Supplementary Material to: An Algorithm to Compute the Polar Decomposition of a 3×3 Matrix

Nicholas J. Higham • Vanni Noferini

1 Operation counts for Algorithms 3.2 and 3.5

We give detailed operation counts for Algorithm 3.2 and Algorithm 3.5 in the different cases that can arise. In the tables, M denotes a multiplication or division, A an addition or subtraction, C a comparison, and O a different operation, such as a square root. We do not include in our operation counts the cost of copying an element or swapping two elements in an array. The lines in italics and marked with an asterisk are mutually exclusive: either one or the other is executed.

In Tables 1.2 and 1.3 the operation counts for the block $L D L^{T}$ factorization assume that the first two pivots are taken as 1×1 pivots based on the largest diagonal element. A detailed analysis shows that this is always possible and is numerically stable.

[^0]Table 1.1 Detailed operation count for Algorithm 3.2.

Task	Operations					
Compute $\\|A\\|_{F}$	9 M	8 A		10		
Scale A to norm 1	9 M					
Form B		12 A				
Compute b via $P L U$ factorization of B	$23 M$	$14 A$	6 C			
Compute $\operatorname{det} A$ (and its sign) via $P L U$ factorization	$11 M$	5 A	$6 C$			
Decide whether to use Newton or analytic method			$1 C$			
Compute λ_{1} via analytic formula*	$13 M$	7 A	$1 C$	60		
Compute λ_{1} via Newton's method (per iteration)*	$13 M$	10 A	$1 C$			
Compute B_{s}		$4 A$				
$L D L^{T}$ factorization of B_{s}	$15 M$	9 A	$6 C$			
Form v	9M	7 A		10		
Form Q from v	$18 M$	12 A				
Check if sign of Q needs changing			$1 C$			
Form H from Q	$18 M$	12 A				
Scale back H	$6 M$					
TOTAL (assuming analytic method to get λ_{1})	$131 M$	90 A	$21 C$	8 O		

Table 1.2 Detailed operation count for Algorithm 3.5 for $b \geq 1-\tau_{2}$ and $\log _{10} u_{22}>-7.18$.

Task	Operations					
Compute $\\|A\\|_{F}$	9 M	8 A		10		
Scale A to norm 1	9 M					
Form B		$12 A$				
Compute b via $P L U$ factorization of B	$23 M$	$14 A$	$6 C$			
Decide if b is close to 1			$1 C$			
Compute $\operatorname{det} A$ (and its sign)						
via $P_{1} L U P_{2}$ factorization	$11 M$	5 A	$15 C$			
Check value of $\log _{10}\left\|u_{22}\right\|$			$1 C$	10		
Estimate number of iterations	$2 M$	1 A		2 O		
Decide whether to use Newton or analytic method			$1 C$			
Compute λ_{1} via analytic formula*	$13 M$	7 A	$1 C$	6 O		
Compute λ_{1} via Newton's method* (per iteration)	$13 M$	10 A	$1 C$			
Compute B_{s}		4 A				
Block $L D L^{T}$ factorization of B_{s}	$14 M$	$13 A$	$5 C$			
Compute $\operatorname{det} D$	$2 M$	1 A				
Form starting guess for v	9M	7 A		10		
Inverse iteration, per iteration	$24 M$	17 A		10		
Form Q from v	$18 M$	12 A				
Check if sign of Q needs changing			$1 C$			
Form H from Q	$18 M$	$12 A$				
Scale back H	$6 M$					
Total (assuming analytic method to get λ_{1} and n iterations)	$(134+24 n) M$	$(96+17 n) A$	$31 C$	$(11+n) O$		

Table 1.3 Detailed operation count for Algorithm 3.5 for $b \geq 1-\tau_{2}$ and $\log _{10} u_{22} \leq-7.18$.

Task	Operations					
Task	Operation					
Compute $\\|A\\|_{F}$	9 M	8 A		1 O		
Scale A to norm 1	9 M					
Form B		$12 A$				
Compute b via $P L U$ factorization of B	$23 M$	$14 A$	$6 C$			
Decide if b is close to 1			$1 C$			
Compute $\operatorname{det} A$ (and its sign) via						
$P_{1} L U P_{2}$ factorization	$11 M$	5 A	$15 C$			
Check value of $\log _{10}\left\|u_{22}\right\|$			$1 C$	$1 O$		
Decide whether to use Newton or analytic method			$1 C$			
Compute λ_{1} via analytic formula*	$13 M$	7 A	$1 C$	6 O		
Compute λ_{1} via Newton's method (per iteration)*	$13 M$	10 A	$1 C$			
Compute B_{s}		4 A				
Block $L D L^{T}$ factorization of B_{s}	$14 M$	$13 A$	$5 C$			
Compute $\operatorname{det} D$	$2 M$	1 A				
Form V	$2 M$	$2 A$				
Subspace iterations	110 M	$72 A$		80		
Project	$38 M$	$26 A$				
Find eigenvector and project back	19 M	9 A	$1 C$	3 O		
Form Q from v	$18 M$	$12 A$				
Check if sign of Q needs changing			$1 C$			
Form H from Q	$18 M$	12 A				
Scale back H	$6 M$					
TOTAL (assuming analytic method to get λ_{1})	292 M	197 A	$32 C$	19 O		

[^0]: Version of September 28, 2015. This work was supported by European Research Council Advanced Grant MATFUN (267526) and Engineering and Physical Sciences Research Council grant EP/I03112X/1

 School of Mathematics, The University of Manchester, Manchester, M13 9PL, UK (nick.higham@manchester.ac.uk, http://www.maths.manchester.ac.uk/~higham) • Department of Mathematical Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK (vnofer@essex.ac.uk, http://www.maths.manchester.ac.uk/~noferini)

