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Abstract: We develop a simple method for the estimation of quantile re-

gressions for corner solutions data (i.e., fully observed non-negative data that

have a mixed distribution with a mass-point at zero), focusing particular at-

tention on the case where the domain of the variate of interest is bounded

both from below and from above. We use the proposed method to study the

determinants of the extensive margin of trade and find that most regressors
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1. INTRODUCTION

Empirical researchers are often faced with the need to model non-negative data that

have a mixed distribution with a mass-point at zero. For example, data of this type

can arise as a consequence of censoring, and methods to produce valid inference in this

context are now well established (see, e.g., Wooldridge, 2002, and Cameron and Trivedi,

2005, for reviews). More frequently, however, data of this type are the result of the

existence of the so-called corner solutions (see Wooldridge, 2002). In this case the variate

of interest is fully observed but has a mixed distribution with a mass-point at zero, the

lower bound of its support. Data with these characteristics are ubiquitous in economics,

being often found in health economics (Duan, Manning, Morris and Newhouse, 1983),

international economics (Santos Silva and Tenreyro, 2006), finance (La Porta, López-de-

Silanes, and Zamarripa, 2003), and in many other areas.

Modelling corner solutions data poses particular problems and requires appropriate

inference tools. Wooldridge (2002) and Cameron and Trivedi (2005) provide several ex-

amples of methods that have been used to model this type of data. These methods

typically focus on the estimation of the conditional expectation of the variate of inter-

est, although in some cases likelihood-based methods are also used to model its entire

conditional distribution. In many practical situations, however, knowledge of the condi-

tional expectation may not be enough to fully understand how the covariates affect the

conditional distribution of interest, but the researcher may not be confident enough to

apply more informative but also more demanding likelihood-based methods. Therefore,

it is interesting to develop methods that can provide information on different features of

the conditional distribution of this type of data without requiring strong distributional

assumptions.

In this paper we develop a method to estimate conditional quantiles for corner solu-

tions data, focusing particular attention on the case where the domain of the variate of

interest is bounded both from below and from above.1 Although we borrow form the lit-

1Papke and Wooldridge (1996) is the leading reference on the estimation of the conditional expecta-
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erature on censored and non-linear quantile regression, the proposed approach is novel in

that it is the first time that quantile regression for this type of data is considered. Specif-

ically, we propose a simple non-linear specification of the conditional quantiles that is

compatible with the characteristics of doubly-bounded corner solutions data, show that

the parameters of interest can be estimated using a procedure that is easy to implement

using standard software, consider the asymptotic properties of the estimator, and dis-

cuss its practical implementation. More generally, with small adaptations the proposed

method can also be used to estimate both non-linear and censored quantile regressions,

and it is more flexible and easier to implement than many of the alternative approaches

currently available. The results of a set of simulation exercises suggest that the proposed

methods perform well in practice and, therefore, are likely to be useful in a wide variety

of empirical applications.2

We use the proposed methods to investigate the determinants of the extensive margin

of trade, a problem that has attracted a great deal of attention since the seminal work of

Hummels and Klenow (2005).3 Specifically, we estimate quantile regression models for

the extensive margin of trade defined as the number of sectors exporting from country

j to country i in year t. This kind of data typically has a mass-point at zero because

in most years there is a sizable proportion of countries that do not trade with many

potential partners. Moreover, besides the natural lower bound at zero, this variable is

tion for doubly-bounded data. Estimation of quantile regression for doubly-bounded data with possible

mass-points at the bounds was first considered by Machado and Santos Silva (2008). Liu and Bottai

(2009) and Bottai, Cai, and McKeown (2010) considered the simpler case without mass-points. See

Ramalho, Ramalho, and Murteira (2011) for a survey of other methods used to model doubly-bounded

data with and without mass-points.
2A Stata (StataCorp., 2013) command implementing the methods proposed here is available from

the authors on request.
3For example, Helpman, Melitz, and Rubinstein (2008), Chaney (2008), and Manova (2013), devel-

oped trade models that explicitly take into account the extensive margin. Examples of recent empirical

studies in this area include, among many others, Dutt, Mihov, and Van Zandt (2013), Kehoe and Ruhl

(2013), Santos Silva, Tenreyro, and Wei (2014), Feenstra and Ma (2014), and Eicher and Kuenzel (2016).
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also bounded from above by the number of categories in the particular classification

of economic activities that is used to define the sectors. The specific characteristics of

these data imply that the conditional distribution of the variate of interest (the number

of sectors) will often depend on the regressors in a complex way and, therefore, the

informational gains provided by quantile regressions (e.g., Koenker, 2005) are likely to

be particularly interesting in this context.

Our results suggest that there is a substantial degree of heterogeneity in the effect of the

covariates on the conditional distribution of the extensive margin, with most regressors

having a much larger impact on the upper tail of the distribution. This implies that

changes in the regressors result in changes in the conditional distribution that generally

are more pronounced in regions corresponding to pairs of countries that trade more than

pairs with similar observable characteristics.

The remainder of the paper is organized as follows. Section 2 details our approach to

the estimation of quantile regression for corner solutions data, and Section 3 presents the

results of simulation experiments illustrating the performance of the proposed methods.

In Section 4 we use the proposed method to study the determinants of the extensive

margin of trade. Finally, section 5 contains some brief concluding remarks.

2. QUANTILE REGRESSION FOR CORNER SOLUTIONS DATA

2.1. Specification

Estimation of quantile regression for corner solutions data is complicated by the fact

that the quantiles are not necessarily smooth functions of the regressors. For expository

purposes, we will consider mainly the case where y, the variate of interest, has support

on [0, 1] and a mass-point at zero; other cases can be handled in a similar fashion.

For data with a mass-point at zero, there are conditional quantiles that become iden-

tically zero for some values of the covariates. Specifically, for τ ∈ (0, 1), the τ -th condi-
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tional quantile of y given x has the form

Qy (τ |x) = 1 (τ > Pr (y = 0|x))Qy

(
τ − Pr (y = 0|x)

1− Pr (y = 0|x)

∣∣∣∣x, y > 0

)
, (1)

where 1 (e) is the indicator function of event e and x is a vector of covariates.4 Therefore,

in general, Qy (τ |x) is not strictly increasing in τ and x, and is not a smooth function,

possibly having a “corner” at Pr (y = 0|x) = τ . This suggests that in the case where y

has support on [0, 1] and a mass-point at zero the conditional quantiles of y will have

the form

Qy (τ |x) = max {0, h (x, θ)} , (2)

where h (x, θ) is a function such that h (x, θ) < 1.

