
Author’s Accepted Manuscript

Efficient and Robust Dynamic Network Traffic
Partitioning Based on Flow Tables

Bing Xiong, Kun Yang, Jinyuan Zhao, Keqin Li

PII: S1084-8045(16)30063-7
DOI: http://dx.doi.org/10.1016/j.jnca.2016.04.013
Reference: YJNCA1627

To appear in: Journal of Network and Computer Applications

Received date: 23 November 2014
Revised date: 30 October 2015
Accepted date: 16 April 2016

Cite this article as: Bing Xiong, Kun Yang, Jinyuan Zhao and Keqin Li, Efficient
and Robust Dynamic Network Traffic Partitioning Based on Flow Tables,
Journal of Network and Computer Applications,
http://dx.doi.org/10.1016/j.jnca.2016.04.013

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

www.elsevier.com/locate/jnca

http://www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2016.04.013
http://dx.doi.org/10.1016/j.jnca.2016.04.013


Efficient and Robust Dynamic Network Traffic
Partitioning Based on Flow Tables

Bing Xionga,b,1,∗, Kun Yangc, Jinyuan Zhaod, Keqin Lie

aHunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation,
Changsha University of Science and Technology, Changsha 410114, China

bSchool of Computer and Communication Engineering, Changsha University of Science and
Technology, Changsha 410114, China

cSchool of Computer Science and Electronic Engineering, University of Essex, Wivenhoe
Park, Colchester CO43SQ, UK

dSchool of Software, Central South University, Changsha 410075, China
eDepartment of Computer Science, State University of New York at New Paltz, New York

12561, USA

Abstract

The continual growth of network traffic rates results in heavy traffic processing

overloads, and a typical solution is to partition traffic into multiple network

processors for parallel processing especially in software-defined networks. This

paper proposes an efficient and robust network traffic partitioning scheme called

DTP-ICM, which dynamically distributes packet traffic with flow granularity,

and assigns a new flow to a network processor with the lightest traffic load

level. The scheme is first improved by building an initial connection separation

mechanism to isolate false TCP connections, which results in the initial connec-

tion table (ICT) and the established connection table (ECT). The move-to-front

heuristic is applied to the ECT table and the UDP flow table to accelerate their

lookups and to the ICT table for fast timeout scanning. Besides, the ICT table

is optimized with counting bloom filters to defend against SYN flooding attacks.

Finally, we evaluate the performance of our DTP-ICM scheme with real network

traffic traces by experiments. Experimental results indicate that the DTP-ICM

scheme outperforms the traditional ones in terms of traffic load balance, packet

∗Corresponding author
Email address: xiongbing@csust.edu.cn,xiongbing.csust@qq.com (Bing Xiong)

1Phn: +86-18773116229, Fax:+86-0731-85258462

Preprint submitted to Journal of Network and Computer Applications April 18, 2016



distribution efficiency and robustness against malicious behaviors.

Keywords: software-defined networks, dynamic traffic partitioning, SYN

flooding attacks, initial connection separation, counting bloom filters,

move-to-front heuristic

2015 MSC: 00-01, 99-00

1. Introduction

The continual growth of network bandwidth leads to the fact that a sin-

gle network device cannot real-timely process large-scale packet traffic, espe-

cially in high-speed networks with bandwidth 1Gps and above. A typical

solution is load balancing, which partitions heavy network traffic into many5

parts and forwards them to multiple network processors for parallel processing.

Network traffic partitioning is a key to load balancing, and has been exten-

sively applied in network applications, such as stateful firewalling[1], intrusion

detection[2][3], traffic measurement[4], high-speed packet switching[5], and con-

tent delivery[6][7]. In particular, emerging network paradigms such as software-10

defined networking[8][9] make load balancing much easier to be deployed without

changing substrate devices by using OpenFlow[10][11].

Network traffic partitioning in these applications is generally required to

satisfy the following properties. Firstly, network traffic must be partitioned

with flow granularity to support packet processing at session levels above the15

network layer[12][13]. In particular, all packets within a flow must be assigned to

an identical network processor. For convenience, the terms flow and session will

be used interchangeably in this paper, and both refer to packet traffic between

two communication endpoints in networks, particularly called connection for

TCP. Secondly, network traffic should be dynamically partitioned in terms of20

the processing capacities of network processors to achieve good load balance.

Thirdly, each packet must be distributed at fast speeds to real-timely process

large-scale network traffic even in the presence of malicious attacks.

There exist many network traffic partitioning schemes, which can be clas-

2



sified into three types: direct hashing[14][15], hash space division[18] and flow25

table based dynamic schemes[21][22][23][24]. The direct hashing schemes map

each packet to a network processor by a hash function, which is only suitable

for network processors with identical configurations. The hash space division

schemes divide the hash space into many intervals assigned to network proces-

sors in terms of their processing capacities. This type adapts to heterogeneous30

network processors, but is still hard to achieve good load balance due to no con-

sideration of non-uniform distribution of network traffic. The flow table based

dynamic schemes maintain a hash table of simultaneous flows, and dynamically

distribute packet traffic with flow granularity to multiple network processors.

This type keeps flow integrity during packet distribution and balances traffic35

load well among network processors. However, their packet distribution per-

formance becomes a great challenge when they are manipulated in high-speed

networks especially in the presence of malicious behaviors.

Many literatures to date have achieved a deep insight into the load balancing

capacity of dynamic traffic partitioning[21][22][23][24]. Unfortunately, there is40

few research work to optimize the packet distribution performance to the best of

our knowledge. Chen et al.[17] dynamically remapped the flow bundle with the

least number of TCP flows to the lightest loaded processing unit when traffic

load became imbalanced between processing units. Sun et al.[18] mapped each

incoming packet by hashing its key header fields to an interval allocated for an45

processing unit, and the interval was fine-tuned in terms of processing capacity

and current load of all processing units. These methods achieve real-time traffic

load balance, but will lead to frequent load migration due to bursty network

traffic. Shi et al.[19] classified Internet flows into two categories: the aggressive

and the normal, and applied dynamic scheduling policies to the aggressive flows.50

Kencl et al.[20] designed a feedback control mechanism to prevent processor

overload, and provided an adaptive extension of the highest random weight

(HRW) scheme to cope with biased traffic patterns. These schemes achieve

good load balancing and high processor utilization, but do not help to stand

against malicious behaviors such as SYN flooding attacks.55

3



This paper focuses on how to optimize the packet distribution performance

of dynamic traffic partitioning scheme. The optimization is investigated with

the following methodology. We first give the framework of dynamic network

traffic partitioning scheme, and improve its flow table management by splitting

the hash table of TCP connections. Then, all flow tables are optimized by60

employing heuristic methods to speed up their lookups and timeout scanning.

As a key step, we resist against SYN flooding attacks by applying counting

bloom filters to the lookups of the initial connection table. Finally, we give

the algorithm implementation of our proposed traffic partitioning scheme, and

evaluate its packet distribution performance with real network traffic traces.65

With the above methodology, we aims to achieve the following conclusions

as the main contributions of this paper: (a) Giving the framework of dynamic

traffic partitioning scheme, which reaches real-time traffic load balance with

the guarantee of flow granularity; (b) Building the initial connection separation

mechanism to improve flow table management performance by dividing the TCP70

connection table into the initial connection table (ICT) and the established

connection table (ECT); (c) Optimizing the ICT table lookups of TCP SYN

packets by employing counting bloom filters to defend against SYN flooding

attacks; (d) Applying the move-to-front heuristic to accelerate the lookups of

the ECT table and the UDP flow table, and the timeout scanning of the ICT75

table.

The rest of this paper is organized as follows. In Section 2, we introduce

the related work. Section 3 describes the fundamental principle of our pro-

posed traffic partitioning scheme DTP-ICM, whose flow table management is

improved by building the initial connection separation mechanism. In Section80

4, we optimize the two resultant TCP connection tables and the UDP flow table

by employing the move-to-front heuristic and counting bloom filters. Section 5

describes the algorithm implementation of the DTP-ICM scheme, whose per-

formance is evaluated with physical network traffic traces in Section 6. Section

7 concludes the paper.85

4



2. Related Work

In the last decade, there have been many literatures on traffic load balancing

in various network applications. Most of their work focused on the load balanc-

ing capacity of network traffic partitioning, but rarely contributed to the packet

distribution performance, especially robustness against malicious behaviors.90

Cao et al.[15] designed a table-based hashing scheme for the scenario of sev-

eral network processors with different capacities in Internet traffic load balanc-

ing. The scheme splits a traffic stream into multiple bins mapped into outgoing

links based on an allocation table. However, the algorithm has poor adapt-

ability of load balance, and it has been pointed out that hashing alone is not95

able to balance network traffic workload[19]. Lai et al.[16] proposed a traffic

partitioning algorithm for parallel intrusion detection systems. They employed

hash table to maintain simultaneous TCP connections, and partitioned network

traffic in virtue of TCP connection state. The algorithm provides better load

balancing capacity than direct hashing schemes. However, it does not con-100

sider TCP state accurately, and ruins the integrity of connection context during

packet scheduling.

