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Summary: We conducted a genome-wide association study of subjective well-being (SWB) 

in 298,420 individuals. We also performed auxiliary analyses of depressive symptoms (“DS”; 

N = 161,460) and neuroticism (N = 170,910), both of which have a substantial genetic 

correlation with SWB (�̂� ≈ −0.8). We identify three SNPs associated with SWB at genome-

wide significance. Two of them are significantly associated with DS in an independent 

sample. In our auxiliary analyses, we identify 13 additional genome-wide-significant 

associations: two with DS and eleven with neuroticism, including two inversion 

polymorphisms. Across our phenotypes, loci regulating expression in central nervous system 

and adrenal/pancreas tissues are enriched. The discovery of genetic loci associated with the 

three phenotypes we study has proven elusive; our findings illustrate the payoffs from 

studying them jointly. 
 

One Sentence Summary: Using both genome-wide association studies and proxy-phenotype 

studies, we identify genetic variants associated with subjective well-being, depressive 

symptoms, and neuroticism. 

 

 

Main Text: Subjective well-being (SWB)—as measured by survey questions on life 

satisfaction, positive affect, or happiness—is a major topic of research within psychology, 

economics, and epidemiology and is the focus of policy initiatives instigated by many 

governments and international bodies (1–3). Twin studies suggest that roughly 35% of the 

variation in SWB across individuals can be explained by genetic factors (4). The discovery of 

genetic variants associated with SWB could pave the way for investigations into how 

environmental conditions moderate genetic effects. Moreover, it may provide insights not 

only into the molecular mechanisms underlying normal-range variation in SWB, but also 

those underlying genetically correlated phenotypes, such as depression and neuroticism (5–

7), for which the discovery of genetic associations has proven elusive (8, 9). 

Here, we report a series of analyses that exploit the relationships between SWB, depressive 

symptoms (DS), and neuroticism. Our primary analysis is a genome-wide association study 

(GWAS) of SWB based on data from 59 cohorts (N = 298,420). We supplement this primary 

analysis with auxiliary GWAS meta-analyses of DS and neuroticism. The auxiliary analyses 

are performed by combining publicly available summary statistics from published studies 

with new genome-wide analyses of additional data. All analyses in this paper are restricted to 

European-ancestry individuals.  
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Following a pre-specified analysis plan, our primary analysis combines survey measures of 

life satisfaction (LS) and positive affect (PA). Although LS and PA are distinguishable (10, 

11), these two facets of SWB are phenotypically correlated and load on a common genetic 

factor (12). To reduce measurement error, cohorts with repeated measures averaged 

responses, and cohorts with survey questions measuring both LS and PA combined the two 

measures into a single variable. For details on SWB phenotype construction, see tables S1.1 

and S2.1. 

All SWB analyses were performed at the cohort level and subsequently meta-analyzed. Our 

analysis plan specified controls for age, age2, sex, and (to reduce confounding from 

population stratification) four principal components of the genome-wide data (13). A uniform 

set of quality-control (QC) procedures, described in tables S2.3-2.4, were applied to the 

cohort-level summary statistics, including but not limited to the EasyQC protocol recently 

recommended (14). 

We conducted a sample-size-weighted meta-analysis of ~2.3M HapMap2 SNPs and adjusted 

the standard errors using the estimated intercept from an LD Score regression (15). The 

estimated intercept implies that a modest ~5% of the observed inflation in the unadjusted 

mean 𝜒2 is accounted for by bias rather than polygenic signal (fig. S3.1). The slope estimate 

implies that our phenotype has a SNP-based heritability estimate of 4.0% (SE = 0.2%; cf. 

(16)). 

In our primary analysis of SWB, we found three approximately independent genome-wide 

significant SNPs (hereafter “lead SNPs”). Fig. 1a shows the Manhattan plot from the main 

analysis. All three lead SNPs have estimated effects in the range 0.015 to 0.018 standard 

deviations (SDs) per allele (R2 ≈ 0.01%). For comparison, we calculated, using publicly 

available survey data from the U.S. Behavioral Risk Factor Surveillance System, that the 

average difference in SWB between “no” and “yes” responders to “ever diagnosed with a 

depressive disorder” is 0.66 SDs (table S1.2). We also conducted separate meta-analyses of 

LS (N = 166,205) and PA (N = 180,281), using procedures identical to those described above. 