The choice of h (x, θ) is naturally an empirical matter but, in the spirit of Papke and

Wooldridge (1996), we suggest the following specification:

h (x, θ) = (1 + γ) Λ (x′β)− γ, (3)

where Λ (x′β) denotes a cumulative distribution function, γ is an unknown shape param-

eter, and θ = (β, γ).5 The shape parameter γ adds some flexibility to the specification

of Qy (τ |x); for example, if Λ (x′β) is the cumulative distribution function of a random

variable symmetrically distributed around 0, the positive part of the quantiles will be

s-shaped for −1 < γ < 1, and concave for γ > 1.6 In what follows, we will consider only

the case where Λ (x′β) = exp (x′β) [1 + exp (x′β)]−1, but naturally this function can take

much more flexible forms (see, e.g., Aranda-Ordaz, 1981).

The specification in (2) is reminiscent of the model considered by Powell (1984, 1986)

for the case of zero-censored linear quantile regression. This similarity results from the

fact that zero-censored data also have a mixed-distribution with a mass point at zero.

However, it is important to note that in the case considered by Powell (1984, 1986) the

mass-point is the result of censoring and the latent variate of interest is assumed to have

4See Buchinsky and Hahn (1998) for a related result in the context of censored quantile regression.
5As usual, θ depends on τ but we do not make that explicit to simplify the notation.
6Although we do not impose that restriction, (3) is only interesting for γ > −1.
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an absolutely continuous distribution; this implies that h (x, θ) is always interpreted as

an estimate of the relevant quantile, even when h (x, θ) < 0. In contrast, in the case we

are considering the distribution of y is not censored and the mass-point is an important

feature of the distribution of the variate of interest, which is fully observable. In this

case, the form of h (x, θ) is meaningless in regions where h (x, θ) < 0.

Naturally, other specifications of h (x, θ) can be considered, and other types of data

will require different specifications of this function. For example, Machado and Santos

Silva (2008) consider the case where y has support on [0, 1] with a mass-point at 1, or

mass-points both at 0 and 1. For data with support on [0,∞) we can specify h (x, θ) =

exp (x′β)− γ, or simply h (x, θ) = x′β, as in Powell (1984, 1986).

2.2. Estimation

The basic intuition for the estimator we will use is as follows; see Koenker and Bas-

sett (1978) and Koenker (2005) for details. Under suitable regularity conditions,7 the

assumption that for a given τ ∈ (0, 1) there exist a p× 1 vector θ0 = (β0, γ0) such that

Qy(τ |x) = max {0, h (x, θ0)} ,

implies that θ0 is the sole solution of

min
θ∈Θ

E [ρτ (y −max {0, h (x, θ)})] , (4)

where the parameter space Θ ⊂ Rp is compact and ρτ (z) = z [τ − 1(z < 0)]. Then, for

an i.i.d. sample {yi, x′i}
n
i=1, the estimator will be defined by the analogue of (4), which is

given by θ̂ = arg min
θ
S (θ), with

S (θ) =
1

n

∑n

i=1
ρτ (yi −max {0, h (xi, θ)}) . (5)

7In particular, identification requires that the matrices D0 and D1 in condition C3 below are non-

singular and finite. In practice, identification depends on the curvature of Λ (x′β): if the data are such

that h (x, θ) is essentially linear, identification will be difficult. Moreover, max {0, h (x, θ)} needs to be

positive for a sufficiently large number of observations for θ to be identified.
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Therefore, estimation of θ is a non-convex and non-linear quantile regression problem

which has as a special case the usual censored quantile regression estimator (Powell,

1984, 1986) when h (x, θ) is linear and the mass-point at zero is the result of censoring.

Due to the non-convex and non-linear nature of the problem, minimization of (5)

cannot be implemented using the linear programming methods typically used for quantile

regression estimation, and a number of alternative approaches have been proposed for

related problems.8 Machado and Santos Silva (2008) proposed a method to minimize (5)

based on a grid search over γ and on the repeated application of the elegant three-step

estimator of Chernozhukov and Hong (2002). However, this algorithm does not work

in the application we consider in Section 4 because in the initial sub-sample it is not

possible to identify the coefficients of all the regressors, and therefore it is not possible

to select the observations to use in the next step. More generally, popular algorithms

based on estimation of quantile regressions in a sequence of subsamples (e.g., Buchinsky,

1994, and Chernozhukov and Hong, 2002) are likely to fail in applications where the

dependent variable has many zeros and the model contains a large number of dummies.

To avoid this problem, here we use a much simpler approach motivated by Koenker’s

(2008) observation that the popular BRCENS algorithm for the estimation of censored

quantile regression (Fitzenberger, 1997a) can be seen as the direct minimization of (5)

using the steepest descent algorithm.9 We, therefore, follow a similar approach and

obtain θ̂ by direct minimization of (5) using the well-known BFGS (Broyden–Fletcher–

Goldfarb–Shanno) algorithm.

There are a number of reasons to use the BFGS method in place of the steepest

descent algorithm used by Fitzenberger (1997a). First, the BFGS algorithm is known

to generally perform better than the simpler steepest descent method (see, e.g., Judd,

1988). More importantly, the recent results of Lewis and Overton (2013) show that the

BFGS algorithm works well even in non-smooth and non-convex problems such as the

8See, e.g., Buchinsky (1994), Koenker and Park (1996), Buchinsky and Hahn (1998), Chernozhukov

and Hong (2002), and the survey by Koenker (2008).
9Naturally, Fitzenberger’s (1997a) algorithm is for the case where h (x, θ) = x′β.
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one we consider here. Last but not the least, the BFGS approach is easily available to

practitioners because it is implemented in popular software packages such as TSP (Hall

and Cummins, 2009) and Stata (StataCorp., 2013).

Naturally, there is no guarantee that minimization of (5) using the BFGS algorithm

will lead to the global minimum of the objective function and therefore it is important

to choose a suitable set of starting values for θ. In the next section we describe a simple

method to obtain starting values and report simulation results which suggest that the

proposed approach works rather well in practice.10

2.3. Inference

The consistency of the estimator obtained by minimizing (5) follows directly from the

usual results on the estimation of non-linear quantile regression (see Oberhofer, 1982,

Koenker, 2005, and the references therein). The conditions needed to establish the

asymptotic normality of the estimator can also easily be obtained from those given by

Koenker (2005). Indeed, for the particular problem we are considering, we can essentially

maintain conditions G1 and G2 in Koenker (2005, p. 124) and we only need to make

a small modification to condition A1 (Koenker, 2005, p. 120). Below we spell out the

necessary regularity conditions using the notation of this paper.

Let y1, y2,. . . be independent random variables with conditional distribution functions

F1, F2,. . . with support on [0, 1], and define Qyi(τ |xi) = gi (θ), with 0 ≤ gi (θ) < 1.

Additionally we assume that the following regularity conditions hold almost surely:

C1: The conditional distribution functions {Fi} are absolutely continuous in the interval

(0, 1), with continuous conditional densities fi uniformly bounded away form 0 and

∞ at any point with gi (θ) > 0.

