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Abstract
Can we predict which conversations are enjoyable without hearing the words that are spo-

ken? A total of 36 participants used a mobile app, My Social Ties, which collected data

about 473 conversations that the participants engaged in as they went about their daily

lives. We tested whether conversational properties (conversation length, rate of turn taking,

proportion of speaking time) and acoustical properties (volume, pitch) could predict enjoy-

ment of a conversation. Surprisingly, people enjoyed their conversations more when they

spoke a smaller proportion of the time. This pilot study demonstrates how conversational

properties of social interactions can predict psychologically meaningful outcomes, such as

how much a person enjoys the conversation. It also illustrates how mobile phones can pro-

vide a window into everyday social experiences and well-being.

Introduction
People generally enjoy talking to one another. When asked how they are currently feeling, peo-
ple report being happier during social activities/interactions than during non-social activities
[1]. When people think back on their day, they remember being happier during times in which
they were socializing than during times in which they were doing other activities [2,3]. Further,
people report being happier on days in which they recall more social activities [4–7]. These
effects extend not only to interactions with close others, but also to interactions with people
who are more peripheral in our social networks: people report being happier on days when
they interact with more close friends and family, but also on days when they interact with more
acquaintances [8].

Although, in general, the more social interactions a person has, the happier they feel, this
conclusion ignores the fact that interactions differ in quality: Not every interaction results in
equally positive feelings. Conversations that involve receiving help or support, and conversa-
tions that involve arguing or confrontation are associated with increases in negative affect [6].
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In contrast, the more enjoyable a conversation is, the more positive affect a person feels after
the conversation [4]. These findings suggest that the quality of a conversation is related to the
emotional response to that conversation. In turn, these emotional responses have implications
for well-being, especially for older adults [9,10]. Given the difficulty of tracking every conversa-
tion that a person has, and the burden of reporting on the emotional response to each conver-
sation, past research has often relied on retrospective, aggregate reports. Could there be
another way to assess conversation quality?

The emotional quality of a conversation is not simply a function of what is said, but also
how it is said. Research on the communication of emotion in music highlights the importance
of prosody: linguistic features such as intonation, tone, stress and rhythm [11,12]. Auditory sig-
nals of pitch and loudness can be assessed through acoustical information (e.g., fundamental
frequency and intensity [13]). Individual acoustical features (e.g., pitch, volume, and speech
rate) have been linked to judgments of psychological constructs, such as power/dominance and
competence. When men lower the pitch of their voice, others attribute higher social dominance
[14–16]. Pitch also affects judgments of competence. In a forced choice design, male targets
with lower pitched voices were judged to be significantly more competent (better leaders, more
intelligent) than targets with higher pitched voices [16]. Volume is another acoustical feature
associated with judgments of power/dominance; people associate trait dominance with loud
voices [17]. Although these judgments could be merely a result of unfounded stereotypes, in
fact people are capable of making relatively accurate judgments of others’ personalities if they
hear, but don’t see the person [18].

The emotional quality of a social interaction may be related to not only acoustical features,
but also structural features of the conversation. Computer scientists in the emerging area of
social signal processing posit that computers can be empowered with the ability to sense and
understand human social signals [19]. Experiments seeking automated ways to detect social
signals have found that speaking time and interruptions are related to dominance [20–22], and
that turn-taking patterns are related to social influence [23,24]. Turn-taking, as a measure of
engagement, is also related to liking (e.g., in one study: feelings towards a speed-dating partner
[25]).

Taken together, past research suggests that the acoustical and conversational properties of a
social interaction might be related to psychological outcomes, such as emotional responses.
Mobile phones provide an ideal means of capturing both kinds of properties because they are
portable and are equipped with a wide array of unobtrusive sensors. The microphones built
into mobile phones can pick up on in-person conversations even when the phone is not in use,
providing an acoustical trace from which conversational and acoustical properties can be
extracted.