Chen et al.[17] presented a session-oriented adaptive load balancing algo-

rithm based on IP header multi-field classification. The algorithm dynamically

adjusts flow bundles to guarantee session integrity when traffic load becomes105

imbalanced between processing units. To keep dynamic balance between pro-

cessing units, they remapped the flow bundle with the least number of TCP

flows to the lightest loaded processing unit. Sun et al.[18] provided a novel

load balancing algorithm for parallel intrusion detection systems. The algo-

rithm maps each incoming packet by hashing its key header fields to an interval110

allocated for an IDS sensor. The interval is fine-tuned in terms of processing ca-

pacity and current load of all IDS sensors to achieve real-time balance of traffic

distribution. However, these algorithms will produce frequent flow adjustment

because of bursty network traffic, which leads to a lot of load migration between

the sensors.115

5



Targeting load balancing between forwarding engines in Internet routers, Shi

et al.[19] classified Internet flows into two categories: the aggressive and the nor-

mal, and applied dynamic scheduling policies to the aggressive flows to achieve

both load balancing and efficient system resource utilization. Kencl et al.[20]

presented an adaptive load balancing scheme for load sharing among multiple120

network processors within a router. They designed a feedback control mecha-

nism to prevent processor overload, and provided an adaptive extension of the

highest random weight (HRW) scheme to cope with biased traffic patterns. The

scheme achieves significant improvement in processor utilization, and minimizes

the probability of flow reordering by exploiting the minimal disruption property125

of the adjustment of the packet-to-processor mapping.

Li et al.[21] proposed an application-based dynamic-least-load-first algorithm

for high-speed network intrusion detection systems. They real-timely main-

tained a hash table of all assigned sessions and dynamically scheduled new ses-

sions in terms of current load levels of all intrusion analyzers. Jiang et al.[22][23]130

discussed a flow-based dynamic traffic partitioning algorithm for intrusion de-

tection systems in high-speed networks. The algorithm divides packet stream

with flow granularity and forwards a packet of a new session to the detection

engine with the least load currently. Xiong et al.[24] dynamically maintains a

hash table of concurrent sessions, and assigns a session to a network processor135

with the lightest load level when the session appears. These algorithms achieve

good effect of traffic load balancing, but their packet distribution performance

is not adequately considered.

To achieve better load balancing performance in high-speed networks, this

paper proposes an efficient and robust dynamic network traffic partitioning140

scheme. In the scheme, we first build the initial connection separation mech-

anism to isolate false TCP connections especially induced by SYN flooding

attacks, which results in the initial connection table (ICT) and the established

connection table (ECT). As a further step, the move-to-front heuristic is applied

to the ECT table and the UDP table to accelerate their lookups and to the ICT145

table for fast timeout scanning. Moreover, the ICT table is optimized by em-

6



ploying counting bloom filters to defend against the attacks. By this way, we

aim to boost the packet distribution performance of dynamic traffic partitioning

scheme.

3. Dynamic Traffic Partitioning Scheme150

This section describes the framework of our dynamic traffic partitioning

scheme and divides its TCP connection table into two tables by building an ini-

tial connection separation mechanism for good packet distribution performance.

3.1. Framework

Many network applications relating to stateful packet processing usually em-155

ploy load balancing technology to cope with massive packet traffic. One of their

key problems is traffic partitioning scheme. The traffic partitioning scheme in

stateful packet processing usually needs to satisfy the following properties[12]:

(a) flow granularity. Network traffic must be partitioned with flow granularity

to support packet processing at semantic levels; (b) dynamic balance. Net-160

work traffic should be dynamically partitioned to achieve real-time load balance

among all network processors; (c) fast distribution. Each arrived packet must

be distributed at fast speeds to real-timely process large-scale network traffic;

(d) good robustness. The traffic partitioning scheme should perform soundly

even in the presence of malicious behaviors.165

This paper proposes a novel dynamic traffic partitioning scheme based on

flow tables, which aims to meet the above properties. We first give the basic

idea of our traffic partitioning scheme as follows. We maintain simultaneous

flows of each protocol above IP in a separate hash table. Each flow in a table is

associated with a network processor assigned at its appearance. In particular,170

we assign a new flow to a network processor with the lightest traffic load level,

and all packets within the flow are forwarded to the network processor. To

determine the lightest loaded network processor, we build the load state table

to real-timely maintain the traffic load states of all network processors.

7



According to the above basic idea, we further illustrate the fundamental prin-175

ciple of our traffic partitioning scheme in Fig.1. Suppose there are N network

processors, and the traffic partitioner maintains a flow table with the length

H. As for a continuous stream of network packets (p1, p2, · · · , pi, · · ·), the traffic

partitioner forwards them in terms of their arrival orders. With regard to a

specific packet pi, we get its flow identifier from its header fields and map the180

identifier to an entry of the flow table FTh(0≤h≤H − 1). Then, we look up the

flow list in the entry FTh for a match fh,j. If the lookup succeeds, we directly

forward the packet to the network processor NPn(0≤n≤N − 1), whose number

n is kept in the flow fh,j . Otherwise, the packet pi is supposed to belong to

a new flow. In this case, the flow is assigned to the lightest-loaded network185

processor NPm(0≤m≤N −1) in terms of the load state table LST , which keeps

real-time load information of each network processor. Meanwhile, we register

the flow and its assigned network processor number m in the flow table FT .

Finally, the packet pi is forwarded to the network processor NPm.

1

h

H-1

NP0

NP1

NPN-1

f0,0 f0,1

fh,0

0

fH-1,0

p1p2

packet traffic

Flow Table

Network Processors

Load State Table

LST1

LSTN-1

LST0

fh,i

Traffic Partitioner

pi

Figure 1: The fundamental principle of our traffic partitioning scheme.

Dynamic traffic partitioning at the micro level is to distribute each incoming190

packet to a network processor. As seen from the above fundamental principle,

the essential operation of packet distribution is the flow table lookup, which

chiefly depends on flow table management. A typical way of flow table man-

8



agement is to maintain all simultaneous flows of each protocol in the IP header

with a single hash table, called single flow table (SFT) scheme. This scheme195

works well for 100Mbps networks or below, since their bandwidth limits the flow

tables to be within an acceptable size. However, the flow tables will be much

larger in high-speed networks with bandwidth 1Gbps and above, where there

are up to hundreds of thousands of simultaneous flows[25]. Fortunately, their

lookup overheads can still be limited by selecting a biggish flow table length.200

Suppose there are up to 106 (about 220) simultaneous flows for a transport-layer

protocol such as TCP or UDP, its flow table will have the load factor only 16 if

its table length is configured as 216, and its lookup overheads will be apparently

acceptable with uniform hashing.

Unfortunately, the SFT scheme can no longer perform soundly in the pres-205

ence of malicious behaviors such as SYN flooding attacks. Such attacks subvert

flow table management by inducing an avalanche of false TCP connections into

the TCP flow table. Despite these false connections can be eliminated in a

short time by timeout mechanism, the TCP flow table still has to accommodate

a large number of unexpired connections besides of massive normal connections.210

This results in its heavy lookup overheads with the addition of highly intensive

packets in high-speed networks. Besides, the huge TCP flow table has to be

frequently traversed to clear out expired connections due to the presence of ma-

licious attacks. This leads to its additional heavy timeout scanning overheads.

In summary, the TCP flow table will face great challenges under network at-215

tacks on the account of its too heavy lookup and timeout scanning overheads.

Therefore, it is necessary to optimize flow table management for better packet

distribution performance.

3.2. TCP Connection Table Division

Malicious behaviors such as SYN flooding attacks have destructive impact220

on flow table management especially TCP connection table. The attackers bring

a great amount of false connections into the table by intensively sending spoofed

SYN packets, and make the table expand rapidly and its operation overheads

9



rise sharply. Note that all false connections induced by such attacks will not

complete three-way handshake to establish a TCP connection. In virtue of this225

feature, we build an initial connection separation (ICS) mechanism to isolate

false connections from normal connections. The essential concept of the ICS

mechanism is to separate initial connections including all false connections from

the TCP connection table and manipulate them separately. As for its implemen-

tation level, we run two TCP connection tables: (a) the initial connection table230

(ICT), whose connections have been initiated but not yet completed the three-

way handshake; (b) the established connection table (ECT), whose connections

have been established.

