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Abstract

We investigate the asymptotic and finite sample properties of a number of methods for es-

timating the cointegration rank in integrated vector autoregressive systems of unknown autore-

gressive order driven by heteroskedastic shocks. We allow for both conditional and unconditional

heteroskedasticity of a very general form. We establish the conditions required on the penalty func-

tions such that standard information criterion-based methods, such as the Bayesian information

criterion [BIC], when employed either sequentially or jointly, can be used to consistently estimate

both the cointegration rank and the autoregressive lag order. In doing so we also correct errors

which appear in the proofs provided for the consistency of information-based estimators in the

homoskedastic case by Aznar and Salvador (2002). We also extend the corpus of available large

sample theory for the conventional sequential approach of Johansen (1995) and the associated wild

bootstrap implementation thereof of Cavaliere, Rahbek and Taylor (2014) to the case where the lag

order is unknown. In particular, we show that these methods remain valid under heteroskedasticity

and an unknown lag length provided the lag length is first chosen by a consistent method, again

such as the BIC. The relative finite sample properties of the different methods discussed are inves-

tigated in a Monte Carlo simulation study. The two best performing methods in this study are a

wild bootstrap implementation of the Johansen (1995) procedure implemented with BIC selection

of the lag length and joint IC approach (cf. Phillips, 1996) which uses the BIC to jointly select the

lag order and the cointegration rank.
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1 Introduction

Cointegration testing, and reduced rank testing more generally, are research areas where Richard

Smith has made many important contributions (see, for example, Camba-Mendez, Kapetanios, Smith

and Weale, 2003, Pesaran, Shin and Smith, 2000, 2001, and Robin and Smith, 2000), and this paper

contributes further to this literature, focusing on methods for determining the cointegration rank of

vector autoregressive [VAR] systems integrated of order one, I(1). This is often done using a test-based

sequential procedure based on the asymptotic (pseudo-) likelihood ratio [PLR] test of Johansen (1995).

However, even where the autoregressive lag order is known, this approach can be significantly over-sized

in finite samples, particularly so where the shocks contain strong serial correlation; see, in particular,

Johansen, (2002) and the references therein. The PLR tests can also display significant upward size

distortions in the presence of conditional heteroskedasticity (Lee and Tse, 1996; Cavaliere, Rahbek

and Taylor, 2010a [CRT2010a, hereafter]) or non-stationary heteroskedasticity (Cavaliere, Rahbek

and Taylor, 2010b [CRT2010b, hereafter]) which characterise many key macroeconomic and financial

variables. As a result, assuming a known autoregressive lag length, Cavaliere, Rahbek and Taylor

(2012, 2014) [CRT2012, CRT2014, hereafter] develop bootstrap implementations of the PLR tests; for

earlier contributions see, inter alia, van Giersbergen (1996) and Swensen (2006).

There is a close link between (P)LR tests and information criteria [IC]-based methods for de-

termining the cointegration rank (and, indeed, the autoregressive lag length); see Chao and Phillips

(1999). The efficacy of IC-based methods for determining the cointegrating rank has also been ex-

plored by a number of authors; for early contributions see Phillips (1996), Phillips and McFarland

(1997) and Lütkepohl and Poskitt (1998). For a known lag length, Cavaliere, De Angelis, Rahbek and

Taylor (2015) [CDRT, hereafter] investigate selecting the cointegrating rank using the Bayesian IC

[BIC] (Rissanen, 1978; Schwarz, 1978), the Akaike IC [AIC] (Akaike, 1974) and the Hannan-Quinn IC

[HQC] (Hannan and Quinn, 1979). They find that BIC provides a useful complement to the bootstrap

sequential procedures. Under conditions which rule out heteroskedasticity in the shocks, Aznar and

Salvador (2002) and Kapetanios (2000) establish the requirements needed on the penalty function for

consistent estimation of cointegration rank by IC-based methods and show that both BIC and HQC

satisfy these conditions. Kapetanios (2004) establishes the inconsistency of the AIC-based approach,

showing that its estimate of the rank displays a severe upward bias. For the case of a known lag

length, CDRT extend these results to the case of heteroskedastic shocks, showing that the BIC and

HQC approaches remain consistent.

Assuming a known lag length in the cointegrated VAR [CVAR] model is unreasonable in practice.

The PLR tests can suffer from serious size distortions, even asymptotically, if a lag order smaller than

the true order is used, while fitting unnecessary lags compromises finite sample power; see, among

others, Boswijk and Franses (1992), Cheung and Lai (1993), Haug (1996) and Lütkepohl and Saikkonen

(1999). Consequently, the practitioner needs to estimate both lag length and cointegration rank. This

is often done using a two-step procedure, where the autoregressive lag length is first estimated and

then subsequently employed in a PLR-based cointegration rank determination second step. The first
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step will often involve using either an IC or a sequence of likelihood ratio lag specification tests. In

the latter case these are often coupled with model misspecification tests on the residuals from the

fitted model. Under the assumption of homoskedastic shocks, Lütkepohl and Saikkonen (1999) show

that PLR tests where the lag length is estimated by a consistent IC, such as BIC or HQC, have the

same asymptotic distributions as PLR tests computed with knowledge of the true lag order. Moreover,

again for homoskedastic shocks, simulation results in Kascha and Trenkler (2011) suggest that an i.i.d.

bootstrap implementation of this two-stage procedure works well.

Using IC-based approaches, the lag length and cointegration rank can be determined jointly or

sequentially. Phillips (1996) considers the former using a procedure based on the posterior IC of

Phillips and Ploberger (1996). Chao and Phillips (1999) establish the consistency of this estimator

under the assumption that the CVAR is driven by homoskedastic shocks. Phillips and McFarland

(1997) consider analogous BIC-based approaches. Fitting the correct autoregressive lag length has

less influence, at least in large samples, on the behaviour of the resulting cointegration rank IC-

based estimator than for the sequential PLR-based estimator. Cheng and Phillips (2009) propose

a semi-parametric IC-based cointegrating rank estimator using a lag length of one in the CVAR.

They show that the resulting BIC and HQC procedures consistently estimate the cointegration rank

(under standard conditions on the penalty function) even when the shocks follow a general short

memory homoskedastic process; Cheng and Phillips (2012) show that this result also holds under

unconditional heteroskedasticity of the form considered in CRT2010b. However, we show that using

an incorrect lag length can seriously reduce the finite-sample efficacy of IC-based methods.

Important gaps therefore exist relating to the theory of cointegration rank determination in the

context of CVARs of unknown autoregressive lag length driven by potentially heteroskedastic shocks.

A major contribution of this paper is to fill those gaps. For shocks which can display stationary condi-

tional heteroskedasticity and/or non-stationary unconditional heteroskedasticity, we provide sufficient

conditions for IC-based procedures to be consistent, when the lag length is unknown. We discuss

the cases where the lag length and cointegration rank are jointly determined and where a sequential

procedure is employed. As part of establishing large sample results for the latter, we also demonstrate

(correcting errors in the corresponding proof provided by Aznar and Salvador, 2002) that the cointe-

gration rank can be consistently estimated (using standard penalty functions) under heteroskedasticity

regardless of the lag length used. This result implies that the consistency results given in Cheng and

Phillips (2009, 2012) also apply for any choice of the lag length and confirms their conjecture that

the result also holds under conditionally heteroskedastic shocks. In the same heteroskedastic setting

we also extend the available large sample theory for the standard and wild bootstrap PLR tests to

cover the case of an unknown lag order in the CVAR, establishing the conditions under which using

an IC-based method to first select the lag length prior to computing the (bootstrap) PLR tests leads

to the same large sample properties as hold under a known lag length.

The remainder of the paper is organised as follows. Section 2 details our reference heteroskedastic

CVAR model. Section 3 outlines the various cointegration rank determination methods which we

consider and section 4 analyses the large sample properties of these methods. The results from a
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large number of Monte Carlo experiments are discussed in section 5 in order to provide a detailed 
comparison of the relative finite sample performances of the various methods. Section 6 concludes. 
All proofs are contained in the Appendix. The tabulated results from the Monte Carlo simulation 
experiments are reported in the accompanying Supplementary Appendix. Additional simulation results 
and an empirical application to the term structure of interest rates in the US can also be found in the 
accompanying working paper, Cavaliere, De Angelis, Rahbek and Taylor (2014).

2 The Heteroskedastic Cointegrated VAR Model

Consider the p-dimensional process {Xt} which satisfies the k-th order reduced rank VAR model:

∆Xt = αβ′Xt−1 +
k−1∑
i=1

Γi∆Xt−i + αρ′Dt + φdt + εt, t = 1, ..., T (2.1)

where Xt := (X1t, ..., Xpt)
′ and the initial values, X1−k, ..., X0, are taken to be fixed in the statistical

analysis. Let k0 denote the true value of the autoregressive lag length k in (2.1). In the context of (2.1)

we assume that the standard ‘I(1, r0) conditions’ hold, where r0 ∈ {0, ..., p} denotes the cointegration

rank of the system (see also CRT2012); that is, the characteristic polynomial associated with (2.1)

has p− r0 roots equal to 1 with all other roots lying outside the unit circle, and where α and β have

full column rank r0.

The innovation process εt := (ε1t, ..., εpt)
′ is assumed to satisfy the general assumption introduced

by Boswijk, Cavaliere, Rahbek and Taylor (2016):

Assumption H The innovations {εt} are defined as εt := σtzt, where σt is non-stochastic and sat-

isfies σt := σ (t/T ) for all t = 1, ..., T , where σ (·) ∈DRp×p [0, 1], with DRm×n [0, 1] used to denote the

space of m× n matrices of càdlàg functions on [0, 1] equipped with the Skorokhod metric, and where

Σ (u) := σ (u)σ (u)′ is assumed to be positive definite for all u ∈ [0, 1]; zt forms a martingale differ-

ence sequence with respect to the filtration Ft with conditional variance matrix ht := E(ztz
′
t|Ft−1),

satisfying suptE ‖zt‖
4r <∞, for some r > 1, and T−1

∑T
t=1 ht

p→ E(ztz
′
t) = Ip, where: Ik denotes the

k × k identity matrix,
p→ denotes convergence in probability as T → ∞, and for any vector, x, ‖x‖

denotes the usual Euclidean norm, ‖x‖ := (x′x)1/2.

Remark 1: Assumption H implies that εt is a p-dimensional vector martingale difference sequence

with respect to Ft, with conditional variance matrix Σt|t−1 := E(εtε
′
t|Ft−1) = σthtσ

′
t and time-varying

unconditional variance matrix Σt := E(εtε
′
t) = σtσ

′
t > 0. As such, Assumption H combines the

assumptions of CRT2010a and CRT2010b who consider VAR models with stationary conditional het-

eroskedasticity or non-stationary unconditional volatility, respectively. These are obtained as special

cases with σ(·) = σ (constant unconditional variance, and hence only conditional heteroskedasticity)

and ht = Ip (so that Σt|t−1 = Σt = Σ(t/T ), allowing only unconditional non-stationary volatility). As

discussed in CRT2010b, the latter implies that the elements of Σt are only required to be bounded

and to display a countable number of jumps, therefore allowing for an extremely wide class of po-

tential models for the behaviour of the variance matrix of εt, including single or multiple variance or
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covariance shifts, variances which follow a broken trend, and smooth transition variance shifts. The

former allows for a wide range of conditionally heteroskedastic processes including stochastic volatility

and generalised autoregressive-conditional heteroskedasticity (GARCH) processes; see CRT2010a and

Boswijk et al. (2016) for further discussion.

The deterministic variables in (2.1) are taken to satisfy one of the following cases (see, e.g., Jo-

hansen, 1995): (i) Dt = 0, dt = 0 (no deterministic); (ii) Dt = 1, dt = 0 (restricted constant); or

(iii) Dt = t, dt = 1 (restricted linear trend). We will take the form of the deterministic component

(but not the values of the parameters which characterise it) to be given. For the case where εt is

i.i.d. with mean vector zero, variance matrix Σ and finite fourth moments, Aznar and Salvador (2002)

also discuss a sequential strategy where as a first step the lag order and cointegration rank in (2.1)

are determined by a joint information criterion of the form outlined in section 3.1 below, but then

undertake additional steps to determine the form of the deterministic component. While we do not

consider the choice of the form of the deterministic component in this paper, the strategy outlined by

Aznar and Salvador (2002) could also be extended straightforwardly to the present context.

3 Methods for the Determining the Cointegration Rank when the

Lag Length is Unknown

In this section we briefly discuss available methods for cointegration rank determination in the context 
of (2.1) where the true autoregressive lag, k0, is unknown to the practitioner. In order to motivate 

why the methods we outline in this section are important in practice, we first illustrate, by means 
of a small Monte Carlo exercise, the impact that the value of the lag length used has on the ability 
of information-based and PLR based procedures to determine the cointegration rank. In particular, 
we take as our simulation DGP the VAR model of dimension p = 4, defined in (5.1) of section 5, 
whose true autoregressive lag length, k0, is equal to two. Three cases are considered for the true 
cointegrating rank: r0 = 0, r0 = 1, and r0 = 2. To keep the DGP simple at this stage we take 

the innovation process, εt, to be i.i.d. Gaussian. Table 1, which can be found in the accompanying 

Supplementary Appendix, reports the frequencies with which the wild bootstrap PLR based procedure 
of CRT2014 and a BIC-based procedure, which minimises the quantity BIC(k, r) defined in (3.5) below 
over r = 0, 1, ..., p, select the true cointegration rank, in each case fixing the lag length used at each of k 
= 1, ..., 6. In the context of the simulation DGP in (5.1) we consider samples of sizes T = 100 and 400 
and set the lag parameter matrix Γ1 := γI4 with γ ∈ {0.2, 0.5, 0.8}. The results are obtained using 10,000 

Monte Carlo replications and 399 bootstrap replications.

The results in Table 1 show quite clearly that the value of the autoregressive lag length used can

have a sizeable influence on the efficacy of these procedures in practice. As might be expected, for

both the PLR- and BIC-based procedures, the best results are obtained when the lag length used is

equal to the true lag length, k0 = 2. It is also interesting to observe that both under-specifying and

over-specifying the lag length can significantly reduce the efficacy of both procedures. In the case
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of the BIC-based procedure, the performance is worst when the lag length is either under-specified

(k = 1) or heavily over-specified (k = 5, 6). As an example, while the BIC procedure computed for

the correct lag length (k = 2) selects the correct rank of zero 96.0% of the time when T = 100 and

γ = 0.8 this drops to 80.0% when a lag length of k = 6 is used and collapses to as little as 1.4% when

a lag length of k = 1 is used; notice that setting k = 1 yields the semi-parametric BIC-based rank

estimator proposed in Cheng and Phillips (2009, 2012). Indeed, at least as far as the results in Table

1 are concerned, setting k = 1 yields the least reliable estimator. We will investigate this further in

section 5.