C2: There exist constants k1, k2, and n0, such that for θ1, θ2 ⊂ Θ and n > n0,

k1 ‖θ1 − θ2‖ ≤
(
n−1

∑n

i=1
(gi(θ1)− gi(θ2))2

)1/2

≤ k2 ‖θ1 − θ2‖ .

10Bottai, Orsini, and Geraci (2015) also find that a gradient-based algorithm performs well in a closely

related problem.
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C3: There exist positive definite matrices D0 and D1 such that,

(a) limn→∞ n
−1
∑

ġi 6=0 (τ − 1 (yi < gi (θ)))
2 ġiġ

′
i = D0,

(b) limn→∞ n
−1
∑

ġi 6=0 fi (gi (θ)) ġiġ
′
i = D1,

(c) max
i=1,...,n

‖ġi‖ /
√
n→ 0,

where ġi = ∂gi (θ) /∂θ|θ=θ0 .

Condition C1 is similar to condition A1 in Koenker (2005), the difference being that

we assume Fi to be absolutely continuous only in the interval (0, 1) and we require fi to

exist only for the points where gi (θ) > 0. This is done to allow for the fact that Fi has

a mass-point at zero and has no practical consequences because (1) implies that ġi = 0

when gi (θ) = 0, and therefore the form of D1 in C3(c) is unaffected by the existence

of the mass-point.11 Conditions C2 and C3 parallel conditions G1 and G2 in Koenker

(2005), the only difference being that in C3(a) we follow Chamberlain (1994), Kim and

White (2003), and Angrist, Chernozhukov and Fernandez-Val (2004) and do not assume

that E
[
(τ − 1 (yi < gi (θ)))

2 |xi
]

= τ (1− τ).12

Under these conditions it is possible to show that (see, Powell, 1984, 1986, Koenker

2005, and the references therein)

√
n
(
θ̂ − θ0

)
d→ N (0,Ω)

with Ω = D−1
1 D0D

−1
1 .

11It is interesting to notice that in the case of censored quantile regression the problems created by

the existence of the mass-point at zero are side-stepped by imposing conditions on the distribution of

the unobserved latent dependent variable (see Powell, 1984, 1986), something that is not possible in

the case we are considering. Powell’s (1984, 1986) approach is valid because, again, the density of the

dependent variable is only needed for the observations where the quantile of the observable data is not

identically zero.
12Following Parente and Santos Silva (2016), it is easy to modify these conditions to allow for clus-

tering. That is done in the empirical application in Section 4.
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2.4. Implementation issues

In practice, it is necessary to find an estimator for Ω. Following the pioneering work of

Buchinsky (1995), one possibility is to estimate Ω using an appropriate bootstrap proce-

dure. However, if the problem at hand is large, using the bootstrap may be impractical

and therefore it is interesting to have an alternative way of estimating Ω.

Let ĝi = gi

(
θ̂
)

and ̂̇gi = ∂gi (θ) /∂θ|θ=θ̂. Then, following Powell (1984), Chamberlain

(1994), Kim and White (2003), and Angrist, Chernozhukov and Fernandez-Val (2004),

D0 can be consistently estimated by

D̂0 = n−1
∑

̂̇gi 6=0
(τ − 1 (yi < ĝi))

2 ̂̇gî̇g′i,
whereas, for an appropriately defined kernel K (·) and smoothing parameter δn,

D̂1 =
1

nδn

∑
̂̇gi 6=0

K

(
yi − ĝi
δn

)̂̇gî̇g′i
is a consistent estimator of D1. Therefore, D̂−1

1 D̂0D̂
−1
1

p→ Ω. In the reminder of this

section we consider the choice of K (·) and δn.

To accommodate censored data, Powell (1984) uses a one-sided rectangular kernel in

the estimation of D̂1. In the case we consider here this approach is not valid because it

does not account for the upper-bound in the support of y. As an alternative, we use the

standard symmetric rectangular kernel with a variable bandwidth of the type considered

by Dai and Sperlich (2010). This ensures that the kernel puts non-zero weight only on

points where Fi is absolutely continuous and fi > 0. In particular, in the spirit of Dai

and Sperlich (2010), we set δn = min
{
ĝi, 1− ĝi, δGlobaln

}
, where δGlobaln is defined using

the method described in Koenker (2005, p. 81).13 Specifically, using Φ (·) and φ (·) to

denote the normal distribution and density functions, we set

δGlobaln = κ
[
Φ−1 (τ + dn)− Φ−1 (τ − dn)

]
,

13Notice that this approach is valid when y has domain [0, 1], whether or not there are mass-points

at any or at both boundaries.
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where dn is (see Koenker, 2005, p. 140)

dn = n−1/3

(
Φ−1

(
1− 0.05

2

))2/3
(

1.5 (φ (Φ−1 (τ)))
2

2 (Φ−1 (τ))2 + 1

)1/3

,

and κ is a robust estimate of scale. Both in the simulations described in the next

section and in the models for the extensive margin of trade presented in Section 4, we

set κ = MAD, where MAD denotes the median absolute deviation of the τ -th quantile

residuals yi − ĝi.

3. SIMULATION EVIDENCE

In this section we report the results of a simulation study providing evidence on the

performance of the methods described in Section 2. Data for these simulations were

generated as

yi = max {0, gi (θ) + ui} , i = 1, . . . , n,

with

gi (θ) = max

{
0, (1 + γ)

exp (β0 + β1x1i + β2x2i)

1 + exp (β0 + β1x1i + β2x2i)
− γ
}
,

and

ui = 0.1(1− gi (θ))(εi − Φ−1 (τ)),

where x1i and εi are obtained as independent draws from a standard normal distri-

bution, and x2i is obtained as independent draws from a Bernoulli distribution with

Pr (x2i = 1) = 0.2. That is, the disturbance ui has an heteroskedastic normal distribu-

tion with Qui (τ) = 0, and therefore Qyi (τ |x1i, x2i) = gi (θ). The values of x1i, x2i, and εi

are drawn independently for each of the 10000 replicas of each experiment, and in all cases

we set β0 = β1 = β2 = −1; we performed experiments with n ∈ {250, 1000, 4000, 16000},

τ ∈ {0.25, 0.50, 0.75}, and γ ∈ {0.1, 0.3}.14

14The parameter γ controls the proportion of observations for which g (τ , xi, θ) = 0; with this design,

this proportion is approximately 15% for γ = 0.1 and 50% for γ = 0.3.
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In each replica, θ was estimated by minimizing (5) using the BFGS algorithm as

implemented in the ml command in Stata (StataCorp., 2013); the default options were

used for the maximum number of iterations and for the convergence criteria.15 In all cases

the starting value of γ is set to zero, so that the initial values of gi (θ) are always positive;

the starting values of the other parameters were obtained as the estimates obtained in

the τ -th quantile regression of ln(yi/(1− yi)) on the regressors, for the observations with

yi > 0.

