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ABSTRACT
Background Several regions of the genome have
shown to be associated with COPD in genome-wide
association studies of common variants.
Objective To determine rare and potentially
functional single nucleotide polymorphisms (SNPs)
associated with the risk of COPD and severity of airflow
limitation.
Methods 3226 current or former smokers of European
ancestry with lung function measures indicative of Global
Initiative for Chronic Obstructive Lung Disease (GOLD) 2
COPD or worse were genotyped using an exome array.
An analysis of risk of COPD was carried out using ever
smoking controls (n=4784). Associations with %
predicted FEV1 were tested in cases. We followed-up
signals of interest (p<10−5) in independent samples
from a subset of the UK Biobank population and also
undertook a more powerful discovery study by meta-
analysing the exome array data and UK Biobank data for
variants represented on both arrays.
Results Among the associated variants were two in
regions previously unreported for COPD; a low frequency
non-synonymous SNP in MOCS3 (rs7269297,
pdiscovery=3.08×10

−6, preplication=0.019) and a rare SNP
in IFIT3, which emerged in the meta-analysis
(rs140549288, pmeta=8.56×10

−6). In the meta-analysis
of % predicted FEV1 in cases, the strongest association
was shown for a splice variant in a previously
unreported region, SERPINA12 (rs140198372,
pmeta=5.72×10

−6). We also confirmed previously
reported associations with COPD risk at MMP12, HHIP,
GPR126 and CHRNA5. No associations in novel regions
reached a stringent exome-wide significance threshold
(p<3.7×10−7).
Conclusions This study identified several associations
with the risk of COPD and severity of airflow limitation,
including novel regions MOCS3, IFIT3 and SERPINA12,
which warrant further study.

INTRODUCTION
COPD is a major public health concern, being a
leading cause of morbidity and mortality world-
wide.1 The Global Initiative for Chronic
Obstructive Lung Disease (GOLD) recommends
that the impact of COPD on an individual patient
should assessed by considering breathlessness,
symptoms and exacerbation risk, in combination
with the severity of airflow limitation, which can be
graded using %predicted FEV1.

2 Approximately
1%–2% of COPD cases can be attributed to
α1-antitrypsin (AAT) deficiency, a rare inherited
disorder, caused by mutations within the
SERPINA1 gene.3 4 For the remainder of COPD
cases, cigarette smoking is recognised as the most
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significant risk factor5; however, there is also a genetic compo-
nent, with several genomic regions showing association with
COPD risk or airflow limitation to date, including CHRNA3/5,
HHIP,3 HTR4, GSTCD, TNS1,6 MMP127 8 and FAM13A.9

COPD diagnosis is confirmed using measures of lung function,
so it is likely that the genetic determinants of COPD and lung
function will overlap. Indeed, many loci identified in large
genome-wide association studies (GWAS) of FEV1 and the ratio
of FEV1 to forced vital capacity (FEV1/FVC) in general popula-
tion samples10–13 have subsequently being shown to be asso-
ciated with COPD or airflow limitation.6 9 14 15

Despite the successes in identifying genes associated with lung
function and COPD, these known loci only explain a small pro-
portion of the expected heritability.13 Large GWAS undertaken
to date have generally focused on common variants (typically
>5% minor allele frequency (MAF))3 9–14; one hypothesis is
that some of the so-called ‘missing heritability’ might be
accounted for by variants of lower frequencies. In this study, we
set out to investigate the role of low frequency, functional var-
iants in COPD, and to confirm the role of single nucleotide
polymorphisms (SNPs) previously showing association with lung
function. It is hypothesised that rare variants are more likely
than common variants to have deleterious effects; identifying
such SNPs could lead to greater understanding of the pathways
and biological mechanisms underlying airflow obstruction and
COPD, and could translate to novel targets for treatment.

We genotyped cases with a history of smoking and airflow
limitation, indicative of GOLD 2 COPD or worse, and control
samples using an exome chip array to which we had added
custom content comprising 2585 SNPs tagging regions which
had shown suggestive association (p<2.21×10−3) with lung
function in a previous large genome-wide HapMap-imputed
study.13 The exome chip genotyping array design contains
mostly non-synonymous, splice or stop codon altering variants
that are likely to affect protein structure and function, with the
majority of variants being low frequency (MAF 1%–5%) or rare
(MAF<1%).