The simulation exercise above demonstrates that in practice one will need a good estimate of the

lag length in order to obtain a reliable procedure for estimating the cointegration rank. We shall

explore two methods for doing this. The first approach, which will be detailed in section 3.1, is to

jointly minimise an information criterion over both the cointegration rank and the autoregressive lag

length. The second approach, which will be detailed in section 3.2, and is regularly used in practice

in connection with the PLR-based procedure, is to use a two-step approach. Here one first selects

the lag length, often by either an information criterion or by statistical specification tests on the lag

length (as noted in section 1, it is common practice to also conduct various misspecification tests on

the residuals from the fitted model), without imposing a reduced rank structure. One then determines

the cointegration rank (either by a sequential approach based on PLR or bootstrap PLR tests or

by using an information criterion) based on fixing the lag length at the value estimated in the first

step. The two-step procedure clearly affords greater flexibility in that different methods can be used

for determining the lag order and/or the cointegration rank; for example, the lag length used in a

PLR-based sequential procedure could be selected in the first step by the BIC.1

In what follows, we will use the generic notation k̂IC(r) to denote an estimator of the autoregressive

lag length, k0, obtained via an information criterion when the cointegration rank is set to be r; that

is, k̂IC(r) := arg mink=1,...,K IC(k, r), where IC(k, r) is used to denote the value taken by a given

information criterion when imposing rank r and lag length k on the estimation of (2.1). Similarly,

r̂IC(k) will be used to denote the estimator of the cointegration rank, r0, obtained by an information

criterion imposing a lag order equal to k; that is, r̂IC(k) := arg minr=0,...,p IC(k, r). Finally, we use

r̂PLR(k) and r̂∗PLR(k) to denote the rank estimator using, respectively, the sequential PLR-based and

wild bootstrap PLR-based procedures, in each case for a lag length k.

3.1 Joint Determination of the Lag Length and Cointegration Rank

Following Phillips and McFarland (1997) and Aznar and Salvador (2002), the autoregressive lag order

and the cointegration rank can be jointly determined by (jointly) minimising an information criterion

1Notice that we only consider the case where the lag length is estimated in the first step. One could consider a

reversed procedure where one first estimates the cointegration rank for some chosen value of the lag length, then in the

second step estimates the lag length conditional on that estimate of the rank. The simulation results in Table 1 clearly

suggest that this approach can be highly unreliable in practice. We will therefore not discuss this approach further.
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of the following generic form

IC(k, r) := −2`T (k, r) + pT (k, r) (3.1)

over both all possible lag lengths, k = 1, ...,K, where K denotes a given maximum lag order which,

unless otherwise stated, we assume in the following to be at least as large as the true lag order,

k0, and over all possible cointegration ranks, r = 0, ...., p. In the context of (3.1), `T (k, r) denotes

the maximised pseudo log-likelihood function associated with (2.1) (under the assumption that εt

is i.i.d. Gaussian with mean vector zero and constant variance matrix Σ) under lag order k and

cointegration rank r, and where pT (k, r) := cTπ(k, r) denotes the penalty function which depends on

the number of parameters, π(k, r), and on the term cT which may depend on the sample size T .

Up to a constant term which does not depend on k or r, we therefore have from Johansen

(1995) that `T (k, r) = −T
2 log |Σ̂k,r|, where Σ̂k,r is the residual covariance matrix estimate from

the conventional reduced rank regression estimation of (2.1) under rank r for lag length k, and

the notation |A| is used to denote the determinant of the matrix A. As demonstrated in Johansen

(1995), |Σ̂k,r| := |S(k)
00 |
∏r
i=1(1 − λ̂(k)

i ), and so `T (k, r) = −T
2 log |S(k)

00 | − T
2

∑r
i=1 log(1 − λ̂(k)

i ), where

λ̂
(k)
1 > · · · > λ̂

(k)
p are the p largest solutions to the eigenvalue problem,∣∣∣λS(k)

11 − S
(k)
10 S

(k)−1
00 S

(k)
01

∣∣∣ = 0, (3.2)

where S
(k)
ij := T−1

∑T
t=1R

(k)
it R

(k)′
jt , i, j = 0, 1, with R

(k)
0t and R

(k)
1t respectively denoting ∆Xt and(

X ′t−1, Dt

)′
, corrected (by OLS) for ∆Xt−1, ...,∆Xt−k+1 and dt.

On substitution into (3.1), we therefore have that

IC(k, r) = T log |S(k)
00 |+ T

r∑
i=1

log(1− λ̂(k)
i ) + cTπ(k, r) (3.3)

where: (i) in the case of no deterministic component (Dt = 0, dt = 0 in 2.1), π(k, r) = r(2p −
r) + p(p + 1)/2 + p2(k − 1); (ii) for the restricted constant case (Dt = 1, dt = 0 in 2.1), π(k, r) =

r(2p− r+ 1)+p(p+ 1)/2 +p2(k−1), and (iii) for the case of a restricted trend (Dt = 1, dt = 1 in 2.1),

π(k, r) = r(2p − r + 1) + p(p + 2)/2 + p2(k − 1). Different values of the coefficient cT yield different

information criteria through the resulting penalty function, pT . The most widely used are AIC, BIC,

and HQC where cT = 2, log T , and 2 log log T , respectively, thereby yielding:

AIC(k, r) := T log
∣∣∣S(k)

00

∣∣∣+ T

r∑
i=1

log(1− λ̂(k)
i ) + 2π(k, r), (3.4)

BIC(k, r) := T log
∣∣∣S(k)

00

∣∣∣+ T

r∑
i=1

log(1− λ̂(k)
i ) + (log T )π(k, r), (3.5)

HQC(k, r) := T log
∣∣∣S(k)

00

∣∣∣+ T

r∑
i=1

log(1− λ̂(k)
i ) + 2(log log T )π(k, r). (3.6)
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Any information criterion as in (3.3) can be used to jointly determine k and r.2 In particular, the

cointegration rank and lag order estimator for the joint procedure, denoted by k̃IC and r̃IC, respectively,

is then given, in generic form, by

(k̃IC, r̃IC) := arg min
r=0,...,p; k=1,...,K

IC(k, r); (3.7)

see Aznar and Salvador (2002).3 The specific estimators resulting from the BIC (first proposed

in Phillips and McFarland, 1997), AIC and HQC penalty functions will be denoted (k̃BIC, r̃BIC),

(k̃AIC, r̃AIC) and (k̃HQC, r̃HQC), respectively. We will use the same convention in what follows for

obtaining the penalty-term specific versions of generic information criterion based terms.

Notice that the global joint minimiser (k̃IC, r̃IC) in (3.7) also solves{
k̃IC = arg mink=1,...,K IC(k, r̂IC(k))

r̃IC = r̂IC(k̃IC).
(3.8)

This follows because, for any chosen k = 1, ...,K, IC(k, r) is minimised at (k, r̂IC(k)). Similarly,

(k̃IC, r̃IC) solves: {
r̃IC = arg minr=0,...,p IC(k̂IC(r), r)

k̃IC = k̂IC(r̃IC).
(3.9)

In section 4.2 we will show that provided the penalty term coefficient, cT , is such that cT /T +

1/cT → 0 as T → ∞ then so (3.7) will provide consistent estimates for k0 and r0 under Assumption

H.

3.2 Sequential Determination of the Lag Length and Cointegration Rank

Nielsen (2006), inter alia, shows that the autoregressive lag length in non-stationary VAR models

can be consistently estimated from the levels of the data using either an information criterion or a

sequence of likelihood ratio tests. The first of these methods is also discussed in section 5 of Lütkepohl

and Saikkonen (1999) and will also be our focus in this paper. To that end, observe that this obtains

as a special case of the general information criterion in (3.3) where we do not impose a reduced rank

structure on Π := αβ′ in (2.1); that is, where r = p. Consequently the generic information criterion is

given by

IC(k, p) = T log
∣∣∣Σ̂k,p

∣∣∣+ cTπ(k, p) (3.10)

where Σ̂k,p is an estimate of the residual covariance matrix obtained by estimating an unrestricted

VAR model of order k in the levels of Xt, and where π(k, p) := p(pk+ i) + p(p+ 1)/2 with i = 0 when

no deterministic component is involved, i = 1 in the case of restricted constant, and i = 2 for the

2Although not considered here, the use of IC to jointly select k and r could be extended to jointly determine these

along with the form of the deterministic component in (2.1); cf. Phillips (1996). The authors are currently working on

this development.
3Notice that the joint PIC-based estimator of Phillips (1996) and Chao and Phillips (1999) does not fall within the

generic form given in (3.7). Nor indeed do estimators based on information criteria which adopt stochastic penalty terms,

such as those proposed in Takeuchi (1976). We will therefore not consider such estimators further here.
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restricted trend. The resulting information-based lag length estimator is then given, in generic form,

by

k̂IC(p) := arg min
k=1,...,K

IC(k, p). (3.11)

Based on the lag order k̂IC(p) of (3.11) obtained in the first step, we then determine the cointe-

gration rank in the second step. This can be done in various ways, the two most obvious either by

minimising an appropriate information criterion or by use of the sequential PLR test-based procedure

of Johansen (1995) or the bootstrap equivalents of CRT2012 (i.i.d. re-sampling) and CRT2014 (wild

bootstrap). We now outline some leading cases of how the two-step procedure could be implemented.

Two-Step Information Criteria-Based Procedure

Using the lag length k̂IC(p) of (3.11) estimated in the first step, a sequential information criteria-

based approach then estimates the cointegration rank in the second step via, again written in generic

form,

r̂IC(k̂IC(p)) := arg min
r=0,...,p

IC(k̂IC(p), r). (3.12)

where

IC(k̂IC(p), r) = T log |Σ̂k̂IC(p),r|+ c̃Tπ(k̂IC(p), r). (3.13)

In (3.13), Σ̂k̂IC(p),r denotes the estimate of the residual covariance matrix obtained from the conven-

tional reduced rank regression estimation of (2.1) under rank r for lag length k̂IC(p), while the penalty

component, π(k̂IC(p), r), is defined as for the definition of π(k, r) just below (3.3) but with k replaced

by k̂IC(p). Notice that the coefficient on the penalty term is labelled c̃T in (3.13) to highlight the fact

that it need not be the same coefficient as used in (3.10) in step one.

In section 4.2 we will provide sufficient conditions on the penalty terms cT and c̃T which ensure

the consistency of (3.11) and (3.12) under Assumption H.

The Cheng and Phillips (2009, 2012) Procedure

In this approach, due to Cheng and Phillips (2009, 2012), about which we have already provided

some initial simulation results in Table 1, the researcher remains agnostic about the short-run dynamics

in the first step by imposing a single lag in the VAR model specification. This can be seen as a special

case of (3.3) where k is fixed to 1. Specifically, the cointegration rank estimator of Cheng and Phillips

(2009, 2012) is given, in generic form, by

r̂IC(1) = arg min
r=0,...,p

IC(1, r). (3.14)

In section 4.2 we will show that provided the penalty term cT satisfies the same condition, cT /T +

1/cT → 0 as T → ∞, as in Cheng and Phillips (2009, 2012) then so (3.14) is consistent under

Assumption H. Indeed we show that this result holds when any lag length greater than or equal to

one is used in the first step.

PLR and Bootstrap PLR Test-Based Procedures
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The final two-step procedure we consider is the one that is probably the most widely used in

empirical work. Here, once k̂IC(p) has been obtained in the first step, the second step then uses the

well-known PLR test-based sequential procedure of Johansen (1995) to determine the cointegration

rank. The PLR test for the null hypothesis that the cointegration rank is (less than or equal to) r,

denoted H(r), against H(p) rejects for large values of the trace statistic

Qr,k̂IC(p),T := −T
p∑

i=r+1

log(1− λ̂(k̂IC(p))
i ), (3.15)

where λ̂
(k̂IC(p))
1 > . . . > λ̂

(k̂IC(p))
p are the largest p solutions to the eigenvalue problem in (3.2) but

with k replaced by k̂IC(p). Johansen’s sequential procedure consists of, starting with r = 0, testing

iteratively H(r) against H(p), for r = 0, ..., p− 1, until, for a given value of r, the asymptotic p-value

associated with Qr,k̂IC(p),T , exceeds a chosen (marginal) significance level. In what follows we will

denote this estimator as r̂PLR(k̂IC(p)).

The analogous bootstrap procedure for determining the cointegrating rank is proposed in CRT2012

(i.i.d. re-sampling) and CRT2014 (wild bootstrap).4 Again based on the lag length k̂IC(p) estimated

in the first step, the corresponding bootstrap algorithm iterates over the following steps:

Algorithm 1:

(i) Initiating the Algorithm at r = 0, estimate model (2.1) for lag length k̂IC(p) using the conventional

reduced rank regression of rank r, yielding the estimates β̂(r), α̂(r), ρ̂(r), Γ̂
(r)
1 , ...., Γ̂

(r)

k̂IC(p)−1
and

φ(r), together with the corresponding residuals, ε̂r,t.
5

(ii) Construct the bootstrap sample recursively from

∆X∗r,t = α̂(r)β̂(r)′X∗r,t−1 +

k̂IC(p)−1∑
i=1

Γ̂
(r)
i ∆X∗r,t−i + α̂(r)ρ̂(r)′Dt + φ̂(r)dt + ε∗r,t, t = 1, ..., T

initialised at X∗r,j = Xj , j = 1 − k̂IC(p), ..., 0, and with the T bootstrap errors ε∗r,t generated

using the re-centred residuals, ε̂cr,t := ε̂r,t − T−1
∑T

i=1 ε̂r,i, for either:

4It should be noted that the algorithms proposed in CRT2012 and CRT2014, and indeed in Swensen (2006), include

a step which checks that the bootstrap data generated in step (ii) of Algorithm 1 below satisfy the I(1, r) conditions.

In the context of the setting here this entails checking that the equation |Â(r) (z) | = 0, where Â(r) (z) := (1− z) Ip −
α̂(r)β̂(r)′z −

∑k̂IC(p)−1

i=1 Γ̂
(r)
i z (1− z), has roots either equal to 1 or outside the unit circle. Where this condition is not

satisfied the bootstrap samples generated in step (ii) will contain explosive roots which could be attributable to either

finite sample bias in the parameter estimates, or might indicate that the underlying model is dynamically misspecified.

In the case where the model is correctly specified the evidence from a large simulation study reported in Cavaliere, Taylor

and Trenkler (2015) suggests that, at least for the case of the bootstrap PLR tests of cointegration rank considered in

CRT2012 and CRT2014, violations of the root check can be safely ignored in practice, as we choose to do here.
5The estimates β̂(r) are here defined as β̂(r) := V̂ K

(r)
p , where K

(r)
p := (Ir, 0r×(p−r))

′ is a selection matrix indexed by

r and p, and, when deterministic terms are included, β̂#(r) := (β̂(r)′, ρ̂(r)′)′ = V̂ K
(r)
p+1. Here V̂ = [υ̂1, . . . , υ̂p], normalised

by V̂ ′S
(k̂IC(p))
11 V̂ = Ip, denotes the eigenvectors corresponding to the ordered eigenvalues λ̂

(k̂IC(p))
1 > . . . > λ̂

(k̂IC(p))
p which

solve the determinantal equation in (3.2). See CRT2012 for further details.
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(a) the i.i.d. bootstrap, such that ε∗r,t := ε̂cr,Ut , where Ut, t = 1, ..., T is an i.i.d. sequence of

discrete uniform distributions on {1, 2, ..., T}, or

(b) a wild bootstrap, where for each t = 1, ..., T , ε∗r,t := ε̂cr,twt, where wt, t = 1, ..., T , is an i.i.d.

N(0,1) sequence.

(iii) Using the bootstrap sample, {X∗r,t}, and denoting by λ̂∗1 > . . . > λ̂∗p the ordered solutions to

the bootstrap analogue of the eigenvalue problem in (3.2), compute the bootstrap LR statis-

tic Q∗
r,k̂IC(p),T

:= −T
∑p

i=r+1 log(1 − λ̂∗i ). Define the corresponding p-value as p∗
r,k̂IC(p),T

:=

1 − G∗
r,k̂IC(p),T

(Qr,k̂IC(p),T ), G∗
r,k̂IC(p),T

(·) denoting the conditional (on the original data) cdf of

Q∗
r,k̂IC(p),T

.