A first issue that has to be considered in this kind of problem is the ability of the

algorithm to converge (see, e.g., Fitzenberger, 1997b). Table 1 reports the percentage

of replicas where convergence was not achieved for each of the 24 cases considered. Re-

markably, convergence was achieved in at least 99.91% of the replicas, with the algorithm

being particularly successful for the larger samples. Naturally, if in a particular appli-

cation it is not possible to obtain convergence with this approach, there are a number

of aspects of the algorithm that can be modified. For example, a grid search over γ

can be used to obtain better starting values, and we also had good results using the

Davidon–Fletcher–Powell algorithm in the first few iterations before switching to the

BFGS.

Table 1: Percentage of cases where convergence was not achieved

γ = 0.1 γ = 0.3

n τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.25 τ = 0.50 τ = 0.75

250 0.05 0.02 0.05 0.08 0.03 0.09

1000 0.02 0.00 0.02 0.02 0.04 0.06

4000 0.01 0.00 0.00 0.00 0.00 0.00

16000 0.00 0.00 0.00 0.00 0.00 0.00

15The simulations were performed in Stata 13 (StataCorp. 2013) but version control was used to run

the code as in Stata 11. This is needed because from Stata 12 the convergence criteria for the BFGS

algorithm uses the Hessian of the objective function.
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Table 2 displays the biases and standard errors (in parentheses) of the estimates ob-

tained in the replicas where convergence was achieved.16 Overall, the biases are relatively

small, even for n = 250 and for the cases where γ = 0.3 (in which the quantiles are equal

to 0 for about 50% of the sample). Also, as could be expected, the standard errors go

Table 2: Biases and standard errors

γ = 0.1 γ = 0.3

n τ β0 β1 β2 γ β0 β1 β2 γ

250 0.25 −0.010 −0.007 −0.011 0.002 −0.065 −0.031 −0.032 0.005

(0.188) (0.080) (0.140) (0.057) (0.398) (0.130) (0.190) (0.195)

0.50 −0.008 −0.006 −0.009 0.001 −0.051 −0.025 −0.028 0.005

(0.169) (0.072) (0.126) (0.049) (0.365) (0.119) (0.176) (0.171)

0.75 −0.006 −0.006 −0.010 0.003 −0.098 −0.046 −0.051 −0.004

(0.178) (0.077) (0.135) (0.052) (0.425) (0.150) (0.214) (0.195)

1000 0.25 −0.001 −0.001 −0.002 0.001 −0.005 −0.004 −0.005 0.004

(0.092) (0.039) (0.067) (0.026) (0.192) (0.061) (0.089) (0.081)

0.50 −0.001 −0.001 −0.002 0.001 −0.004 −0.003 −0.004 0.004

(0.084) (0.036) (0.061) (0.024) (0.174) (0.057) (0.081) (0.072)

0.75 −0.002 −0.002 −0.003 0.001 −0.013 −0.007 −0.008 0.002

(0.089) (0.038) (0.066) (0.025) (0.197) (0.064) (0.091) (0.081)

4000 0.25 0.001 0.000 0.000 0.000 0.000 −0.001 0.000 0.001

(0.044) (0.019) (0.033) (0.012) (0.092) (0.030) (0.043) (0.037)

0.50 0.000 0.000 0.000 0.000 0.000 0.000 −0.001 0.001

(0.041) (0.017) (0.030) (0.011) (0.083) (0.027) (0.039) (0.034)

0.75 −0.001 0.000 −0.001 0.000 −0.001 −0.001 −0.001 0.001

(0.045) (0.019) (0.033) (0.013) (0.091) (0.030) (0.043) (0.036)

16000 0.25 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(0.022) (0.009) (0.016) (0.006) (0.045) (0.015) (0.021) (0.018)

0.50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(0.020) (0.009) (0.015) (0.006) (0.041) (0.013) (0.019) (0.016)

0.75 0.000 0.000 0.000 0.000 −0.001 0.000 −0.001 0.000

(0.022) (0.009) (0.016) (0.006) (0.045) (0.015) (0.021) (0.018)

16In some of the experiments with γ = 0.3 and n ∈ {250, 1000}, β2 is not identified because x1 is

equal to 1 only when the estimated quantile is 0. In Tables 2 and 3, the results for β2 are only for the

cases where this parameter was identified.
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down approximately by a factor of 2 when the sample size increases by a factor of 4.

These results are particularly encouraging because they suggest that, although there is

no guarantee that the proposed estimation algorithm converges to the global minimum

of (5), that does not seem to have an adverse impact on the estimation results.

Finally, Table 3 reports the rejection frequencies at the 5% level of the null hypotheses

that the parameters are equal to their true values. These tests were based on standard t-

statistics, computed from estimates of the covariance matrix obtained using the method

described in Subsection 2.4. The results in Table 3 show that the tests for the βs

generally have good size,17 even for the smaller sample and with γ = 0.3. In contrast,

the t-tests for γ are oversized for n ∈ {250, 1000}, especially when γ = 0.3. For the

larger samples, however, all the tests perform quite well. These results suggest that

for relatively small samples it may be advisable to perform inference based on p-values

computed by bootstrapping these test statistics; for moderately large samples, where the

Table 3: Rejection frequencies at the 5% level

γ = 0.1 γ = 0.3

n τ β0 β1 β2 γ β0 β1 β2 γ

250 0.25 0.068 0.042 0.055 0.106 0.079 0.042 0.047 0.143

0.50 0.057 0.033 0.047 0.085 0.056 0.027 0.041 0.116

0.75 0.057 0.036 0.060 0.082 0.091 0.055 0.065 0.156

1000 0.25 0.065 0.050 0.057 0.080 0.057 0.044 0.058 0.079

0.50 0.063 0.045 0.050 0.076 0.052 0.036 0.047 0.071

0.75 0.059 0.046 0.057 0.071 0.067 0.051 0.062 0.089

4000 0.25 0.053 0.049 0.056 0.057 0.054 0.049 0.051 0.064

0.50 0.055 0.046 0.054 0.063 0.047 0.043 0.048 0.053

0.75 0.065 0.058 0.057 0.066 0.054 0.049 0.057 0.061

16000 0.25 0.051 0.051 0.048 0.055 0.054 0.052 0.048 0.054

0.50 0.054 0.053 0.053 0.056 0.050 0.047 0.051 0.052

0.75 0.057 0.055 0.052 0.058 0.054 0.051 0.056 0.057

17Following Cochran (1952), the test is considered to have good size when its actual size is between

4% and 6%. Given the number of replications performed, the test is considered to have good size if the

rejection frequencies are between 0.036 and 0.065.
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bootstrap may be too costly, the usual p-values computed from the asymptotic distribu-

tion are likely to be reasonably reliable.

Overall, the results of these simulations are quite encouraging and suggest that the

proposed approach is likely to work well in a variety of cases, even when the percentage

of corner solution observations is substantial.