In this study, we carried out discovery case–control analyses
(COPD cases vs controls) and analyses of %predicted FEV1 in
cases, as a measure of severity of airflow limitation. Replication
was undertaken using a subset of the UK Biobank Lung Exome
Variant Evaluation (BiLEVE) study, a collection of 48 931 indivi-
duals from UK Biobank with high-quality lung function and
smoking data who were genotyped on an array that includes
substantial overlap with the exome chip.16 We also adopted a
more powerful discovery strategy for COPD risk and severity of
airflow limitation, by meta-analysing data for the subset of
exome chip variants that were measured in both the COPD
exome chip consortium and the UK BiLEVE study.

METHODS
Study participants and phenotypes
A total of 3487 ever smokers with airflow limitation indicative
of GOLD 22 COPD or worse were identified from 12 UK col-
lections as cases (case collections described in online supplemen-
tary table S1). Individuals met case criteria if they had FEV1/
FVC ≤0.7 and %predicted FEV1 ≤80% (according to the
National Health and Nutrition Examination Survey (NHANES)
III spirometric reference equations17), did not have a doctor
diagnosis of asthma and had reported current, or former
smoking. Five of the sample collections (n=1398 samples, table
1) were COPD cohorts, with all individuals having irreversible
airflow limitation, and meeting GOLD 2 criteria based on post-
bronchodilator spirometry. The remaining cases were taken

from general population cohorts; for these samples, only pre-
bronchodilator spirometry measures were available. We used
general population controls with exome chip data, from
Generation Scotland: Scottish Family Health Study (GS:SFHS),
British 1958 Birth Cohort (1958BC), Oxford Biobank and
GoDARTS (Genetics of Diabetes and Audit Research Tayside
Study), listed in table 1 with clinical characteristics. All controls
were current or former smokers and were free of lung disease,
according to available spirometry and phenotype information.

We used a subset of the UK BiLEVE study16 for replication of
novel signals, and for a larger discovery meta-analysis. A total of
24 457 heavy smokers (mean 35 pack-years) were genotyped as
part of the UK BiLEVE study, selected such that 9748 indivi-
duals formed a low FEV1 group (based on %predicted FEV1),
4906 individuals formed a high FEV1 group and 9803 had
average FEV1. We selected 4231 samples from the low FEV1

group, with airflow limitation consistent with GOLD 2 or worse
as cases and 8979 samples from the high and average FEV1

groups with FEV1/FVC >0.7, %predicted FEV1 >80% and no
doctor diagnosis of COPD for use as controls. All spirometry
measures were prebronchodilator, all samples were heavy
smokers and individuals with a doctor diagnosis of asthma or
other lung diseases were excluded. The %predicted FEV1 was
estimated using NHANES III spirometric reference equations.17

An overview of the full study design is shown in figure 1.

Genotyping
All 3487 cases and 1032 GS:SFHS controls were genotyped
together using the Illumina Human Exome BeadChip with add-
itional custom content for regions which have previously shown
modest association with lung function (description of custom
content design in online supplementary methods). The remain-
ing discovery analyses control samples were genotyped separ-
ately using the Illumina Human Exome BeadChip.

The UK BiLEVE samples were genotyped using the
Affymetrix UK BiLEVE array, which includes rare variants
selected from the same sequencing project as the Illumina
Human Exome BeadChip alongside additional content.16 Of
the 807 411 SNPs included on the Affymetrix UK BiLEVE
array, 74 891 were also present on the Illumina Human Exome
BeadChip; this subset of SNPs, which were directly genotyped
on both arrays, was selected for the discovery meta-analysis.

