truly good enough
solutions in S with a certain probability.

helpful. However in [74] the authors extended the concept of OO for vector optimization
problems and called it Vector Ordinal Optimization (VOO). We will implement VOO

later in this research.

2.5.2 Vector Ordinal Optimization

When ordinal optimization was first developed it was initially proposed to solve a
stochastic simulation optimization with a single objective and no constraints [3, 74].
Very soon, however, the idea was extended to multi-objective problems, constrained

optimization problems and so on [74].

2.5.2.1 Definitions, terminologies and concepts of VOO

Practical problems in the finance or industry sectors involve multiple simulation-based
objective functions and, in most cases, decision makers have no prior knowledge as to
priority nor appropriate weighting amongst the objective functions.

Different studies have proposed various ways to introduce order amongst the solu-
tions in vector ordinal optimization. The first and most common way is to follow the

definition of Pareto front.

Definition 7 (Dominance) Assume that we have two solutions, x1 and xy. xo dom-

inates x1, denoted by xo < x1, if both the following conditions hold:

Voie{1,2,...m}, Ji(x2) < Ji(x1)
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3 ] S {1,2, ...,m}, Jj(l‘g) < Jj(xl)

where m is the number of objective functions in the simulation-based optimization

problem.

Definition 8 (Pareto frontier) A set of solutions Ly is called the Pareto frontier if

it contains only the non-dominated solutions,

Li={z|2ze€Q, A 2€Q, st 2<uz}
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Figure 2.10: Ilustration of Layers [3].

The concept of Pareto frontier introduces an operator w that maps the solution space
to the set of Pareto fronts with respect to the objective functions as L1 = w(Q) [74].
The concept of Pareto frontier can extend to a sequence of layers. This can be seen in

Figure 2.10.

Definition 9 (Layers) A series of solutions Lst1 = w(\U;—y o Li) , s =1,2,....
are called layers. A\B denotes the set containing all the solutions included in the set A

but not included in the set B.

Without any additional problem information, there are no preferences as to objective

function and no preferences as to solution in the same layer.
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The procedure of VOO is summarized in Algorithm 2.4 that will be used later in

this thesis.

Algorithm 2.4 Vector Ordinal Optimization

Require: Search Space
Step 1 : Pick M random solutions from {2
Step 2 : Use crude model (computationally fast) to estimate the performance of N
solutions.
Step 3 : Select the observed top-s layers. (selected set S).
Step 4 : Evaluate the selected layers with exact model (more refined model) to esti-
mate the optimal solutions.

The second method for introducing order among the solutions is to count the number
of solutions that dominate a solution z, denoted as n(z), then to sort all the solutions
according to n(x) in ascending order [75]. Solution z; is deemed better than z; if
n(z;) < n(xj). And solutions x; and z; are regarded as equally good solutions if
n(z;) = n(z;).

An Order Based Genetic Algorithm (OGA) was introduced in [76], based on the idea
of ordinal optimization, to ensure the quality of the solution found with a reduction in
computational effort.

The authors in [77] combine OO and Optimal Computing Budget Allocation (OCBA)
within the search framework of GA to propose a novel Genetic Ordinal Optimiza-
tion (GOO) algorithm to solve the stochastic travelling salesman problem.

In [78] the authors incorporate particle swarm along with OO for a stochastic simula-
tion optimization problem. The new algorithm Combined Particle Swarm with Ordinal
Optimization (CPSOO) is applied to solve the centralized broadband wireless network
problem.

The authors in [78] combine evolution strategy with ordinal optimization to solve a
wafer testing problem. They called this new algorithm (ES+0O). In another study [79]
they solve the same problem with (GA+OO), which is a combination of a genetic
algorithm with ordinal optimization.

An ordinal optimization-based algorithm is also used for the hotel booking limits

problem in [80]. The authors construct a crude mode as a fitness evaluation function
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in Particle Swarm Optimization (PSO) Algorithm to select M candidate solutions and
then use OCBA to search for a good enough solution.
In this thesis we will use the ordinal optimization technique to handle uncertainty

for the first time.

2.6 Noisy MOEAs

In real-world problems characterized by noise, precise determination of the fitness value
for individual solutions is a major challenge. This is because the noise may be associated
with different sources, including erroneous sensory measurements and randomized simu-
lations. Such noise causes an uncertainty in the fitness evaluation of potential solutions
and eventually adversely affects the search efficiency, convergence and self-adaptation
of evolutionary algorithms (EAs) and other heuristic search algorithms.

Uncertainty in the context of evolutionary optimisation can be divided into four

major categories [4], as follows:

1. Noise: The noisy fitness function (F(X)) may be described as:

where X denotes the parameter-vector, f(X) the fitness function without noise,
and ( the additive noise. In that, though ( is often assumed to have a Gaussian
distribution, it may have non-Gaussian distributions as well. Notably, given the
randomness associated with the noise, different fitness values may be obtained for

the same solution in different evaluations.

2. Robustness: Here, the parameter-vector is perturbed after the optimal solution
has been obtained, and a solution is still required to work satisfactorily. In this

case, the expected fitness function (F (X)), as below, may be used:

P(X) = f(X +0)
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where J represents the perturbation.

3. Fitness approximation: In situations where either an analytical fitness function
may not be available or its evaluation may be very expensive, the fitness function
may need to be approximated based on experimental or simulation data. The
approximated fitness function, often referred to as the meta-model ought to be

used together with the original fitness function as follows:

f(X), if the original fitness function is used
F(X) =
f(X) 4+ E(X) if the meta-model is used

where, F(X) is the approximation error.

4. Time-varying fitness functions: Here, the fitness function is deterministic at any

point in time but is dependent on time ¢, and may be described by:

F(X) = fi(X)

Among the above categories, the issue of handling noise in fitness evaluations is often
an important one in several domains, including evolutionary robotics [81], evolutionary
process optimization [82], and evolution of en-route cashing strategies [83]. In order to

address this issue, three major approaches have been identified [4], as follows:

1. Explicit Averaging (Fitness Averaging): This calls for estimating the fitness by
averaging over a number of samples taken over time. Notably, each sampling may
be quite expensive, hence a balance between the sample size and performance
becomes critical. The authors in [84, 85] suggested two adaptation schemes: 1)
increasing the sample size with generation number and using a higher sample size
for individuals with higher estimated variance. The author in [86] concludes that
for small population sizes, sampling is able to improve the learning performance.
Moreover it is also mentioned that sampling does not help if the population size

is generously large.

2. Implicit Averaging (Population Sizing): This calls for negating the effect of noise




Chapter2. Background and Literature Review 38

by increasing the population size. For instance, the authors in [87] have demon-
strated that when the population size is infinite, proportional selection is not

affected by noise.

3. Modifying Selection: This calls for modifying the selection process in order to
cope with noise. For instance, the authors in [88] proposed to de-randomize the
selection process, and demonstrated that the effect of noise could be significantly
reduced without a proportional increase in computational cost. Notably, this
approach has also been studied in the context of multi-objective optimization,
where Pareto-dominance is used for selection. In the latter, the authors in [89]
and [90,91] have proposed that an individual solutions Pareto-rank be replaced

by its probability of being dominated.

A number of approaches have also been proposed to reduce the disruptive effect of
noise such as population sizing [92,93], fitness averaging and fitness estimation [94-96],
specific selection method [97-99], and Kalman filtering [100].