Further, by using a phone app, this acoustical information can be collected unobtrusively,
providing a window into real-world, everyday social experiences instead of into artificial social
experiences created in a laboratory. All of this can be done while maintaining the privacy of
both conversation partners; the auditory signal can be pre-processed on the phone so that only
information like volume and pitch is sent to the researchers (i.e., formant information is not
preserved, so that no raw acoustical data, such as voices/words, leave the phone [26]).

We used a mobile phone app, My Social Ties, to capture information about the social inter-
actions people had as they went about their daily lives. In this pilot study, we explored whether
the conversational and acoustical properties we extracted from a social interaction could pre-
dict the emotional response to the interaction. In essence, we wanted to know whether we
could predict which conversations were enjoyable without hearing the words that were
spoken.
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Methods

Participants
We recruited 60 undergraduate students with Android phones, who participated in exchange
for class credit or $30. One student was removed from the study due to non-compliance and 4
students withdrew from the study because they were unhappy with the app (the audio files
took up a lot of space on their phones and the app depleted their phone’s battery). Due to tech-
nical difficulties related to downloading the enormous audio files from students’ diverse
phones (which included Samsung, HTC, LG, Dell, Motorola, and Sony), we had no acoustical
information for 2 students. Due to file corruption, we could not process the acoustical informa-
tion for an additional 9 students. These kinds of technical issues are not unexpected with non-
commercial apps that are developed for small-scale use. Finally, given that hierarchical linear
modelling has a practical minimum of three data points per person, we dropped 8 participants
who had fewer than three conversations each, leaving us with a sample of 36 participants (21
females, 14 males, 1 did not report their sex;Mage = 20.6, SDage = 4.92). These participants had
a total of 473 conversations (range = 3 to 58;M = 13, SD = 12).

Procedure
This research involving human participants was approved by the Behavioural Research Ethics
Board of the University of British Columbia [H12-00469]. Participants came to the lab and
provided written consent. Participants then filled out a survey with demographic information
(including sex and age), and completed an abbreviated 21-item version of the Big Five Inven-
tory measuring Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism
[27], plus three perceived intelligence items (for exact items see [28]).

Next, research assistants explained that the study involved installing an app, My Social Ties,
on their Android phones, which they would use for 6 days. (NOTE: My Social Ties is not publi-
cally available, but if you are interested in the possibility of using it for research purposes,
please contact tanzeem.choudhury@cornell.edu.) The research assistants explained that the
app would store audio data collected during participants’ conversations, but not any raw audio
(i.e., their voice and conversation content could never be heard). The app was then installed on
each participant’s phone. Each participant read part of a story out loud to provide training data
for the app, then sat in silence for one minute so that the app could detect the end of the con-
versation (i.e., the participant reading the story to the research assistant). Upon detecting the
end of a conversation, the app triggered a survey, which asked participants to rate how they
had felt during the conversation (1 = very unhappy, 7 = very happy; M = 4.31, SD = 1.25) (see
[29] for the full list of questions on the momentary survey).

The audio files collected from participants’ phones were parsed through a two-step process.
First, we identified the voiced segments of the conversation and eliminated potential noises
from the environment by using a method that has been validated on privacy-sensitive audio
information [26]. Second, we performed speaker diarization, to identify the voiced segments
where the participant was speaking, where other people were speaking, and where there was
non-speaking noise and silence. Given that we did not retain raw audio data, we could not do
speaker diarization manually. Instead, we used k-means clustering (with a random seed) [30]
to break each individual conversation into segments based on volume (i.e., energy intensity).
Previous studies have shown that k-means clustering is capable of achieving good results on
conversations containing any number of speakers [31,32]. Since we were interested in the data
of only one speaker (the person using the My Social Ties app), we were able to use a fixed set of
clusters (k = 4): 1) Extremely high (i.e., might not be heard by human ears)—noise of the
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phone rubbing against clothing; 2) High—Voice of the person closest to the phone (i.e., the
participant); 3) Low—Voices of other people; 4) Extremely low—Silence. Our first attempt at
diarization resulted in an artificially high number of segments, as a result of being overly sensi-
tive to the ups and downs and pauses within the volume fluctuations of a single speaker (e.g.,
misclassifying a participant’s lowest volume conversation segments as belonging instead to
their conversation partner; see [33]). Consequently, we ran a smoothing algorithm that
assumed a minimum speaking time of 1.5 seconds. Finally, we removed the chunk of silence at
the end of each conversation that was needed for the app to determine whether or not the con-
versation was terminated.