According to the above scheme, we illustrate the lifetime of a TCP connec-

tion in our connection management as Fig.2. When a new connection appears,235

its record will be generated into the ICT table. Once the connection is estab-

lished, the record will be immediately transferred to the ECT table. When the

connection is terminated, we will delete the record from the ECT table. Subse-

quently, a TCP connection is manipulated as follows on the arrival of a packets.

When a SYN packet appears, we create its connection and insert it into the240

ICT table. If the third handshake ACK arrives, we take the connection out of

the ICT table and put it in the ECT table. Once the last packet ACK arrives,

we remove the connection from the ECT table. In addition, whenever a RST

packet resetting a connection arrives, we immediately delete its connection from

the ICT table or the ECT table.245

The above ICS mechanism results in controllable size of both the ICT table

and the ECT table. The ICT table contains a small amount of connections

under normal conditions, due to the fact that 93% and 99% of TCP connec-

tions respectively take less than 1 second and 4 second to complete three-way

handshake[26][27]. When network attacks appear, we strive to limit the inflating250

ICT table by setting a small timeout interval (e.g. 1 second), which eliminates

false connections as early as possible. Then the ICT table maintains a con-

trollable number of false connections produced during the interval, besides of

normal initial connections. Fortunately, the ECT table is immune to malicious

10



another packet

SYN-ACK

SYN

The 3rd handshake 
packet ACK

RST

RST/last ACK

ICT

 ECT

connection

Figure 2: The lifecycle of a connection in the ICS mechanism.

behavior and always kept within an acceptable size even in high-speed networks.255

When a TCP packet arrives, its connection resides in either the ICT table or

the ECT table in most cases. Therefore, we only need to look up one of the two

connection table generally, and the lookup overheads will be greatly reduced. In

summary, the ICS mechanism divides single oversize TCP connection table into

two controllable tables, and makes network attacks much easier to cope with.260

4. Flow Table Optimization

This section optimizes flow tables by applying the move-to-front (MTF)

heuristic and counting bloom filters for high lookup efficiency and good robust-

ness against malicious behaviors.

4.1. Table Operation Analysis265

As seen from the previous section, our dynamic traffic partitioning scheme

runs the ICT and ECT tables for TCP and a single flow table for each other

transport-layer protocol typically UDP. There are two operation types for a

flow table, lookups on packet arrivals and periodic timeout scanning. Then we

analyze the properties of both operations on these flow tables.270

1) The ICT table

11



The ICT table keeps a relatively small scale even in high-speed networks

under normal conditions, and performs lookups and traversals at fast speeds.

Thus, the ICT table holds low lookup overheads as it is looked up only for the

three-way handshake packets within a TCP connection. Meanwhile, the table275

also has cheap scanning overheads due to low frequency of timeout scanning

under normal conditions.

When network attacks occur, the ICT table is sharply expanded by an

avalanche of false connections, which leads to its heavy lookup and traversal

overheads. On the one hand, the ICT table is looked up frequently due to the280

emergence of a large number of falsified packets. On the other hand, we need

to go through the ICT table for all SYN packets including falsified ones. These

factors result in a significant increase in the overall lookup overheads. Since the

dominant SYN packets will not find out a connection in the ICT table, we can

try to find a way to give their result soon without the table lookup. If the way285

is successfully found, it will decrease the lookup overheads of the ICT table to

a remarkable extent, and alleviate the damage of network attacks to the ICT

table.

As for timeout scanning, the ICT table has to be scanned at high frequency

in the presence of network attacks. This leads to a great raise in its timeout290

scanning overheads. However, it will be much more convenient to clear out false

connections, if each bucket in the ICT table is sorted by the last access time of

its connections. In such case, all expired connections converge on the rear of the

connection list in each bucket, and can be directly deleted from the tail of each

connection list, other than going through the table to find them. If we find out295

an optimization method to achieve the effect above, it will apparently decrease

the timeout scanning overheads of the ICT table.

2) The ECT table and the UDP flow table

The ECT table and the UDP flow table always keep a large size in high-speed

networks, and perform lookups and traversals at high cost. Fortunately, the300

ECT table is immune to malicious behaviors such as SYN flooding attacks, and

there are rare attacks for UDP to inflate its flow table. This leads both tables

12



to be scanned at low frequency and results in their moderate timeout scanning

overheads. As for their lookup operations, we need to search the UDP flow table

and the ECT table respectively on the arrival of a UDP packet and each TCP305

packet except the three-way handshake ones. So both tables will be looked up

frequently due to intensive packet traffic in high-speed networks. These factors

lead to their heavy lookup overheads, which need to be optimized. Network

traffic investigations indicate that packet traffic exhibit locality phenomenon

in packet switched networks. A common observation is that 10% of the hosts310

account for 90% of the traffic[28][29]. The locality becomes increasingly evident

with the widespread application of peer-to-peer technologies[30][31]. The local-

ity is manifested as packets arrive in group with regard to a flow, and means

for the flow table lookups that a flow in the table will be successively referenced

in a short time. In other words, if the referred flow is adjusted to the head of315

the table after every lookup, the lookup for subsequent packets will be much

faster to locate their flows. Therefore, we exploit the locality by applying the

move-to-front heuristic to the ECT table and the UDP flow table for better

lookup performance.

4.2. Move-to-front Heuristic320

As seen from the above analysis of flow table operations, we can apply the

move-to-front (MTF) heuristic[32] to optimize the lookups of the ECT table and

the UDP flow table and the timeout scanning of the ICT table. In particular,

for each time that the lookup of a flow table hits a flow, the flow is shifted to

the front of its located list in the table. Fig.3 illustrates the working principle325

of a flow list applying the move-to-front heuristic. Fig.3(a) gives a schematic of

the ith list just before the arrival of a packet on flow ”X”, and Fig.3(b) gives a

schematic of the list just after the arrival. Note that flow ”X” has been pulled

to the front of the list. Table.1 demonstrates the pseudo-code for the operations

on a flow table applying the move-to-front heuristic.330

The MTF heuristic results in a significant boost in the lookup performance of

the ECT table and the UDP flow table. Owing to network traffic locality, packet

13



...X+1...i 1 2 NX

(a) The ith list before packet arrival

...X+1...i X 1 NX-1

(b) The ith list after packet arrival

Figure 3: The principle of a flow list applying the move-to-front heuristic.

Table 1: The operations on a flow table applying the move-to-front heuristic

The search (including deletion) of a flow table The insertion of a flow table The timeout scanning of a flow table

FT search(FlowTable table, FlowIdentifier key) FT insert(FlowTable table, flow *p) FT timeout(FlowTable table, int interval)

1. pos ← Hash(key) 1. pos ← Hash(p→key) 1. get the current time t cur

2. list ← table[pos].head 2. list ← table[pos].head 2. for i ← 1, table.len do

3. for p ← list.next,&list do 3. p→next ← list.next 3. while TRUE do

4. if p.key = key, then 4. p→prior ← &list 4. p ← table[i].head.prior

5. p→prior→next ← p→next 5. list.next→prior ← p 5. if t cur-p→time > interval, then

6. p→next→prior ← p→prior 6. list.next ← p 6. p→prior→next ← p→next

7. return p 7. return 1 7. p→next→prior ← p→prior

8. return 0 8. keyset ← keyset∪p→key

9. delete p

10. else break

11.return keyset

14



flows can be classified into active flows and inactive flows, which account for a

large and small percentage of packet traffic respectively. All frequently referred

flows are shifted to the front of the table after a series of the table lookups. These335

cases result in two consequences: (a) a slight increase in the search length of

inactive flow with a handful of individual packets; (b) a substantial decrease in

the search length of active flow with a mass of successive packets. In conclusion,

the MTF heuristic will bring a great decrease to the lookup overheads of the

ECT table and the UDP flow table.340

Furthermore, the MTF heuristic leads each hash list of the ICT table to

be sorted by the last accessing time of each connection in descending order,

and all expired connections to converge on the rear of each hash list. Thus we

can easily execute timeout scanning by deleting each expired connection from

the tail of all hash lists. With no need to traverse each hash list to get all345

expired connections, the timeout scanning greatly speeds up especially at the

appearance of enormous falsified connections under SYN flooding attacks. In

conclusion, the MTF heuristic will result in an apparent reduce in the timeout

scanning overheads of the ICT table, which helps to defend against network

attacks.350

4.3. Counting Bloom Filters

The ICT table is sharply expanded and its lookup overheads are rapidly

rising in the presence of SYN flooding attacks. This is attributed to the fact

that the dominant SYN packet looks up the table for its connection in failure.