A few noise handling techniques in MOEAs have been introduced which include
periodic re-evaluation of achieved solutions [8], probabilistic Pareto ranking [90], the
extended averaging scheme [101], experiential learning directed perturbation [102] and
gene adaptation selection strategy [102].

There are some MOEAs which are facilitated by specific noise handling techniques to
tackle the disruptive impact of noise, for instance NTSPEA [8], Multi-objective Prob-
abilistic Selection Evolutionary Algorithm (MOPSEA) [103], a robust feature multi-
objective evolutionary algorithm (MOEA-RF) [9] and MNSGA-II [10].

The authors in [104] examined the effect of noise on both local search and genetic
search to understand the potential effects of noise on the search space.

Optimization in noisy and uncertain environments is regarded as one of the favourite
application domains of evolutionary algorithms [6]. Research in the field of noisy
MOEAs is still in its infancy. Compared to its practical relevance, the effect of noise
and its influence on the performance of MOEAs has gained relatively little attention in

EA research [8,90,105].
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2.7 Conclusions

In this chapter we briefly reviewed the basic concepts of optimization theory by fo-
cusing on the multi-objective optimization problem. Having discussed the traditional
approaches used to solve these problems, we outlined a modern heuristic method, the
‘Evolutionary Algorithm’, for solving multi-objective optimisation. Then followed a
detailed discussion of the major issues confronting multi-objective evolutionary algo-
rithms.

MOEA /D was reviewed in this chapter as a framework for optimizing multiobjective
problem. We will use MOEA /D as a base algorithm for further research. A literature
review on noisy MOEAs was provided.

Furthermore, an introduction to the ordinal optimization technique has been ex-
plored, covering both single and multi-objective optimization problems. We will com-

bine this technique with the MOEA /D algorithm to handle noise.




MOEA/D in Noisy Environments

In the previous chapter we discussed MOEA and its major issues. Noise is one of these.
It poses a significant challenge to MOEA because the noise, spread as it is from different
sources, causes uncertainty in the fitness evaluation of potential solutions and eventu-
ally adversely affects search efficiency, elitism, convergence and the self-adaptation of
Evolutionary Algorithms (EAs) and other heuristic search algorithms.

Does noise matter in the case of MOEA/D? Will its performance be affected by
noise? If so, how seriously? Results obtained in this chapter do reveal a meaningful
deterioration in the performance of MOEA /D when noise intensifies. Thus, this chapter
will provide answers to the above questions, but in order to get to that point we will

first define some common concepts in noisy multi-objective optimization.

40
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3.1 Multi-objective Optimization Problems in Noisy En-

vironments

A noisy MOP is an MOP whose objective function is disrupted by noisy terms. A noisy

multi-objective problem can be described as follows:

min F'(z) = (fi(x) + 01, , fm(x) + 0m)
(3.1)

s.t z e

where z is a ‘decision vector’ and §; for i« = 1,2,...,m are disruptive noises with
scalar values.
In this study, an unbiased (zero mean) Gaussian perturbation is added to the ob-

jective functions [102].

F(X)=f(X)+$§
(3.2)
§ ~ N(0,0?)

where 02 denotes the level of noise, while F(x) and f(z) represent the objective
functions with and without noise respectively.
In this thesis, it is assumed that noise has a disruptive influence on the value of each

individual in the objective space and it is common practice as used in [9,90,91,95,96,106].

3.2 Evolutionary Multi-objective Optimization in Noisy

Environments

In this section, we explain how the research reported in this chapter relates to other
work in the literature.
To begin with, there are different ways to model noise. The majority of them,

including this research, use the Gaussian model. In [107], Arnold and Beyer conducted
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a comparison of the influence of Gaussian, Cauchy and x? distributed noise on the
performance of evolutionary strategy (ES) .

Secondly, most research into noisy optimization focuses on single objective problems
[107]. In this thesis, we focus on MOP.

Thirdly, studies on EA for noisy MOPs have been conducted, [5,9], and a number of
approaches have been proposed in recent decades by different studies aimed at decreasing
the impact of noise on MOEA such as population sizing [93], fitness estimation [96] and
modified selection schemes [9, 98].

The aim of this thesis is to improve MOEA /D in noisy MOPs. We are not comparing
the performance of proposed methods to others in the literature at this stage. In any
case, a beauty contest would not be straightforward or meaningful because different
methods could perform better in different problems. Besides, performance could also

be affected by the parameters and fitness measures used in different algorithms.

3.3 MOEA/D Algorithm

MOEA/D is a population-based algorithm that decomposes the MOP to N scalar opti-
mization problems and optimizes them simultaneously rather than seeking to solve the
MOP as a whole. All traditional mathematical decomposition techniques are applicable
such as Weighted Sum, Tchebycheff Approach and so on.

Diversity in the subproblems naturally brings diversity to the population. A properly
chosen weight vector and decomposition method can result in an evenly distributed
solution along the PF as described in Section 2.4 [108].

In MOEA /D a neighbourhood of subproblems is defined as T' closest subproblems.
The closeness of subproblems is measured by the Euclidean distance of weight vectors
between each subproblem. Subproblems share information such as optimal points with
neighbouring subproblems.

In this research, we use MOEA /D with the Tchebycheff decomposition method that
is described in Section 2.4.1.1. All the steps of this framework are listed in Algorithm

3.1 and further details are available in [11] and Section 2.4.
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Algorithm 3.1 MOEA/D for Solving Noisy MOP
Input:

e MOP 3.1.

e A stopping criterion;

e N: the number of subproblems considered in MOEA /D.

e A uniform spread of the weight vectors: \!,--- AN,

e T: the number of the weight vectors in the neighbourhood of each weight vector.
Output:

o {F(z), - F(z™)}.

Step 1) Initialization:
Step 1.1) Compute the Euclidean distances between any two weight vectors.
For each subproblem ¢ = 1, ..., N, set the neighbourhood B(i) = {i1, ..., ir}. where
AN are the T closest weight vectors to A%
Step 1.2) Generate an initial population z!, ..., zV randomly.
Step 1.3) Evaluate the population.
Step 1.4) Set the reference point z = (21, ..., 2m) (see Section 2.4.4).
Step 2) Update:
Fori=1,---,N, do
Step 2.1) Reproduction: Randomly select two solutions from B(i) to generate
a new solution y by using genetic operators.
Step 2.2) Update of z: Update the reference point z.
Step 2.3) Update of Neighbouring Solutions: For each index j € B(i), set
2J =y if 27 is not fitter than y regarding to the subproblem j.
Step 3) Stopping Criteria:
If stopping criteria is satisfied stop and return {F(z!), -, F(z™)}. Otherwise, go
to Step 2.

3.4 Performance Metrics

Performance metrics play an important role in returning a scalar value to represent
the quality of a solution set with respect to a given measure. Due to the nature of
MOP several performance metrics are needed to gauge the performance of an algorithm

[13,109].

1. Proximity Indicator: The generation gap between PF;... and PF,,p... indicates
the closeness of the approximated Pareto front and true Pareto front. The true

Pareto front is the global Pareto optimal set [9,110]. For ZDT problems, Zitzler
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and others produced a very good approximation of the true Pareto front on their
website!. Their approximation is also covered in Appendix A. Mathematically,

generational distance(GD) is formalized as:

npr

1
GD = (— N " @?)V/2 3.3
(nPF,Z; i) (3.3)

where npr is the number of elements in PF;,.. and d; is the Euclidean distance (in
objective space) between member i of PF,... and its nearest member of PF,,,r0x.