Quality control of genotype data
Discovery exome analysis
Genotypes were called using Illumina’s Gencall algorithm in
Genomestudio18 with refinement of rare variants with missing
calls undertaken using zCall.19 Standard quality control (QC)
filters were applied, in accordance with the Exome-chip Quality
Control SOP V.5, as developed within the UK exome chip con-
sortium20 and are fully described in online supplementary
methods. In brief, SNPs were excluded if they had low call rate
(<99%) or deviated from Hardy Weinberg Equilibrium
(p<10−4) and samples were excluded if they were duplicates,
sex mismatches, heterozygosity outliers (>3 SD from mean),
had an excess of singleton SNPs, or were ancestral outliers.
Clusterplots for all SNPs of interest were inspected, to ensure
accuracy of genotype calling.

UK BiLEVE data
The QC procedure of the UK BiLEVE genotype data is
described elsewhere.16
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Table 1 Clinical characteristics of samples passing genotype QC

Sex Age %Predicted FEV1 FEV1/FVC
Pack-years

Sample collection n Male, n (%) Mean (SD) Mean (SD) Mean (SD)
Samples with data
(n) Mean (SD)

Discovery analyses airflow limitation cases (total n=3226, with pack-years n=2517)
GS:SFHS 508 224 (44.1%) 58.9 (8.94) 64.84 (12.64) 0.580 (0.108) 482 29.32 (24.96)
British Regional Heart Study 425 425 (100%) 70.1 (5.46) 59.41 (14.66) 0.597 (0.084) 0 –

British Women’s Heart and Health Study 254 0 (0%) 69.3 (5.46) 64.26 (12.40) 0.603 (0.074) 203 28.1 (18.36)
UK COPD cohort* 209 129 (61.7%) 68.7 (8.11) 37.94 (15.29) 0.447 (0.119) 199 50.07 (27.79
Hertfordshire Cohort Study 317 203 (64.0%) 66.1 (2.79) 62.89 (13.57) 0.589 (0.101) 312 32.25 (23.37)
COPDBEAT* 87 62 (71.3%) 67.6 (8.77) 45.19 (16.24) 0.480 (0.115) 86 38.69 (21.24)
Nottingham COPD study* 76 48 (63.2%) 67.2 (8.97) 50.29 (15.04) 0.482 (0.111) 74 49.02 (26.86)
Nottingham smokers 125 78 (62.4%) 63.1 (8.60) 46.27 (17.65) 0.503 (0.125) 124 41.75 (20.61)
Gedling study 33 26 (78.8%) 69.0 (8.23) 59.67 (16.81) 0.593 (0.103) 31 45.47 (33.40)
English Longitudinal Study of Aging 166 75 (45.2%) 66.0 (8.17) 54.84 (17.24) 0.526 (0.149) 0 –

EU COPD Gene Scan* 277 155 (56.0%) 67.0 (8.68) 38.51 (14.74) 0.467 (0.120) 277 46.43 (20.56)
GoTARDIS Study* 749 412 (55.0%) 68.8 (8.97) 52.16 (14.14) 0.509 (0.110) 729 43.26 (21.59)

Discovery analyses controls (total n=4784, with pack-years n=3889)
GS:SFHS 961 552 (57.4%) 54.5 (8.41) 98.18 (10.92) 0.783 (0.051) 961 28.92 (16.86)
British 1958 Birth Cohort 1429 888 (62.1%) 44 (0) 100.90 (13.46) 0.809 (0.060) 1046 14.74 (10.07)
Oxford Biobank 1770 832 (47.0%) 41.6 (5.77) – – 1682 9.09 (9.34)
GoDARTS 624 402 (64.4%) 59.0 (10.75) – – 200 35.46 (25.89)

UK Biobank Lung Exome Variant Evaluation samples (meta-analysis and replication)
Airflow limitation cases 4231 2379 (56.2%) 59.54 (6.86) 61.76 (11.8) 0.607 (0.076) 4231 42.41 (21.10)

Controls 8979 4260 (47.4%) 56.19 (7.92) 101.40 (8.1) 0.773 (0.038) 8979 30.43 (14.41)

*Sample collection is COPD case cohort.
GS:SFHS, Generation Scotland: Scottish Family Health Study; GoTARDIS, Tayside Allergy and Respiratory Disease Information System; QC, quality control.