4. QUANTILES FOR THE EXTENSIVE MARGIN OF TRADE

The last decade has seen a rapid increase in the attention devoted to the study of the

extensive margin of trade.18 There are several reasons for this.

First, it has been recognized that the extensive margin has had a substantial contri-

bution to the expansion of international trade (see, e.g., Hummels and Klenow, 2005,

and Kehoe and Ruhl, 2013). Second, it has been noted that the explanatory variables

traditionally considered in trade models may have very different impacts on the exten-

sive and intensive margins of trade (see, e.g., Lawless, 2010, Hillberry and Hummels,

2008, and Dutt, Mihov, and Van Zandt, 2013). Third, the increase in the variety of im-

ported goods has been associated to increased welfare in the importing country (see, e.g.,

Romer, 1994, Broda and Weinstein, 2006, and Ardelean and Lugovskyy, 2010). Finally,

and perhaps more importantly, diversification of exports has been linked to increases in

productivity and more rapid growth (see, e.g., Feenstra et al., 1999, Feenstra and Kee,

2008, and Eicher and Kuenzel, 2016). In fact, in a model with heterogeneous firms à la

Melitz (2003), exporting opportunities in new sectors will drive up factor prices forcing

less productive firms to exit the market; this “natural selection” process leads to higher

average productivity and more rapid growth. This link between diversification of ex-

ports and increased productivity and growth has been shown to be empirically relevant,

at least for certain groups of countries (see, e.g., Feenstra and Kee, 2008, and Eicher

and Kuenzel, 2016). Therefore, trade facilitating policies that contribute to the

18The origins of this literature can be traced back to the work of Krugman (1979) and Melitz (2003).
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diversification of exports are seen as important tools in promoting growth and develop-

ment (see, e.g., Dennis and Shepherd, 2011, and Feenstra and Ma, 2014).

The definition of the extensive margin of trade depends on the nature of the data

that are available. Here we will consider the so-called sector margin, defined as the

number of sectors exporting from origin country j to a destination country i in year

t, with the sectors being defined by the 1996 revision of the Harmonized Commodity

Description and Coding System at the 6-digit level, which has 5132 categories. This

choice is motivated both by the availability of this kind of data and by the fact that at

this level of aggregation the sector margin is reasonably informative about the diversity

of the export flows.19 Similar definitions of the extensive margin have been used, among

others, by Hillberry and McDaniel (2002), Dennis and Shepherd (2007, 2011), Dutt,

Mihov, and Van Zandt (2013), Santos Silva, Tenreyro, and Wei (2014), and Eicher and

Kuenzel (2016).20

Santos Silva, Tenreyro, and Wei (2014) considered different models for the sector

margin, but focused on the estimation of the conditional expectation of the variate of

interest. However, because the data have a lower and an upper bound, and also a

large percentage of zeros, the conditional expectation necessarily provides an incomplete

picture of how the regressors affect the conditional distribution of interest. It is, therefore,

19There are two important points to make about the use of this definition of the extensive margin.

First, strictly speaking, the dependent variable is discrete but given the large number of support points

of its distribution this is immaterial. Second, naturally the results will depend on the level of aggregation

of the data that are used. Specifically, the use of more aggregated data may hide important relations

because quantiles of a coarser dependent variable will be less sensitive to changes in the regressors (this

point is discussed in detail in Machado and Santos Silva, 2005). Therefore, the quantiles for the sector

margin should be estimated using data that are as disaggregated as possible.
20Other definitions of the extensive margin have been used in empirical studies. For example, Hillberry

and Hummels (2008) work at the shipment level, Eaton, Kortum, and Kramarz (2004), and Buono and

Lalanne (2012) work at the firm level, and Helpman, Melitz, and Rubinstein (2008) consider data at

the country level. See Lawless (2010) for a discussion of other definitions of the extensive margin.
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interesting to see how trade frictions affect different regions of this conditional distribu-

tion, and quantile regression offers a flexible and practical way of doing that.

In this section we use data on sectoral exports from UN Comtrade for the years 1999-

2001 to estimate quantile regression models for the number of sectors exporting from

origin country j to a destination country i in year t. For estimation purposes we focus

on the percentage of sectors exporting from j to i in t, denoted Sijt, which is bounded

between 0 and 1. In particular, in our sample, Sijt varies between 0 and 0.99 with about

50% of the 137634 observations being equal to 0.21

Table 4 provides the definition of the regressors used, which were mainly obtained

from CIA’s World Factbook and CEPII; all the models also include yearly importer

and exporter dummies, the multilateral resistance terms suggested by Anderson and van

Wincoop (2003).22 See Santos Silva, Tenreyro, and Wei (2014) for further details on the

data, including their sources.

Table 5 presents parameter estimates and corresponding standard errors for different

quantiles of Sijt given xijt, whose functional form is given by (2) and (3).23 Additionally,

the table reports the value of the objective function evaluated at the estimates, and an R2

defined as the square of the correlation between Sijt and the fitted values of QSijt
(τ |xijt).

21Some of the observed zeros may be the result of underreporting and therefore may not correspond

to zero trade flows. Quantile regression should be less sensitive to this problem than other methods

commonly used in empirical work. Indeed, for observations with the τ -th conditional quantile above

the true (unobserved) value of trade, the rounding to zero will not affect the location of the conditional

quantile. Likewise, the existence of underreporting will not shift the conditional quantile for observations

where the true probability mass at zero is at least equal to τ . Therefore, the rounding towards zero

will only be a problem for observations where the τ -th conditional quantile is between zero and the true

(unobserved) value of trade.
22Non-linear models with importer and exporter dummies can suffer from a subtle form of the inciden-

tal parameter problem (Hahn and Newey, 2004). When this happens, the consistency of the estimator

is not affected, but standard hypotheses tests and confidence intervals may be invalid. We investigated

this problem in numerous simulation experiments and found that in this context the standard t-test for

the null hypothesis that the parameter is zero has the desired size.
23The standard errors are clustered by country pair, see Parente and Santos Silva (2016) for details.
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Given the nonlinearity of the models, the estimates of β reported in Table 5 are

not directly comparable across quantiles, but the estimates of γ for different values

of τ provide interesting information. In particular, for τ = 0.90 the estimated value

of γ is close to zero, suggesting that QSijt
(0.9|xijt) is positive for most observations.

Indeed, in the sample, the estimated value of QSijt
(0.9|xijt) equals zero for only 32%

of the observations. The estimates of γ increase as τ goes down, reflecting the fact

that lower quantiles become flat at zero for smaller values of x′ijtβ; the estimated values

of QSijt
(0.5|xijt) and QSijt

(0.1|xijt) are equal to zero for about 72% and 87% of the

observations, respectively.