Notably, a lower value of GD implies a better approximation of the Pareto front.

2. Diversity Indicator (Mazimum Spread): MS measures how well the true Pareto
front is covered by the approximated Pareto front [9,110]. To assess the diversity

of solutions in PFu,pror ViS-G-ViS PF., the following metric will be used:

m min( fer, Fme?) —mag(fmin, Frin 2
MS = \/% Dic [ Sk ) o ) (3.4)

max __ [pmin
F; F}

where:

m is the number of objective functions.

fring frer are the minimum and maximum of f; in PFopproc-

Fming Fme® are the minimum and maximum of f; in PFiye.

Notably, by converging to 1, MS shows that the approximated Pareto front prop-

erly covers the true Pareto front.

3. Distribution Indicator (Spacing): To assess the uniformity of distribution between

solutions along PFappros [9,110] the following metric will be used:

1 npr %
S = di —d)? 3.5
e =T ) (35)
where
B 1 npr
d= —— d;
npr Zz;

"http://www.tik.ce.ethz.ch /sop/download/supplementary /testproblems/
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f, o

HV

Min

-—— Min
Figure 3.1: HV: Area that is dominated by solution set.

d; is the Euclidean distance between the i-th member and its nearest neighbour
in PF and npr is the number of elements in PF,,r0.. Notably, a smaller value of

spacing implies a more uniform distribution of solutions in PFapprox-

4. General Quality Indicator: the hypervolume(HV') metric indicates the general
quality of a solution set by taking into account its performance in diversity and
proximity [9,110]. Hypervolume indicates the size of area that is dominated by a
solution set as in Fig.3.1 below. A reference point O' = (01, 02, ..., 0p,) is defined
where o; represents the worst values for objective function 7. Finally HV metrics
can be defined as follow:

npr

HV = volume U v; (3.6)
=1

where v; is a hypercube between solution ¢ and the reference point which is con-
structed as the diagonal corner of the hypercube. Veldhuizen and Lamont ex-

pressed this metric as a ratio between the PF . pr0x and PFypye

HV (PF opproz)

HVR =
HV (PFrye)

(3.7)

Notably, PFupproz is a good approximation of PFy.. if its hypervolume metric

value is close enough to the hypervolume metric value of PFy.... Consequently it
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is desirable that the HV R metric should merge to a value of 1 .

3.5 Experiment

The purpose of this experiment is to find the impact of noise on the performance of the
MOEA/D. The behaviour of the MOEA/D is tested on different levels of noise, which
helps us to detect the destructive effects of noise with some scale. Noises are added to
the test functions that are summarized in Section 3.5.2, in the form that is mentioned

in Section 3.1.

3.5.1 Design of Experiment

In order to study the impact of noise on MOEA /D, an experiment has been designed to
challenge the algorithm in the presence of different levels of noise, from low (1%, 2%),
to medium (5%) to high (10%,20%).

In this thesis we implement the DE operation, along with a Gaussian mutation
operator to generate new individuals. Both of these operators are reviewed in Sections
2.3.3.1.1 and 2.3.3.1.2. In our experiment, DE parameters are set as (F' = 0.5) for
differential weight and (CR = 0.5) for crossover probability. This setting has been
implemented before (see MOEA /D homepage), meaning we are therefore using the
same settings as those used by the original authors of MOEA /D. The new offspring just
produced by the DE operator then undergoes the Gaussian mutation with the following

mutation probability:

1
Number of Decesion Variables

Pmu:

Finally, this mutated offspring will be referred as a new individual to the optimization
framework.

The performance of MOEA/D is affected by its parameter settings. The most in-
fluential parameters are population size and neighbourhood size, as well as maximum

iterations. We adopt the following set up in the experiment:
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e Number of subproblems and population size: as MOEA /D decomposes the MOP
into N scalar subproblems and a population of N solutions z!, ...,z is main-
tained, where 2’ is the best solution found so far for the i—th subproblem. With-

out loss of generality, a fixed population of one hundred individuals (N = 100)

has been considered sufficient for this study. The amount is entirely arbitrary.

e Neighbourhood size: To ensure better exploration and exploitation, attention
should be paid to the size of neighbourhood. As a result, twenty percent of the
population is considered as the neighbourhood size, which offers a good chance

for neighbouring solutions to mate [108].

e Number of iterations: The algorithms will stop when maximum generation is
reached. In our study a total of 150 iterations will complete the search process.
It has been empirically observed that there are no significant improvements after
150 iterations, hence our setting up the algorithm to stop at that point to reduce

the computational cost.

Finally, fifty independent simulation runs are conducted for each of the noisy prob-
lems. We run our experiments in Matlab.

No other study covers computational cost in noisy research. For instance, see [9].
At this stage finding a proper and trustworthy method for handling noise is the primary
concern in noisy optimization research. Computational cost and time remain minor

considerations for the moment.

3.5.2 Benchmark Problems

To reveal capabilities, possible pitfalls and specific characteristics of the algorithms, re-
searchers use benchmark problems. These have different features such as multi-modality,
convexity, discontinuity and non uniformity of the Pareto front. These features may pre-
vent the MOEAs from finding a diverse set of solutions.

Six benchmark problems, FON, KUR, ZDT1, ZDT3, ZDT4 and ZDT6 have been

selected to be used in this research. Many researchers have applied these test problems
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Table 3.1: Definition of the test functions.

Problems Variables o .
Objective Functions
(Characteristics) | Number (n); bounds
FON (@) = 1 —exp(_ 5 (2, L)
wa,g | M= S )
Non-convex folz) =1 —exp(— Y i (zi + ﬁ) )
KUR 1
z) =31 (—10exp(—0.2y /a2 + a?
Non-convex 3; -5, 5] fit) Z;L_l( ngp( ., 3 ' w+)
Disconnected Fol@) = i (jal ™ + Bsin(ay)
7DT1 Si(z) = a1
30; [0, 1] fo(@) = g(2)[1 = /21 /g(x)]
Convex n
9(@) =14+90 L, i)/(n—1)
ZDT3 fi(@) =2
Non-convex 30; [0, 1] fo(z) = g(x)[1 — /21 /9(x) — gﬁ) sin(10mx1)
Disconnected g(x) =149 " s xi)/(n—1)
ZDT4 10; 21 € [0, 1] fi(z) = a1
Non-convex x; €[ —5,5] fo(z) = g(x)[1 — Vx1/9(x)]
Multimodal i=2,-,n g(x) =1+10(n —1) + >, [z — 10 cos(4ma;)]
ZDT6
fi(z) =1 — exp(—4a) sin®(67x1)
Non-convex 9
. 10; [0, 1] falx) = g(@)[1 = (fi(x)/9(x))"]
Non-uniformly () =14 9" \/( 1o
=1+ o T ) — 20
distributed . i=2 /AT )

to assess the effectiveness of their proposed algorithms [9,11,28,29,32,111-114]. The

definitions of the selected problems are outlined in the following and in Table 3.1.

e FON is a non-convex, non-linear problem. It is difficult for algorithms to maintain
a stable evolving population for FON [9]. The challenge this problem poses to
algorithms is finding and maintaining a uniform Pareto front [115,116]. Thus, for
this problem, the algorithms’ performance can be easily assessed and compared

via observations of the Pareto front.