Figure 1 Two-stage study design. Stage 1: exome discovery analyses. Stage 2: Follow-up in UK BiLEVE: A. Replication of signals; B. meta-analysis
of UK COPD exome chip consortium and UK BiLEVE.
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Statistical analyses
SNP associations with COPD risk were carried out using a logis-
tic regression model, adjusting for age, sex and pack-years and
assuming an additive genetic model. Associations with untrans-
formed %predicted FEV1 in cases were tested, using a linear
regression model, with adjustment for pack-years (analysis of
severity of airflow limitation). Since not all samples had pack-
years data available, secondary analyses were carried out
without adjustment for pack-years, for both the COPD risk and
severity of airflow limitation analyses, allowing the inclusion of
all samples. Single variant analyses were carried out using
PLINK V.1.07.21 Using a Bonferroni correction for the number
of tests undertaken, a significance level of p<3.7×10−7 would
be required in the exome single variant analysis to retain a type
1 error of 5%. We defined SNPs of interest as those with
p<10−5 in the discovery exome analysis; for these SNPs, we
undertook replication analyses in the UK BiLEVE study to cor-
roborate findings (see online supplementary methods). We set a
Bonferroni corrected significance level for replication, for the
number of SNPs in novel loci taken forward to replication
(p<0.017 for analysis of COPD risk). Gene-based analyses
using SKAT-O were additionally undertaken; the methods and
results of these analyses are described in the online supplemen-
tary information.

Custom content single variant analyses
Custom content comprising 2585 SNPs tagging regions which
had shown suggestive association (p<2.21×10−3) with lung
function in a previous large genome-wide HapMap-imputed
study13 were also included on the array for cases and GS:SFHS
controls. Additional controls from 1958BC and Busselton
Health Study (BHS) with genome-wide data were also used; full
methods and results of this analysis are given in the supplemen-
tary information.

Meta-analysis with UK BiLEVE data
Single variant associations with COPD risk and severity of
airflow limitation in the UK BiLEVE samples were carried out
using PLINK v1.07,21 identically to the corresponding discovery
analysis with pack-years adjustment. We carried out an inverse-
variance–weighted meta-analysis of the union of SNPs included
in the discovery exome and UK BiLEVE analyses (described in
online supplementary methods).

RESULTS
Discovery exome analysis
3226 cases and 4784 controls passed all sample and SNP geno-
type QC and were used in the exome analysis (exclusions in
online supplementary table S1). Clinical characteristics of these
samples are summarised in table 1. Of the SNPs which passed
all QC criteria in both cases and controls, 135 818 were poly-
morphic, of which 101 308 (74.6%) had a MAF<1%.

Analyses of COPD risk
We carried out pack-years adjusted analysis of COPD risk,
including 2517 cases and 3889 controls, in addition to an
unadjusted analysis, using all 3226 cases and 4784 controls
(quantile–quantile plots shown in online supplementary figure
S1). A total of four SNPs in three regions met the p<10−5 sig-
nificance threshold in the pack-years adjusted analysis, with five
SNPs in four regions showing p<10−5 in the unadjusted analysis
(figure 2).

In the pack-years adjusted analysis (table 2A and figure 2A),
the most significant association was for the previously reported
COPD/smoking region 15q25 (sentinel SNP rs8034191 OR:
1.38, MAF=34.8%, p=2.42×10−7). This signal was replicated
in the UK BiLEVE study. Two novel signals of association with
COPD risk (p<10−5) were rs3813803 within SMPDL3B (OR:
1.37, MAF=29.2%, p=1.04×10−6) and low frequency SNP
rs7269297 within MOCS3 (OR: 0.25, MAF=1.1%,
p=3.08×10−6). There was evidence of replication, just above
the Bonferroni corrected level of significance (p<0.017) for
rs7269297 in the UK BiLEVE study (p=7.27×10−5 for
meta-analysis of discovery and UK BiLEVE results, table 2A).