Consistent with our theoretical calculations (fig. S4.1), these analyses yielded fewer signals 

across a range of p-value thresholds (table S2.6). We found two lead SNPs in the LS analyses 

(both distinct from the SWB lead-SNPs) and none in the PA analyses.  

In our auxiliary analysis of DS we combined publicly available results from a study 

performed by the Psychiatric Genomics Consortium (PGC) (17) with new results from 

analyses of the initial release of the U.K. Biobank data (UKB) and the Resource for Genetic 

Epidemiology Research on Aging (GERA) Cohort. In UKB (N = 105,739), our measure is 

constructed from responses to two questions about the frequency with which the respondent 

experienced feelings of hopelessness or depression in the past two weeks. The other cohorts 

have case-control data on major depressive disorder (GERA: Ncases = 7,231, Ncontrols = 49,316; 

PGC: Ncases = 9,240, Ncontrols = 9,519). In the DS meta-analysis, we weight UKB by sample 

size and the two case-control studies by effective sample size (18). 

In our auxiliary analysis of neuroticism (N = 170,910), we pooled summary statistics from a 

study by the Genetics of Personality Consortium (GPC) (8) with results from a new analysis 

of UKB data. In UKB, our measure is the respondent’s score on a 12-item version of the 

Eysenck Personality Inventory Neuroticism scale (19). The GPC harmonized different 

neuroticism batteries (table S5.2). 

Figs. 1b and 1c show the Manhattan plots. For DS, we identified two genome-wide 

significant SNPs. For neuroticism, our meta-analysis procedure yielded 16 seemingly-

independent genome-wide significant SNPs. However, 6 of these SNPs reside within a well-
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known inversion polymorphism on chromosome 8 (20). We established that all genome-wide 

significant signals in the inversion region are attributable to the inversion (fig. S6.3) and 

confirmed that the inversion is associated with neuroticism in both the GPC and UKB data. 

Another SNP, rs193236081, is located on a well-known inversion polymorphism on 

chromosome 17, and we also established that this association is attributable to the inversion 

polymorphism (fig S6.6). However, because this inversion yields only one significant SNP 

and is genetically complex (21), we hereafter simply use rs193236081 as its proxy. Our 

neuroticism GWAS therefore identified 9 lead SNPs and 2 inversion polymorphisms. A 

concurrent, unpublished neuroticism GWAS using overlapping data reports similar findings 

(22). 

The estimated effects of the genome-wide significant associations on DS and neuroticism are 

similar, with coefficient estimates in the range 0.020 to 0.031 SDs per allele (R2 ≈ 0.02%). In 

the UKB cohort we estimated the effect of an additional allele of the chromosome 8 inversion 

polymorphism on neuroticism to be 0.035 SDs. For the 16 polymorphisms identified across 

our main and auxiliary analyses—three for SWB, two for DS, and eleven for neuroticism—

Bayesian analyses show that for a wide range of priors, the evidence for association is highly 

credible (fig. S7.1). 

In independent samples, a polygenic score constructed from our primary SWB GWAS results 

explains ~0.9% of the variance in SWB, ~0.5% in DS, and ~0.7% in neuroticism (table S8.1). 

Applying bivariate LD Score regression (23) to our GWAS results, we found substantial 

pairwise genetic correlations between SWB and our two auxiliary phenotypes: -0.81 (SE = 

0.046) for DS (cf., (24)) and -0.75 (SE = 0.034) for neuroticism (table S9.1). As a placebo 

test, we also examined height, which we expected to have much less genetic overlap with 

SWB (25). Indeed, we find that the polygenic score explains ~0.2% of the variance in height, 

and the genetic correlation with SWB is only 0.07 (SE = 0.028).   

Motivated by this evidence of genetic overlap with DS and neuroticism, which is in line with 

large genetic correlations estimated from twin-family studies (5, 6), we conducted a series of 

“quasi-replication” exercises in which we examined whether (i) the three genome-wide 

significant SNPs in the SWB analyses are associated with DS and neuroticism, and (ii) the 

genome-wide significant hits found in the auxiliary GWAS analyses of DS and neuroticism 

are associated with SWB. To avoid sample overlap, the analyses of the “second-stage” 

phenotype were always restricted to cohorts that did not contribute to the “first-stage” 

analysis.  