e KUR uses two complicated objectives with a non-convex and disconnected Pareto
front. There are a total of three distinct disconnected regions on the Pareto
frontier. Furthermore, the decision variables are also disconnected in the decision
space and difficult to discover. This challenges the algorithm’s ability to cope with

discontinuities and non-convexities. [117]

e ZDT1 is a problem with a large number of decision variables (30) to be optimized.
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It has a convex Pareto front. This problem challenges the algorithm’s ability to

converge and maintain a diverse solution on a convex Pareto frontier

e ZDT3 is a problem with 30 variables to be optimized. Its Pareto front has several
noncontiguous convex parts that represent the discreteness feature. These features
challenge the algorithm to find the optimal. However, there is no discontinuity in

the parameter space.

e ZDT4 is a problem with 10 variables where the first variable is in [0, 1] and the
rest are in [-5 , 5]. This problem contains 219 local Pareto optimals that challenge

the ability of the algorithms to deal with multimodality [113,114].

e ZDT6 is a problem with 10 variables and a non-convex formed Pareto front. This
presents two difficulties. First, the Pareto optimal solutions are non-uniformly
distributed along the global Pareto front and, second, the density of solutions is

lowest near the Pareto front and highest away from the front. [113,114]

The characteristics of these problems are highlighted in Table 3.1. These test functions

are modified in the form of 3.1 in order to include the impact of noise.

3.5.3 Results

True Pareto front is the best recent estimation of each problem, therefore we plot our
results on the true Pareto front to illustrate how the algorithms work.

For a convenient evaluation of the results, the desirable values of the performance
metrics are restated here: for the GD and S metrics 0 is the goal, and for the MS and
HVR metrics 1 is the desirable value. Closeness of the performance metric values to the

desirable values indicates the quality of the estimated solutions.

e FON: Figure 3.2 shows the true Pareto front and estimated Pareto front of the
noisy FON problem by MOEA/D. Table 3.2 includes the performance metric
values of MOEA/D in the presence of different levels of noise. It is desirable that
performance metrics GD and S converge to 0 and MS and HVR converge to 1 as

indicated in Section 3.4. As can be seen from Table 3.2, the performance of the
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MOEA /D algorithm deteriorates sharply when noise intensity increases. This is
due to the fact that, when the noise level is 20%, the performance metric values

are far from acceptable.

e KUR: Figure 3.3 shows the obtained result from the benchmark problem KUR.
Table 3.3 represents the performance metric values of this benchmark problem in
the presence of different noise levels. Similar to FON, it can be seen from the
values in the table for this problem (KUR) that MOEA/D does not perform well
when noise levels increase. For example, the GD values rocket up from 0.0326 to
0.05098 when noise levels vary from 1% to 20%. The gap between the estimated
Pareto front and true Pareto front increases dramatically in Figure 3.3 and the
performance metric values degenerate when noise levels increase. However, the
obtained results would indicate that noise effects its most gentle impact on the

performance of MOEA /D in this specific problem.

e ZDT1: Figure 3.4 shows the estimated Pareto front of ZDT1 found by MOEA /D
in the presence of different levels of noise in comparison with the true Pareto
front. An evolutionary algorithm, by its very nature, can handle low level noise,
as is illustrated in Parts (a) and (b) of Figure 3.4. However, the algorithm fails
to approximate a good solution in the presence of medium and high levels of
noise. The solutions are not evenly distributed along the Pareto front and in some
places we can see that dominated solutions are still present in the Pareto front.
Performance metric values detailed in Table 3.4 also show the level of vulnerability

of MOEA/D in a noisy environment.

e ZDT3: Figure 3.5 shows the true and estimated Pareto fronts for benchmark
problem ZDT3. This problem has a discontinuous Pareto front. As can be clearly
seen, even two percent of noise (low level noise) degrades the performance of
MOEA/D. Table 3.5 shows the values of MOEA /D’s performance metrics for this
benchmark problem. They become far from desirable when noise levels increase.

For example when 1% noise is present, GD returns 0.0369, a value relatively
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Table 3.2: Performance metric values of estimated Pareto front by MOEA /D for noisy
FON

FON GD MS S HVR
1% Noise | 0.0200 | 0.9938 | 0.0072 | 1.0745
2% Noise | 0.0520 | 0.9672 | 0.0115 | 1.1526
5% Noise | 0.1731 | 0.6445 | 0.0247 | 0.9985
10% Noise | 0.2429 | 0.5937 | 0.0359 | 1.0805
20% Noise | 0.2616 | 0.7515 | 0.0773 | 1.4873

close to 0. However, when noise levels increase to 20% the GD returns 0.6540,
a significantly large value for this performance metric that shows how bad the

situation is.

e ZDT4: Figure 3.6 shows the true and estimated Pareto fronts for benchmark prob-
lem ZDT4. This is a benchmark problem with a multimodal feature as discussed
in Section 3.5.2. From Diagrams (a) to (e) it would appear that the performance
of MOEA/D is quite satisfactory in the presence of only one percent of noise.
However, the algorithm is challenged even by two percent noise, which is still
considered low level noise. Table 3.6 includes the performance metric values of
MOEA/D for noisy ZDT4. From the values of this table it can be seen that the
performance of MOEA /D deteriorates when noise intensifies. For instance, HVR’s

value drops by 50% when noise levels increase to 20%.

e ZDT6: Figure 3.7 shows the behaviour of MOEA /D in the objective space for noisy
benchmark problem ZDT6. The obtained result, with only one percent of noise, is
near optimal, although the diversity and quality of solutions reduces as the noise
level increases. Table 3.7 illustrates the performance metric values of MOEA /D
for noisy ZDT6. It can be seen that MOEA/D’s performance degenerates with
respect to the performance metrics applied so far. For example the S metric value

increases tenfold when noise levels reach 20% from 1%.
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Table 3.3: Performance metric values of estimated Pareto front by MOEA /D for noisy