Since the failed lookups are already known for most of packets, we can employ355

counting bloom filters to directly give their lookup results without searching the

table.

A bloom filter[33] is a simple space-efficient data structure for representing

a set in order to support membership queries. A counting bloom filter[34] gen-

eralizes a bloom filter data structure so as to allow that the set can be changing360

dynamically via insertions and deletions. Fig.4 illustrates the working principle

of the ICT table employing a counting bloom filter. It is described by an array

15



A of m counters (with several bits), initialized to 0. And It uses k independent

hash functions h1, h2, · · · , hk, each with range {1, · · · ,m}. It has a set C of n

elements c1, c2, · · · , cn, i.e., connection identifiers in the ICT table.365

cic

Counter array ICT table

h1(ci)

h2(ci)

hk(ci)

0

3

1

0

h1(c)

h2(c)

hk(c)Connection 
identifier

2

Figure 4: The principle of the ICT table employing a counting bloom filter.

If an element c is to be inserted into the set C, the counters A[hi(c)] (1≤i≤k)

at position h1(c), h2(c), · · · , hk(c) in A are incremented by 1 accordingly. If an

element c is to be deleted from the set C, the counters A[hi(c)] at position

h1(c), h2(c), , hk(c) in A are decremented by 1 accordingly. If we want to query

for an element c, we check all the value of the counters A[hi(c)] (1≤i≤k). If any370

of them is 0, then certainly c is not in the set C. Otherwise, we conjecture that

the element c is in the set C, although there is a certain probability that we are

wrong. This is called a ”false positive”. In such case, we still need to search

the ICT table for an exact result. Table.2 summarizes the above discussion

regarding the operations on the ICT table employing a counting bloom filter.375

The probability for a false positive error is dependent on the parameters k,

m/n. For the counting bloom filter, after n connections were inserted at random

into the counter array of size m, the probability that a particular counter is 0 is

exactly (1 − 1/m)kn. Hence the probability of a false positive in this situation

is[34][35]380

(
1− (1− 1/m)kn

)k≈(
1− e−kn/m

)k
. (1)

The right-hand expression in (1) is minimized for k = ln2 ∗m/n, in which

16



Table 2: The operations on the ICT table employing a counting bloom filter

The search (including deletion) of the ICT table The insertion of the ICT table The timeout scanning of the ICT table

ICT CBF search(FlowIdentifier key) ICT CBF insert(connection *p) ICT CBF timeout(int interval)

1. for i ← 1, k do 1. FT insert(ICT, p) 1. keyset ← FT timeout(ICT, interval)

2. pos ← Hi(key) 2. for i ← 1, k do 2. while keyset�=∅ do

3. if CBF [pos] �=0, then 3. pos ← Hi(p→key) 3. get a key from keyset

4. break 4. CBF [pos] ← CBF [pos] + 1 4. for i ← 1, k do

5. if i≤k, then 5. return 1 5. pos ← Hi(key)

6. p ← FT search(ICT, key) 6. CBF [pos] ← CBF [pos]− 1

7. if p�=NULL, then 7. else break

8. for i ← 1, k do 8. return 1

9. pos ← Hi(p→key)

10. CBF [pos] ← CBF [pos]− 1

11. return p

12.return 0

case the error rate is (1/2)k = (0.6185)m/n. For example, the false positive error

rate is slightly larger than 2.15%, when m/n = 8, k = 6. The false positive error

rate is only 0.314%, when m/n = 12, k = 8.

For the counting bloom filter, it is also important to know how large the385

memory of the counters can become. In order to determine a good counter size,

we consider this situation: after inserting n connections with k hash functions

into a counter array of size m, the probability that the j th counter is greater or

equal i is

Pr(A[j]≥i) ≤ (enk
im

)i
, (1≤j≤m). (2)

As mentioned above, we can optimize the false positive rate with k = ln2 ∗390

m/n, so we assume that we restrict ourselves to k = ln2 ∗m/n, then

Pr(max
j

A[j] ≥ i) ≤ m
(eln2

i

)i
. (3)

If we set 4 bits per counter, the counter will overflow if and only if some

counter reaches the value 16. From the above, we know that

Pr(max
j

A[j] ≥ 16) ≤ m
(eln2

16

)16 ≈ 1.37× 10−15 ×m. (4)

17



Thus, 4 bits per counter will suffice for most applications. In conclusion, the

counting bloom filter is highly effective. With the aid of the counting bloom395

filter, we can directly tell the lookup results of the ICT table without need to

search any flow table for most SYN packets. As a consequence, the lookup

overheads of the ICT table will be greatly controlled even under SYN flood-

ing attacks. By this way, we significantly cut down the damage of malicious

behaviors on the lookup performance of flow tables.400

5. Packet Distribution Algorithm

Our proposed network traffic partitioning scheme above is called DTP-ICM,

short for dynamic traffic partitioning (DTP) with the initial connection sep-

aration (ICS) mechanism further improved by counting bloom filters (CBF)

and the move-to-front (MTF) heuristic. This section describes the algorithm405

implementation of the DTP-ICM scheme based on TCP packet classification.

5.1. TCP Packet Classification

Dynamic traffic partitioning at the micro level is packet distribution per-

formed by four basic steps: (a) parsing the packet to get its key fields and

calculating its flow identifier; (b) looking up the corresponding flow table for a410

match by the flow identifier; (c) distributing the packet to the network processor

in the matched flow or else with the lowest traffic load level; (d) operating (cre-

ating, inserting, shifting or deleting) the flow in the flow table after its update.

An essential work of packet distribution is to look up the respective flow table.

There is no doubt for a non-TCP packet since we maintain a respective flow415

table for each protocol above IP header except TCP. As for a TCP packet, we

must determine which table is to be looked up as there are two TCP connection

tables in our scheme. If the lookup fails, we still need to decide whether the

other table should be further searched. To clarify these problems, we classify

TCP packets into five types as follows.420

18



1) Packets with SYN flag. A packet with SYN flag initiates its half of a

TCP connection and appears during connection establishment phase. Thus its

connection must reside in the ICT table if being exists.

2) Packets with FIN flag. A packet with FIN flag tears down its half

of TCP connection and appears during connection termination phase. So its425

connection must be reserved in the ECT table.

3) Packets with RST flag. A packet with RST flag is sent whenever a seg-

ment arrives which apparently is not intended for the current connection. The

packet is generated in 3 typical cases[36]: (a) a connection request is delivered

to a non-existent port. This situation happens at the beginning of connection430

establishment, and its connection must reside in the ICT table; (b) a connec-

tion endpoint abort its connection in response to an unacceptable segment or a

termination command from its application. These causes generally arises at the

end of data transfer, and its connection should stay in the ECT table; (c) one

end detects a half-open connection, whose other end has closed or aborted the435

connection without its knowledge. This case occurs at data transfer phase, and

its connection must be saved in the ECT table.

4) Pure ACK. A pure ACK packet does not carry any payload and key

TCP flags, i.e., SYN, RST and FIN. The packet has three possibilities: (a) the

3rd handshake during connection establishment, whose connection lies in the440

ICT table; (b) an acknowledgement of some transmitted segment during data

transfer phase, whose connection is located in the ECT table; (c) an acknowl-

edgement of connection tear-down request, whose connection also resides in the

ECT table. In summary, its connection is more likely to stay in the ECT table.

Therefore, we will first look up the ECT table on its arrival. If the lookup fails,445

we continue to search the ICT table for a match.

5) Impure ACK. An impure ACK packet carries payload but no key TCP

flags (SYN, RST and FIN). The packet usually turns up during data transfer

phase, and its connection must be maintained in the ECT table.

19



5.2. Algorithm Description450

Upon receiving a packet, we first parse it to get its key fields with respect

to protocol header format at each layer, and calculate its flow identifier with

its source/destination IP addresses and port numbers defined below. The port

numbers are set as zero for any protocol in which header there is no port num-

ber field, such as ICMP. Then we operate the flow table corresponding to the455

protocol in its IP header. As for a non-TCP packet, we directly search the

respective flow table for a match. If we fail to get a match, we create a new flow

and assign it to a network processor with the lightest load degree in terms of

the load state table. Then, we distribute the packet to the network processor,

update the flow with the packet, and insert it to the respective flow table.460

Definition 5.1 (Flow Endpoint Identifier (FEI)). An endpoint of a net-

work flow can be identified as a 2-tuple FEI(IP, PT ), where IP and PT re-

spectively represent IP address at the network layer and port number at the

transport layer.