(iv) If p∗
r,k̂IC(p),T

exceeds the significance level, η, set r̂∗PLR(k̂IC(p)) = r, otherwise repeat steps (i)–(iv)

testing the null of rank (r + 1) against rank p if r + 1 < p, or set r̂∗PLR(k̂IC(p)) = p if r + 1 = p.

For the case where the lag length is known, CRT2014 show that in the presence of unconditional

and/or conditional heteroskedasticity in εt the wild bootstrap procedure significantly outperforms the

corresponding procedures based on either the asymptotic PLR test or the i.i.d. bootstrap PLR test.

Moreover, they show that only the wild bootstrap PLR test is correctly sized asymptotically under

unconditional heteroskedasticity. Consequently, we will only report simulation results for the wild

bootstrap PLR-test based procedure; that is, option (b) of step (ii) of Algorithm 1. We will analyse

the large sample properties of the PLR-based two-step procedures in section 4.2.

4 Asymptotic Analysis

In this section we detail the large sample properties of the various cointegration rank determination

methods discussed in section 3. In doing so, we extend the asymptotic analysis in CRT2012 and

CRT2014 for (standard and bootstrap) sequential PLR testing by providing new results on the large

sample properties of PLR tests in the case where the lag length of the CVAR model in (2.1) is estimated

from the data, rather than assumed known. We similarly generalise the large sample results presented

in CDRT for using information criteria to determine the cointegration rank to the case where the lag

length is unknown. Finally, our results also establish the consistency of information-criteria based

methods for selecting the lag length in non-stationary VAR processes driven by heteroskedastic shocks

of the form considered in Assumption H.

4.1 Joint Determination of the Lag Length and Cointegration Rank

In the case where εt in (2.1) is i.i.d. with mean vector zero, variance matrix Σ and finite fourth

moments, Aznar and Salvador (2002) outline a strategy to prove the consistency of the joint estimator

of the lag length and cointegration rank in (3.11), which minimises (3.3) jointly over r = 0, ..., p and

k = 1, ...,K, which is as follows. First they provide proofs of the results that: (i) r can be consistently
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determined independently of the lag length adopted, and (ii) that conditional on the true cointegration

rank being used, the lag order can then be consistently determined, in each case provided cT
T + 1

cT
→ 0

as T →∞. Unfortunately the proof they provide of the result in (i) contains errors for the case where

k < k0, that is where the lag length in (3.11) is set smaller than the true lag length. They subsequently

claim, but do not provide a formal proof of this conjecture, that these two results together imply that

(k̃IC, r̃IC)
p→ (k0, r0). In Lemma 1 and Lemma 2, respectively, we generalise these first two results from

Aznar and Salvador (2002) to the case where εt satisfies Assumption H, also correcting the error in the

proof of the first result (see Remark A.1 for further comment on this). In Theorem 1 we then provide

a formal proof that taken together these two results are indeed sufficient to prove the consistency of

(3.11).

Lemma 1 Let {Xt} be generated as in (2.1) with the parameters satisfying the I(1, r0) conditions

and let Assumption H hold. Then, for any 0 < k ≤ K, it holds that, as T →∞:

(i) for r > r0, Prob(IC(k, r) > IC(k, r0))→ 1, provided cT→∞;

(ii) for r < r0, Prob(IC(k, r) > IC(k, r0))→ 1, provided cT /T→0.

Remark 2: The results in Lemma 1 therefore imply that, provided cT
T + 1

cT
→0 as T →∞, i.e. such

that the coefficient cT in the penalty function diverges at a slower rate than the sample size, then it

will hold for any k = 1, ...,K that r̂IC(k)
p→ r0. Consequently, the use of either the BIC or HQC, but

not the AIC, penalty will yield a weakly consistent estimate of r0 under Assumption H, regardless of

the lag length used in estimating (2.1).

Remark 3: Lemma 1 generalises the results given in Theorem 1 of CDRT which establish consistent

estimation of r0 in the case when the lag order is known and fixed to the true value; that is, they

show that r̂IC(k0)
p→ r0 under the same conditions on the penalty term. Lemma 1 also extends

the large sample results given in Cheng and Phillips (2009, 2012) for k = 1 to allow for conditional

heteroskedasticity in εt through Assumption H.

Lemma 2 Let {Xt} be generated as in (2.1) with the parameters satisfying the I(1, r0) conditions

and let Assumption H hold. Then it holds that, as T →∞:

(i) for any k such that k0 < k ≤ K, Prob(IC(k, r0) > IC(k0, r0))→ 1, provided cT→∞;

(ii) for any k such that 0 < k < k0, Prob(IC(k, r0) > IC(k0, r0))→ 1, provided cT /T→0.

Remark 4: The results in Lemma 2 imply that, again provided cT
T + 1

cT
→0 as T → ∞, then so an

information criterion-based estimator of the lag length, calculated for the true cointegration rank r0 in

(2.1), that is k̂IC(r0) := arg mink=1,...,K IC(k, r0), will be such that k̂IC(r0)
p→ k0 under Assumption H.

Again, therefore the BIC and HQC penalties satisfy this condition and, hence, will deliver a consistent
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estimate of the lag length in the case where (2.1) is estimated under the true cointegration rank,

whereas the AIC penalty does not. Lemma 2 extends the corresponding results given in Theorem

4.3 of Aznar and Salvador (2002) to the case where εt is heteroskedastic, satisfying Assumption H,

although it should be noted that in doing so we have adopted a different method of proof from that

used in Aznar and Salvador (2002).

Using the results in Lemmas 1 and 2, we are now in a position to state the following theorem

which establishes the weak consistency of the joint procedure.

Theorem 1 Let {Xt} be generated as in (2.1) with the parameters satisfying the I(1, r0) conditions

and let Assumption H hold. Then it holds that (k̃IC, r̃IC)
p→ (k0, r0), provided cT in (3.3) satisfies the

condition that cT
T + 1

cT
→0 as T →∞.

Remark 5: An immediate corollary of the result in Theorem 1 is that the resulting BIC-based

and HQC-based estimators, (k̃BIC, r̃BIC) and (k̃HQC, r̃HQC) respectively, are weakly consistent for the

cointegration rank and lag length, but the corresponding AIC-based estimator is not.

4.2 Sequential Determination of Lag Length and Cointegration Rank

We first provide the sufficient conditions on cT which ensure the consistency of an approach based on

minimising the criteria in (3.10) and (3.13) under Assumption H. In doing so, we use again Lemma 1

and derive, in Lemma 3, the conditions under which minimising an information criterion of the form

given in (3.10) consistently selects the true lag order, k0, in the first step when we do not impose a

reduced rank structure on the matrix Π. To the best of our knowledge, the consistency of information

criteria-based lag length estimation in non-stationary VAR models has not previously been established

in the literature for the case where the shocks can display unconditional heteroskedasticity of the form

given in Assumption H. Using Lemma 1, we then demonstrate that the information criterion-based

estimator, (3.12), is consistent for the cointegration rank under the same conditions as are required

on cT in the first step.

Lemma 3 Let {Xt} be generated as in (2.1) with the parameters satisfying the I(1, r0) conditions

and let Assumption H hold. Then, for any 0 < k ≤ K, it holds that, as T →∞:

(i) for k > k0, Prob(IC(k, p) > IC(k0, p))→ 1, provided cT→∞;

(ii) for k < k0, Prob(IC(k, p) > IC(k0, p))→ 1, provided cT /T→0.

Remark 6: Lemma 3 implies that, again provided cT
T + 1

cT
→0 as T → ∞, then k̂IC(p)

p→ k0. Again

this implies that the use of the BIC or HQC penalty will yield a consistent estimate of the true lag

order while AIC will not. Lemma 3 generalises the results obtained for the case where the shocks

are unconditionally homoskedastic in, among others, Paulsen (1984) and Nielsen (2006), to the case

where εt can be unconditionally heteroskedastic as in Assumption H.
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Using the results in Lemma 1 and Lemma 3, we are now in a position to establish the consistency

of the two-step information criteria-based procedure for determining the lag length and cointegration

rank.

Theorem 2 Let {Xt} be generated as in (2.1) with the parameters satisfying the I(1, r0) conditions

and let Assumption H hold. Then it holds that k̂IC(p)
p→ k0 and r̂IC(k̂IC(p))

p→ r0, provided that cT in

(3.10) satisfies the condition that cT
T + 1

cT
→0 as T → ∞, and that the analogous condition holds on

c̃T in (3.13).

Remark 7: It is straightforward to show that the condition placed on cT in Theorem 2 is not required

if we only desire a consistent estimate of the cointegration rank. Indeed, any fixed lag length k will

also suffice in that case, as was shown in Lemma 1. Consequently, for example, the second step rank

estimator, r̂IC(k̂AIC(p)), which uses the lag length determined by the AIC penalty in (3.10) in the

first step, will be consistent for the cointegration rank, provided the penalty function, c∗T , satisfies the

condition in Theorem 2. That condition, of course, rules out using the AIC penalty function in (3.13)

in the second step of the procedure.

Remark 8: Notice that the consistency results given in Theorems 1 and 2 imply that the information

criteria satisfying the conditions on the term cT , by construction, cannot detect local-to-r0 alternatives.

Consider, e.g., ∆Xt = ΠTXt−1 +
∑k0−1

i=1 Γi∆Xt−i + εt, with ΠT = αβ′ + T−1α1β
′
1 where α and β are

p×r0 full rank matrices whereas α1 and β1 are of dimension p×1 and β1 is not in the span of β. That is,

for fixed T the cointegration rank is r0+1 but it becomes r0 as T →∞. As in Johansen (1995, Theorem

14.4), in our heteroskedastic case (under Assumption H), T log(1− λ̂(k0)
r0+1) is still of order Op(1) and,

thus, in all the cases where cT diverges (e.g., BIC and HQC), P(IC(k0, r0 + 1) − IC(k0, r0) > 0) → 1

in the limit. This result obtains as IC(k0, r0 + 1) − IC(k0, r0) = T log(1 − λ̂(k0)
r0+1) + cT (2p − 1) will

thus diverge to positive infinity as T → ∞. Furthermore, using the results in Lemma 1, the latter

also holds for any fixed value of k, with k = 1, ...,K. Similar arguments can be used for local-to-k0

alternatives, that is, for, e.g., ∆Xt = αβ′Xt−1 +
∑k0−1

i=1 Γi∆Xt−i + T−1/2Γk0∆Xt−k0 + εt, so that for

fixed T the autoregressive lag length is k0 + 1 but it becomes k0 as T →∞. In this case, results (i) in

Lemmas 2 and 3 imply that consistent information criterion-based estimators of the lag length cannot

detect local-to-k0 alternatives.

We now turn to establishing the large sample properties of the asymptotic PLR-based and boot-

strap PLR-based sequential estimators of the cointegration rank from section 3.2; that is, r̂PLR(k̂IC(p))

and r̂∗PLR(k̂IC(p)) respectively.

It is known from Johansen (1995) and CRT2010a that r̂PLR(k0), the rank estimator obtained using

the sequential procedure based on the asymptotic PLR test with knowledge of the true lag length,

k0, is asymptotically accurately capped6 when εt is i.i.d. with finite fourth moments. CRT2010a show

that this also holds when the shocks are conditionally heteroskedastic; that is, under Assumption

6 The sequential rank determination scheme of Johansen (1995) is asymptotically accurately capped in that if each

PLR (or bootstrap PLR) test in the sequence is run with nominal (asymptotic) significance level η, then the limiting
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H restricted such that σ(·) = σ. However, CRT2010b show that r̂PLR(k0) is not asymptotically

accurately capped if a fixed significant level η is used (although it still never selects a rank smaller

than the true rank in large samples, it will not select the true rank with probability 1− η in the limit)

when the shocks are unconditionally heteroskedastic because of the dependence of the limiting null

distribution of the PLR statistic, Qr0,k0,T , on nuisance parameters arising from the heteroskedasticity.

The foregoing results also hold for the corresponding bootstrap PLR procedure based on i.i.d. re-

sampling. However, where the wild bootstrap PLR test is used, CRT2014 show that r̂∗PLR(k̂IC(p)) is

asymptotically accurately capped (in the sense defined in footnote 5) under Assumption H.

Using the large sample results above from CRT2010a, CRT2012 and CRT2014, coupled with

Lemma 3, we now establish in Theorem 3 that the wild bootstrap r̂∗PLR(k̂IC(p)) is an asymptotically

accurately capped estimator of the cointegration rank under Assumption H.

Theorem 3 Let {Xt} be generated as in (2.1) with the parameters satisfying the I(1, r0) conditions

and let Assumption H hold. Then for the wild bootstrap PLR-tests: (i) limT→∞ P (r̂∗PLR(k̂IC(p)) =

r) = 0 for all r = 0, 1, ..., r0 − 1; (ii) limT→∞ P (r̂∗PLR(k̂IC(p)) = r0) = 1 − η · I(r0 < p), where I(·)
denotes the indicator function, and lim

T→∞
sup

r∈{r0+1,...,p}
P (r̂∗PLR(k̂IC(p)) = r) ≤ η, provided that cT in

(3.10) is such that cT
T + 1

cT
→0 as T →∞.

Remark 9: If the conditions of Theorem 3 are strengthened to include the further restriction that

σ(·) = σ in Assumption H, so that only conditional heteroskedasticity is permitted in εt, then a

similar proof strategy can be used to show that the results given in Theorem 3 will also hold for

the rank estimators from the analogous procedures based on either the asymptotic PLR tests or the

i.i.d bootstrap PLR tests. A proof of this result can be found in the accompanying working paper,

Cavaliere et al. (2014).

Remark 10: As can be inferred straightforwardly from, for example the proof of Theorem 3 in the

Appendix, the results in Theorem 3 and Remark 9 will also hold (under the same conditions) for any

consistent lag length estimator obtained in the first step. It is also straightforward to show that these

large sample results hold for any fixed lag length k used in place of k̂IC(p) in Algorithm 1, provided

k ≥ k0. Moreover, it can be shown that these results also hold even if the penalty function used

in (3.10) does not satisfy the condition that cT→∞ as T → ∞; consequently, using the lag length

estimator k̂AIC(p), based on the AIC penalty function, in Algorithm 1 will deliver a rank estimator

with the same large sample properties as stated in Theorem 3. That said, as the results in Table 1

above and in Boswijk and Franses (1992) demonstrate, in finite samples over-specification of k tends

to negatively impact on the accuracy of the rank selection method.

probability of selecting a rank smaller than, equal to, and greater than the true rank will be 0, 1− η and η, respectively,

when r0 < p and 0, 1 and 0, respectively, when r0 = p. Consistency in the same sense as previously used for the

information-based procedures would require the nominal significance level used to be some sequence ηT which converges

to zero as T →∞.
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Remark 11: In the context of a triangular error-correction DGP driven by shocks which form an

infinite order moving average (subject to a summability condition) with innovations which are i.i.d.

with finite fourth moments, Lütkepohl and Saikkonen (1999, Theorem 5.1) demonstrate that first

estimating the lag length by minimising an information criterion, such as that given in (3.10), has no

impact on the asymptotic null distributions of the PLR tests for the cointegration rank based on that

estimated lag length. In this sense, the results in Theorem 3 (and in Remarks 8 and 9) extend their

results to show that the same can also be achieved when the shocks are heteroskedastic, albeit in the

context of a pure VAR model.