KUR

KUR

GD

MS

S

HVR

1% Noise

0.0326

0.9963

0.0828

1.0067

2% Noise

0.0506

0.9957

0.0825

1.0149

5% Noise

0.1146

0.9944

0.0791

1.0484

10% Noise

0.2384

0.9898

0.1059

1.1072

20% Noise

0.5098

0.9838

0.1630

1.2316

Table 3.4: Performance metric

values of estimated Pareto front by MOEA /D for noisy

ZDT1

ZDT1

GD

MS

S

HVR

1% Noise

0.0396

0.9963

0.0352

1.0317

2% Noise

0.0596

0.9948

0.0424

1.0563

5% Noise

0.2004

0.9052

0.0501

0.7948

10% Noise

0.6336

0.7341

0.0655

0.2626

20% Noise

1.1114

0.7081

0.0957

0.0799

Table 3.5: Performance metric

values of estimated Pareto front by MOEA /D for noisy

ZDT3

7ZDT3

GD

MS

S

HVR

1% Noise

0.0396

0.9963

0.0352

1.0317

2% Noise

0.0779

0.9711

0.0552

1.0547

5% Noise

0.1942

0.9240

0.0711

0.9390

10% Noise

0.5900

0.7745

0.0738

0.4446

20% Noise

0.9540

0.7075

0.1114

0.2764

Table 3.6: Performance metric

values of estimated Pareto front by MOEA /D for noisy

ZDT4

ZDT4

GD

MS

S

HVR

1% Noise

0.0396

0.9963

0.0352

1.0317

2% Noise

1.6368

0.9828

1.5954

1.0053

5% Noise

1.7076

0.8800

1.5809

0.9344

10% Noise

2.9027

0.7153

2.5614

0.6479

20% Noise

3.5134

0.6301

2.4304

0.5033

Table 3.7: Performance metric

values of estimated Pareto front by MOEA /D for noisy

ZDT6

ZDT6

GD

MS

HVR

1% Noise

0.0396

0.9963

0.0352

1.0317

2% Noise

0.1675

0.9998

0.1399

1.1227

5% Noise

0.3286

0.9992

0.2014

1.3053

10% Noise

0.5851

0.9988

0.2190

1.6211

20% Noise

1.7030

1.2284

0.3245

1.9502
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Figure 3.2: The evolved Pareto front of FON under the influence of noise levels (a)1%,
(b)2%, (¢)5%, (d)10% and (e)20% by MOEA /D.
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Figure 3.3: The evolved Pareto front of KUR under the influence of noise levels (a)1%,
(b)2%, (¢)5%, (d)10% and (e)20% by MOEA /D.
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Figure 3.8: MOEA /D’s trace of performance metrics for (a) FON, (b) KUR, (c)
ZDT1, (d) ZDT3, (e) ZDTA4, (f) ZDTE.
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3.5.4 Discussion

From the results of Section 3.5.3, it is clear that the impact of noise on MOEA /D varies
for each different benchmark problem, with their different features and difficulties.

As noise levels intensify, we can observe from Figures 3.2 to 3.7 that the range of
solutions expands and the gap between true Pareto front and the estimated Pareto front
becomes larger. In addition, the diversity of solutions drops badly as illustrated by the
sharp reduction in the number of solutions found.

Similarly from Tables 3.2 to 3.7 it can be clearly seen that the different performance
metrics obtain far from desirable values when noise intensities increase. As mentioned
in Section 3.4, the goal was for the GD and S metrics to converge to 0 and the MS
and HVR metrics to converge to 1. The results in these tables demonstrate that the
performance of MOEA /D deteriorates for each of the tested benchmark problems when
noise levels increase.

The impact of noise is observed to be severe on problems such as ZTD3, with its
discontinued Pareto front, and ZDT4, with multimodality, although MOEA/D does
evolve better solutions for some problems, such as ZTD1, in the presence of low level
noise and the KUR benchmark problem.

Figure 3.8 plots the performance metrics for all the benchmark problems in the
presence of different noise levels. Deterioration in the performance of MOEA/D is
significant: for instance, the generational gap (GD) rockets up as noise intensifies. This
trend is detectable in the other performance metrics as well. In other words, when noise
intensifies the performance of MOEA /D significantly degenerates.

It is not clear why the S metric in some cases (such as Part (f) in Figure 3.8)
behaves as random or why the HVR metric in Part (c) returns zero when noise levels
reach 20%. Applying multiple performance metrics will guarantee that we do not lose
any useful information, but we believe that added noise adversely influences the diversity
of solutions in some problems more than in others. This can lead to the gap between
solutions in approximated Pareto front. As the S metric calculates this gap, it therefore

can be random if the algorithm is not able to keep the best solution during the search
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for the optimal.

3.6 Conclusions

This chapter opened with a description of noisy multi-objective optimization problems,
outlined the challenges to evolutionary algorithms (EA) in handling such noisy problems
and then analysed the decomposition based multi-objective optimization evolutionary
algorithm (MOEA /D) in the presence of noise with different intensities.

Major contribution :

1- This is the first piece of research that studies the effect of noise on the performance
of MOEA/D.

2- We have proved that the performance of MOEA /D deteriorates as noise levels
intensify. [See Section 3.5.3 and section 3.5.4]

Minor contribution: The features of a problem must be taken into account. Problems
with features such as multi-modality or discontinued Pareto fronts are faced with greater
adversity. [See Section 3.5.4]

Significance: This is very important for the development of future algorithms: we

now know that the standard MOEA /D must be modified to handle noise.




MOEA/D With Ordinal Optimization for

Handling Noisy Problems

In the previous chapter we showed in detail the impact of noise on the performance of
MOEA /D. The results of our experiments support the fact that MOEA /D deteriorates
rapidly when noise intensities increase.

Ordinal optimization theory ensures that the order of solutions is likely to be pre-
served, even when using a crude model evaluation, in the presence of noise [3]. Thus,
in order to ensure the selection of a set of good enough solutions, but with minimum
computational cost, constructing a crude model is necessary.

In this chapter we will combine the MOEA /D framework with the ordinal optimiza-

tion technique to handle the noisy multi-objective optimization problem.

62
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4.1 Simulation Based Optimization

For computationally intensive objective functions the performance of system F(z,w)
can be measured via simulation [118], where x is a vector of system parameters and w
represents either randomness or noise in the system. For a simulation-based optimiza-
tion problem, an estimation of the expected system performance can be obtained by
applying a Monto Carlo procedure as follows,
T
J(z) = E[F(z,w)] = lim (=) Y F(z,w)

n—oo N
=1

Limits can be approximated by

When n is large, this approximation is more accurate.

Thus, the algorithm optimizes as per Equation 4.1 instead of directly on F(z,w),
as the former is either noisy or computationally expensive. This problem, in our case a
multi-objective optimization, can be modelled as follows,

1;0618 J(x) (4.2)

where 2 is the search space.

The simulation is conducted as a proxy for the actual system in an optimization
process. Real world problems are too complex to be solved analytically, hence studying
them via computer simulation [118]. Recent computer technology advances have moved
simulation methods from a last resort to a primary technique for solving many real
world problems.

Ordinal optimization is one technique among many that has evolved to cope with
this sort of simulation-based evaluation problem [73]. Most of the early research fo-
cused on single objective optimization problems [3], but in the last decade the ordinal

optimization method has been extended to multi-objective optimization problems and
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given the title ‘vector ordinal optimization’ [74], as described in Section 2.5.2.

Algorithm 4.1 MOEA/D with OO
Input:

e MOP (4.2);
e A stopping criterion;

e N: the number of subproblems considered in MOEA /D+00.

e A uniform spread of the weight vectors: A!,---  AY;

e T: the number of weight vectors in the neighbourhood of each weight vector.
Output:
e EP : Good enough solutions found by algorithm;

Step 1) Initialization:
Step 1.1) Set EP = 0 .
Step 1.2) Compute the Euclidean distances between any
two weight vectors and then work out 7" the closest weight
vectors to each weight vector. For each ¢ = 1,..., IV, set
B(i) = {i1,...,i7}, where A%, ..., XT_are the T closest
weight vectors to A%
Step 1.3) Generate initial population z', ..., at random.
Step 1.4) Evaluate the population by crude model.
Step 1.5) Initialize reference point z = (21, ..., zm) (see Section 2.4.4).
Step 2) Update:
Fori=1,---,N, do
Step 2.1) Reproduction: Randomly select three solutions
from B(i) to generate a new solution y by using DE and polynomial mutation.
Step 2.2) Update of z: For each j =1,...,m, if
zj < Jj(y), then set z; = J;(y).
Step 2.3) Update of Neighbouring Solutions: For each
index j € B(i), if g*(y| N, 2) < g*(2?|N, 2), then set
) =y and J(27) = J(y).
Step 3)Stopping Criteria:
If stopping criteria is satisfied, then stop and go to 4.
Otherwise, go to Step 2.
Step 4) Good Enough Set:
Step 4.1) Select the first layer of solutions.
Step 4.2) Evaluate the selected set with exact model and copy them in EP.
Step 4.3) Return EP.
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4.2 Combining MOEA /D with Ordinal Optimization

Ordinal optimization theory ensures that the order of solutions is likely preserved even
through evaluation with a crude model in the presence of noise [3]. Thus for selecting
a set of good enough solutions with minimum computational cost we need to construct
a crude model to approximate Eq. 4.1. For this purpose, a rough model is constructed,
based on a stochastic simulation with a small amount of test samples.