Table 4: Definition of the regressors∗

Log distance Natural logarithm of distance between capitals (in kilometers)

Border Dummy equal to 1 when the countries share a land border

Both islands Dummy equal to 1 if neither country has land borders

Both landlocked Dummy equal to 1 if both countries are landlocked

Colonial tie Dummy equal to 1 either if the importer has ever colonized or

been a colony of the exporter or if the two countries were once

part of the same country

Common currency Dummy equal to 1 if either both countries use the same

currency or if the exchange rates between their currencies is

fixed

RTA Dummy equal to 1 if the countries are at least in one common

regional trade agreement

Common language Dummy equal to 1 if the countries share an official language

Both WTO Dummy equal to 1 if the countries are members of the WTO

Religion Sum of the products of the shares of the population in each of

the partners that are Catholic, Muslim, or Protestant

∗All models also include yearly importer and exporter dummies; see Santos Silva, Tenreyro, and Wei
(2014) for further details on the data.
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Table 5: Parameter estimates (and standard errors)

τ = 0.10 0.30 0.50 0.70 0.90

Log distance −0.6045 −0.6706 −0.8023 −0.9212 −0.9974

(0.0210) (0.0197) (0.0233) (0.0189) (0.0281)

Border 0.2400 0.3004 0.6639 0.6637 0.8258

(0.0798) (0.0834) (0.0799) (0.0845) (0.1631)

Both islands 0.1212 0.1153 0.1447 0.2252 0.5343

(0.1159) (0.0736) (0.0764) (0.0662) (0.3462)

Both landlocked −0.0697 0.0148 0.0276 0.1197 0.2583

(0.2102) (0.0781) (0.0970) (0.1548) (0.0979)

Colonial tie 0.3977 0.5176 0.6832 0.8144 1.0810

(0.0689) (0.0479) (0.0719) (0.1030) (0.0812)

Common currency 0.0014 −0.0608 −0.0653 0.0115 0.2346

(0.0627) (0.0563) (0.0653) (0.1441) (0.0618)

RTA 0.1791 0.1694 0.1321 0.1025 0.0906

(0.0391) (0.0362) (0.0383) (0.0397) (0.0499)

Common language 0.3099 0.3684 0.3901 0.4508 0.5446

(0.0571) (0.0336) (0.0439) (0.0463) (0.0448)

Both WTO 0.0686 0.0465 0.2093 0.5099 0.4516

(0.1047) (0.0743) (0.0965) (0.1056) (0.1455)

Religion 0.1184 0.1682 0.1604 0.2344 0.3400

(0.0489) (0.0488) (0.0518) (0.0424) (0.0675)

γ 0.0265 0.0149 0.0061 0.0026 0.0006

(0.0021) (0.0009) (0.0003) (0.0002) (0.0002)

Objective function 163.8245 391.6722 510.9052 503.3544 298.5422

R2 0.8704 0.8998 0.9149 0.9182 0.8878

Table 6 presents the average across the entire sample of the partial effects on

Q5132×Sijt
(τ |xijt) of each of the regressors; these partial effects allow us to compare the

effects of the regressors on different quantiles.24 As usual, for the continuous variables

(Log distance and Religion) the partial effects are computed as the derivatives of

24Notice that, to facilitate their interpretations, the partial effects are measured in numbers of sectors.
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the estimate of Q5132×Sijt
(τ |xijt) with respect to the regressors (notice that the derivative

is with respect to log distance, not distance itself), while for the dummy variables the

partial effect is defined as the difference between the estimate of Q5132×Sijt
(τ |xijt) with

the dummy equal to 1 and with the dummy equal to 0.25

Before looking in more detail into the results in Table 6, it is important to be clear

about their interpretation. First, it is important to keep in mind that we report aver-

age partial effects and that the actual partial effect for a given country-pair in a given

year can be very different from the average values reported in Table 6. Second, these

partial effects should not be confused with the total effects of the regressors in general

equilibrium (see Egger et al., 2011, for an interesting discussion of this issue). Third,

we emphasize that we are estimating conditional quantiles and not a structural model.

This is important because some of the regressors we consider are sometimes treated as

endogenous variables (see, e.g., Baier and Bergstrand, 2004 and 2007, Egger, Egger, and

Greenaway, 2008, Egger et al., 2011, and Baier, Bergstrand, and Feng, 2014) but, by

definition, all regressors are weakly exogenous with respect to the parameters of con-

ditional quantiles and conditional expectations.26 Therefore, our results have a precise

and interesting interpretation, but should not be seen as causal. Finally, we believe that

it is interesting to interpret these quantile regression results in the context of the “dark

trade costs” discussed by Head and Mayer (2013), who emphasize the effect on trade

of historical factors such as differences in tastes and the legacy of colonial relations and

past conflicts.27 In particular, we can view the dispersion of the values of Sijt for a

25In interpreting these results, it is important to keep in mind that QSijt
(τ |xijt) is a function of τ .

Therefore, in general, a variable with the same effect for all of the quantiles will have a proportional

effect that declines with τ . Computing proportional effects in this context is not particularly informative

because QSijt
(τ |xijt) can be equal to zero.

26See Goldberger (1991, pp. 338-41) for a discussion of this issue in the least squares context.
27More generally, we can consider as “dark costs” all the factors that affect trade and are not explicitly

considered as regressors. For example, in the case of the sector margin, an important dark cost is the

similarity of the pattern of specialization of the partners; this certainly contributes to the relatively low

values of Sijt that are observed when both partners border the Persian Gulf.
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given value of regressors as resulting from variations in the unobservable “dark costs”.

Therefore, we can interpret the results for the upper quantiles as describing how the

regressors affect the conditional distribution of Sijt for pairs of countries with relatively

small unobservable trade costs and, conversely, results for the lower quantiles as describ-

ing how the regressors affect the conditional distribution for pairs with relatively large

dark costs.

The results in Table 6 show that the average impact of most regressors on the upper

tail of the distribution is much stronger than their average impact on the lower tail; that

is, the effect of the regressors tends to be stronger when the dark costs are smaller. The

main exception to this pattern is the effect of RTA, which is remarkably stable across

different parts of the distribution. The stability of this effect is somewhat surprising and

it would be interesting to investigate why the pattern of the effect of RTA is so different

from that of other regressors.28

One of the regressors with a very heterogeneous effect is Both WTO. In a recent

paper, Dutt, Mihov, and Van Zandt (2013) studied the effect of WTO membership on

the two margins of trade and found that it has a large positive impact on the extensive

margin defined at the sector level (cf. Felbermayr and Kohler, 2010, and Buono and

Lalanne, 2012). The results in Table 6 show that WTO membership shifts upwards the

upper tail of the conditional distribution of the sector margin, but it does not seem to

affect the lower tail of the distribution. The heterogeneous effect of WTO membership

on the conditional distribution of Sijt is in line with the results of Subramanian and

Wei (2007), who found that the impact of WTO membership has been strong but very

uneven.