Fig. 2 illustrates the results from these analyses. For interpretational ease, we choose 

reference alleles so that each SNP’s estimated effect on SWB is negative; that way, its 

predicted effect on DS and neuroticism is positive. Panel A shows that two out of the three 

SWB lead-SNPs are significantly associated with DS in the predicted direction (p = 0.004 

and p = 0.001), and the third has the opposite sign and is not significantly associated with DS. 

For neuroticism, the SWB-increasing allele has the predicted sign for all three SNPs, but 

none reach significance (Panel B). Panel C shows that the two DS lead-SNPs have the 

predicted sign for SWB, and one is nominally significant (p = 0.04). Finally, of the eleven 

polymorphisms associated with neuroticism, four have the predicted sign and are 

significantly associated with SWB, five have the predicted sign and are not significantly 

associated with SWB, and two have the opposite sign and are not significantly associated 

with SWB (Panel D). One of the four significant polymorphisms is the SNP tagging the 

inversion on chromosome 8 (20). That SNP’s association with neuroticism (and likely with 

SWB) is driven by its correlation with the inversion (fig. S6.3). 
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Because of the strong genetic correlation between SWB and DS, the two successful quasi-

replications of the SWB lead-SNPs for DS lend credibility to their truly being associated with 

both SWB and DS. Indeed, our formal Bayesian calculations (table S11.1) show that for each 

SNP’s effect on each phenotype, we can exclude a zero effect size with greater than 95% 

probability. Similarly, across the 19 quasi-replication attempts depicted in fig. 2, with at least 

95% probability we can exclude a zero effect size for 18 of the first-stage effects and 9 of the 

second-stage effects. This Bayesian analysis also yields effect-size estimates that are 

corrected for the winner’s curse: relative to the initial estimates, on average these estimates 

are smaller by a factor of four for the first-stage phenotype and two for the second-stage 

phenotype. 

We also conducted two similar “proxy-phenotype” analyses (26). We examine whether the 

independent SNPs associated with SWB at p < 10-4 and available in the second-stage 

sample—163 SNPs for DS and 170 for neuroticism—are enriched for association with DS 

and neuroticism. For both second-stage phenotypes, the observed level of enrichment is 

stronger than the expected level of enrichment for a randomly drawn set of SNPs matched on 

allele frequency and second-stage sample size (p < 3×10-5 and p < 0.04, respectively). For 

DS, 116 out of 163 SNPs (71%) have the predicted direction of effect. Twenty of the 163 

SNPs are significantly associated with DS at the 5% level (19 with the predicted direction), 

and 2 remain significant after Bonferroni correction (fig. S10.1). For neuroticism, 129 out of 

170 SNPs (76%) have the predicted direction of effect, all 28 significant SNPs have the 

predicted sign, and 4 remain significant after Bonferroni correction (fig. S10.2). As a placebo 

test, we also test SWB-associated SNPs for enriched association with height. In stark contrast 

to what we find for DS and neuroticism, we find no evidence for enrichment and cannot 

reject the null hypothesis that the effects have the predicted sign only 50% of the time (25). 

Table 1 gives a summary overview of the SNPs identified across our analyses. In the upper 

panel, we list all lead SNPs from the meta-analyses of SWB, DS, or neuroticism, and we 

indicate which have significant associations in the quasi-replication analyses. In the lower 

panel, we list the SNPs identified in the proxy-phenotype analyses. For each SNP, we report 

its estimated effect. Finally, we also report if each SNP (or a variant in strong linkage 

disequilibrium with that SNP) is (i) nonsynonymous (i.e., alters the protein product) or is (ii) 

an eQTL (i.e., affects the extent to which certain genes are expressed), and we report (iii) the 

nearest protein-coding gene; for details, see tables S2.6, S10.2-10.3, S12.5-12.6, and S12.8. 