For a noisy multi-objective problem, similar to the problem in 4.2, we use the ordinal
optimization technique along with the MOEA /D algorithm to handle noise. We call this
new algorithm: Combined MOEA /D algorithm with OO technique (MOEA/D+0O).

In order to solve Equation (4.2), MOEA /D+OO involves three steps that are sum-

marized as follows,

e First, construct a crude model to approximate the objective value for E[f(z)] of

a given .

e Second, apply MOEA/D assisted by the crude model to solve (4.2) for a good

enough subset of solutions S.

e Third, use the exact model to evaluate the objective value E[f(x)] for each x in

S.

4.2.1 Crude model

Stochastic simulation is lengthy and computationally expensive. However, whilst not
as accurate as a normal model, using a crude model based on stochastic simulation to
approximate E[f(z)] does reduce computational cost and complexity. We settled on

1000 as an appropriate number of test samples for this step.

4.2.2 MOEA/D with crude model

Using a crude model to evaluate the objective values, MOEA /D can efficiently search for
N good enough solutions for Problem 4.2. As the algorithm completes its last iteration,

all final solutions are copied to S as good enough solutions.
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4.2.3 Exact model

Finally the selected solutions S which are obtained by MOEA /D using the crude model
are ready to be evaluated with a more refined model that we call Exact Model. An
exact model can be constructed by a larger number of test samples. A sufficiently large

sampling size is 106 [119], but in this study we apply a model with a sampling size of

104.

4.3 Experiment

The purpose of this experiment is to assess the performance of the new algorithm
(MOEA/D+0OO) in the presence of different levels of noise. We compare the perfor-
mance of MOEA/D+OO and the original MOEA/D to see whether the modification

has made the algorithm better at handling noise.

4.3.1 Design of Experiment

To begin with, for computational ease, a crude model is constructed based on stochastic
simulation with a basic number of test samples, let us say 1000, whilst the number of
simulations for the exact model is set at 10%.

The results depicted in Tables 4.1 to 4.6 were obtained after 50 runs. They show
that the proposed algorithm does outperform the generic MOEA /D for each problem it
was tested on and with different levels of noise, such as {1%, 2%, 5%, 10%,20%}. The
tested problems are presented in Table 3.1 and Section 3.5.2.

For testing MOEA/D+OO we use the same parameter settings (neighbourhood
and population size, maximum iteration and reproduction parameters) as mentioned in
Section 3.5.1 for MOEA /D. We run our experiments in Matlab.

As indicated in Chapter 3, finding a proper and trustworthy method for handling
noise is our primary concern for the noisy optimization problem rather than computa-
tional cost and time with these experiments. Neither was it a concern for the authors

of [9].
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Table 4.1: Performance metrics values of estimated Pareto front by MOEA /D+OO for
noisy FON

FON GD MS S HVR
1% Noise | 0.0041 (0.0159) | 0.9979 (0.0041) | 0.0037 (0.0035) | 0.9848 (0.0897)
2% Noise | 0.0045 (0.0475) | 0.9972 (0.0300) | 0.0043 (0.0072) | 0.9754 (0.1772)
5% Noise | 0.0055 (0.1679) | 0.9915 (0.3470) | 0.0063 (0.0184) | 0.9661 (0.0324)
) ( ) ( )
) ( ) ( )

10% Noise | 0.0071 (0.2358) | 0.9881 (0.3944) | 0.0087 (0.2720) | 0.9531 (0.1274)
20% Noise | 0.0102 (0.2514) | 0.9748 (0.2233) | 0.0119 (0.0654) | 0.9359 (0.5514)

4.3.2 Results

Results are obtained from fifty independent runs. The average means of the collected
data are represented in the following tables and graphs.

Tables 4.1 to 4.6 trace the values of MOEA /D+0OQ’s different performance metrics
on the benchmark problems outlined in Section 3.5.2. These tables contain four columns
for the different performance metrics and five rows for the various noise levels. As
mentioned in Section 3.4, a lower value of GD and S compels a better approximation of
the Pareto front. For MS and HVR, a value closer to one is sensible.

The values in parentheses show the difference between the calculated values of the
performance metrics for MOEA/D+OO and its basic version MOEA/D. As can be
clearly seen, these values increase dramatically when noise levels intensify (shown top
to bottom in each column). This indicates that MOEA/D+OO performs far better
than MOEA/D in a noisy environment. Proof of this can be taken from how close to
desirable are the performance metric values (shown in the tables) for MOEA /D+OO:
GD and S are close to zero and MS and HVR are close to one.

The values shown in bold in Tables 4.1 to 4.6 indicate that MOEA /D performs
better than MOEA /D400 in those specific cases. There are a few instances, mostly in
the presence of low noise levels, in which the performance of MOEA /D is better than
that of MOEA /D+0OO.

Figure 4.1 shows the returned values for performance metrics (a) GD, (b) MS, (c) S
and (d) HVR for the benchmark problem FON by MOEA /D+0OO under the influence
of different noise levels. The desirable values for these four performance metrics are the

same as those detailed in Section 3.4. As can be seen, the estimated values for GD and
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Table 4.2: Performance metrics values of estimated Pareto front by MOEA /D+OO for
noisy KUR

KUR GD MS S HVR
1% Noise | 0.0256 (0.0070) | 0.9967 (0.0004) | 0.0921 (0.0093) | 1.0002 (0.0065)
2% Noise | 0.0252 (0.0254) | 0.9967 (0.0010) | 0.0949 (0.8665) | 0.9999 (0.0150)
5% Noise | 0.0264 (0.6882) | 0.9963 (0.0019) | 0.0940 (0.0149) | 0.9988 (0.0496)

) ( ) ( )
) ( ) ( )

10% Noise | 0.0312 (0.2072) | 0.9955 (0.0057) | 0.0954 (0.0105) 0.9975 (0.1097
20% Noise | 0.0404 (0.4694) | 0.9945 (0.0107) | 0.0959 (0.0671) 0.9959 (0.2357

Table 4.3: Performance metrics values of estimated Pareto front by MOEA /D+OO for
noisy ZDT1

ZDT1 GD MS S HVR
1% Noise | 0.03112 (0.01202) | 0.99757 (0.00229) | 0.03056 (0.02099) | 0.99662 (0.03099)
2% Noise | 0.03112 (0.02845) | 0.99757 (0.00274) | 0.03056 (0.01184) | 0.99662 (0.05968)
5% Noise | 0.03416 (0.16623) | 0.99533 (0.09016) | 0.02870 (0.02138) | 0.98856 (0.19374)
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