5 Numerical Results

Using Monte Carlo simulation methods we now investigate the finite sample performances of the 
methods for estimating the cointegration rank outlined in section 3 in the context of models with 
conditional or unconditional heteroskedasticity. The results from these Monte Carlo experiments are 
reported in Tables 2, 3.1, 3.2, 3.3, 4.1, 4.2 and 4.3 which can be found in the accompanying 
Supplementary Appendix.

For our simulation DGP we will consider an extended version of the simulation DGP used in

CDRT, given by the following VAR(2) process of dimension p = 4:

∆Xt = αβ′Xt−1 + Γ1∆Xt−1 + εt, t = 1−K, ..., T (5.1)

with εt specified below, K denotes the maximum lag order, X−K = ∆X−K = 0, and for sample sizes

T ∈ {50, 100, 200, 400}. Notice that, with respect to CDRT, the true lag order, k0 = 2, is assumed

unknown to the practitioner throughout the Monte Carlo simulation study and is thus estimated using

an information criterion following either a joint procedure or a sequential procedure, as outlined in

sections 3.1 and 3.2, respectively. In our simulation analysis we consider K = 6 as maximum lag

length. In order to allow for a true cointegration rank, r0, of 0, 1 or 2, the long-run parameter vectors

are set to

β′ :=

[
1 0 0 0

0 1 0 0

]
and α′ :=

[
a 0 0 0

0 b 0 0

]
. (5.2)

Furthermore, we set Γ1 := γI4. Consequently, for the I(1, r) conditions to be met, it suffices that

(a, b, γ) ∈ (−2, 0]2 × [0, 1). The specific values of a and b to be used when r0 > 0 will be given in

section 5.3. In the following, results are reported for γ ∈ {0.0, 0.3, 0.5, 0.9}. Notice that the system in

(5.1) approaches the I(2) boundary as γ approaches unity.7

In the context of (5.1) for the individual components of εt we consider a selection of the univariate

innovation processes and parameter configurations as used in CDRT, CRT2014, Gonçalves and Kilian

7Notice that the stationary roots for the case of r0 = 0 are equal to the short-run parameter γ. The stationary roots

for the case of r0 = 1 and r0 = 2 are {0, 0.6}, {0.3, 0.45± 0.3122i}, {0.5, 0.55± 0.4444i} and {0.9, 0.75± 0.5809i}, where

i :=
√
−1, for γ = 0, 0.3, 0.5 and 0.9, respectively.
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(2004), and CRT2010b. These are as follows:8

• Case A. εit is a GJR-GARCH(1, 1) process driven by skewed Student-t innovations of the form

εit = h
1/2
it vit, i = 1, ..., p, where vit is distributed as a skewed t with ν degrees of freedom and

skewness parameter δ, independent across i, and hit = ω+d0ε
2
it−1 +d1I(εit−1 < 0)ε2

it−1 +d2hit−1,

t = 0, ..., T . Results are reported for d0 = 0.03, d1 = 0.04, d2 = 0.92, ν = 5, and δ = −0.1.

• Case B. εit is the first-order AR stochastic volatility [SV] model: εit = vit exp (hit), hit =

λhit−1 + 0.5ξit, with (ξit, vit)
′ ∼ i.i.d. N(0, diag(σ2

ξ , 1)), independent across i = 1, ..., p. Results

are reported for λ = 0.951, σξ = 0.314.

• Case C. εit is a non-stationary, heteroskedastic independent sequence of N
(
0, σ2

it

)
variates,

where σ2
it = 1 for t ≤ bTτc and σ2

it = κ for t > bTτc, all i = 1, ..., p. Results are reported for

τ = 2/3 and κ = 3 (late positive variance shift).

Cases A-C are all nested within the general Assumption H. Cases A and B constitute two well-

known conditionally heteroskedastic models for the innovations, both of which rule out unconditional

heteroskedasticity. Case C involves a single, permanent shift in the innovation variance, thereby

generating unconditionally heteroskedastic error sequences. Further details on these three Cases can

be found in section 5 of CDRT and in CRT2014.

All reported experiments are run over 10,000 Monte Carlo replications and were programmed

using MATLAB. These programs are available on request. For the reasons stated at the end of section

3.2, results for the two-step PLR-based approach will only be reported in connection with the wild

bootstrap PLR-tests, Q∗
r,k̂,T

. The number of replications used in the wild bootstrap algorithms is set

to 399. The wild bootstrap PLR tests were all conducted at the nominal 0.05 significance level.9

We first consider the determination of the lag length using information criteria in section 5.1.

Then, in section 5.2, we consider the case of no cointegration and we investigate both the joint and

the sequential determination of k and r using the methods discussed in section 3. Analogously, section

5.3 discusses the cases of a single cointegration vector, r0 = 1. In view of length considerations, we

will not report results for the case of two linearly independent cointegrating relations here because

these add rather little to the results for r0 = 1. Moreover, and in line with results reported in previous

8We also considered a homoskedastic case where εit, i = 1, ..., p, is an independent sequence of N (0, 1) variates and the

further conditionally heteroskedastic case where εit, i = 1, ..., p, are standard GARCH(1, 1) processes driven by standard

normal innovations. The results for these two cases were very similar to one another and also to the results reported

here for Case A and, hence, are omitted in the interests of space. They can, however, be found in the accompanying

working paper, Cavaliere et al. (2014).
9Violations of the root check condition associated with the bootstrap sequential algorithm outlined in footnote 3 do

occur, most notably when volatility is persistent (Cases B and C) and the sample size is small (T = 50 and 100), but the

frequency with which these occur decreases rapidly as the sample size increases, other things equal. For example, when

T ≥ 200, the root check condition is failed (for at least one of the values of r considered) in Algorithm 1 under Case C

for r0 = 0 (r0 = 1) no more than 1.0% (1.3%) and 0.8% (1.1%) of the time when k is determined in the first step using

HQC(k, p) and BIC(k, p), respectively.
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studies (see, e.g., Kapetanios, 2004; CDRT), we also found that the joint AIC(k, r) procedure, the

semi-parametric AIC(1, r) approach and the sequential AIC(k̂IC(p), r) procedures all displayed very

much poorer performance than the other methods considered for determining cointegrating rank and,

hence, the results for these procedures are also not reported. They can, however, be found, along with

the results for r0 = 2, in the accompanying working paper, Cavaliere et al. (2014). Throughout a

restricted constant was fitted for the deterministic component.10

5.1 Lag Length Determination

First we briefly examine the behaviour of information criteria IC(k, p) defined in (3.10) in determining

the true lag length, k0 = 2. Notice that this is used as the first step in the sequential procedures

outlined in section 3.2, that is the selected lag order, k̂IC(p) of (3.11), will then be adopted in the second

step where the cointegration rank is determined. Corresponding results for the lag length estimators

k̃IC of (3.7), obtained from the joint information criteria-based procedures, were very similar and,

hence, are not reported here in the interests of space; these results are available on request. For a

maximum value of the lag length set to K = 6, Table 2 reports the results for the determination of

the lag order k using information criteria in the case where the true cointegration rank is equal to 1.11

From these results it is seen that the BIC-based approach provides the best performance either when

γ ≥ 0.5 or when γ = 0, the latter being the case where the true VAR order is 1. However, and for

each of Cases A-C, when γ = 0.3 BIC(k, p) performs poorly and the HQC-based approach appears

preferable.

The results in Table 2 suggest that the presence of either conditional (Cases A and B) or un-

conditional heteroskedasticity (Case C) in the innovation process has only limited impact on the

performance of the information criteria-based lag length estimation procedures.

The results in Table 2 and in the accompanying working paper, Cavaliere et al. (2014), also confirm

some well-known properties of the information criteria considered in our analysis; most notably, the

tendency of AIC(k, p) to over-estimate k, and the result that, in general, k̂BIC ≤ k̂HQC ≤ k̂AIC, in line

with the respective penalty functions used in these three criteria, noting that cT in (3.10) satisfies

log T < 2 log log T < 2 when T > 15.

We now report the results pertaining to cointegration rank determination. In the interests of

space, in what follows we omit results for the sequential determination of k and r which are based

on the same criterion in each step, e.g., BIC(k̂BIC(p), r), because these behaved very similarly to the

corresponding joint procedure, as might be expected.

10We also considered the restricted trend case. Overall, and as might be expected, these results were qualitatively

similar to those for the restricted constant case, but with an overall deterioration observed in the performance of all of

the procedures the more so the smaller the sample size, other things equal. These results are available on request.
11The results for the determination of k in the cases where r0 = 0 and r0 = 2 are very similar to those reported in

Table 2. Indeed, as might be expected, the value of the cointegration rank does not appear to have a strong influence

on the performance of these procedures, albeit they perhaps fair marginally better overall where cointegration holds

(r0 > 0) vis-à-vis the no cointegration case, r0 = 0. These results are therefore not reported here but can be found in

the accompanying working paper, Cavaliere et al. (2014).
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5.2 The No Cointegration Case (r0 = 0)

No cointegration (r0 = 0) obtains by setting a = b = 0 in the long-run parameter vector α in (5.2).

In this case (5.1) reduces to the VAR(1) in first differences, ∆Xt = Γ1∆Xt−1 + εt, t = 1, ..., T .

The frequencies of cointegration rank determination for the methods considered in section 3 are

reported in Tables 3.1, 3.2 and 3.3 for Cases A, B and C, respectively. The first point worth noting is

that the results in Table 3.1 are very similar overall to those which are obtained when the innovations

are i.i.d. Gaussian (the latter results are reported in the accompanying working paper, Cavaliere et al.,

2014). In contrast, and consonant with the simulation results in CDRT, the finite sample performances

of all the methods considered deteriorate significantly under both the autoregressive SV model (Case

B) and under a single, permanent shift in volatility (Case C).

We now consider the results in more detail. We first consider the results for the joint IC-based pro-

cedure reported in the upper-left panels of Tables 3.1-3.3. The joint BIC-based procedure, BIC(k, r),

generally performs well, indeed it selects r = 0 at least 90% of the time when T = 200 and exceeds

96% when T = 400, for all values of γ and for all of Cases A-C. However, BIC(k, r) does display a

significant tendency to over-estimate the cointegration rank when the sample size is small (T ≤ 100),

especially for larger values of γ. The joint HQC-based procedure is dominated by BIC(k, r) throughout

the results in the upper-left panels of Tables 3.1-3.3 but is clearly preferred to the AIC(k, r) procedure.

Consider next the results for the sequential IC-based procedure reported in the upper-right panels

of Tables 3.1-3.3. The results in Tables 3.1-3.3 show that BIC(k̂HQC(p), r) leads to similar results as for

the joint BIC(k, r), and consequently to the sequential BIC(k̂BIC(p), r), when T ≥ 200. This is due to

the fact that BIC and HQC tend to select the same number of lags in larger samples (see the results in

Table 2). However, when T = 50 and 100 the joint BIC-based approach outperforms BIC(k̂HQC(p), r)

for all values of γ and for all of Cases A-C. Moreover, although the sequential BIC(k̂AIC(p), r) proce-

dure performs well when T ≥ 200 (T = 400 for Case C) it is dominated by both BIC(k̂HQC(p), r) and

BIC(k, r) when the sample size is small. This is due to the tendency of the AIC(k, p) to over-estimate

k, especially in small samples, which can be observed in the accompanying working paper, Cavaliere et

al., 2014). The sequential HQC-based approaches for estimating r perform very similarly to the cor-

responding joint HQC-based procedure. However, the joint BIC-based approach and BIC(k̂HQC(p), r)

appear preferable in each of Cases A-C.

The results for the semi-parametric approach by Cheng and Phillips (2009), based on IC(1, r),

reported in the lower-left panels of Tables 3.1-3.3, display significantly poorer performance than the

corresponding joint criteria IC(k, r). This is somewhat to be expected given that these criteria are

based on fitting a (misspecified) VAR(1) to the data and in the light of the results already reported in

Table 1 of section 3. In particular, when γ = 0.9, the frequency of selecting the true cointegration rank

is almost zero for all the IC(1, r), regardless of how large the sample size is. These results highlight

that the semi-parametric procedure based on a reduced rank regression using a simple VAR(1) model

is considerably affected by the misspecification of the lag length. The only cases where this procedure

works well is where γ = 0, i.e., when the simulation DGP is in fact a VAR(1) process, where the
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IC(1, r) based procedures perform similarly to the joint IC(k, r) procedures (upper-left panel) and

generally outperform its sequential IC(k̂IC(p), r) analogues (upper-right panel).

The lower-right panels of Tables 3.1-3.3 report the corresponding results for the sequential pro-

cedure based on the wild bootstrap, Q∗
r,k̂IC(p),T

. Since the tests are run at the (asymptotic) 5%

significance level, Q∗
r,k̂IC(p),T

should (in the limit) select r = 0 with probability 95% and r > 0 with

probability 5%. In line with the results in CRT2014 and CDRT, the results in Tables 3.1-3.3 show

that the wild bootstrap procedure delivers very decent finite sample performance throughout. In all

cases when T = 400, the empirical frequency with which Q∗
r,k̂IC,T

selects the true cointegration rank

in general exceeds 90%, even in the presence of either conditional heteroskedasticity (Cases A and

B) or unconditional heteroskedasticity (Case C). Although the results in Tables 3.1-3.3 suggest that

the information criterion used to select the lag length in the first step does not have a particularly

large impact on the ability of the wild bootstrap rank test to determine the cointegration rank, the

Q∗
r,k̂BIC(p),T

does marginally outperform the other procedures in most cases. Some exceptions occur for

γ = 0.3 where BIC(k, p) has a tendency to select k̂BIC(p) = 1 and, hence, underfit the autoregressive

lag order; cf. Table 2. Overall, in the case of no cointegration, the Q∗
r,k̂IC(p),T

procedures appear to be

more reliable than the corresponding IC(k, r) procedures, especially in small samples. For example,

comparing the results in the lower-right and upper-left panels of Table 3.3 for non-stationary uncondi-

tional heteroskedasticity (Case C), we observe that, when T = 50 and γ = 0.9, Q∗
r,k̂BIC(p),T

detects no

cointegration 72.3% of the time12, while BIC(k, r) only does so 29.3% of the time. The only exceptions

are for small values of γ, namely when γ ≤ 0.5, and GJR-GARCH shocks (Case A, cf. Table 3.1) where

BIC(k, r) in general marginally outperforms Q∗
r,k̂IC(p),T

, especially when T is small. For example, the

results in the lower-right and upper-left panels of Table 3.1 for Case A (GJR-GARCH shocks) show

that the joint BIC-based approach selects no cointegration 95.7% of the time when T = 100 and

γ = 0.3 compared to 83.2% and 93.0% for Q∗
r,k̂BIC(p),T

and Q∗
r,k̂AIC(p),T

, respectively.

5.3 The Cointegrated Case (r0 = 1)

We now consider the case of a single cointegration vector. In this case, as in CDRT we consider the

VAR(2) in (5.1) where we set a = −0.4 and b = 0 in the long-run parameter vector α in (5.2), thus

obtaining β′ = (1, 0, 0, 0) and α′ = (−0.4, 0, 0, 0). The speed of adjustment parameter is therefore

−0.4.