A further two loci were associated with COPD risk in the
analysis unadjusted for pack-years: rs3827522 within
PRICKLE1 (OR: 0.12, MAF=0.4%, p=1.03×10−7) and
rs17368582 within MMP12 (OR: 0.712, MAF=12.2%
p=5.01×10−6, table 2A and figure 2B); however, there was no
evidence of replication of these associations with COPD risk in
UK BiLEVE. rs2276109, another SNP within MMP12,
(MAF=5.6%) which is strongly correlated with rs17368582
(r2=0.84), has previously been associated with COPD risk in
smokers.7 Overall, no associations in novel regions met exome-
wide significance (p<3.7×10−7).

Analyses of severity of airflow limitation
Although no SNPs reached the p<10−5 significance level in
either the pack-years adjusted, or the unadjusted analysis (see
online supplementary figures S2 and S3), six SNPs showed some
evidence of association (p<10−4) in one or both analyses (see
online supplementary table S2). Of note, rs28929474, the
z-allele within the SERPINA1 gene, showed modest association
in the unadjusted analysis (β=−6.17%, MAF=2.0%,
p=2.83×10−5).

UK BiLEVE meta-analysis results
Analyses of COPD risk
For the 57 234 polymorphic SNPs common to both the COPD
exome chip consortium samples and the UK BiLEVE study, a
meta-analysis of discovery and UK BiLEVE study results was
undertaken in which three regions showed association with risk
of COPD (p<10−5, figure 3, online supplementary figure S4
and table 2B). The GYPA/HHIP and GPR126 regions have previ-
ously been reported as showing association with lung function
and COPD or airflow limitation risk.3 10 14 The IFIT3 region
signal (rs140549288 p.Val352Leu in IFIT3, OR: 1.92,
MAF=0.7%, p=7.49×10−6) represents a novel rare variant
signal of association with COPD.

Analyses of severity of airflow limitation
A total of 54 168 SNPs were included in the meta-analysis of
severity of airflow limitation (see online supplementary figures
S5 and S6). One SNP showed association with p<10−5:
rs140198372, a variant which alters the sequence at a
site where the splicing of an intron takes place (splice site)
in SERPINA12 (β=−33.51%, MAF=0.03%, p=5.72×10−6,
table 3).

Sensitivity analyses to assess COPD case criteria
Of our 3226 COPD cases defined as described above, 1398 also
had a GOLD 2 or worse COPD based on postbronchodilator
spirometry. We carried out a sensitivity analysis for all SNPs
identified in our discovery or meta-analyses of COPD risk, by
repeating the discovery analyses including only those 1398
COPD cases which underwent reversibility testing. This analysis
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showed consistent estimated effect sizes (see online supplemen-
tary table S3 and figure S7), and in particular, the ORs were not
substantially attenuated for rs7269297 in MOCS3 (sensitivity
analysis OR: 0.276; original discovery OR: 0.251), nor
rs140549288 in IFIT3 (sensitivity analysis OR: 2.554; original
discovery OR: 2.156).

Association of novel loci with smoking behaviour
Given the disparity of smoking behaviour in our cases and
control samples (table 1), we further investigated whether either
of the two novel COPD risk loci were associated with smoking
behaviour, to ascertain whether the associations with COPD
may be explained by differences in smoking. Neither of the sen-
tinel SNPs showed significant association with heavy versus
never smoking within UK BiLEVE (p=0.956 for rs7269297
and p=0.945 for rs140549288) study. We further undertook a
look-up in the publically available results of a GWAS from the
Tobacco and Genetics consortium22 for associations with
rs7269297 in MOCS3 (rs140549288 was not available in data)
and a number of smoking traits; however, no evidence for asso-
ciation with smoking behaviour was found (cigarettes per day

p=0.610; ever vs never smoking p=0.172; current vs former
smoking p=0.699).