Perhaps the most striking result in Table 6 relates to the effect of sharing a common

currency. Indeed, our results indicate that sharing a common currency will not affect

most of the conditional distribution of the sector margin, but nevertheless having a

28See Egger et al. (2011), Baier, Bergstrand, and Feng (2014), and Dai, Yotov, and Zylkin (2014) for

recent results on the effects of free trade agreements.
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common currency has a positive effect on the very top of the distribution.29 De Sousa

Table 6: Average partial effects on Q5132×Sijt
(τ |xijt) (and standard errors)

τ = 0.10 0.30 0.50 0.70 0.90

Log distance −40.9041 −52.8695 −69.2165 −90.8424 −126.6567

(2.5042) (3.1713) (2.0634) (4.0717) (19.4864)

Border 17.5356 25.8398 68.2004 77.1764 127.3760

(7.2854) (7.6543) (9.7592) (11.9511) (35.7227)

Both islands 8.5229 9.4013 12.9777 23.4866 76.5765

(8.5736) (6.1678) (7.1068) (7.3798) (56.5755)

Both landlocked −4.6117 1.1720 2.4010 12.1682 34.8511

(13.6249) (6.2091) (8.4942) (16.3102) (15.0411)

Colonial tie 30.4533 47.3377 70.4927 98.2676 176.8734

(7.7672) (4.8199) (8.8614) (15.2130) (32.8242)

Common currency 0.0938 −4.7059 −5.5289 1.1389 31.5399

(4.2464) (4.2649) (5.4377) (14.2900) (9.9439)

RTA 12.7087 13.9236 11.7481 10.3435 11.7386

(3.8074) (3.1143) (3.5053) (4.1272) (6.7782)

Common language 22.6517 31.5320 36.3913 48.3441 75.9622

(6.7223) (3.2211) (4.4689) (5.7433) (13.1991)

Both WTO 4.5932 3.6427 17.6716 48.3787 56.0211

(6.6352) (5.8051) (8.0220) (10.2206) (18.4772)

Religion 8.0087 13.2624 13.8368 23.1154 43.1697

(3.8131) (3.9385) (4.5007) (4.3285) (10.7032)

(2012) has noted that since 1999 the impact of currency unions on trade is minimal,

and therefore it is not entirely surprising to find that sharing a common currency has

little impact on the conditional distribution of the product margin. However, our results

suggest that the common currency dummy has some effect on the upper tail of the

29A similar pattern is observed for Both landlocked.
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distribution.30 The fact that the effect is concentrated on the upper tail is in line with

the findings of Costa-i-Font (2010) who reports that, for the particular case of the euro,

the effect of the common currency on trade is stronger in regions that are more open to

trade.31 This set of results on the heterogeneous effect of sharing a common currency

suggests that the impact of currency unions on trade is rather complex, and more research

is needed to fully understand the channels through which this effect takes place.32

In summary, our results imply that observable trade frictions have very heterogeneous

effects on the conditional quantiles of the extensive margin of trade defined at the sector

level. In particular, we find that changes in the regressors result in changes in the

conditional distribution that are generally more pronounced in regions corresponding to

pairs of countries that trade more than pairs with similar observable characteristics. That

is, the effects of changes in observable trade frictions are generally stronger in regions

corresponding to pairs of countries with low levels of dark trade costs. The intensity

of this pattern, however, varies considerably across regressors and further research is

needed to explain these differences.

5. CONCLUDING REMARKS

Corner solutions data are often found in empirical applications and their analysis

typically requires specialized tools. In particular, estimation of quantile regressions for

this kind of data cannot be performed using standard specifications and corresponding

estimators because the conditional quantiles of corner solutions data are identically zero

for some observations.

30Santos Silva, Tenreyro, and Wei (2014) find that the common currency dummy also impacts the

conditional expectation of the percentage of sectors exporting from j to i, and that this impact is

particularly important in regions where the conditional mean is in the upper tail of the distribution.
31In their well-known study of the effects of the euro, Baldwin and Di Nino (2006) also find that

sharing a common currency has an heterogeneous effect on the extensive margin of trade.
32See, e.g., Santos Silva and Tenreyro, (2010) and Bergin and Lin (2012) for more on the effect of

currency unions on trade.

23



We developed a simple method for the estimation of quantile regressions for corner

solutions data, focusing on the case where the variate of interest is doubly-bounded and

has a mass-point at zero. The proposed estimator can be adapted to deal with other

problems such as non-linear and censored quantile regression, and can be implemented

using standard software.

We use the proposed method to study the determinants of the extensive margin of

trade, defined as the number (or share) of sectors exporting from origin country j to

a destination country i in year t. Our findings suggest that most regressors have very

different impacts on different parts of the distribution. In particular, we find that for

most regressors the impact on the upper tail is much larger than their impact on the

lower tail. This implies that changes in the regressors generally result in changes in the

conditional distribution of the number of exporting sectors that are more pronounced

in regions corresponding to pairs of countries that trade more than pairs with similar

observable characteristics.
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Abstract

In this note we illustrate the application of the method proposed by Machado,

Santos Silva, and Wei (2015) using an example where the dependent variable has

a lower bound at zero but no upper bound.

Cameron and Trivedi (2009) use data from the 2001 wave of the Medical Expenditure

Panel Survey to illustrate the estimation of different models for corner-solutions data.

This dataset contains 3328 observations on employed individuals aged between 21 and

64 who are covered by private health insurance, and is a subset of the data used by Deb,

Munkin and Trivedi (2006). Here, these data are used to illustrate the application of

the method proposed by Machado, Santos Silva, and Wei (2015) in the case where the

dependent variable has a lower bound at zero but no upper bound.

The variate of interest in the models considered by Cameron and Trivedi (2009) are

the ambulatory expenditures (AmbExp).1 As is typical with this kind of data, AmbExp

has a very skewed distribution, and it is equal to 0 for about 16% of the observations.

As in Cameron and Trivedi (2009), we will consider six covariates: Age, age in years

∗Address for correspondence: João Santos Silva, School of Economics, University of Surrey, Guildford

GU2 7XH, United Kingdom. Tel: +44 (0)1483686956. E-mail: jmcss@surrey.ac.uk.
1To facilitate the estimation in Stata (2013) we use AmbExp in thousands of dollars.
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divided by 10; Female, a dummy variable equal to 1 for females, being zero otherwise;

Educ, years of schooling of decision maker; BlHisp, a dummy variable equal to 1

for blacks or hispanics, being zero otherwise; TotChr, number of chronic diseases;

and Ins, a dummy variable equal to 1 if the individual has either a preferred provider

organization (PPO) or a health maintenance organization (HMO) type insurance, being

zero for individuals with less restrictive fee-for-service (FFS) plans. Further information

on the data, including descriptive statistics, is provided in Cameron and Trivedi (2009)

and in Deb, Munkin and Trivedi (2006).