The acoustical and conversational properties of interest were extracted or computed based
on the output of the diarization process (i.e., information about which voiced segments corre-
sponded to the participant speaking, and which corresponded to someone else speaking).
The volume and pitch were extracted from each voiced segment and we computed an average
(minvol = 39 db, maxvol = 65 db;Mvol = 57 db, SDvol = 5 db; minpitch = 92 Hz, maxpitch = 253
Hz;Mpitch = 182 Hz, SDpitch = 36 Hz) and standard deviation (Mvol = 53 db, SDvol = 5 db;
Mpitch = 39 Hz, SDpitch = 23 Hz) over all the voiced segments that corresponded to the partici-
pant speaking. The conversation length (min = 30 sec, max = 128 min;M = 8.6 min,
SD = 15.5 min) indicates the length of the entire audio file (which corresponds to a detected
conversation), except for the chunk of silence at the end. The percentage of time that the par-
ticipant was speaking (min = 1%, max = 95%;M = 40%, SD = 22%) indicates the total amount
of time that the participant spoke, divided by the conversation length. Finally, the rate of
turn-taking (min = 1 per min, max = 18 per min;M = 7 per min, SD = 4 per min) indicates
how many times people took turns speaking per minute (i.e., the number of voiced segments
from the diarization process). For example, if the participant spoke, then someone else, and
then the participant again, that would represent 3 turns.

An additional 65 conversations, not included in the descriptives, were discarded because of
possible corruption or inaccurate diarization: the computed speaking time was less than 0
(N = 9), there was no time when the participant was not speaking (N = 14), the rate of turn-tak-
ing was abnormally high (more than 3 SD’s above the mean; N = 6), the average volume was
abnormally high (more than 3 SD’s above the mean; N = 8), or the average pitch was higher
than the maximum of the typical adult range (i.e., an average greater than 255 Hz; N = 28). As
mentioned earlier, these kinds of technical issues are not unexpected with non-commercial
apps that are developed for small-scale use.

Results
The conversational properties were marginally related to one another: conversation length was
significantly correlated with percentage of time spent speaking, r(471) = -.29, p< .001, but not
with rate of turn-taking, r(471) = -.02, p = .66. Percentage of time spent speaking was not signif-
icantly correlated with rate of turn-taking, r(471) = -.07, p = .11. As to the acoustical properties,
average volume was significantly correlated with average pitch, r(471) = -.37, p< .001, and vari-
ability in volume was significantly correlated with variability in pitch, r(471) = .19, p< .001.

Given the extremely large correlation between average volume and variability in volume,
r(471) = .90, p< .001, and the consequent likelihood of multicollinearity, it was important to
use either average or variability in the subsequent analyses, but not both. Given that past
research has focussed on variability [34], we used variability in volume and pitch as predictors
in our analyses.

We capitalized on the fact that each person had multiple conversations by running within-
person analyses using hierarchical linear modelling (HLM) via the lme4 package in R [35],
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with conversation as the Level 1 variable, and person as the Level 2 variable. We predicted the
emotional response to a conversation from conversation length, percentage of time spent
speaking, rate of turn-taking, and variability in volume and pitch (all z-scored and entered
simultaneously). Given that we lacked specific predictions, all analyses should be considered
exploratory.