We further investigated the biological mechanisms underlying the GWAS results by applying 

stratified LD Score regression (27) to our meta-analysis results. The method takes as given 

some categorization of SNPs, and for each category, it estimates the expected increase in the 

explanatory power of a SNP due to its being in that category. In our first analysis, we report 

estimates for all 53 functional categories included in the “baseline model” (tables S12.1-

12.3); the results for SWB, DS, and neuroticism are broadly similar and are in line with what 

has been found for other phenotypes (27). In our second analysis, the categories are 

groupings of SNPs likely to regulate gene expression in cells of a specific tissue. The 

estimates for SWB, DS, and neuroticism are shown in fig. 3a. As a benchmark, we also 

provide results from the GIANT consortium’s most recent study of height (28). The height 

results are clearly distinguished by the much higher estimates for the categories 

CONNECTIVE/BONE, CARDIOVASCULAR, and SKELETAL MUSCLE. In contrast, the estimates for 

the category CENTRAL NERVOUS SYSTEM are significantly positive for all three of our 

phenotypes, and the estimates for ADRENAL/PANCREAS for two of the three, SWB and DS. 

This latter result is in line with previous research on the role of hypothalamic-pituitary-

adrenal (HPA)-axis in depressed patients (29). 
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We also investigated potential molecular mechanisms underlying the effects of the inversion 

on chromosome 8. The chromosome 8 inversion, and the 7 genes for which we find the 

inversion is a significant cis-eQTL at FDR < 0.05, are depicted in fig. 3b. The fact that these 

genes are all positioned in close proximity to the inversion breakpoints suggests that the 

molecular mechanism could involve the relocation of regulatory sequences. Three of the 

genes (FDFT1, MSRA, MTMR9) are known to be highly expressed in tissues and cell types 

that belong to the central nervous system, and two (BLK, MFHAS1) in the immune system. 

To summarize, we report a number of credible genetic associations with our primary 

phenotype of SWB as well as our auxiliary phenotypes of DS and neuroticism. The small 

effect sizes help shed light on why earlier studies of these phenotypes have had limited 

success. For example, given our winner’s-curse-adjusted estimates of the effect sizes, we 

calculate that the power for detecting the genome-wide significant SNPs from our analysis in 

the largest previous GWAS of depression and neuroticism was only ~0.012% and 

~0.00005%, respectively (table S11.2). 

Our study found many more credible associations than prior work due to two strategies. First, 

our GWAS had much larger sample sizes. Our findings support the view that GWAS can 

succeed even for highly polygenic phenotypes once sample sizes are large enough (9, 30). 

Second, our proxy-phenotype strategy exploited the strong genetic overlap between SWB, 

depression, and neuroticism. We anticipate that future efforts to identify genetic variants 

associated with these phenotypes could similarly benefit from studying them in concert. 
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Fig. 1. Manhattan plots. (A) Subjective well-being (N = 298,420), (B) Depressive symptoms (Neff = 149,707), (C) Neuroticism (N = 170,911). 

The x-axis is chromosomal position, and the y-axis is the significance on a −log10 scale. The upper dashed line marks the threshold for genome-

wide significance (p = 5×10-8); the lower line marks the threshold for nominal significance (p = 10-5). Each independent genome-wide 

significant association (“lead SNP”) is marked by ×. We find three associations for SWB, two for DS, and eleven for neuroticism.  
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Fig. 2. Quasi-replication of lead SNPs. We examined whether (i) lead SNPs identified in the SWB meta-analyses are associated with DS and 

neuroticism, and (ii) lead SNPs identified in the analyses of DS and neuroticism are associated with SWB. The quasi-replication sample is 

always restricted to non-overlapping cohorts. The bars represent 95% CIs (not adjusted for multiple testing). The sample sizes (maximum across 

SNPs) are: (A) SWB (N = 294,043) → DS (Neff = 123,506), (B) SWB (N = 294,043) → Neuroticism (N = 68,201), (C) DS (Neff = 124,498) → 

SWB (N = 238,254), (D) Neuroticism (N = 170,908) → SWB (N = 198,360). For interpretational ease, we choose the reference allele so that 

positive coefficients imply that the estimated effect is in the predicted direction. 
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Fig. 3. Results from selected biological analyses. (A) Estimates of the expected increase in 

the phenotypic variance accounted for by a SNP due to the SNP’s being in a given category 

(𝜏𝑐), divided by the LD Score heritability of the phenotype (ℎ2). Each estimate of 𝜏𝑐 comes 

from a separate stratified LD Score regression, controlling for the 52 functional annotation 

categories in the “baseline model.” The bars represent 95% CIs (not adjusted for multiple 

testing). To benchmark the estimates, we compare them to those obtained from a recent study 

of height (28). (B) Inversion polymorphism on chromosome 8 and the 7 genes for which the 

inversion is a significant cis-eQTL at FDR < 0.05. The upper half of the figure shows the 