Definition 5.2 (The relationship of two FEIs). Suppose there are two flow465

endpoints, FEI1(IP, PT ) and FEI2(IP, PT ). Considering IP and PT in

each FEI as a 32-bit and 16-bit integer respectively, we define the relation-

ship of the two FEIs as FEI1 < FEI2, iff (a) FEI1.IP < FEI2.IP or (b)

FEI1.IP = FEI2.IP and FEI1.PT < FEI2.PT .

Definition 5.3 (Flow Identifier (FID)). There are two opposite endpoints470

in a flow. Suppose FEIS and FEIB is respectively the smaller and the bigger

of them in accordance with Denifition 5.2, the flow can be identified as 2-tuple

FID(FEIS , FEIB).

The distribution of a TCP packet is performed in terms of the packet classifi-

cation above. As for a SYN packet, we search the ICT table with counting bloom475

filters. If the search fails, the packet is confirmed to initiate a new connection.

Then we create a new connection for it and assign it to a network processor with

the lightest traffic load degree. As for a SYN/ACK or RST/ACK packet, we

20



directly look up the ICT table for its connection. The ECT table is searched for

any other packet. If the search fails and the packet is a pure ACK, the packet480

is probably the third handshake and we continue to directly look up the ICT

table. Up to now, we are supposed to get a connection. Then, we distribute the

packet to the network processor in the connection and update the connection

with the packet. Finally, the connection is manipulated in terms of its state. In

particular, the connection will be directly deleted if it reaches the termination485

state. Otherwise, we insert it into the ICT table if it is not yet established

and the ECT table for any other case. Table.3 summarizes the above discussion

regarding the packet distribution of our proposed DTP-ICM scheme.

In the meanwhile, the timeout scanning is manipulated on each flow table to

clear out expired flows in time. In particular, the removal of expired flows from490

the ICT table triggers the update of its counting bloom filter. The timeout

interval of the ICT table is set as 4 second under normal conditions due to

the fact that 99% of TCP connections take less than 4s to complete three-way

handshake. When SYN flooding attacks occur, the interval is tuned to 1 second

as 93% of TCP connections can also be established. As for other flow tables495

including the ECT table and the UDP session table, their timeout intervals are

configured as 60 second. Table.4 demonstrates the pseudo-code for the flow

table timeout of our proposed DTP-ICM scheme.

5.3. Algorithm Complexity Analysis

As seen from the algorithm description above, the performance of our traffic500

partitioning scheme mainly depends on the flow table lookups. According to

network traffic locality, packet traffic within a flow can be modeled as a number

of packet trains, each of which consists of several packets in either direction. A

flow is active when one of its trains is running and inactive if a train has passed

away and the next train has not come yet. Owing to the move-to-front heuristic,505

all active flows will be shifted to the front of their located lists in the flow table

while all inactive flows will be pushed back to the rear. As a consequence, each

list in the flow table can be divided into two parts, the front active flow zone

21



Table 3: The packet distribution of the DTP-ICM scheme

Pseudo-code for the distribution of a packet

Alogrithm 1 PacketDistribution(Packet p)

1. Parse the received packet p to get its key fields, including ipsrc, ipdst, portsrc, portdst, proto

2. p.FID ← {ipsrc, ipdst, portsrc, portdst, proto}
3. if p.proto �= TCP , then

4. f ← FT search(FTp.proto, p.FID)

5. if f = NULL, then

6. k ← min
i
{LoadLevel(NPi)}

7. f ← NewFlow(p, k)

8. Forward the packet p to the network processor in the flow f, and update the flow f with the packet

p

9. FT insert(FTp.proto, f)

10. return 1

11.else return DTP-ICM TCP(p)

12.if p is a SYN, then

13. c ← ICT CBF search(p.FID)

14. if c = NULL, then

15. k ← min
i
{LoadLevel(NPi)}

16. c ← NewFlow(p, k)

17.else if p is a SYN/ACK or RST/ACK, then

18. c ← FT search(ICT , p.FID)

19.else c ← FT search(ECT , p.FID)

29.if c = NULL and p is a pure ACK, then

21. c ← FT search(ICT , p.FID)

22.if c �=NULL, then

23. Forward the packet p to the network processor in the connection c, and update the connection c

with the packet p

24. if c is not yet established, then

25. ICT CBF insert(c)

26. else if c is terminated, then

27. delete c

28. else FT insert(ECT , c)

29. return 1

30.else return 0

22



Table 4: The flow table timeout of the DTP-ICM scheme

Pseudo-code for the timeout scanning of a flow table

Alogrithm 2 Timeout(FlowTable table)

1. if table is the ICT, then

2. if table.size > ICT MAX SIZE, then

3. ICT CBF timeout(1);

4. else

5. ICT CBF timeout(4);

6. else if table is the ECT, then

7. FT timeout(ECT, 60);

8. else

9. FT timeout(table, 60);

and the rear inactive flow zone.

Suppose a flow table has the load factor α, and β is the ratio of the amount510

of active flows to its table length. With simple uniform distribution assumption,

each list in the table can be deemed to consist of β flows in the front active zone

and α − β ones in the rear inactive zone. As for a flow with n trains the ith

of which contains mi packets, we can count the search length for each train.

As for the ith train, when its first packet comes, its flow is staying in the rear515

inactive zone. Thus we need take β to travel through the front active zone and

(α− β + 1)/2 to find out the flow in the rear inactive zone. Therefore, the first

packet of the ith train needs to take the search length SLi,0(0 ≤ i ≤ n− 1) in

(5) to locate its flow.

SLi,0 = β +
α− β + 1

2
=

α+ β + 1

2
. (5)

As for each subsequent packet within the train, the flow has been shifted520

to the front active zone at the arrival of its first packet. Hence we can directly

find out the flow in the front active zone with the search length SLi,j(0 ≤ i ≤
n− 1, 1 ≤ j ≤ mi − 1) in (6).

SLi,j =
β + 1

2
. (6)

In summary, we can get the total search length for the ith train TSLi(0 ≤

23



i ≤ n− 1) in (7).525

TSLi =

mi−1∑
j=0

SLi,j = SLi,0 +

mi−1∑
j=1

SLi,j =
α+mi(β + 1)

2
. (7)

Suppose the average size of all packet trains is denoted as m = 1
n

∑n−1
i=0 mi,

we can compute the average search length ASL in (8).

ASL =

∑n−1
i=0 TSLi∑n−1
i=0 mi

=
β + 1

2
+

α

2m
. (8)

As seen from (8), the lookup efficiency of a flow table chiefly depends on its

load factor α, the average number of active flows in each list β, and the average

size of all packet trains m. The length of the flow table is generally configured530

as 216. There are usually no more than 220 simultaneous flows in high-speed

networks, and α is expected to be less than 24. The amount of active flows is

measured as no more than 216, and β is reckoned to value less than 1. The

packet train size varies widely from several to more than a hundred, and m is

supposed to be larger than 23. In summary, we can conclude that the ASL535

is likely to be smaller than 2. In contrast, a naive flow table performs lookup

with the average search length (α+1)/2, which is much larger than that of our

proposed scheme in (8).

6. Experiments

This section evaluates the performance of our proposed traffic partitioning540

scheme DTP-ICM with physical network traffic traces in terms of traffic load

balance and packet distribution performance.

6.1. Traffic Trace Properties

For convenient multiple evaluation and comparison, we operate network traf-

fic partitioning offline on traffic traces previously captured from high-speed net-545

work links. The traces for our evaluation should contain a large number of

simultaneous flows. Unfortunately, most published traffic traces are unsatis-

factory because of anonymization. Eventually we employ the traffic traces[37]

24



collected from a 10Gps main channel in the CERNET (Jiangsu). In particular,

we select 4 traffic traces, each with 15,420,235 packets, whose properties are550

illustrated in Table.5.

Table 5: The properties of the 4 traffic traces used in our experiments.

Traffic trace Duration TCP

packets

UDP

packets

Initial con-

nections

Established

connections

Terminated

connections

UDP

sessions

TRACE20141109 35.4s 8.84M 6.49M 307K 75.7K 61.9K 266K

TRACE20140509 58.3s 9.21M 6.09M 195K 92.6K 74.7K 125K

TRACE20120921 86.4s 11.5M 3.52M 324K 142K 139K 72.9K

TRACE20120725 83.7s 9.79M 5.05M 318K 95.7K 89.9K 77.3K

Fig.5 shows the number of simultaneous flows in the traces, which has a

significant impact on the performance of dynamic traffic partitioning scheme.