Conversations during which a person spent a smaller percentage of time speaking were
enjoyed more, β = -.19, t(30) = -3.98, p< .001. In contrast, neither the conversation length,
β = -.002, t(30) = -0.04, p = .98, nor the rate of turn-taking, β = -.001, t(30) = -0.03, p = .98,
predicted how one felt after a conversation. Neither variations in volume β = -.05, t(30) = -0.88,
p = .39, nor variations in pitch, β = .05, t(30) = 1.09, p = .28, predicted enjoyment.

Although our study is under-powered to test individual difference variables, and although
individual differences were not the focus of our study, we examined the extent to which indi-
vidual differences could predict conversation enjoyment. When all of the big-five personality
traits, age, and gender were added to the model, none of these individual differences signifi-
cantly predicted feelings, β’s< .10, p’s> .39.

We also ran exploratory analyses to test for relationships between the acoustical and conver-
sational properties (averaged across participants) and the individual difference variables (per-
sonality, age, gender). Neither average volume nor variability in volume was significantly
correlated with any individual difference variables, r’s< .26, p’s> .14, and did not differ by
gender. As expected, average pitch was higher for women than for men, t(33) = 3.18, p = .003.
Additionally, older participants spoke with a somewhat lower average pitch than younger par-
ticipants, r(33) = -.30, p = .08. Pitch was not significantly correlated with any other individual
difference variables, r’s< .21, p’s> .24. Variability in pitch was not significantly correlated
with any individual difference variables, r’s< .17, p’s> .33, and did not differ by gender. Con-
versation length was not significantly correlated with age or personality, r’s< .23, p’s> .19,
but men had somewhat longer conversations than women t(33) = 1.99, p = .06. The percentage
of time spent speaking was marginally higher for older people, r(33) = .29, p = .09, and, surpris-
ingly, marginally lower for extraverted people, r(33) = -.30, p = .08, but was not significantly
correlated with any other individual difference variables, r’s< .28, p’s> .11, and did not differ
by gender. Finally, rate of turn-taking was not significantly correlated with any individual dif-
ference variables, r’s< .22, p’s> .21, and did not differ by gender.

Discussion
We used a mobile phone app to unobtrusively gather acoustical information about conversa-
tions that people had in their everyday lives. People’s enjoyment of a social interaction can be
predicted from conversational properties of that interaction. People enjoyed their conversa-
tions more when they spoke a smaller proportion of the time than usual. These effects were not
moderated by personality, age, or gender.

Although our findings are based on only 36 people, those people had 473 conversations.
Thus, the use of a more powerful within-person design bolsters the conclusions despite the
small sample size. Given that the data for this study were collected via a mobile phone app, and
given that mobile phone apps can be easily distributed via online app stores, future studies
have the potential to collect large amounts of data from geographically distributed people who
download and install the app on their own.

Future studies are needed to establish the generalizability of these findings. Indeed, several
factors could moderate the relationship between acoustical/conversational properties and
enjoyment. In a past study by Yuan and colleagues [36], speaking rate was found to vary by
gender, age, and conversation partner: females, older people, and conversations with strangers
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tend to exhibit slower speaking rates. Although we didn’t ask participants specifically about
conversations with strangers, we did ask whether each conversation was with a strong tie (e.g.,
close friends and family), a weak tie (e.g., acquaintances), or someone else. When we looked
solely at the conversations with strong ties (N = 210) and weak ties (N = 197), we found no dif-
ference in how much participants enjoyed their conversations, and there were no differences in
any of the acoustical (variability in volume, variability in pitch) or conversational features (con-
versation length, rate of turn-taking, or percentage of time spent speaking) depending on the
conversation partner.