Manhattan plot for neuroticism for the inversion and surrounding regions. The bottom half 

shows the squared correlation between the SNPs and the principal component that captures 

the inversion. The inlay plots the relationship, for each SNP in the inversion region, between 

the SNP’s significance and its squared correlation with the principal component that captures 

the inversion. 
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Table 1. Summary Overview of Polymorphisms Identified Across Analyses. All effect 

sizes are reported in units of SDs per allele. “Q-rep”: Whether SWB lead-SNP quasi-

replicated in DS or neuroticism, and whether DS/neuroticism lead-SNP quasi-replicated in 

SWB, all at p < 0.05. “Location”: type of genomic region according to dbsnp and Ensembl. 

“Non-syn”: Whether the SNP or any LD partner (R2 ≥ 0.6 and within 250kb) is non-

synonymous according to HaploReg (version 4). “eQTL”: Whether the SNP is a cis-eQTL in 

whole blood (at FDR < 0.05). “Nearest protein-coding gene”: The nearest-protein coding 

gene (5’ start site) of the lead SNP according to GENCODE coordinates archived at 

http://www.broadinstitute.org/mpg/snpsnap/. Proxy SNP rs4346787 (R2 = 0.98) was used to 

tag rs4481363 in the DS data. All details are in SOM Section 12.2. 
* Note:  rs10960103 tags the inversion polymorphism on chromosome 8. 
 

Panel A. Genome-Wide Significant Associations 

 

SWB (N = 298,420) 
SNP Beta SE p-value Q-rep Location Non-syn eQTL Nearest protein 

-coding gene 

rs3756290 -0.0177 0.0031 9.55×10-9  intronic  Y RAPGEF6 

rs2075677 0.0175 0.0031 1.49×10-8 DS intronic Y Y CSE1L 

rs4958581 0.0153 0.0028 2.29×10-8 DS intronic   NMUR2 

  

DS (N = 161,460) 
rs7973260 0.0306 0.0051 1.78×10-9  intronic  Y KSR2 

rs62100776 -0.0252 0.0044 8.45×10-9 SWB intronic   DCC 

         

Neuroticism (N = 107,245) 
rs2572431 0.0283 0.0035 4.20×10-16  intergenic  Y MTMR9 

rs193236081 -0.0284 0.0043 6.26×10-11  intronic Y Y KANSL1 

rs10960103* 0.0264 0.0042 2.14×10-10 SWB intergenic   TYRP1 

rs4938021 0.0233 0.0337 4.03×10-10  intergenic   DRD2 

rs139237746 -0.0204 0.0034 2.55×10-9 SWB intronic  Y SBF2 

rs1557341 0.0213 0.0036 5.58×10-9  intronic   CELF4 

rs12938775 -0.0202 0.0035 8.54×10-9 SWB intronic   PAFAH1B1 

rs12961969 0.0253 0.0045 2.16×10-8  intergenic   CELF4 

rs35688236 0.0213 0.0038 2.35×10-8  intronic   PDCD6IP 

rs2150462 -0.0217 0.0039 2.66×10-8 SWB intergenic   ELAVL2 

rs12903563 0.0198 0.0036 2.86×10-8  intronic   LINGO1 

  

 

Panel B. Additional DS and Neuroticism SNPs Identified Via Proxy-Phenotype Analysis 

 

SWB (N = 278,956) → DS (Neff = 111,106) 
SNP BetaDS SEDS p-valueDS Location Non-syn eQTL Nearest protein 

-coding gene 

rs4481363 0.0136 0.0038 3.06×10-4 intronic   ZNF184 

rs6904596 -0.023 0.0059 9.79×10-5 exonic  Y MAT2B 

        

SWB (N = 239,982) → Neuroticism (N = 131,867) 
SNP BetaNeur SENeur p-valueNeur Location Non-syn eQTL Nearest protein 

-coding gene 

rs4481363 0.0151 0.0040 1.86×10-4 intronic   ZNF184 

rs6904596 -0.0264 0.0072 2.49×10-4 exonic  Y MAT2B 

rs10838738 0.0178 0.0039 5.03×10-6 intronic  Y MTCH2 

rs10774909  -0.015 0.0039 1.20×10-4 intronic   NOS1 
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