Tables 4.1-4.3 report the results for the GJR-GARCH(1,1), autoregressive SV, and single volatility

break cases, respectively. First consider the joint procedures, IC(k, r), reported in the upper-left panels

of Tables 4.1-4.3. The results show that the joint BIC-based approach correctly determines the true

cointegration rank, r0 = 1, more than 95% of the time when T = 400 in all the cases considered.

These results confirm and extend the simulation findings of CDRT to the case where the lag order is

estimated (and not set to the true value). However, as was seen for the r0 = 0 case, its performance

12It should be stressed though that this still implies an empirical size for the wild bootstrap Q∗
0,k̂BIC(p),T

test of 26.7%,

considerably in excess of the nominal 5% level.
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is affected by the value of γ; specifically, performance is significantly better when γ is large (γ ≥ 0.5),

although this property in itself is largely an artefact of the tendency of the joint BIC-based approach

to over-estimate the cointegration rank in such cases. When γ = 0.3 and the sample size is small,

T ≤ 100, the joint HQC-based procedure seems preferable to the BIC-based procedure, although again

this is largely an artefact of the greater tendency of the former to over-estimate both the lag order

(see Table 2) and the cointegration rank in such cases when r0 = 1.

In the case of one cointegration vector (r0 = 1), the results in the upper-right panels of Tables

4.1-4.3 show that the sequential BIC-based procedure, BIC(k̂AIC(p), r) and BIC(k̂HQC(p), r), performs

satisfactorily when the sample size is large, i.e., when T = 400 and dominates the sequential HQC-

based approaches when T ≥ 200 in all the cases considered. Conversely, BIC(k̂IC(p), r) performs

poorly for small values of γ, namely when γ = 0.3, and small sample sizes (T = 50 and 100). For these

combinations of γ and T , the sequential approach based on HQC(k̂BIC(p), r) is generally preferable.

The results for the semi-parametric information criteria, IC(1, r), reported in the lower-left panels

of Tables 4.1-4.3 show that, as in the case of r0 = 1 discussed in the previous sub-section, they appear

to deliver markedly worse performance in general than those based on an information criterion where

the lag order is estimated in a prior step. Again these results show that the ability of the semi-

parametric information criteria to determine the true cointegration rank is affected by the value of γ:

the bigger is γ, the worse their performance, other things equal. In particular, their performance does

not seem to improve as T increases when γ is large. This again highlights the importance of obtaining

a good estimate of the autoregressive lag length and that not doing so can very adversely affect the

ability of information criteria-based methods to select the true cointegration rank.

As was also observed in section 5.2 for the non-cointegrated DGP, the sequential procedures based

on wild bootstrap PLR tests perform very well in general for the larger of the sample sizes considered

(T = 200 and 400). However, their performance deteriorates in the smaller sample sizes considered,

especially when the parameter γ is small. Overall, when T = 400, Q∗
r,k̂BIC(p),T

performs well for any

value of γ and for all the heteroskedastic cases considered. Moreover, when the sample size is small

and γ ≥ 0.5, Q∗
r,k̂BIC(p),T

generally outperforms the other Q∗
r,k̂IC(p),T

procedures. Conversely, when

T ≤ 200 and γ = 0.3, Q∗
r,k̂BIC(p),T

performs poorly and either Q∗
r,k̂HQC(p),T

or Q∗
r,k̂AIC(p),T

do better.

This is due to the well-known tendency of BIC(k, p) to underestimate the lag length (cf. Table 2) which

in turn affects the cointegration rank determination at the second step of the sequential procedure, as

discussed in section 3 (see Table 1).13 In particular, we note that Q∗
r,k̂IC(p),T

tends to lose power when

k̂IC(p) < k0 in small samples. Overall, the performance of Q∗
r,k̂IC(p),T

is only marginally affected by

either the presence of heteroskedasticity or the information criterion used to select the lag length in

the first step of the sequential procedure. This highlights the fact that the sequential wild bootstrap

method for cointegration rank determination is a robust procedure, especially when the sample size

is large. Moreover, comparing the results in Tables 4.1-4.3, we note that BIC(k, r) and Q∗
r,k̂BIC(p),T

13These results are in line with the simulation results obtained for standard Johansen’s PLR test by Cheung and Lai

(1993), Yap and Reinsel (1995), Haug (1996), and Saikkonen and Luukkonen (1997) which show that under-specifying the

lag order leads to massive size distortions in the PLR test, while over-specifying the VAR model order is less problematic.
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tend to complement one another when the sample size is small. For example, when T = 100 or

200 and γ ≤ 0.3, Q∗
r,k̂BIC(p),T

delivers better results than the joint BIC-based approach when the

shocks are GJR-GARCH(1,1) (Case A); but, on the other hand, BIC(k, r) seems preferable for either

autoregressive SV shocks (Case B) or a single volatility break (Case C). When γ = 0.9, i.e., the system

is near-I(2), the wild bootstrap approach clearly outperforms BIC(k, r) when T is small for all the

cases considered.14

To conclude this section, it is interesting to compare the simulation results given in this paper with

those given in CDRT for the case where the autoregressive lag length is known to the practitioner and,

hence, does not need to be estimated from the data. Such a comparison reveals that in most cases

rather little is lost in terms of finite sample efficacy to select the correct cointegration rank relative to

the oracle (the known lag length case considered in CDRT) by estimating the autoregressive lag length

as part of either a joint or sequential procedure. The greatest differences occur when both the sample

size is small and the autoregressive coefficient is small but non-zero, such that lag selection methods

have a tendency to underfit the lag length. These results are therefore very encouraging given that

the lag length cannot be assumed known in practice.

6 Conclusions

In this paper we have analysed the asymptotic and finite sample properties of various methods for

determining the cointegration rank in the context of a heteroskedastic VAR model whose autoregres-

sive lag length is unknown. Joint and sequential estimation procedures based on the most widely

used information criteria were considered, along with a two-step variant of the sequential approach

of Johansen (1995) based on PLR or bootstrap PLR tests, using a lag length determined by an in-

formation criterion. The semi-parametric information criteria proposed by Cheng and Phillips (2009,

2012), which does not attempt to estimate the lag length, was also considered. We have established

the conditions required to hold on the penalty functions such that the joint and sequential information

criterion-based methods deliver consistent estimates of both the lag length and cointegration rank,

showing that these coincide with the conditions required in the homoskedastic case. While the BIC

and HQC penalties satisfy this condition, the AIC penalty does not. The same requirement on the

penalty function was also shown to ensure that the two-step sequential approach consistently estimates

the rank, provided wild bootstrap PLR tests are used in the sequential procedure when unconditional

heteroskedasticity is present. Our results have therefore provided a formal justification for the two-

step variant of Johansen’s (1995) sequential procedure which is commonly used by practitioners, and

shown that these methods hold under a very general class of heteroskedastic innovations.

14The condition i2 := |α′⊥Γβ⊥| 6= 0, which is required for Xt to be I(1), also provides a measure of the distance that

the system is from being I(2). In our case, we have that i2 = (1− γ)p−r|α′⊥β⊥|. Thus, values of γ close to one represent

near-I(2) systems which is a known problem case for cointegration rank tests (see, e.g., Johansen, 2002; CRT2012).

The results in Tables 3.1-3.3 and 4.1-4.3 show that the wild bootstrap approach provides very decent finite sample

performances in such cases.
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We have also investigated the relative finite sample properties of the various methods outlined in

the paper via a Monte Carlo simulation study allowing for both homoskedastic and heteroskedastic

shocks. For our chosen simulation DGP, a 4-dimensional VAR(2) DGP model with adjustment speed

of −0.4, we observed a deterioration in the performance of all of the methods in the presence of either

autoregressive stochastic volatility or a single volatility break in the innovation process, relative to

their performance under stationary GARCH-type processes. These results suggest, at least within the

context of the simulation DGP considered, the following conclusions: (i) an incorrect choice of the lag

length significantly impacts on the efficacy of both PLR-based and information-based cointegration

rank determination procedures in finite samples, highlighting the importance in finite samples of being

able to accurately estimate the autoregressive lag order; (ii) semi-parametric criteria, based on fitting

a VAR(1) to the data, can be substantially biased when the process is of higher-autoregressive order,

especially so when the process is close to being integrated of order two, I(2); (iii) a joint information-

criterion based approach based on the BIC tends to outperform sequential information-criterion based

methods and provides a useful complement to the wild bootstrap sequential procedure of CRT2010a,b

(implemented with BIC-based lag selection). Moreover, the losses in finite sample efficacy from se-

lecting the cointegration rank using either the joint BIC-based procedure or the Johansen (1995)-type

sequential procedure based on wild bootstrap PLR tests and BIC selection of the lag length, as com-

pared with the corresponding procedure based on knowledge of the true autoregressive lag length,

appeared to be relatively small.
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A Appendix

A.1 Definitions and Preliminary Results

Throughout the appendix we will make use of the following notation: Weak convergence of AT to B

as T → ∞ is denoted either by AT
w→ B or B = wlimAT , B = plimAT means that AT converges

in probability to B as T → ∞ and 0j×k is used to denote the j × k matrix of zeroes. If a is of full

column rank n < m, then ā := a (a′a)−1 and a⊥ is an m× (m− n) full column rank matrix satisfying

a′⊥a = 0; for any square matrix, A, ‖A‖ denotes the norm ‖A‖2 := tr {A′A}.
Without loss of generality, in what follows we assume that there is no deterministic component

(case (i) in (2.1)), i.e., Dt = 0 and dt = 0. Furthermore, we will repeatedly refer to results in Boswijk,

Cavaliere, Rahbek and Taylor (2016) [BCRT, hereafter]. We first need the following lemma where we

extend the results in Theorem 11.1 in Johansen (1995) and Lemma 3.2 in Cheng and Phillips (2009) to

the case of a general k < k0 and to the case of heteroskedastic innovations. In particular, we establish

the asymptotic behaviour of the eigenvalues in the determinantal problem (3.2) when the number of

lags included is fewer than the true lag length. The case where k ≥ k0 is discussed in Remark A.1

below.
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As in Lemma 2 in BCRT, we define, in terms of Xt given by (2.1),

Ωββ := plim
1

T

T∑
t=1

β′Xt−1X
′
t−1β, Ω00 := plim

1

T

T∑
t=1

∆Xt∆X
′
t

Ωβ0 := plim
1

T

T∑
t=1

β′Xt−1∆X ′t =: Ω′0β, Ω
(k)
β2 := plim

1

T

T∑
t=1

β′Xt−1Z
(k)′
2t =: Ω

(k)′
2β

Ω
(k)
02 := plim

1

T

T∑
t=1

∆XtZ
(k)′
2t =: Ω

(k)′
20 , Ω

(k)
22 := plim

1

T

T∑
t=1

Z2tZ
(k)′
2t

where Z
(k)
2t := (∆X ′t−1 ... ∆X ′t−k+1)′. Moreover, let Σ̄

(k)
ij := Ωij − Ω

(k)
i2 Ω

(k)−1
22 Ω

(k)
2j , for i, j = 0, β.

Furthermore, let G(·) := β′⊥CM(·) be a (p− r)-dimensional process where, under Assumption H,

M(·) :=
∫ ·

0 σ(s)dW (s) = wlimT−1/2
∑bT ·c

t=1 εt is a p-variate continuous martingale (see Lemma 1 in

BCRT) and C := β⊥(α′⊥Γβ⊥)−1α′⊥ (here Γ := Ip−
∑k0−1

j=1 Γj). Finally, let Zt = ∆Xt−Ω
(k)
02 Ω

(k)−1
22 Z

(k)
2t

be a linear process of the form Zt = C∗(L)εt, where C∗(L) is defined in equation (A.7) below.

Lemma A.1 Let {Xt} be generated as in (2.1) with the parameters satisfying the I(1, r0) conditions.

Then, for any 0 < k < k0, as T → ∞, the r0 largest solutions to (3.2), denoted by λ̂
(k)
i , i = 1, ..., r0,

converge to the nonzero roots of
∣∣∣λΣ̄

(k)
ββ − Σ̄

(k)
β0 Σ̄

(k)−1
00 Σ̄

(k)
0β

∣∣∣ = 0, with Σ̄
(k)
ββ > 0. The remaining p − r0

roots, denoted by λ̂
(k)
i , for i = r0 +1, ..., p, are of order Op

(
T−1

)
as T λ̂

(k)
i , for i = r0 +1, ..., p, converge

to the roots of the equation∣∣∣∣ρ∫ 1

0
GG′du−

(∫ 1

0
GdM ′C∗(1)′ + Λβ⊥z

)
N

(
Λ′β⊥z + C∗(1)

∫ 1

0
dMG′

)∣∣∣∣ = 0 (A.1)

where Λβ⊥z :=
∑∞

h=1 Cov (β′⊥∆Xt, Zt+h), N := Σ̄
(k)−1
00 − Σ̄

(k)−1
00 Σ̄

(k)
0β (Σ̄

(k)
β0 Σ̄

(k)−1
00 Σ̄

(k)
0β )−1Σ̄

(k)
β0 Σ̄

(k)−1
00 and

C∗(1) 6= 0.

Remark A.1: Observe that, unlike in the equation given in (A.1), it seems that the results (provided

only for the special case where εt in (2.1) is i.i.d.) by Aznar and Salvador (2002, p. 938), six lines

above equation (A.2) in the proof of their Lemma 4.1, do not appear to take account of the fact that

the CVAR model associated with (3.2) is misspecified whenever k < k0.

Proof of Lemma A.1: Let S(k)(λ) := λS
(k)
11 − S

(k)
10 S

(k)−1
00 S

(k)
01 so that the determinantal problem in

(3.2) is |S(k)(λ)| = 0, where S
(k)
ij = Mij −M (k)

i2 M
(k)−1
22 M

(k)
2j , for i, j = 0, 1, with

M00 =
1

T

T∑
t=1

∆Xt∆X
′
t, M01 =

1

T

T∑
t=1

∆XtX
′
t−1, M11 =

1

T

T∑
t=1

Xt−1X
′
t−1,

M
(k)
22 =

1

T

T∑
t=1

Z
(k)
2t Z

(k)′
2t , M

(k)
02 =

1

T

T∑
t=1

∆XtZ
(k)′
2t , M

(k)
12 =

1

T

T∑
t=1

Xt−1Z
(k)′
2t .

We first show that the r0 largest solution to |S(k)(λ)| = 0 converge to the roots of
∣∣∣λΣ̄

(k)
ββ − Σ̄

(k)
β0 Σ̄

(k)−1
00 Σ̄

(k)
0β

∣∣∣ =

0. Let AT := (β, β⊥/
√
T ). We have that

|A′TS(k)(λ)AT | =
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∣∣∣∣∣∣
 λβ′S

(k)
11 β

1√
T
λβ′S

(k)
11 β⊥

1√
T
λβ′⊥S

(k)
11 β

1
T λβ

′
⊥S

(k)
11 β⊥

−
 β′S

(k)
10 S

(k)−1
00 S

(k)
01 β

1√
T
β′S

(k)
10 S

(k)−1
00 S

(k)
01 β⊥

1√
T
β′⊥S

(k)
10 S

(k)−1
00 S

(k)
01 β

1
T β
′
⊥S

(k)
10 S

(k)−1
00 S

(k)
01 β⊥

∣∣∣∣∣∣ . (A.2)

We show that (A.2) converges to∣∣∣∣∣
(
λΣ̄

(k)
ββ 0

0 λ
∫ 1

0 GG
′du

)
−

(
Σ̄

(k)
β0 Σ̄

(k)−1
00 Σ̄

(k)
0β 0

0 0

)∣∣∣∣∣ =
∣∣∣λΣ̄

(k)
ββ − Σ̄

(k)
β0 Σ̄

(k)−1
00 Σ̄

(k)
0β

∣∣∣ ∣∣∣∣λ ∫ 1

0
GG′du

∣∣∣∣
where Σ̄

(k)
ββ > 0. Therefore, in the limit the determinantal equation has p− r0 roots equal to zero and

r0 positive roots, the latter given by the solutions of
∣∣∣λΣ̄

(k)
ββ − Σ̄

(k)
β0 Σ̄

(k)−1
00 Σ̄

(k)
0β

∣∣∣ = 0.