DISCUSSION
We carried out analyses of exome chip variants with COPD risk
and %predicted FEV1 among cases, through which we identified
a number of SNPs in both known COPD regions and at novel
loci that showed suggestive association (p<10−5) with risk of
COPD. These novel regions (region plots: online supplementary
figure S8) warrant further investigation as they may provide
insight into the underlying biological mechanisms of COPD and
airflow limitation in smokers and could provide novel thera-
peutic targets. The most significant associations in both the dis-
covery exome analysis and the meta-analysis were with SNPs in
the 15q25 region, previously identified through GWAS as being
associated with smoking behaviour,22–24 lung cancer,25 COPD3

and airflow obstruction.14 In addition, we independently repli-
cated previously reported associations of HHIP,3 10 GPR12614

and MMP127 8 with COPD risk.
We identified novel associations between COPD risk and low

frequency or rare coding SNPs in two genes: MOCS3

Figure 2 (A) Analysis of COPD risk, with pack-years adjustment (single nucleotide polymorphisms (SNPs) with minor allele frequency (MAF)
>0.05% only; SNPs with p<10−5 highlighted). (B) Analysis of COPD risk, without pack-years adjustment (SNPs with MAF >0.05% only; SNPs with
p<10−5 highlighted).
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Table 2 Top associations in exome discovery analyses and meta-analysis of COPD risk
(A) SNPs with p<10–5 in either the pack-years adjusted or unadjusted discovery analyses

Discovery pack-years adjusted analysis (2517
cases, 3889 controls)

Discovery unadjusted analysis
(3226 cases, 4784 controls)

UK BiLEVE pack-years adjusted analysis
(4231 cases, 8979 controls)

Meta-analysis of discovery and
UK BiLEVE pack-year adjusted
analyses

MAF (MAC) Association result MAF (MAC) Association result MAF (MAC) Association result Association result

rs no. CHR Position
Coded
allele Gene Cases Controls OR (95% CI) p Value* Cases Controls OR (95% CI) p Value* Cases Controls OR (95% CI) p Value* OR (95% CI) p Value*

rs3813803 1 28282292 C SMPDL3B
(non-synonymous)

30.6%
(1541)

28.3%
(2203)

1.370 (1.207
to 1.554)

2.41×10−6 30.3%
(1956)

28.5%
(2722)

1.288 (1.160
to 1.430)

2.11×10−6 28.7%
(2418)

29.4%
(5269)

0.968 (0.911
to 1.029)

0.298 1.033 (0.978 to 1.092) 0.241

rs17368582 11 102738075 C MMP12 (synonymous) 11.1%
(561)

12.9%
(1001)

0.767 (0.642
to 0.915)

3.22×10−3 11.1%
(719)

12.8%
(1229)

0.712 (0.615
to 0.824)

5.01×10−6 12.0%
(1015)

12.2%
(2198)

0.982 (0.902
to 1.069)

0.676 0.938 (0.868 to 1.013) 0.101

rs3827522 12 42853871 A PRICKLE1
(non-synonymous)

0.2% (11) 0.4% (27) 0.184 (0.065
to 0.519)

1.39×10−3 0.2% (14) 0.5% (46) 0.123 (0.057
to 0.266)

1.03×10−7 0.3% (21) 0.3% (45) 0.907 (0.518
to 1.585)

0.731 0.633 (0.386 to 1.039) 0.071

rs8034191 15 78806023 C near AGPHD1
(intergenic)

38.0%
(1912)

32.7%
(2546)

1.374 (1.218
to 1.550)

2.42×10−7 37.7%
(2432)

32.9%
(3144)

1.364 (1.234
to 1.507)

1.18×10−9 39.2%
(3315)

35.2%
(6320)

1.156 (1.092
to 1.224)

6.85×10−7 1.193 (1.133 to 1.257) 2.79×10−11

rs7269297 20 49576664 G MOCS3
(non-synonymous)

0.7% (37) 1.4%
(110)

0.251 (0.140
to 0.448)

3.08×10−6 0.8% (54) 1.5%
(139)

0.423 (0.262
to 0.680)

3.98×10−4 1.2% (98) 1.4%
(252)

0.742 (0.578
to 0.953)

0.019 0.626 (0.497 to 0.789) 7.27×10−5

(B) SNPs with p<10–5 in the meta-analysis (only most statically significant SNP in each region shown)

Discovery pack-years adjusted analysis
(2517 cases, 3889 controls)