10% Noise | 0.07327 (0.56033) | 0.99129 (0.25719) | 0.04335 (0.02214) | 0.97448 (0.71185
20% Noise | 0.14747 (0.95346) | 0.98418 (0.27620) | 0.06011 (0.03595) | 0.93860 (0.85859

Table 4.4: Performance metrics values of estimated Pareto front by MOEA /D+OO for
noisy ZDT3

7ZDT3 GD MS S HVR
1% Noise | 0.05602 (0.00227) | 0.98389 (0.01614) | 0.06642 (0.01157) | 0.98661 (0.02569)
2% Noise | 0.05602 (0.02185) 0.98389 (0.01277) 0.06642 (0.01127) | 0.98661 (0.06805)
5% Noise | 0.05366 (0.14058) 0.98303 (0.05900) 0.06113 (0.01000) 0.97909 (0.04012)
10% Noise | 0.09590 (0.49413) 0.97811 (0.20363) 0.07335 (0.00047) 0.96164 (0.51703)
20% Noise | 0.16674 (0.78728) 0.96492 ( ) 0.08411 (0.02729) 0.92042 (0.64400)

0.25743

Table 4.5: Performance metrics values of estimated Pareto front by MOEA /D+0O for

noisy ZDT4
ZDT4 GD MS S HVR
1% Noise | 1.40825 (0.60464) | 0.99570 (0.00384) | 1.40726 (0.58915) | 0.98913 (0.00535)
2% Noise | 1.40825 (0.22853) | 0.99570 (0.01287) 1.40726 (0.18809) | 0.98913 (0.01621)
5% Noise | 0.97472 (0.73288) | 0.98906 (0.10908) | 0.95770 (0.62321) | 0.97111 (0.03671)
10% Noise | 0.38387 (2.51878) 0.98634 (0.27099) 0.35458 (2.20685) 0.95037 (0.30247)
20% Noise | 0.52865 (2.98473) 0.97086 (0.34076) 0.46897 (1.96143) 0.90115 (0.39786)

Table 4.6: Performance metrics values of estimated Pareto front by MOEA /D+0OO for
noisy ZDT6

ZDT6 GD MS S HVR

1% Noise | 0.10887 (0.07971) | 0.99955 (0.00031) | 0.10947 (0.08939) | 0.99527 (0.05907)
2% Noise | 0.10887 (0.05865) | 0.99955 (0.00021) | 0.10947 (0.03044) | 0.99527 (0.12748)
5% Noise | 0.07787 (0.25072) | 0.99882 (0.00042) | 0.07951 (0.12190) | 0.99218 (0.31309)
10% Noise | 0.02911 (0.55601) | 0.99534 (0.00350) | 0.02828 (0.19073) | 0.99637 (0.62472)
20% Noise | 0.10579 (1.59723) | 0.98465 (0.24375) | 0.05335 (0.27111) | 1.07163 (0.87855)
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Figure 4.1: Performance Metrics of MOEA /D+OQO in presence of different noise levels
for noisy FON problem.

S are very close to 0 and the values for MS and HVR are converging to 1 in the presence
of different noise levels on this FON benchmark problem.

Figure 4.2 illustrates the performance metrics (a) GD, (b) MS, (c¢) S and (d) HVR
attained by MOEA/D+0O on the KUR benchmark problem under the influence of
different levels of noise. As can been seen, the performance metrics return sensible
values for all four metrics in the presence of both low and high levels of noise.

Figure 4.3 shows the performance metrics (a) GD, (b) MS, (¢) S and (d) HVR
attained by MOEA /D+OO for ZDT1 under the influence of different noise levels over
150 generations. According to this graph, MOEA /D+OQO estimated the Pareto front
extremely well for low, medium and high level noises - all except 20%. The spacing

metric (S) and generational distance (GD) show a bit of violation under the influence
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Figure 4.2: Performance Metrics of MOEA /D+OQO in presence of different noise levels
for noisy KUR problem.

of 20% noise, which can be caused by bad distribution of solutions and a meaningful
gap between the estimated Pareto front and true Pareto front.

Figure 4.4 details the values for MOEA /D+0OQ’s performance metrics on the ZDT3
problem, influenced by different levels of noise over 150 generations. According to this
diagram, the algorithm had difficulty in maintaining a diverse and evenly spread solution
set. The challenge to the algorithm on this problem was its disconnected Pareto front.

Figure 4.5 shows how MOEA /D+0O deals with the multimodal noisy ZDT4 prob-
lem. According to this graph, the spacing performance metric (S) gets disturbed when
noise increases to twenty percent. This in turn impacts the diversity of the solution, but
the other performance metrics do indicate that the modified algorithm (MOEA /D+0O)

achieves a very close approximation of the true Pareto front for noisy ZDT4. The rea-
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Figure 4.3: Performance Metrics of MOEA /D+OQO in presence of different noise levels
for noisy ZDT1 problem.

sons are not clear as to why the performance metric S returns unfavourable values. This
may be caused by the multi-modality feature of this problem.

Figure 4.6 illustrates the performance metrics of MOEA /D+OO on the noisy ZDT6
problem. For this problem, as with ZDT4, the diversity of the solution is impacted by
high levels of noise with regard to the spacing metrics. Other metrics, however, such
as GD, serve to underline the rightness of the estimated Pareto front. Similar to the
ZDT4 problem, the performance metric S remains unfavourable for unknown reasons.

It is not clear why the S metric seems random in only a few cases (ZDT4 and
ZDT6), but we believe that added noise adversely influences the diversity of solutions
in some problems more than others. This can lead to the gap between solutions in

the approximated Pareto front. As the S metric calculates this gap, it can therefore
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Figure 4.4: Performance Metrics of MOEA /D+OQO in presence of different noise levels
for noisy ZDT3 problem.

be random if the algorithm is not able to keep the best solution during the search for
optimality.

True Pareto front is the best recent estimation of each problem, therefore we plot our
results using the true Pareto front to represent how well the algorithms work. Figure
4.7 shows both the estimated and the true Pareto fronts for MOEA /D+OO on the noisy
FON problem. The algorithm shows its ability to handle noise but, in the presence of
twenty percent noise, there are some missing solutions that would indicate the impact
of high noise on the diversity of solutions.

Figure 4.8 draws both the estimated and true Pareto fronts for noisy KUR by
MOEA/D+00O. The algorithm shows its ability to handle noise. As can be seen from

this graph, the algorithm maintains a good diversity and precision between the esti-
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Figure 4.5: Performance Metrics of MOEA /D+OQO in presence of different noise levels
for noisy ZDT4 problem.

mated the true Pareto fronts in all scenarios.

Figure 4.9 draws both the estimated and true Pareto fronts for noisy ZDT1 by
MOEA/D+0O. The algorithm shows its ability to handle noise but, in the presence of
twenty percent noise, there are some missing solutions that would indicate the impact
of high noise on the diversity of solutions.

Figure 4.10 depicts the estimated and true Pareto fronts of noisy problem ZDT3
by MOEA/D+0OO. This problem has a disconnected Pareto front on which the new
algorithm achieves a better performance than its basic version that failed to cover some
parts of the Pareto front - see Section 3.5.3. As can be seen, even in the presence of
20% noise, the new algorithm finds solutions in all the disconnected parts of the Pareto

front.
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Figure 4.6: Performance Metrics of MOEA /D+OQO in presence of different noise levels
for noisy ZDT6 problem.