Specifically, since Xt satisfies the I(1, r0) conditions with β′Xt, ∆Xt and Z
(k)
2t being I(0), we have

that

β′S
(k)
11 β = β′M11β − β′M (k)

12 M
(k)−1
22 M

(k)
21 β

p→ Ωββ − Ω
(k)
β2 Ω

(k)−1
22 Ω

(k)
2β =: Σ̄

(k)
ββ (A.3)

and

β′S
(k)
10 S

(k)−1
00 S

(k)
01 β

p→ Σ̄
(k)
β0 Σ̄

(k)−1
00 Σ̄

(k)
0β . (A.4)

Moreover, since by the Granger representation theorem and Lemma 1 in BCRT

1√
T
β′⊥XbT ·c

w→ β′⊥CM(·) = G(·),

we have that
1

T
β′⊥S

(k)
11 β⊥

w→ β′⊥C

(∫ 1

0
MM ′du

)
C ′β⊥ =

∫ 1

0
GG′du. (A.5)

Finally, we show that 1√
T
β′⊥S

(k)
11 β, 1√

T
β′⊥S

(k)
10 S

(k)−1
00 S

(k)
01 β, and 1

T β
′
⊥S

(k)
10 S

(k)−1
00 S

(k)
01 β converge in prob-

ability to zero. In particular, we first show that

β′⊥S
(k)
11 β = β′⊥M11β − β′⊥M

(k)
12 M

(k)−1
22 M

(k)
21 β = Op(1). (A.6)

By the Granger representation theorem (see Lemma 1 in CRT2010b), we have

1√
T

bT ·c∑
t=1

β′Xt
w→ −β′P (B′A)−1B′E1M(·) = H ′M(·)

where

A :=



α Γ1 . . . Γk0−1

0 Ip . . . 0

. . . . . . . . . . . .

0 0 . . . Ip


, B :=



β Ip 0 . . . 0

0 −Ip Ip . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . Ip

0 0 0 . . . −Ip


,

with P := (Ip, 0, ..., 0)′A(B′A)−1, E1 := (Ip, 0, ..., 0)′, and H := −(β′P (B′A)−1B′E1)′. Therefore,

β′⊥M11β =
1

T

T∑
t=1

β′⊥Xt−1X
′
t−1β =

1

T

T∑
t=1

β′⊥

(
t−1∑
i=1

∆Xi

)
X ′t−1β

w→
∫ 1

0
G(dM)′H + Λβ⊥β
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where Λβ⊥β :=
∑∞

h=0 Cov(β′⊥∆Xt, β
′Xt+h), which shows that β′⊥M11β is Op(1). Moreover, since

M
(k)−1
22 M

(k)
21 β

p→ Ω
(k)−1
22 Ω

(k)
2β =: V and

β′⊥M12 =
1

T

T∑
t=1

β′⊥Xt−1∆X ′t−1 =
1

T

T∑
t=1

β′⊥

(
t−1∑
i=1

∆Xi

)
∆X ′t−1

w→
∫ 1

0
G(dM)′ + Λβ⊥∆

where Λβ⊥∆ :=
∑∞

h=0 Cov(β′⊥∆Xt,∆Xt+h), we have that β′⊥M
(k)
12 M

(k)−1
22 M

(k)
21 β converges in distribu-

tion to
∫ 1

0 G(dM)′V+Λβ⊥∆V . Consequently, (A.6) holds. Analogously, we show that β′⊥S
(k)
10 S

(k)−1
00 S

(k)
01 β =

Op(1). Specifically,

β′⊥S
(k)
10 = β′⊥M10 − β′⊥M

(k)
12 M

(k)−1
22 M

(k)
20

=
1

T

T∑
t=1

β′⊥Xt−1∆X ′t −
1

T

T∑
t=1

β′⊥Xt−1Z
(k)′
2t

(
1

T

T∑
t=1

Z
(k)
2t Z

(k)′
2t

)−1
1

T

T∑
t=1

Z
(k)
2t ∆X ′t

=
1

T

T∑
t=1

β′⊥Xt−1

(
∆X ′t − Z

(k)′
2t Ω

(k)−1
22 Ω

(k)
20

)
+ op(1)

where, under the I(1, r0) conditions, Zt := ∆Xt − Ω
(k)
02 Ω

(k)−1
22 Z

(k)
2t is a linear process of the form

Zt = C∗(L)εt. In particular, let D := Ω
(k)
02 Ω

(k)−1
22 with D = (D1, ..., Dk−1) where Di, for i = 1, ..., k−1,

is a p× p matrix. Then,

Zt = ∆Xt −DZ(k)
2t = (Ip −D1L− ...−Dk−1L

k−1)∆Xt (A.7)

= D(L)∆Xt = D(L)C(L)εt =: C∗(L)εt

where D(L) := (Ip −D1L− ...−Dk−1L
k−1). Therefore,

β′⊥S
(k)
10

w→
∫ 1

0
GdM ′C∗(1)′ + Λβ⊥z (A.8)

where C∗(1) = D(1)C(1), Λβ⊥z :=
∑∞

h=1Cov (β′⊥∆Xt, Zt+h) and C(1) 6= 0 follows from ∆Xt being

I(0). Moreover, since S
(k)−1
00 S

(k)
01 β

p→ Σ̄
(k)−1
00 Σ̄

(k)
0β =: J , we have that β′⊥S

(k)
10 S

(k)−1
00 S

(k)
01 β converges in

distribution to
∫ 1

0 GdM
′C∗(1)′J+Λβ⊥zJ and, consequently, is of order Op(1). By the same arguments,

we also have that β′⊥S
(k)
10 S

(k)−1
00 S

(k)
01 β⊥ = Op(1).

We now show that the remaining p− r0 roots are of order Op
(
T−1

)
. Let B := (β, β⊥). We have

that

|B′S(k)(λ)B| =

∣∣∣∣∣
(

β′S(k)(λ)β β′S(k)(λ)β⊥

β′⊥S
(k)(λ)β β′⊥S

(k)(λ)β⊥

)∣∣∣∣∣
=
∣∣∣β′S(k)(λ)β

∣∣∣ ∣∣∣∣β′⊥{S(k)(λ)− S(k)(λ)β
[
β′S(k)(λ)β

]−1
β′S(k)(λ)

}
β⊥

∣∣∣∣ . (A.9)

As in Theorem 11.1 in Johansen (1995), let T →∞ with ρ := Tλ fixed. The first term in (A.9) is

β′S(k)(λ)β =
ρ

T
β′S

(k)
11 β − β

′S
(k)
10 S

(k)−1
00 S

(k)
01 β = −Σ̄

(k)
β0 Σ̄

(k)−1
00 Σ̄

(k)
0β + op(1) (A.10)

since T−1β′S
(k)
11 β

p→ 0 (see (A.3) and (A.4)). Moreover,

β′⊥S
(k)(λ)β⊥ =

ρ

T
β′⊥S

(k)
11 β⊥ − β

′
⊥S

(k)
10 S

(k)−1
00 S

(k)
01 β⊥ (A.11)
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and

β′⊥S
(k)(λ)β =

ρ

T
β′⊥S

(k)
11 β − β

′
⊥S

(k)
10 S

(k)−1
00 S

(k)
01 β = −β′⊥S

(k)
10 S

(k)−1
00 S

(k)
01 β + op(1) (A.12)

since β′⊥S
(k)
11 β = Op(1) (see (A.6)). By substituting (A.11) and (A.12) into the second factor in (A.9)

we obtain

β′⊥

{
S(k)(λ)− S(k)(λ)β

[
β′S(k)(λ)β

]−1
β′S(k)(λ)

}
β⊥ =

ρ

T
β′⊥S

(k)
11 β⊥ − β

′
⊥S

(k)
10 NTS

(k)
01 β⊥ + op(1)

where NT = S
(k)−1
00 − S(k)−1

00 S
(k)
01 β(β′S

(k)
10 S

(k)−1
00 S

(k)
01 β)−1β′S

(k)
10 S

(k)−1
00 . The distribution of the p − r0

smallest solutions of (3.2) can be derived using the result in (A.5) and noting that, by the result in

(A.4), NT = N + op (1), where N := Σ̄
(k)−1
00 − Σ̄

(k)−1
00 Σ̄

(k)
0β (Σ̄

(k)
β0 Σ̄

(k)−1
00 Σ̄

(k)
0β )−1Σ̄

(k)
β0 Σ̄

(k)−1
00 . Therefore, we

have that β′⊥S
(k)
10 NTS

(k)
01 β⊥ = β′⊥S

(k)
10 NS

(k)
01 β⊥ + op(1), where β′⊥S

(k)
10

w→
∫ 1

0 GdM
′C∗(1)′ + Λβ⊥z (see

(A.8)).

Taken together, these results imply that the p − r0 smallest solutions of (3.2), normalised by T ,

converge to those of the equation∣∣∣∣ρ∫ 1

0
GG′du−

(∫ 1

0
GdM ′C∗(1)′ + Λβ⊥z

)
N

(
Λ′β⊥z + C∗(1)

∫ 1

0
dMG′

)∣∣∣∣ = 0

and hence that λ̂
(k)
i , i = 1, ..., p− r0, are all of order Op

(
T−1

)
. �

Remark A.2: For the case of k0 < k < K, note that asymptotic theory for the estimated eigenvalues

λ̂i, as well as the parameter estimators of α, β and Γi (i = 1, ..., k − 1), is standard as the parameter

point at which we evaluate the asymptotic behaviour satisfies the I(1, r0) conditions for the k-lag

model.

A.2 Proof of Theorem 1 and Related Lemmas

Proof of Lemma 1: We now show that, for any fixed value of k, with k = 1, ...,K, where K denotes

a given maximum number of lags, IC(k, r) is weakly consistent under Assumption H provided that

cT →∞ and cT /T → 0, as T →∞.

(i) For any r > r0, we have that

IC(k, r)− IC(k, r0) = T

r∑
i=r0+1

log(1− λ̂(k)
i ) + cT (2p− r − r0)(r − r0) (A.13)

where, by Lemma A.1 and Remark A.1 for the cases of 0 < k < k0 and k0 ≤ k ≤ K, respectively,

the first term on the right hand side of (A.13) satisfies T
∑r

i=r0+1 log(1− λ̂(k)
i ) = Op(1). As (2p− r−

r0)(r − r0) > 0 and cT →∞, we conclude that P(IC(k, r)− IC(k, r0) > 0)→ 1 as T →∞.

(ii) For any r < r0 (and r0 6= 0), we have that

IC(k, r)− IC(k, r0) = −T
r0∑

i=r+1

log(1− λ̂(k)
i ) + cT (2p− r − r0)(r − r0). (A.14)

Observe that, by Lemma A.1 and Remark A.1, the r0 largest sample eigenvalues λ̂
(k)
i , i = 1, ..., r0

converge to the roots λ
(k)
i of the equation

∣∣∣λΣ̄
(k)
ββ − Σ̄

(k)
β0 Σ̄

(k)−1
00 Σ̄

(k)
0β

∣∣∣ = 0. As Σ̄
(k)
ββ , Σ̄

(k)
00 > 0, and all the
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λ
(k)
i are positive and, by definition, smaller than one, we have that −T

∑r0
i=r+1 log(1− λ̂(k)

i ) diverges

at rate T . Moreover, since by assumption cT /T → 0 as T → ∞, we have that the first term on the

right hand side of (A.14) dominates and, hence, P(IC(k, r)− IC(k, r0) > 0)→ 1. �

Proof of Lemma 2: (i) The result for k > k0 follows by showing that, for any k0 < k ≤ K,

Σ̂k,r0 − Σ̂k0,r0 = Op(T
−1). (A.15)

In particular, (A.15) implies that, when cT →∞,

IC(k, r0)− IC(k0, r0) = T log det(Σ̂−1
k0,r0

Σ̂k,r0) + cT (π(k, r0)− π(k0, r0))

= T log det(Ip − Σ̂−1
k0,r0

(Σ̂k0,r0 − Σ̂k,r0)) + cT (π(k, r0)− π(k0, r0))

= T log det(Ip +Op(T
−1)) + cT (π(k, r0)− π(k0, r0))

= Op(1) + cT (π(k, r0)− π(k0, r0))
p→∞

since π(k, r0)− π(k0, r0) > 0.

In order to prove (A.15), for any k0 ≤ k ≤ K, let θ
(k0)
0 := (α, β,Γ1, ...,Γk0−1) and θ

(k)
0 :=

(α, β,Γ1, ...,Γk0−1, 0, ..., 0) be the true parameter of the VAR(k0) model and the VAR(k) model, re-

spectively, and let θ̂(k0) = (α̂(k0), β̂(k0), Γ̂
(k0)
1 , ..., Γ̂

(k0)
k0−1) and θ̂(k) = (α̂(k), β̂(k), Γ̂

(k)
1 , ..., Γ̂

(k)
k0−1, ..., Γ̂

(k)
k−1)

denote the corresponding estimated parameters. For the estimators in the VAR(k0)-based reduced

rank regression, it holds that
√
T ((α̂(k0), Γ̂

(k0)
1 , ..., Γ̂

(k0)
k0−1)− (α,Γ1, ...,Γk0−1)) is asymptotically normal

distributed, while (β̂(k0) − β), suitably normalised, is asymptotically mixed Gaussian (see Theorem 1

in BCRT). Moreover, under the I(1, r0) conditions, we also have for the VAR(k)-based reduced rank

regression estimators that, as T →∞,
√
T ((α̂(k0), Γ̂

(k0)
1 , ..., Γ̂

(k0)
k0−1, ..., Γ̂

(k0)
k−1)− (α,Γ1, ...,Γk0−1, 0, ..., 0))

is normal and (β̂(k) − β), suitably normalised, is mixed Gaussian. Now consider the likelihood ratio

(LR) statistic

QT = T log det(Σ̂−1
k0,r0

Σ̂k,r0)

which may be written as

QT = Q
(k0)
T −Q(k)

T

where Q
(k0)
T and Q

(k)
T are the LR statistics for the simple hypothesis θ(k0) = θ

(k0)
0 and θ(k) = θ

(k)
0 ,

respectively. For each we have,

Q
(k0)
T = T log det(Ip − Σ̂−1

k0,r0
(Σ̂k0,r0 − Σ̃k0,r0))

Q
(k)
T = T log det(Ip − Σ̂−1

k,r0
(Σ̂k,r0 − Σ̃k,r0))

where Σ̃k0,r0 = Σ̃k,r0 = 1
T

∑T
t=1(∆Xt − θ(k0)

0 (X ′t−1, Z
(k0)′
2t )′)(∆Xt − θ(k0)