Cameron and Trivedi (2009) estimate several models for AmbExp, including a sample

selection model (Heckman, 1979) of the form

Pr (AmbExp > 0|x) = Pr (x′δ + e1 > 0|x) ,

ln (AmbExp) = x′λ+ e2, for AmbExp > 0

where x denotes the vector of covariates and e1 and e2 are random disturbances as-

sumed to follow a bivariate normal distribution with correlation ρ and Var (e1) = 1 and

Var (e2) = σ2. Models of this type have often been used to describe medical expen-

ditures (see Duan et al., 1983, or Jones, 2000, for a survey), but they rely heavily on

strong distributional assumptions. It is, therefore, interesting to consider the estimation

of conditional quantiles of AmbExp, which can provide information on the impact of

the covariates on different features of the conditional distribution of interest using only

relatively mild assumptions.

To model the quantiles of AmbExp we follow Machado, Santos Silva, and Wei (2015)

and specify

QAmbExp (θ|x) = max {0, exp (x′β)− γ} , (1)

where, as in Cameron and Trivedi (2009), x′β has the form

x′β = β0 + β1Age + β2Female + β3Educ + β4BlHisp + β5TotChr + β6Ins.

Table 1 displays the estimated parameters and corresponding standard errors for all

the models.2 As a benchmark, Table 1 also includes the estimates obtained using the

2As in Machado, Santos Silva, and Wei (2015), estimation was performed using the BFGS algorithm

as implemented in the ml command in Stata (StataCorp., 2013); version control was used to run the code
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Table 1: Parameter estimates

Quantile regression Sample Selection

θ = 0.25 θ = 0.50 θ = 0.75 1st part 2nd part

Intercept −0.338 −0.139 1.179 −0.724 −1.870

(0.384) (0.313) (0.593) (0.192) (0.226)

Age 0.045 0.077 0.065 0.098 0.212

(0.014) (0.018) (0.027) (0.027) (0.023)

Female 0.163 0.181 0.109 0.644 0.350

(0.041) (0.043) (0.047) (0.060) (0.060)

Educ 0.017 0.019 0.010 0.070 0.019

(0.005) (0.006) (0.005) (0.011) (0.011)

BlHisp −0.101 −0.124 −0.079 −0.373 −0.220

(0.033) (0.031) (0.037) (0.062) (0.059)

TotChr 0.247 0.312 0.194 0.795 0.541

(0.042) (0.032) (0.068) (0.071) (0.039)

Ins 0.030 0.012 −0.030 0.182 −0.030

(0.024) (0.021) (0.019) (0.063) (0.051)

γ 1.071 1.259 3.885 — —

(0.338) (0.305) (2.076) — —

σ — — — — 1.271

— — — — (0.018)

ρ — — — −0.124

— — — (0.144)

Objective function 1042.188 1772.311 1963.860 −5838.397

R2 0.153 0.157 0.163 0.139

Standard errors in parenthesis: misspecification robust for quantile regressions; Hessian
based for the sample selection model.

selection model considered by Cameron and Trivedi (2009, p. 559). The most noteworthy

feature of the results in Table 1 is that the estimates of γ increase with θ. In spite of this,

and because the intercept also increases with θ, the proportion of observations for which

QAmbExp (θ|x) is equal to zero decreases as θ increases. Indeed, for θ ∈ {0.25, 0.50, 0.75},

with the default convergence criteria for Stata 11. This is needed because from Stata 12 the convergence

criteria for the BFGS algorithm uses the Hessian of the objective function.
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Table 2: Average partial effects

Quantiles Mean

θ = 0.25 θ = 0.50 θ = 0.75

Age 0.050 0.150 0.365 0.387

(0.015) (0.023) (0.069) (0.043)

Female 0.183 0.353 0.603 0.736

(0.024) (0.042) (0.078) (0.077)

Educ 0.019 0.037 0.054 0.049

(0.006) (0.009) (0.013) (0.018)

BlHisp −0.106 −0.235 −0.430 −0.444

(0.028) (0.040) (0.073) (0.087)

TotChr 0.274 0.607 1.069 1.112

(0.053) (0.119) (0.100) (0.077)

Ins 0.034 0.023 −0.162 −0.010

(0.026) (0.043) (0.073) (0.088)

Standard errors in parenthesis: misspecification robust for
quantile regressions; Hessian based for the sample selection
model.

the estimated values of QAmbExp (θ|x) are equal to zero for about 22.9, 4.9, and 1.1

percent of the observations, respectively.

As for the effects of the covariates, the results in Table 1 are not very informative be-

cause all the models have different functional forms and therefore the coefficient estimates

are not directly comparable. To overcome this problem, Table 2 presents the average

across the entire sample of the partial effects of each of the regressors on QAmbExp (τ |xij),

and on the conditional mean implicit in Heckman’s sample-selection model (see Cameron

and Trivedi, 2009, p. 563, for details).3

The results in Table 2 show that the partial effects of the regressors vary widely

across the different conditional quantiles, generally increasing (in absolute value) with

θ. Therefore, looking only at the partial effects on the conditional mean, which in this

3The partial effects for binary an non-binary variables are computed as usual (see, e.g., Wooldridge,

2002, p. 15).
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example are generally close to those obtained for θ = 0.75, may give a very incomplete

picture of how the covariates affect the conditional distribution of the AmbExp.

As in Deb, Munkin and Trivedi (2006), it is particularly interesting to consider the

effect of the type of insurance plan on AmbExp.4 The results in Table 2 show that

Ins has a small and statistically insignificant effect on the conditional mean and on the

first two conditional quartiles, but has a sizable and statistically significant effect on the

third conditional quartile. These results suggest that having the more restrictive HMO

or PPO insurance plans has little effect on most of the distribution, but has a strong

negative effect on its upper tail, which however is not enough to generate a significant

effect on the mean implied by the sample selection model. These findings are also very

different from what could be inferred from the sample selection results presented in

Table 1, which suggest that Ins is only significant in going from a zero to a positive

expenditure. Therefore, the selection model and the implied conditional mean mask

the very different effects that changes in Ins have on different areas of the conditional

distribution of AmbExp.

Although perhaps less striking, the results for other covariates also confirm that fo-

cusing on the partial effects on the conditional mean provides an incomplete, and even

somewhat misleading, picture of the effects of the covariates on the conditional distribu-

tion of interest.

Finally, we note that for this dataset the linear specification used by Powell (1984,

1986) for censored quantile regression leads to higher values of the objective function

and fails to reveal that Ins has a significant effect in the third quartile. These results

suggest that in the context of corner-solutions data, the proposed non-linear model can

have important advantages over a specification with constant marginal effects.

4Deb, Munkin and Trivedi (2006) consider the possible endogeneity of Ins but do not reject the null

hypothesis of exogeneity.
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