UK BiLEVE pack-years adjusted analysis
(4231 cases, 8979 controls)

Meta-analysis of discovery and
UK BiLEVE pack-year adjusted
analyses

MAF (MAC) Association result MAF (MAC) Association result Association result

rs no. CHR Position Coded allele Gene Cases Controls OR (95% CI) p Value* Cases Controls OR (95% CI) p Value* OR (95% CI) p Value*

rs1828591 4 145480780 A GYPA/HHIP (intergenic) 35.6% (1794) 39.1% (3042) 0.9167 (0.814, 1.032) 0.153 36.6% (3088) 40.0% (771) 0.867 (0.819, 0.918) 9.88×10−7 0.876 (0.832, 0.922) 5.75×10−7

rs4896582 6 142703877 A GPR126 (intronic) 29.3% (1473) 31.7% (2468) 0.8594 (0.757, 0.974) 0.018 28.0% (2349) 30.2% (5344) 0.879 (0.826, 0.934) 3.87×10−5 0.875 (0.827, 0.925) 2.53×10−6

rs140549288 10 91099466 C IFIT3 (exonic), LIPA (intronic) 0.8% (38) 0.6% (44) 2.156 (1.046, 4.445) 0.037 0.9% (79) 0.6% (100) 1.880 (1.378, 2.565) 6.87×10−5 1.924 (1.441, 2.560) 8.56×10−6

*p Values in bold significant at p<10−5 level.
BiLEVE, Biobank Lung Exome Variant Evaluation; MAC, minor allele count; MAF, minor allele frequency; SNPs, single nucleotide polymorphisms.
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(rs7269297, serine to alanine, MAF=1.3%, pdiscovery-
=3.08×10−6, PolyPhen prediction: benign) and IFIT3
(rs140549288, valine to leucine, MAF=0.7%, pmeta-

=8.56×10−6, PolyPhen prediction: benign). The protein
encoded by MOCS3 adenylates and activates molybdopterin
synthase, an enzyme required to synthesise molybdenum cofac-
tor26 and is expressed in bronchial epithelium and smooth
muscle layer of the bronchus.27 IFIT3 is associated with
interferon-α antiviral activity and has been found to be
up-regulated in respiratory syncytial virus infection28 and in
human lung epithelial cells infected with dengue virus.29 The
SNP rs140549288 is also located within in an intron of LIPA;
the product of this gene is involved in the hydrolysis of choles-
teryl esters and triglycerides and other SNPs within this gene
have previously been associated with coronary artery disease.30

The z-allele within the SERPINA1 gene was associated with a
lower %predicted FEV1 in cases (unadjusted analysis: pdiscovery-
=2.83×10−5); as well as being a well-established cause of AAT
deficiency,3 4 this SNP has also previously been associated with
an increased annual decline in FEV1 in a general population
sample31 and increased airflow limitation in COPD cases.32 In
the present study, the z-allele was associated with an increased
risk of COPD, although this was not statistically significant
(OR: 1.27, p=0.252). The likely reason for the lack of a signifi-
cant association with this known COPD locus is that some of
the case collections excluded individuals with AAT deficiency,
resulting in selection bias. In the meta-analysis of severity of

airflow limitation, we identified a very rare SNP within another
serine protease inhibitor gene, SERPINA12, not previously asso-
ciated with COPD (rs140198372, MAF=0.03%, pmeta-

=5.72×10−6). SERPINA12 and SERPINA1 lie 96.6 kb apart on
chromosome 14 (rs140198372 and the z-allele in SERPINA1
are not in linkage disequilibrium (r2=9.0×10−6)). SERPINA12
has been associated with cardiovascular diseases, being impli-
cated in obesity and type 2 diabetes.33