0 (X ′t−1, Z
(k0)′
2t )′)′ is the sample

variance with the true parameters inserted. Because of the aforementioned convergence rates for the

estimators θ̂(k0) and θ̂(k), it holds that T (Σ̂k0,r0 − Σ̃k0,r0) = U ′U + op (1) and T (Σ̂k,r0 − Σ̃k,r0) =

U ′MU +op (1), where U is a suitable Gaussian vector and M is a projection matrix, so that Q
(k0)
T and

Q
(k)
T are of order Op(1) and, consequently, QT is Op(1), which proves (A.15).
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(ii) As in Paulsen (1984), the result for 0 < k < k0 follows by showing that Σ̂k,r0− Σ̂k0,r0 converges

to a positive definite matrix. In particular, as in Theorem 1 in BCRT, we have that

Σ̂k0,r0
p→ Σ̄

(k0)
00 − Σ̄

(k0)
0β Σ̄

(k0)−1
ββ Σ̄

(k0)
β0 =: Σ̄(k0) (A.16)

and

Σ̂k,r0 = S
(k)
00 − S

(k)
01 β(β′S

(k)
11 β)−1β′S

(k)
10

p→ Σ̄
(k)
00 − Σ̄

(k)
0β Σ̄

(k)−1
ββ Σ̄

(k)
β0 (A.17)

where Σ̄
(k)
ij , for i, j = 0, β, are defined above. Thus, (A.16) and (A.17) imply that

Σ̂k,r0 − Σ̂k0,r0
p→ (Σ̄

(k)
00 − Σ̄

(k)
0β Σ̄

(k)−1
ββ Σ̄

(k)
β0 )− (Σ̄

(k0)
00 − Σ̄

(k0)
0β Σ̄

(k0)−1
ββ Σ̄

(k0)
β0 )

which is positive definite since Σ̄
(k)
00 − Σ̄

(k)
0β Σ̄

(k)−1
ββ Σ̄

(k)
β0 > Σ̄(k0). Therefore that, when cT /T → 0,

IC(k, r0)− IC(k0, r0) = T log det
(

Σ̂k,r0Σ̂−1
k0,r0

)
+ cT (π(k, r0)− π(k0, r0))

= T log det
(
Ip + (Σ̂k,r0 − Σ̂k0,r0)Σ̂−1

k0,r0

)
+ cT (π(k, r0)− π(k0, r0))

p→∞

since the first term on the right side diverges and dominates the second term. �

Remark A.3. Note that the proof of equation (A.15) reflects the well-known result that the (LR)

test of the hypothesis that k−k0 lags equal to zero in a VAR(k) model with known cointegration rank

r0 is asymptotically distributed as a χ2 with k − k0 degrees of freedom.

Proof of Theorem 1: In Lemmas 1 and 2, respectively, we have shown that

P(r̂IC(k) = r0)→ 1, for any k = 1, ...,K (A.18)

and

P(k̂IC(r0) = k0)→ 1. (A.19)

Consider next the fact that

P(k̃IC = k0, r̃IC = r0) = P(r̃IC = r0)P(k̃IC = k0 | r̃IC = r0), (A.20)

where, for T large enough, P(r̃IC = r0) 6= 0. First, we prove that

P(r̃IC = r0)→ 1.

Because k̃IC ∈ {1, ...,K}, observe that (3.8) implies that

P(r̃IC = r0) = P(r̂IC(k̃IC) = r0) ≥ min
k=1,...,K

P(r̂IC(k) = r0)

where, from (A.18), we have that P(r̂IC(k) = r0) → 1 for any k = 1, ...,K. Therefore, P(r̃IC = r0) =

P(r̂IC(k̃IC) = r0)→ 1.

To complete the proof we now show that the second term in (A.20) tends to 1, i.e.,

P(k̃IC = k0 | r̃IC = r0)→ 1.
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To prove this fact, notice first that (3.9) implies P(k̃IC = k0 | r̃IC = r0) = P(k̂IC(r̃IC) = k0 | r̃IC =

r0) = P(k̂IC(r0) = k0 | r̃IC = r0). Then, by using the law of total probability as follows

P(k̂IC(r0) = k0) = P(k̂IC(r0) = k0 | r̃IC = r0)P(r̃IC = r0)+

+ P(k̂IC(r0) = k0 | r̃IC 6= r0)P(r̃IC 6= r0),

we obtain

P(k̂IC(r0) = k0 | r̃IC = r0) =
P(k̂IC(r0) = k0)

P(r̃IC = r0)
− P(k̂IC(r0) = k0 | r̃IC 6= r0)P(r̃IC 6= r0)

P(r̃IC = r0)
. (A.21)

As T →∞, (A.18) and (A.19) imply that the first term on the right side of (A.21) tends to 1, while

the second term tends to 0, since P(r̃IC 6= r0) → 0. Therefore, P(k̂IC(r0) = k0 | r̃IC = r0) = P(k̃IC =

k0 | r̃ = r0)→ 1. Together with P(r̃IC = r0)→ 1, this proves the result that P(k̃IC = k0, r̃IC = r0)→
1. �

A.3 Proofs of Theorems 2, 3 and Related Lemmas

Proof of Lemma 3: The proof of this lemma (which is based on fitting unrestricted VAR models,

i.e. with cointegration rank r = p) follows by similar arguments as in the proof of Lemma 2 (which is

based on fitting VAR models with cointegration rank r = r0) and is therefore omitted. �

Proof of Theorem 2: We want to prove that (k̂IC, r̂IC(k̂IC))
p→ (k0, r0). In Theorem 1 in CDRT, we

have that r̂IC(k0)
p→ r0, and, since r̂IC is a discrete valued random variable, P(r̂IC(k0) = r0) → 1, as

T →∞. From Lemma 3, we have that k̂IC(p)
p→ k0, i.e., P(k̂IC = k0)→ 1. Here we need to show that

P(k̂IC = k0)→ 1 and P(r̂IC(k0) = r0)→ 1 (A.22)

imply (k̂IC, r̂IC(k̂IC))
p→ (k0, r0). This result is established by proceeding along the same lines as in

the proof of Theorem 1. �

Proof of Theorem 3: We want to prove that (k̂IC, r̂
∗
PLR(k̂IC)) is consistent for (k0, r0), in the sense

that limT→∞ P(k̂IC = k0, r̂
∗
PLR(k̂IC) = r0) = 1− α and limT→∞ P(k̂IC = k0, r̂

∗
PLR(k̂IC) < r0) = 0.

We have that, for a chosen significance level α,{
P(r̂∗PLR(k0) < r0)→ 0

P(r̂∗PLR(k0) = r0)→ 1− α
(A.23)

under either i.i.d. innovations (CRT2012), conditional heteroskedasticity (CRT2010a), or uncondi-

tional heteroskedastic innovations (CRT2010b), which are combined in Assumption H. Moreover,

from Lemma 3, we have that k̂IC := k̂IC(p)
p→ k0, i.e., P(k̂IC = k0)→ 1 (see (A.22)). We therefore need

to show that (A.22) and (A.23) imply the result that limT→∞ P(k̂IC = k0, r̂
∗
PLR(k̂IC) = r0) = 1− α.

To show this result we start from the decomposition

P(k̂IC = k0, r̂
∗
PLR(k̂IC) = r0) = P(k̂IC = k0)P(r̂∗PLR(k̂IC) = r0 | k̂IC = k0),

32



where, from (A.22), P(k̂IC = k0) → 1. Hence, to complete the proof it suffices to show that

P(r̂∗PLR(k̂IC) = r0 | k̂IC = k0) → 1 − α. To establish this, we use the law of total probability as

follows

P(r̂∗PLR(k0) = r0) = P(r̂∗PLR(k0) = r0 | k̂IC = k0)P(k̂IC = k0)+ P(r̂∗PLR(k0) = r0 | k̂IC 6= k0)P(k̂IC 6= k0)

or, equivalently,

P(r̂∗PLR(k0) = r0 | k̂IC = k0) =
P(r̂∗PLR(k0) = r0)

P(k̂IC = k0)
−

P(r̂∗PLR(k0) = r0 | k̂IC 6= k0)P(k̂IC 6= k0)

P(k̂IC = k0)
(A.24)

where, for T large enough, P(k̂IC = k0) > 0. As T → ∞, (A.22) and the second result in (A.23)

imply that the first term on the right side of (A.24) tends to 1 − α, whereas the second term in

(A.24) tends to 0, since P(k̂IC 6= k0) → 0. Therefore, P(r̂∗PLR(k0) = r0 | k̂IC = k0) → 1 − α.

Furthermore, since P(r̂∗PLR(k̂IC) = r0 | k̂IC = k0) = P(r̂∗PLR(k0) = r0 | k̂IC = k0), we have that

P(r̂∗PLR(k̂IC) = r0 | k̂IC = k0)→ 1−α. Similarly, we can prove that P(k̂IC = k0, r̂
∗
PLR(k̂IC) < r0)→ 0,

using the first result in (A.23). �
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Supplementary Appendix
to

“Determining the Cointegration Rank in Heteroskedastic VAR Models of 
Unknown Order”

by

Giuseppe Cavaliere, Luca De Angelis, Anders Rahbek and A.M.Robert Taylor

August 17, 2016

Summary of Contents

This Supplement contains the Tables of results from the Monte Carlo experiments detailed in

Sections 3 and 5 of our paper “Determining the Cointegration Rank in Heteroskedastic VAR

Models of Unknown Order”.

In particular, the results reported in Table 1 relate to the impact that the value of the lag

length used has on the ability of information-based and PLR based procedures to determine

the cointegration rank by reporting the frequencies with which the wild bootstrap PLR based

procedure and a BIC-based procedure, which minimises the quantity BIC(k, r) defined in (3.5)

over r = 0, 1, ..., p, select the true cointegration rank, in each case fixing the lag length used

at each of k = 1, ..., 6. The results in Table 2 relate to the behaviour of the information

criteria IC(k, p) defined in (3.10) in determining the autoregressive lag length k. The results in

Tables 3.1, 3.2 and 3.3 relate to cointegration rank determination for the methods considered in

section 3 of the paper for the cases of no cointegration (r0 = 0) and GJR-GARCH innovations

(Case A), Autoregressive Stochastic Volatility (Case B) and a single volatility break (Case

C), respectively. Finally, the results in Tables 4.1, 4.2 and 4.3 relate to cointegration rank

determination for these methods for the case of a single cointegration vector (r0 = 1) in Cases

A, B and C, respectively.

In all of the tables, the frequencies with which the various procedures select the true coin-

tegration rank or true lag length are highlighted in bold text.
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TABLE 1: Cointegration rank determination for different values of lag length k. VAR(2) model, i.i.d. Gaussian

errors.
BIC(k, r) Q∗

r,k,T

T γ k = 1 2 3 4 5 6 k = 1 2 3 4 5 6

r0 = 0 100 0.2 97.7 98.9 98.5 97.7 96.7 94.9 89.8 95.7 95.8 95.9 95.9 96.0

0.5 62.5 98.5 97.9 96.9 94.7 91.8 42.8 95.6 95.8 95.8 95.8 95.7

0.8 1.4 96.0 93.8 90.6 85.8 80.0 0.9 95.1 94.4 94.7 94.2 94.5

400 0.2 99.9 100 100 100 100 100 89.6 95.2 95.0 95.2 95.2 95.4

0.5 86.4 100 100 100 100 100 40.8 95.2 95.3 95.4 95.5 95.2

0.8 5.9 100 100 100 99.9 99.9 0.9 95.2 95.4 95.4 95.2 95.2

r0 = 1 100 0.2 8.5 26.7 14.6 11.0 9.2 9.6 28.5 40.0 23.1 15.4 10.7 8.0

0.5 22.2 76.1 43.4 26.5 18.4 16.2 42.2 73.2 43.4 25.3 15.8 10.8

0.8 43.3 95.5 89.4 66.2 43.2 33.6 44.2 94.2 78.5 48.1 26.7 16.0

400 0.2 99.8 99.9 100 99.4 94.5 82.2 91.5 95.3 95.4 95.4 95.5 94.7

0.5 89.2 100 100 100 99.8 97.9 58.0 95.5 95.6 95.5 95.5 95.4

0.8 18.5 99.9 99.9 99.9 99.9 99.9 7.4 95.5 95.4 95.5 95.5 95.4

r0 = 2 100 0.2 3.2 21.0 6.3 2.6 1.3 1.1 25.7 40.6 19.4 10.2 5.1 2.6

0.5 2.2 78.7 36.1 13.7 5.7 3.3 18.6 77.9 43.8 21.8 9.6 4.7

0.8 10.1 94.9 89.2 60.2 27.4 14.2 23.9 94.3 82.3 49.7 21.4 9.7

400 0.2 99.3 99.8 99.8 99.7 99.2 94.3 93.1 95.3 95.6 95.5 95.5 95.2

0.5 90.6 99.8 99.7 99.7 99.7 99.6 73.4 95.5 95.5 95.3 95.3 95.3

0.8 40.0 99.6 99.7 99.7 99.7 99.6 26.0 95.4 95.4 95.1 95.3 95.2
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TABLE 2: Sequential determination of lag length using IC(k, p): k̂IC. VAR(2) model with rank r0 = 1.

HQC(k, p) BIC(k, p) HQC(k, p) BIC(k, p) HQC(k, p) BIC(k, p)

GJR-GARCH errors [Case A] Autoregressive Stochastic Volatility [Case B] Single Volatility Break [Case C]

γ T k = 1 2 3,4,5,6 k = 1 2 3,4,5,6 k = 1 2 3,4,5,6 k = 1 2 3,4,5,6 k = 1 2 3,4,5,6 k = 1 2 3,4,5,6

0.0 50 99.2 0.6 0.3 100.0 0.0 0.0 89.9 4.6 5.5 99.0 0.8 0.3 35.6 9.9 54.5 95.4 3.7 0.9

100 100.0 0.0 0.0 100.0 0.0 0.0 93.7 4.6 1.7 99.5 0.5 0.0 80.9 10.5 8.7 99.6 0.4 0.0

200 100.0 0.0 0.0 100.0 0.0 0.0 90.4 7.2 2.4 98.9 1.0 0.1 92.7 5.6 1.6 100.0 0.1 0.0

400 100.0 0.0 0.0 100.0 0.0 0.0 83.2 11.5 5.3 97.5 2.2 0.2 96.3 3.3 0.4 100.0 0.0 0.0

0.3 50 76.2 22.7 1.1 98.4 1.7 0.0 57.6 31.6 10.8 90.6 8.8 0.6 16.4 18.5 65.1 78.5 18.7 2.8

100 39.1 60.9 0.0 89.6 10.4 0.0 32.3 63.2 4.5 74.2 25.6 0.2 17.6 60.7 21.7 68.5 31.2 0.3

200 2.0 98.0 0.0 47.9 52.1 0.0 6.4 87.3 6.2 35.9 63.6 0.4 1.8 89.4 8.8 28.3 71.6 0.1

400 0.0 100.0 0.0 0.7 99.3 0.0 0.4 88.4 11.3 5.7 93.2 1.1 0.0 96.0 4.0 0.6 99.4 0.0

0.5 50 11.2 86.3 2.5 53.2 46.5 0.3 11.1 73.0 15.9 44.5 54.3 1.2 2.8 24.5 72.7 36.3 56.6 7.1

100 0.0 100.0 0.0 1.3 98.7 0.0 0.5 93.8 5.7 6.5 93.1 0.4 0.1 75.8 24.1 4.0 95.2 0.8