The number is counted by setting a timeout interval for each type of flow. In

particular, we respectively set 4s, 60s and 60s as the timeout interval of initial555

TCP connections, established TCP connections and UDP sessions. As seen

from Fig.5, the number of initial connections usually falls between 10K and

35K, and that of established connections grows from 15K to 50K in a slow

rate. In stark contrast, the number of UDP sessions sharply increases from 60K

to more than 260K. This is probably because of the popularity of UDP-based560

network applications such as VOIP, IPTV and online video websites.

6.2. Traffic Load Balance

We contrast among load balancing capacities of typical traffic partitioning

schemes based on the definition of load imbalance degree.

1) Load Imbalance Degree565

To quantize the load balance extent of network traffic partitioning, we define

load imbalance degree by employing sample variance in mathematical statistics[24].

We first define the ideal probability pi(0 ≤ i ≤ N − 1) of a packet distributed to

the ith network processor as the benchmark of the balance evaluation. In par-

ticular, pi can be calculated as the weight of the capacity Ci of the ith network570

processor among total capacity of all network processors in (9).

25



5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3
x 10

5

time(s)

si
m

ul
ta

ne
ou

s 
flo

w
s

Initialized Connections
Established Connections
UDP Sessions

(a) TRACE20141109

10 20 30 40 50
0

2

4

6

8

10

12

14
x 10

4

time(s)

si
m

ul
ta

ne
ou

s 
flo

w
s

Initialized Connections
Established Connections
UDP Sessions

(b) TRACE20140509

10 20 30 40 50 60 70 80
0

1

2

3

4

5

6
x 10

4

time(s)

si
m

ul
ta

ne
ou

s 
flo

w
s

Initialized Connections
Established Connections
UDP Sessions

(c) TRACE20120921

10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7
x 10

4

time(s)

si
m

ul
ta

ne
ou

s 
flo

w
s

Initialized Connections
Established Connections
UDP Sessions

(d) TRACE20120725

Figure 5: The number of simultaneous flows in the traffic traces.

26



pi =
Ci∑N−1

j=0 Cj

. (9)

Similarly, we further define the actual probability p′i(t) of a packet dis-

tributed to the ith network processor at time t. In particular, p′i(t) can be

computed as the weight of the load Li(t) of the ith network processor among

total load of all network processors at time t in (10).575

p′i(t) =
Li(t)∑N−1

j=0 Lj(t)
. (10)

With the above definitions, we define the following load imbalance degree

I(t) of traffic partitioning at time t in virtue of the concept and formula of

sample standard deviation.

I(t) =

√√√√ 1

N − 1

N−1∑
i=0

(
p′i(t)− pi

)2
. (11)

As seen from the above definition, I(t) characterizes the real-time load bal-

ance extent of network traffic partitioning (0 ≤ I(t) ≤ 1). The more I(t) comes580

close to 0, the more the traffic load distributes evenly.

2) Load Balance Comparison

We compare the load balance capacity of dynamic traffic partitioning scheme

(DTP) with those of the traditional ones, i.e., direct hashing and hash space

division (HSD). The key to the direct hashing schemes is to choose a uniform585

hash function with low cost. Network investigations indicate that BOB and

OAAT are the best candidates for packet processing among a collection of 25

hash functions[39][40]. So BOB and OAAT are selected as the representatives

of the direct hashing schemes. Besides, we select the MD5 algorithm for the

hash function in the HSD scheme.590

Suppose there are 3 network processors, whose processing capacities are

configured with the ratio 1:1:1 and 1:2:1 respectively. The traffic load of a

network processor is simply modeled as the addition of the quadruple number of

simultaneous flows and the amount of distributed packets. Our experiments are

27



performed by reading packets from each traffic trace in their arrival orders and595

distributing them in terms of different traffic partitioning schemes. Then, we

record the number of packets and flows distributed to each network processor,

and calculate the load imbalance degree for each traffic partitioning scheme

according to (11). Finally, we get the load imbalance degrees of these traffic

partitioning schemes in Fig.6 and Fig.7.600

5 10 15 20 25 30 35
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

time(s)

Im
ba

la
nc

e 
D

eg
re

e

DTP
HSD
BOB
OAAT

(a) TRACE20141109

10 20 30 40 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

time(s)

Im
ba

la
nc

e 
D

eg
re

e

DTP
HSD
BOB
OAAT

(b) TRACE20140509

10 20 30 40 50 60 70 80
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

time(s)

Im
ba

la
nc

e 
D

eg
re

e

DTP
HSD
BOB
OAAT

(c) TRACE20120921

10 20 30 40 50 60 70 80
0

0.005

0.01

0.015

0.02

0.025

0.03

time(s)

Im
ba

la
nc

e 
D

eg
re

e

DTP
HSD
BOB
OAAT

(d) TRACE20120725

Figure 6: The load imbalance degree in the case of 3 network processors configured with the

capacity ratio 1:1:1.

As seen from Fig.6 and Fig.7, the DTP scheme has better load balance

capacity than the other ones whether network processors are configured with

identical capacity or not. In particular, the DTP scheme almost always has the

lowest load imbalance degrees, and achieves ideal load balance effect in most

cases. This is attributed to the fact that it dynamically distributes packets for605

28



5 10 15 20 25 30 35
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

time(s)

Im
ba

la
nc

e 
D

eg
re

e

DTP
HSD
BOB
OAAT

(a) TRACE20141109

10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

time(s)

Im
ba

la
nc

e 
D

eg
re

e

DTP
HSD
BOB
OAAT

(b) TRACE20140509

10 20 30 40 50 60 70 80
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

time(s)

Im
ba

la
nc

e 
D

eg
re

e

DTP
HSD
BOB
OAAT

(c) TRACE20120921

10 20 30 40 50 60 70 80
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

time(s)

Im
ba

la
nc

e 
D

eg
re

e

DTP
HSD
BOB
OAAT

(d) TRACE20120725

Figure 7: The load imbalance degree in the case of 3 network processors configured with the

capacity ratio 1:2:1.

29



the purpose of the real-time balancing of traffic load distribution.

By contrast of Fig.6 and Fig.7, we can see that both the DTP and the

HSD schemes have excellent adaptability to different network processor con-

figurations. In particular, their load imbalance degrees always fall below 0.25

whether the 3 network processors are configured with the capacity ratio 1:1:1610

or 1:2:1. This effect is derived from that they adaptively distribute packets in

terms of network processor capacities. Owing to this property, both the schemes

have much better load balance effect than the BOB and the OAAT for network

processors with different capacities, while the case is completely different for

same network processors.615

6.3. Packet Distribution Performance

Dynamic traffic partitioning scheme achieves excellent load balance effect at

the cost of heavy packet distribution overheads. So it is necessary to com-

pare our proposed dynamic traffic partitioning scheme DTP-ICM with the

traditional one in terms of packet distribution performance. The traditional620

scheme[22][23][21][24] maintains simultaneous flows of each protocol above IP

header in a naive hash table, called DTP-NHT. As for flow tables in both

schemes, hash functions are all simply devised as the XOR operation of the flow

identifier folded by 16 bits for low cost, and their table lengths are uniformly sets

as the maximum 216. Besides, the counting bloom filter in our DTP-ICM scheme625

employs 6 hash functions, BOB, OAAT, TWMX, RS, Hsieh, and SBox[40].

As seen from the pseudo-code implementation in the previous section, the

flow table lookups dominate the packet distribution performance of dynamic

traffic partitioning scheme. Thus, the average search length (ASL) is employed

to characterize the packet distribution performance, due to its independence of630

testing platforms. In particular, we count the search length and the number of

incoming packets, and calculate their quotient as the average search length.

Experiment 1 (Normal Conditions)

We first compare the packet distribution performance of both dynamic traffic

partitioning schemes with the selected traces under normal conditions. The635

30



counting bloom filter in our DTP-ICM scheme is configured in terms of its

equation m = nklog2e in the Section 4.3, where m, k and n respectively denotes

the number of counters, hash functions and initial connections in the ICT table.

As seen from Fig.5, the number of initial connections n is no more than 30K in

most cases. Then, the number of counters m is suitable to be set as 256K since640

the number of hash functions k equals to 6. With the above configurations, we

operate both dynamic traffic partitioning schemes on the selected traffic traces,

and evaluate the ASLs of both schemes for TCP and UDP traffic in Fig.8 and

Fig.9 respectively.