One of the primary challenges associated with identifying low
frequency variants associated with disease is limited statistical
power, and this could explain our lack of strong statistically sig-
nificant findings. Indeed, none of the reported associations in
novel regions met a stringent exome-wide significance level
(p<3.8×10−7) overall. In the present study, we would have just
54% power to detect an association with an SNP associated
with COPD risk with a MAF of 1% and an OR of 2, at the
p<3.8×10−7 level. Furthermore, recent analyses undertaken by
the UK10K Consortium found no evidence of low frequency
SNPs having large effects, upon a series of traits.34 Due to
the limited power to detect single variant associations of rare
variants with modest effect sizes, we additionally adopted
gene-based analyses using SKAT-O, a method which combines
information from several rare variants (see online supplemen-
tary information). In these analyses, we only identified one gene
meeting our elected significance level (p<10−5); this gene-based
signal in PRICKLE1 was found however, to be driven by a single
SNP, which was identified as being associated with COPD risk in

Figure 3 Meta-analysis of COPD risk in discovery exome analysis and UK Biobank Lung Exome Variant Evaluation samples.

Table 3 Top associations (p<10−5) in meta-analysis of severity of airflow limitation

Severity of airflow limitation,
adjusted for pack-years (n=2517)

UK BiLEVE pack-years adjusted
analysis (n=4231)

Meta-analysis of
discovery and UK BiLEVE
pack-year adjusted
analyses

rs no. CHR Position
Coded
allele Gene

MAF
(MAC)

Beta
(95% CI) p Value

MAF
(MAC)

Beta
(95% CI) p Value

Beta
(95% CI) p Value

rs140198372 14 94953832 A SERPINA12
(splice site)

0.059%
(3)

−29.23
(−49.50 to
−8.96)

2.59×10−5 0.012%
(1)

−38.35
(−59.88 to
−16.82)

4.11×10−4 −33.51
(−48.27 to
−18.76)

5.72×10−6

*p Values in bold significant at p<10−5 level.
BiLEVE, Biobank Lung Exome Variant Evaluation; MAC, minor allele count; MAF, minor allele frequency.

Jackson VE, et al. Thorax 2016;71:501–509. doi:10.1136/thoraxjnl-2015-207876 507

Chronic obstructive pulmonary disease

group.bmj.com on June 21, 2016 - Published by http://thorax.bmj.com/Downloaded from 

http://thorax.bmj.com/
http://group.bmj.com


the single variant discovery analysis, but which was not repli-
cated in the UK BiLEVE data.

Another limitation of this study is that a number of our cases
had only prebronchodilator spirometry; for these samples, it
could not be determined whether their airflow limitation was
reversible, and so a proportion of these cases may not have met
the clinical definition of COPD. We undertook case–control sen-
sitivity analyses using our discovery samples, restricting cases to
the subset of 1398 individuals taken from COPD cohorts and
who had known irreversible airflow limitation. The effect esti-
mates of our top hits did not substantially change in this sensi-
tivity analysis, suggesting that our broader case definition,
including samples that did not undergo reversibility testing, did
not result in substantial misclassification bias.

A further potential source of bias in this study was the heavier
smoking history in our cases compared with the control
samples. For the two SNPs identified through the analyses of
COPD risk, we found no evidence of association with smoking
in data from the UK BiLEVE study, suggesting that the associa-
tions with COPD risk were not driven by the imbalances in
smoking behaviour.

Finally, it was not possible to validate the findings of this
study through additional genotyping; however for the three
reported loci, consistent results were observed in both the dis-
covery and the UK BiLEVE samples. It would not be expected
to see the same false positive result in these two independent
samples, therefore, strengthening the evidence for these being
true associations.

In summary, we have identified potentially interesting associa-
tions with low frequency and rare SNPs and COPD risk in two
regions not previously implicated in COPD or lung function. We
further identified an association of %predicted FEV1 in indivi-
duals with COPD with a very rare SNP in SERPINA12. Further
confirmation of these associations in larger independent collec-
tions of COPD cases and controls is needed. This study also pro-
vides further evidence that the z-allele within SERPINA1 may be
related to severity of airflow limitation in COPD. While large
sample sizes may be required to definitively identify novel loci,
we present evidence to support the notion that the genetic contri-
bution to COPD risk comprises polygenic contributions of rare,
low frequency and common genetic variants. Future studies,
alone or in combination, should aim to target the full allele fre-
quency range to unravel the genetic architecture of COPD.
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