Culture is another possible moderator of the relationship between acoustical/conversational
properties and enjoyment. On the predictor side of the equation, there is some evidence that
women in various cultures exhibit differences in average pitch [15]. This might suggest that
future replication efforts should focus on a single culture, and that the effect should be tested in
several cultures that are known to vary in average pitch. On the outcome side of the equation,
cultural differences in the extent to which people rely on internal speech result in differences in
performance on reasoning tasks. It is not implausible that these differences might also have
affective consequences, manifesting in differences in enjoyment.

At face value, the finding that talking a smaller proportion of the time resulted in more
enjoyable conversations seems at odds with the fact that people who are depressed tend to talk
less; the Center for Epidemiologic Studies’ Depression Scale (CES-D) includes an item “I talked
less than usual [during the past week]” [37]. However, we suspect that this item refers to the
number of social interactions a person engages in, rather than the amount of talking during
each social interaction. This interpretation is consistent with the finding that people are hap-
pier on days when they have more social interactions, whether with close friends and family or
with acquaintances [8]. Future studies should further examine the distinction between these
two constructs (i.e., amount of talking within a conversation vs. number of conversations).
Also, it remains to be seen whether there is a minimum amount of talking within a conversa-
tion that yields benefits; in our experience, a conversation where you can never get a word in
edgewise is not too enjoyable.

The current work has implications for Pentland’s [34] theory of social signals. Our finding,
that we can predict the emotional response to a social interaction from its conversational prop-
erties, is consistent with Pentland’s idea that acoustical properties of interactions act as social
signals. Pentland describes how to measure four types of social signals: activity level (propor-
tion of time a person is speaking), engagement (the extent to which one person’s turn-taking is
influenced by the other’s), stress/emphasis (variation in pitch and volume), and mirroring
(mimicking the other’s short utterances). The features that we examined map on quite closely
to the features that he proposed: our proportion of speaking time maps onto his activity fea-
ture, our rate of turn-taking is similar to his engagement feature, and our variation in volume
and pitch are analogous to his stress/emphasis feature. However, we could not analyze a feature
that is similar to his mirroring feature, since participants’ conversation partners generally did
not have our mobile app, My Social Ties, installed on their phones.

Indeed, one limitation of this study is that we did not report any acoustical features related
to the conversation partner. Intuitively this is important, as each conversation partner will
influence the other, and both parties seem likely to influence the emotional response to a con-
versation. Future studies could examine not only the volume and pitch of the conversation
partner, but also measure synchronicity of volume and pitch.

Another limitation of this study is that the results are dependent on knowing when a partici-
pant is speaking during each conversation, and when they are not speaking (i.e., dependent on
accurate speaker segmentation and diarization). We were unable to do these steps manually,
due to the privacy-sensitive app that we used. Instead, we used automated methods that have
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been validated against manual methods [26, 31], but no automated method is 100% accurate.
Although inaccuracies are inevitable, we have no reason to believe that these inaccuracies
would result in a spurious relationship between the enjoyment of a conversation and the per-
centage of speaking time (but not other conversational or acoustical properties).

The unobtrusive, privacy-maintaining method used in the current study shows vast poten-
tial as a tool for psychological study. With more than 2.5 billion people around the world
already carrying around smartphones as they go about their daily lives [38], there is a huge
opportunity to harness mobile apps for the psychological study of everyday behavior. Physi-
cians and clinicians could use a mobile app to monitor patients who have difficulty communi-
cating (e.g., people with social anxiety disorder, or people with Parkinson’s disease; [39]), and
use the data to potentially feed into treatment plans. Psychologists could use a mobile app to
understand the ways in which people interact differently with outgroup members, to test
whether an intervention (e.g., the “fast friends” procedure [40]) changes the way people inter-
act with others, or to test myriad other questions.

This pilot study demonstrates how the conversational and acoustical properties of social
interactions can predict psychologically meaningful outcomes, such as how much a person
enjoys the conversation. In other words, even without hearing the content of a conversation,
we can predict the emotional response to it. The current work also illustrates the potential of
mobile sensing to provide a window into everyday social experiences and well-being.
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