5 10 15 20 25 30 35
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

time(s)

av
er

ag
e 

se
ar

ch
 le

ng
th

DTP−ICM
DTP−NHT

(a) TRACE20141109

10 20 30 40 50
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

time(s)

av
er

ag
e 

se
ar

ch
 le

ng
th

DTP−ICM
DTP−NHT

(b) TRACE20140509

10 20 30 40 50 60 70 80
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

time(s)

av
er

ag
e 

se
ar

ch
 le

ng
th

DTP−ICM
DTP−NHT

(c) TRACE20120921

10 20 30 40 50 60 70 80
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

time(s)

av
er

ag
e 

se
ar

ch
 le

ng
th

DTP−ICM
DTP−NHT

(d) TRACE20120725

Figure 8: The ASLs of TCP traffic partitioning.

As seen from Fig.8 and Fig.9, our proposed DTP-ICM scheme outperforms645

the DTP-NHT scheme for both TCP and UDP traffic. As for TCP traffic, our

DTP-ICM scheme performs packet distribution with the ASLs below 1 almost

31



5 10 15 20 25 30 35
0.5

1

1.5

2

2.5

3

3.5

4

4.5

time(s)

av
er

ag
e 

se
ar

ch
 le

ng
th

DTP−ICM
DTP−NHT

(a) TRACE20141109

10 20 30 40 50
1

1.5

2

2.5

3

3.5

4

time(s)

av
er

ag
e 

se
ar

ch
 le

ng
th

DTP−ICM
DTP−NHT

(b) TRACE20140509

10 20 30 40 50 60 70 80
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

time(s)

av
er

ag
e 

se
ar

ch
 le

ng
th

DTP−ICM
DTP−NHT

(c) TRACE20120921

10 20 30 40 50 60 70 80
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

time(s)

av
er

ag
e 

se
ar

ch
 le

ng
th DTP−ICM

DTP−NHT

(d) TRACE20120725

Figure 9: The ASLs of UDP traffic partitioning.

32



at all times, while the ASLs of the DTP-NHT scheme always fluctuate above 1.

This is chiefly attributed to our optimizations of TCP connection management,

i.e., the initial connection separation mechanism and the move-to-front heuristic.650

In particular, most TCP packets only need to look up one of the ICT and the

ECT tables divided from the original TCP connection table, and the successful

search length of a TCP packet is greatly shorten for the ECT table as a result of

network traffic locality. As for UDP traffic, the ASLs of the DTP-NHT scheme

rise up sharply due to the increasing number of simultaneous UDP flows. As655

a striking contrast, our DTP-ICM scheme perform with much more steady and

shorter ASLs. This result thanks to the move-to-front heuristic applied to the

UDP session table.

Experiment 2 (SYN Flooding Attacks)

SYN flooding attacks often have a great destructive power on dynamic traffic660

partitioning scheme. We compare the packet distribution performance of both

dynamic traffic partitioning schemes under the attacks. The attacks are simu-

lated by inserting falsified SYN packets into normal TCP traffic in our selected

traces. In particular, we mix normal packets in the trace with falsified packets

by different hybrid ratio to simulate different levels of the attacks.665

Our counting bloom filter is still configured in terms of the equation m =

nklog2e under SYN flooding attacks. However, its parameter configuration

varies with different attack levels due to its impact on the number of initial

connections in the ICT table n. The table during the attacks is dominated by

unexpired false connections, whose amount depends on the timeout interval of670

each initial connection, the number of normal packets per second, and the hybrid

ratio of falsified packets and normal packets. The timeout interval is generally

adjusted to 1 second in the presence of the attacks[26][27]. The number of

normal packets per second in the trace is around 256K at all times illustrated

in Table.5. Besides, the number of hash functions k is fixed as 6. In summary,675

the number of counters m can be configured as 2M times of the packet hybrid

ratio.

In our experiments, the falsified SYN packets are inserted into packet stream

33



in the TRACE20141109, TRACE20140509, TRACE20120921 and TRACE20120725

respectively from the 10th, 20th, 30th and 30th second. Then we operate both680

dynamic traffic partitioning schemes on the hybrid packet traffic. Fig.10, Fig.11

and Fig.12 demonstrate the ASLs of both schemes with the packet hybrid ratio

1:1, 2:1 and 4:1 respectively.

5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

time(s)

av
er

ag
e 

se
ar

ch
 le

ng
th

DTP−ICM
DTP−NHT

(a) TRACE20141109

10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

time(s)

av
er

ag
e 

se
ar

ch
 le

ng
th

DTP−ICM
DTP−NHT

(b) TRACE20140509

10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5

4

time(s)

av
er

ag
e 

se
ar

ch
 le

ng
th

DTP−ICM
DTP−NHT

(c) TRACE20120921

10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5

time(s)

av
er

ag
e 

se
ar

ch
 le

ng
th

DTP−ICM
DTP−NHT

(d) TRACE20120725

Figure 10: The ASLs with the packet hybrid ratio 1:1.

As seen from Fig.10, Fig.11 and Fig.12, our proposed DTP-ICM scheme

performs packet distribution at much shorter ASLs than the traditional DTP-685

NHT scheme. In particular, the DTP-ICM scheme always takes steady and

short search lengths no matter how fierce the attacks are. In contrast, the

DTP-NHT scheme degrades sharply in the emergence of SYN flooding attacks.

What is more exciting is that, the DTP-ICM scheme get even shorter ASLs

when the attacks become more severe. In summary, our proposed DTP-ICM690

34



5 10 15 20 25 30 35
0

5

10

15

time(s)

av
er

ag
e 

se
ar

ch
 le

ng
th

DTP−ICM
DTP−NHT

(a) TRACE20141109

10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

time(s)

av
er

ag
e 

se
ar

ch
 le

ng
th

DTP−ICM
DTP−NHT

(b) TRACE20140509

10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

time(s)

av
er

ag
e 

se
ar

ch
 le

ng
th

DTP−ICM
DTP−NHT

(c) TRACE20120921

10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

time(s)

av
er

ag
e 

se
ar

ch
 le

ng
th

DTP−ICM
DTP−NHT

(d) TRACE20120725

Figure 11: The ASLs with the packet hybrid ratio 2:1.

35



5 10 15 20 25 30 35
0

5

10

15

20

25

30

time(s)

av
er

ag
e 

se
ar

ch
 le

ng
th

DTP−ICM
DTP−NHT

(a) TRACE20141109

10 20 30 40 50
0

2

4

6

8

10

12

14

16

18

time(s)

av
er

ag
e 

se
ar

ch
 le

ng
th

DTP−ICM
DTP−NHT

(b) TRACE20140509

10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

time(s)

av
er

ag
e 

se
ar

ch
 le

ng
th

DTP−ICM
DTP−NHT

(c) TRACE20120921

10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

time(s)

av
er

ag
e 

se
ar

ch
 le

ng
th

DTP−ICM
DTP−NHT

(d) TRACE20120725

Figure 12: The ASLs with the packet hybrid ratio 4:1.

36



scheme provides much better robustness against SYN flooding attacks than the

traditional one. This is attributed to the fact that all falsified SYN packets no

longer need to search any flow tables due to the application of the counting

bloom filter to the ICT table.

7. Conclusion and Future Work695

This paper proposes a novel dynamic traffic partitioning scheme DTP-ICM,

which assigns a new flow to a network processor with the lightest traffic load

level and distributes all packets within a flow to its network processor, to guar-

antee flow granularity and achieve good load balance. In the scheme, we build

the initial connection separation mechanism to isolate false TCP connections700

induced by malicious behaviors, which results in two connection tables, the ICT

and the ECT. The move-to-front heuristic is applied to the ECT table and the

UDP flow table to accelerate their lookups and to the ICT table to speed up its

timeout scanning. More importantly, the ICT table is optimized with counting

bloom filters to defend against SYN flooding attacks.705

Our proposed DTP-ICM scheme is evaluated with real network traffic traces.

The evaluation results indicate that the DTP-ICM scheme achieves good load

balance effect and high packet distribution performance. In particular, the DTP-

ICM scheme perform packet distribution with steady and short ASLs below 1

almost at all times for both TCP and UDP traffic. More excitingly, the DTP-710

ICM scheme still takes steady and short search lengths no matter how fierce the

attacks are.

In our future work, more traffic traces from different high-speed network

lines will be utilized to evaluate and validate our proposed traffic partitioning

scheme. After that, we plan to deploy it in specific network applications such715

as content delivery. Furthermore, applications of our proposed scheme to the

environment of future networks, such as software defined networks, is also within

our future work plan.

37



Acknowledgment

This work was supported in part by National Natural Science Foundation of720

China (61502056, 61303043), Hunan Provincial Natural Science Foundation of

China (2015JJ3010, 13JJ4052), and Scientific Research Fund of Hunan Provin-

cial Education Department (15B009, 14C0285).