Figure 4.11 shows how well MOEA /D+0OO approximates the Pareto front by com-
parison to the true Pareto front on the noisy ZDT4 problem. As mentioned in Section
3.5.2, the ZDT4 problem is a multimodal one. The algorithm estimates the Pareto front
quite satisfactorily, although some solutions are still missing, which in turn impacts the
diversity of solutions at high levels of noise. In the presence of noise, finding near op-
timal solutions is a big challenge for the MOEA algorithm. In contrast, our modified
algorithm is quite adept at tackling this challenge.

Figure 4.12 represents the approximated Pareto front of noisy ZDT6 by MOEA /D+0O.
The performance of the algorithm is almost that of the true Pareto front, apart from
when the noise gets to twenty percent. However its performance is still satisfactory,

even at that level.
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MOEA+OQO result for FON Under 1% Noise
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MOEA+OO result for KUR Under 1% Noise
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MOEA+OO result for KUR Under 2% Noise
2 T T T T T

-4t - -

-6

= & = True PF
O Approximated PF

-16 =15

MOEA+OQ result for KUR Under 10% Noise

-20 -19 -18

-14

2 T T T

4L

= @& = True PF
O Approximated PF

\

-18

MOEA+OO result for KUR Under 20% Noise

T T
- ® = True PF
O Approximated PF

-17
f1

()

-16

(b)2%, (¢)5%, (d)10%, (e)20% by MOEA/D+00.

influence of noise level at (a)1%,




Chapter4. MOEA /D With Ordinal Optimization for Handling Noisy Problems

7

f2

f2

MOEA+QQO result for ZDT1 Under 1% Noise

14

12r

T T
= @ =True PF
O Approximated PF

14

1.2

MOEA+OQ result for ZDT1 Under 5% Noise

1.2

0.8-

0.6

0.4r

0.2r

T T T T T
= ® = True PF
O Approximated PF

MOEA+OQ result for ZDT1 Under 2% Noise
T T

14 T T
- ® = True PF
O Approximated PF
1.2r b
0.8 1
o
0.6 B
0.4r B
0.2r 1
0 . . . .
0 0.2 0.4 0.6 0.8 1
f1
MOEA+OO result for ZDT1 Under 10% Noise
14 T T T T T T
= @& =True PF
O Approximated PF
1.2 1

MOEA+OQ result for ZDT1 Under 20% Noise

1.4 T T

0.8

f2

0.6

0.4

0.2r

T T
- ® - True PF
O Approximated PF

12

12

Figure 4.9: Pareto Front of noisy ZDT1 under the influence of noise level at (a)1%,
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MOEA+OO result for ZDT3 Under 1% Noise
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Figure 4.10: Pareto Front of noisy ZDT3 under the influence of noise level at (a)1%,
(b)2%, (¢)5%, (d)10%, (e)20% by MOEA /D+00.
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Figure 4.12: Pareto Front of noisy ZDT6 under the influence of noise level at (a)1%,
(b)2%, (c)5%, (d)10%, (€)20% by MOEA /D+0O0.
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Figure 4.13: Performance metric of (a) GD, (b) MS, (c¢) S and (d) HVR for FON with
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Figure 4.14: Performance metric of (a) GD, (b) MS, (c¢) S and (d) HVR for FON with
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Figure 4.15: Performance metric of (a) GD, (b) MS, (¢) S and (d) HVR for FON with
5% noise
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Figure 4.16: Performance metric of (a) GD, (b) MS, (c¢) S and (d) HVR for FON
with10% noise
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Figure 4.17: Performance metric of (a) GD, (b) MS, (¢) S and (d) HVR for FON with
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Figure 4.18: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for KUR with
1% noise
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Figure 4.19: Performance metric of (a) GD, (b) MS, (c¢) S and (d) HVR for KUR with
2% noise
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Figure 4.20: Performance metric of (a) GD, (b) MS, (c¢) S and (d) HVR for KUR with

5% noise
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Figure 4.21: Performance metric of (a) GD, (b) MS, (c¢) S and (d) HVR for KUR
with10% noise
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Figure 4.22: Performance metric of (a) GD, (b) MS, (c¢) S and (d) HVR for KUR with
20% noise
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Figure 4.23: Performance metric of (a) GD, (b) MS, (c¢) S and (d) HVR for ZDT1
with 1% noise
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Figure 4.24: Performance metric of (a) GD, (b) MS, (¢) S and (d) HVR for ZDT1
with 2% noise
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Figure 4.25: Performance metric of (a) GD, (b) MS, (c¢) S and (d) HVR for ZDT1
with 5% noise
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Figure 4.26: Performance metric of (a) GD, (b) MS, (c¢) S and (d) HVR for ZDT1
with10% noise
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Figure 4.27: Performance metric of (a) GD, (b) MS, (c) S and (d) HVR for ZDT1
with 20% noise
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Figure 4.28: Performance metric of (a) GD, (b) MS, (c¢) S and (d) HVR for ZDT3
with 1% noise
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Figure 4.29: Performance metric of (a) GD, (b) MS, (c¢) S and (d) HVR for ZDT3
with 2% noise
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Figure 4.30: Performance metric of (a) GD, (b) MS, (c¢) S and (d) HVR for ZDT3
with 5% noise
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Figure 4.31: Performance metric of (a) GD, (b) MS, (c¢) S and (d) HVR for ZDT3
with10% noise
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Figure 4.32: Performance metric of (a) GD, (b) MS, (¢) S and (d) HVR for ZDT3
with 20% noise
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Figure 4.33: Performance metric of (a) GD, (b) MS, (c¢) S and (d) HVR for ZDT4

with 1% noise
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Figure 4.34: Performance metric of (a) GD, (b) MS, (¢) S and (d) HVR for ZDT4
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Figure 4.35: Performance metric of (a) GD, (b) MS, (¢) S and (d) HVR for ZDT4

with 5% noise

CeemwOsaeeD  weeesesss s ypenoume Rao (%)
- —_ —_— —_ —_
| E| i E|
: ' 1 —
. e o = o
= = = = oD 00 =
7074 10% ose 7074 10% s ZoTe 10w ok ZoTe 10w ose
(a) (b) (c) (d)

Figure 4.36: Performance metric of (a) GD, (b) MS, (c¢) S and (d) HVR for ZDT4

with10% noise
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Figure 4.37: Performance metric of (a) GD, (b) MS, (c¢) S and (d) HVR for ZDT4
with 20% noise
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Figure 4.38: Performance metric of (a) GD, (b) MS, (c¢) S and (d) HVR for ZDT6
with 1% noise
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Figure 4.39: Performance metric of (a) GD, (b) MS, (c¢) S and (d) HVR for ZDT6
with 2% noise
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Figure 4.40: Performance metric of (a) GD, (b) MS, (c¢) S and (d) HVR for ZDT6
with 5% noise
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Figure 4.41: Performance metric of (a) GD, (b) MS, (c¢) S and (d) HVR for ZDT6
with10% noise
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Figure 4.42: Performance metric of (a) GD, (b) MS, (c¢) S and (d) HVR for ZDT6
with 20% noise

4.3.3 Discussion

As we argued in Section 3.5.3 the true Pareto front is the best estimation of each bench-
mark problem. It can be seen from the results of our experiment that MOEA/D+0OO
is capable of evolving a near optimal, diverse and uniformly distributed Pareto front for
the different benchmark problems discussed in Section 3.5.2. By comparing the results
of MOEA/D 