References

[1] E.W. Fulp, R.J. Farley. A Function-Parallel Architecture for High-Speed725

Firewalls. In: Proceedings of IEEE International Conference on Communi-

cations, Istanbul, 2006. 2213-2218.

[2] A. Patel, M. Taghavi, K. Bakhtiyari, J. C. Junior. An intrusion detection

and prevention system in cloud computing: A systematic review. Journal of

Network and Computer Applications, 2013, 36(1): 25-41.730

[3] G. Vasiliadis, M. Polychronakis, S. Ioannidis. MIDeA: a multi-parallel intru-

sion detection architecture. In: Proceedings of ACM conference on Computer

and Communications Security. 2011. 297-308.

[4] G. Cheng, J. Gong, W. Ding. Distributed sampling measurement model

in a high speed network based on statistical analysis. Chinese Journal of735

Computers, 2003, 26(10): 1266-1273.

[5] Z. H. Zhang. Distribute and Match - The DM Switch for High Speed Packet

Switching Networks. In: Proceedings of IEEE Global Telecommunications

Conference, 2011. 1-6.

[6] S. Manfredi, F. Oliviero, S. P. Romano. A Distributed Control Law for740

Load Balancing in Content Delivery Networks. IEEE/ACM Transactions on

Networking, 2012, 21(1): 55-68.

[7] N. Mohamed, J. Al-Jaroodi, A. Eid. A dual-direction technique for fast file

downloads with dynamic load balancing in the Cloud. Journal of Network

and Computer Applications, 2013, 36(4): 1116-1130.745

38



[8] A. Hakiri, A. Gokhale, P. Berthou, D. C. Schmidt, T. Gayraud. Software-

Defined Networking: Challenges and research opportunities for Future In-

ternet. Computer Networks, 2014, 75(24): 453-471.

[9] D. Kreutz, F. M. V. Ramos, P. Verissimo, E. C. Rothenberg, S. Azodolmolky,

S. Uhlig. Software-defined networking: A comprehensive survey. Proceedings750

of the IEEE, 2015, 103(1): 14-76.

[10] M. Koerner, O. Kao. Multiple Service Load-Balancing with OpenFlow. In:

Proceedings of the IEEE 13th International Conference on High Performance

Switching and Routing (HPSR), 2012: 210-214.

[11] M. Bredel, Z. Bozakovy, A. Barczyk, H. Newman. Flow-Based Load Balanc-755

ing in Multipathed Layer-2 Networks using OpenFlow and Multipath-TCP.

In: Proceedings of the 3rd ACM SIGCOMM workshop on Hot topics in

software defined networking (HotSDN), 2014: 213-214.

[12] Y. Qi, B. Xu, F. He, B. Yang, J. M. Yu, J. Li. Towards high-performance

flow-level packet processing on multi-core network processors. In: Proceed-760

ings of ACM/IEEE Symposium on Architectures for Networking and Com-

munications Systems. Orlando, 2007. 17-26.

[13] Z. H. Zhao, Y. T. Shu, L. F. Zhang, H. M. Wang, O. W. W. Yang. Flow-

level multipath load balancing in MPLS network. In: Proceedings of IEEE

International Conference on Communications, Paris, 2004, 2: 1222-1226.765

[14] A. Kirsch, M. Mitzenmacher, G. Varghese. Hash-based techniques for high-

speed packet processing. Algorithms for Next Generation Networks (Com-

puter Communications and Networks), 2010, 2:181-218.

[15] Z. Cao, Z. Wang, E. Zegura. Performance of Hashing-based Schemes for

Internet Load Balancing. In: Proceedings of IEEE International Conference770

on Computer Communications. Tel-Aviv, Israel, 2000: 332-341.

[16] H. Lai, H. Huang, J. Xie. PABCS: A Traffic Partition Algorithm for Parallel

Intrusion Detection. Chinese Journal of Computers, 2007, 30(4): 555-562.

39



[17] Y. Chen, X. Lu, X. Shi, et al. A Session-oriented Adaptive Load Balancing

Algorithm. Journal of Software, 2008, 19(7): 1828-1836.775

[18] Q. Sun, D. Zhang, P. Gao, et al. Study of Parallel IDS Load Balancing

Algorithm. Mini-micro Systems, 2004, 25(12): 2215-2217.

[19] W. Shi, M. H. MacGregor, P. Gburzynski. Load Balancing for Parallel

Forwarding. IEEE/ACM Transactions on Networking, 2005, 13(4): 790-801.

[20] L. Kencl, J. L. Boudec. Adaptive Load Sharing for Network Processors.780

IEEE/ACM Transactions on Networking, 2008, 16(2): 293-306.

[21] X. Li, D. Zhao, H. Zhao, et al. Research on Application-based Network

Intrusion Detection System for High-speed Network. Journal of China Insti-

tute of Communications, 2002, 23(9): 1-7.

[22] W. Jiang, H. Song, Y. Dai. Real-time Intrusion Detection for High-speed785

Networks. Computers and Security, 2005, 24(4): 287 294.

[23] W. Jiang, S. Hao, Y. Dai, et al. Load Balancing Algorithm for High-speed

Network Intrusion Detection Systems. Journal of Tsinghua University (Sci-

ence and Technology), 2006, 46(1): 106-110.

[24] B. Xiong, H. Xiao, M. Long, et al. Dynamic Partitioning of High-speed790

Network Traffic with Flow Level. Mini-micro Systems, 2013, 34(5): 945-950.

[25] K. Thompson, G. J. Miller, R. Wilder. Wide-Area Internet Traffic Patterns

and Characteristics. IEEE Network, 1997, 11: 10-23.

[26] H. Kim, J. Kim, I. Kang, et al. Preventing Session Table Explosion in

Packet Inspection Computers. IEEE Transactions on Computers, 2005,795

54(2): 238-240.

[27] I. Kang, H. Kim. Determining Embryonic Connection Timeout in Stateful

Inspection. In: Proceedings of IEEE International Conference on Commu-

nications, Anchorage, Alaska, 2003: 458-462.

40



[28] C. Williamson. Internet Traffic Measurement. IEEE Internet Computing,800

2001, 5(6): 70-74.

[29] N. Gulati, C. Williamson, R. Bunt. LAN Traffic Locality: Characterization

and Application. In: Proceedings of International Conference in Local Area

Network Interconnection. North Carolina, 1993: 233-250.

[30] Y. Liu, L. Guo, F. Li, et al. A Case Study of Traffic Locality in Internet805

P2P Live Streaming Systems. In: Proceedings of International Conference

on Distributed Computing Systems. Montreal, Canada, 2009: 423-432.

[31] H. Wang, J. Liu, B. Chen, et al. On Tracker Selection for Peer-to-Peer

Traffic Locality. In: Proceedings of International Conference on Peer-to-Peer

Computing. Delft, Netherlands, 2010: 1-10.810

[32] B. Xiong, F. Li, L. Jiang, et al. An efficient oriented-hash table for connec-

tion management in high-speed networks. Journal of Huazhong University

of Science and Technology (Natural Science Edition), 2011, 39(2): 19-22.

[33] B. Bloom, Space/time trade-offs in hash coding with allowable errors. Com-

munications of the ACM, 1970, 13(7): 422-426.815

[34] L. Fan, P. Cao, J. Almeida, et al. Summary cache: A scalable wide-area

web cache sharing protocol. IEEE/ACM Transactions on Networking, 2000,

8(3):281-293.

[35] S. Cohen, Y. Matias. Spectral Bloom Filters. In: Proceedings of 2003 ACM

SIGMOD International Conference on Management of Data. New York:820

ACM Press, 2003. 241-252.

[36] K. R. Fall, R. W. Stevens. TCP/IP Illustrated, Volume 1: The Protocols

(2nd Edition). Boston, Massachusetts: Addison-Wesley, 2011.

[37] Network traffic traces. http://iptas.edu.cn/src/system.php. 2015.

41

http://iptas.edu.cn/src/system.php


[38] B. Xiong, K. Yang, F. Li, et al. The Impact of Bitwise Operators on Hash825

Uniformity in Network Packet Processing. International Journal of Commu-

nication Systems, 2014, 27(11): 3158-3184.

[39] C. Henke, C. Schmoll, T. Zseby. Empirical evaluation of hash functions

for multipoint measurements. ACM SIGCOMM Computer Communication

Review, 2008, 38(3): 41-50.830

[40] M. Molina, S. Niccolini, N.G. Duffield. A comparative experimental study of

hash functions applied to packet sampling. In: Proceedings of International

Teletraffic Congress (ITC-19), Beijing, 2005. 1-11.

42