200 0.0 100.0 0.0 0.0 100.0 0.0 0.0 93.4 6.6 0.1 99.3 0.6 0.0 91.0 9.0 0.0 99.9 0.1

400 0.0 100.0 0.0 0.0 100.0 0.0 0.0 88.0 12.0 0.0 98.8 1.2 0.0 95.9 4.1 0.0 100.0 0.0

0.9 50 0.0 95.9 4.1 0.0 100.0 0.0 0.0 76.5 23.5 0.1 97.8 2.1 0.0 17.3 82.7 0.0 86.2 13.8

100 0.0 100.0 0.0 0.0 100.0 0.0 0.0 92.9 7.1 0.0 99.4 0.6 0.0 73.9 26.1 0.0 99.1 0.9

200 0.0 100.0 0.0 0.0 100.0 0.0 0.0 91.5 8.5 0.0 99.1 0.9 0.0 90.6 9.4 0.0 99.9 0.1

400 0.0 100.0 0.0 0.0 100.0 0.0 0.0 84.6 15.4 0.0 98.1 1.9 0.0 95.8 4.2 0.0 100.0 0.0
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TABLE 3.1: Determination of cointegration rank. VAR(2) model with rank r0 = 0, GJR-GARCH errors [Case A]

HQC(k, r) BIC(k, r) HQC(k̂AIC, r) HQC(k̂BIC, r) BIC(k̂AIC, r) BIC(k̂HQC, r)

γ T r = 0 1 2,3,4 r = 0 1 2,3,4 r = 0 1 2,3,4 r = 0 1 2,3,4 r = 0 1 2,3,4 r = 0 1 2,3,4

0.0 50 61.8 29.3 9.0 95.4 4.6 0.0 50.6 25.1 24.2 61.8 29.2 8.9 80.9 11.7 7.4 95.4 4.6 0.0

100 81.3 15.9 2.7 99.4 0.6 0.0 75.3 20.8 4.0 78.4 17.6 4.0 100.0 0.0 0.0 100.0 0.0 0.0

200 93.1 4.8 2.2 98.9 1.1 0.0 85.9 12.5 1.6 86.9 11.6 1.6 100.0 0.0 0.0 100.0 0.0 0.0

400 92.7 6.8 0.4 99.7 0.3 0.0 92.6 7.0 0.4 92.7 6.9 0.4 99.7 0.3 0.0 99.7 0.3 0.0

0.3 50 33.6 39.8 26.6 80.5 15.2 4.3 19.8 25.2 55.0 34.6 41.5 23.9 56.3 22.9 20.8 77.9 16.9 5.2

100 65.1 27.2 7.8 95.7 3.7 0.6 66.4 26.0 7.6 53.0 35.6 11.4 97.2 2.2 0.6 96.6 2.9 0.6

200 80.7 15.9 3.4 97.7 2.3 0.0 85.3 12.5 2.2 77.0 18.6 4.5 99.7 0.3 0.0 99.7 0.3 0.0

400 92.0 7.1 0.9 99.7 0.3 0.0 91.9 7.2 0.9 92.1 7.1 0.9 99.7 0.3 0.0 99.7 0.3 0.0

0.5 50 28.4 35.0 36.5 64.2 27.4 8.4 14.0 19.1 66.9 11.4 35.8 52.8 45.5 21.0 33.5 70.3 20.8 8.9

100 69.6 25.8 4.7 97.8 1.9 0.3 65.0 28.0 7.1 67.1 26.2 6.8 96.9 2.8 0.3 98.4 1.3 0.3

200 84.7 12.8 2.5 99.7 0.3 0.0 84.0 13.4 2.6 84.7 12.8 2.6 99.4 0.6 0.0 99.7 0.3 0.0

400 91.5 7.4 1.1 99.7 0.3 0.0 91.6 7.2 1.2 91.5 7.4 1.1 99.7 0.3 0.0 99.7 0.3 0.0

0.9 50 3.6 8.5 88.0 56.8 24.9 18.3 0.6 3.2 96.2 3.6 9.2 87.2 16.3 11.0 72.6 51.4 23.0 25.6

100 28.5 31.6 39.9 92.8 5.3 1.9 22.1 28.8 49.1 26.7 29.8 43.5 87.1 9.2 3.7 93.2 6.2 0.6

200 59.6 29.9 10.5 99.3 0.7 0.0 58.0 31.5 10.6 59.6 29.9 10.5 98.5 1.6 0.0 99.4 0.6 0.0

400 81.9 16.7 1.5 99.9 0.1 0.0 81.6 16.7 1.7 81.8 16.7 1.5 99.9 0.1 0.0 99.9 0.1 0.0

HQC(1, r) BIC(1, r) Q∗
r,k̂AIC,T

Q∗
r,k̂HQC,T

Q∗
r,k̂BIC,T

0.0 50 59.9 31.8 8.2 96.3 3.7 0.0 92.1 6.5 1.4 96.3 3.4 0.3 96.2 3.5 0.3

100 80.3 17.4 2.3 99.0 1.0 0.0 94.2 5.4 0.4 94.7 4.7 0.7 94.5 4.9 0.6

200 86.0 13.4 0.6 100.0 0.0 0.0 95.2 4.8 0.0 95.2 4.8 0.0 95.2 4.8 0.0

400 92.9 6.5 0.6 100.0 0.0 0.0 94.0 5.2 0.8 94.2 5.1 0.7 94.1 5.1 0.8

0.3 50 36.4 42.3 21.4 82.7 15.8 1.5 84.6 14.0 1.4 82.1 15.6 2.3 81.7 15.8 2.5

100 55.4 35.6 9.0 92.1 7.5 0.4 93.0 6.4 0.7 88.1 11.0 1.0 83.2 15.0 1.8

200 64.1 32.8 3.1 96.0 4.1 0.0 94.7 4.6 0.7 94.6 4.7 0.8 86.7 12.0 1.3

400 73.6 21.8 4.6 98.6 1.4 0.0 93.6 5.3 1.2 93.7 5.2 1.1 93.6 5.3 1.1

0.5 50 11.4 32.0 56.6 44.8 40.4 14.8 86.6 11.8 1.6 79.2 16.3 4.5 54.5 34.7 10.7

100 20.0 41.8 38.2 62.7 32.3 5.0 95.2 4.4 0.4 96.8 2.9 0.4 93.6 5.4 0.9

200 29.8 44.9 25.3 70.3 29.0 0.6 93.5 6.4 0.0 93.4 6.5 0.0 93.5 6.4 0.0

400 34.0 43.8 22.2 85.4 13.6 1.0 93.8 5.1 1.1 93.9 5.0 1.1 93.9 4.9 1.2

0.9 50 0.0 0.5 99.5 0.0 1.7 98.3 81.1 15.6 3.3 87.5 10.1 2.4 92.4 6.0 1.6

100 0.0 0.8 99.3 0.0 2.2 97.8 90.5 6.7 2.8 93.7 4.6 1.7 93.7 4.5 1.8

200 0.0 0.6 99.4 0.0 3.5 96.5 93.8 4.9 1.3 94.8 4.0 1.3 94.5 4.2 1.3

400 0.0 1.8 98.2 0.0 3.7 96.3 94.6 4.5 0.9 95.0 4.1 0.9 94.9 4.3 0.9

IC(k, r) denotes the joint IC-based procedure for determining k and r; IC(k̂IC, r) denotes the sequential IC-based procedure for determining k in the first step and r in the second step

based on the lag order k̂IC(p) obtained in the first step; IC(1, r) denotes the semi-parametric IC-based approach by Cheng and Phillips (2009, 2012) for determining r by fixing k = 1;

Q∗
r,k̂IC,T

denotes the sequential wild bootstrap PLR test-based procedure for determining r in the second step based on the lag order k̂IC(p) obtained by an IC-based procedure in the

first step.
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TABLE 3.2: Determination of cointegration rank. VAR(2) model with rank r0 = 0, Autoregressive Stochastic Volatility [Case B]

HQC(k, r) BIC(k, r) HQC(k̂AIC, r) HQC(k̂BIC, r) BIC(k̂AIC, r) BIC(k̂HQC, r)

γ T r = 0 1 2,3,4 r = 0 1 2,3,4 r = 0 1 2,3,4 r = 0 1 2,3,4 r = 0 1 2,3,4 r = 0 1 2,3,4

0.0 50 45.5 34.5 20.0 83.4 14.6 2.0 26.8 25.3 47.9 46.6 35.6 17.9 54.1 24.7 21.3 78.5 16.1 5.3

100 60.1 29.4 10.6 91.2 8.2 0.7 52.4 32.1 15.6 60.4 29.1 10.5 85.9 12.3 1.8 90.2 8.9 0.9

200 68.0 25.8 6.2 94.5 5.3 0.2 64.7 27.9 7.4 67.5 26.1 6.4 93.7 6.1 0.3 94.0 5.8 0.2

400 75.6 21.0 3.5 97.1 2.9 0.1 75.3 21.1 3.6 74.6 22.0 3.4 97.4 2.6 0.1 97.0 2.9 0.0

0.3 50 29.9 37.1 33.0 69.9 24.5 5.6 13.2 22.0 64.7 31.1 39.2 29.7 38.3 29.2 32.6 62.7 25.5 11.8

100 51.4 34.6 13.9 84.6 13.8 1.7 45.2 35.6 19.2 46.2 37.2 16.6 83.6 14.2 2.2 85.6 12.7 1.7

200 65.9 27.6 6.6 93.4 6.3 0.3 63.0 29.1 7.9 61.7 30.3 8.0 94.0 5.8 0.3 94.2 5.6 0.2

400 76.4 20.2 3.5 97.3 2.6 0.0 76.2 20.3 3.5 75.1 21.3 3.6 97.6 2.4 0.0 97.5 2.5 0.0

0.5 50 20.3 33.5 46.3 56.8 31.1 12.1 8.7 15.7 75.6 13.9 34.8 51.3 30.0 25.6 44.4 54.1 27.0 19.0

100 49.9 34.8 15.3 87.2 11.4 1.4 42.0 35.8 22.2 47.0 34.9 18.1 82.3 15.1 2.6 86.8 11.6 1.6

200 65.3 27.9 6.8 94.9 5.0 0.2 61.8 29.8 8.5 65.0 28.1 6.8 93.6 6.1 0.3 94.5 5.3 0.2

400 76.4 20.1 3.4 97.4 2.6 0.0 76.0 20.4 3.6 75.8 20.6 3.6 97.6 2.4 0.0 97.5 2.5 0.0

0.9 50 2.9 8.9 88.2 42.8 28.7 28.5 0.7 2.2 97.1 3.5 11.1 85.4 9.1 9.2 81.7 32.5 22.8 44.8

100 20.3 31.0 48.7 75.7 19.6 4.7 14.3 25.8 59.9 20.6 31.5 47.9 63.4 25.1 11.5 73.6 20.4 6.0

200 47.6 34.8 17.5 90.7 8.6 0.7 42.7 35.8 21.4 47.7 35.0 17.4 88.6 10.5 0.9 90.4 8.9 0.8

400 69.6 25.2 5.2 96.8 3.2 0.0 68.5 25.6 5.9 69.0 25.7 5.3 97.0 2.9 0.1 96.9 3.1 0.0

HQC(1, r) BIC(1, r) Q∗
r,k̂AIC,T

Q∗
r,k̂HQC,T

Q∗
r,k̂BIC,T

0.0 50 46.8 35.7 17.5 83.6 14.6 1.9 86.2 11.8 2.0 91.6 7.1 1.4 94.8 4.5 0.7

100 60.4 29.1 10.5 91.1 8.2 0.7 89.7 8.9 1.4 93.7 5.4 0.8 94.8 4.6 0.6

200 67.5 26.0 6.5 94.4 5.4 0.2 91.6 7.5 0.9 94.0 5.4 0.7 94.5 4.9 0.6

400 74.6 22.0 3.4 97.0 3.0 0.1 93.4 5.9 0.8 94.2 5.1 0.7 94.6 4.8 0.6

0.3 50 32.9 39.7 27.5 69.6 24.8 5.6 83.0 14.8 2.2 81.9 15.4 2.7 84.3 13.5 2.2

100 47.0 36.5 16.6 81.5 16.3 2.1 88.7 9.7 1.5 89.2 9.3 1.5 86.4 11.9 1.7

200 56.6 33.1 10.3 88.3 10.8 1.0 91.8 7.2 1.0 93.2 6.0 0.8 91.0 8.0 0.9

400 64.5 29.4 6.1 93.1 6.7 0.2 93.6 5.7 0.7 94.3 5.2 0.6 94.1 5.4 0.5

0.5 50 12.3 35.8 51.9 39.8 39.9 20.3 83.4 14.0 2.6 78.6 16.8 4.6 68.3 24.2 7.5

100 21.4 40.4 38.3 55.3 33.8 11.0 89.3 9.1 1.7 92.7 6.2 1.2 89.9 8.1 2.0

200 28.7 43.1 28.2 67.0 27.2 5.8 91.9 7.1 1.0 94.0 5.2 0.8 94.4 4.9 0.7

400 35.3 43.4 21.3 76.4 21.0 2.6 93.4 6.0 0.7 94.2 5.2 0.6 94.2 5.3 0.5

0.9 50 0.0 0.5 99.5 0.0 2.4 97.6 77.9 18.3 3.8 77.6 17.5 4.9 87.4 8.9 3.7

100 0.0 0.9 99.1 0.1 3.2 96.8 83.9 13.7 2.4 89.7 8.7 1.6 91.5 7.2 1.3

200 0.0 1.2 98.8 0.1 4.9 94.9 90.0 8.6 1.4 92.3 6.6 1.1 92.9 6.1 1.0

400 0.0 1.7 98.3 0.4 7.6 92.1 93.6 5.8 0.6 94.2 5.3 0.5 94.3 5.2 0.5

IC(k, r) denotes the joint IC-based procedure for determining k and r; IC(k̂IC, r) denotes the sequential IC-based procedure for determining k in the first step and r in the second step

based on the lag order k̂IC(p) obtained in the first step; IC(1, r) denotes the semi-parametric IC-based approach by Cheng and Phillips (2009, 2012) for determining r by fixing k = 1;

Q∗
r,k̂IC,T

denotes the sequential wild bootstrap PLR test-based procedure for determining r in the second step based on the lag order k̂IC(p) obtained by an IC-based procedure in the

first step.
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TABLE 3.3: Determination of cointegration rank. VAR(2) model with rank r0 = 0, Single Volatility Break [Case C]

HQC(k, r) BIC(k, r) HQC(k̂AIC, r) HQC(k̂BIC, r) BIC(k̂AIC, r) BIC(k̂HQC, r)

γ T r = 0 1 2,3,4 r = 0 1 2,3,4 r = 0 1 2,3,4 r = 0 1 2,3,4 r = 0 1 2,3,4 r = 0 1 2,3,4

0.0 50 14.4 26.9 58.7 76.1 20.4 3.6 1.2 12.0 86.8 26.9 39.2 33.9 16.6 40.9 42.5 33.3 33.6 33.1

100 41.5 39.6 19.0 90.3 9.1 0.6 17.6 39.8 42.5 43.2 39.7 17.1 68.9 26.5 4.5 84.6 13.5 1.9

200 56.4 33.0 10.6 96.5 3.4 0.1 41.5 39.3 19.2 57.0 32.6 10.4 91.0 8.6 0.4 95.9 4.0 0.2

400 66.8 27.1 6.1 98.8 1.2 0.0 58.3 32.4 9.4 67.0 26.9 6.1 97.8 2.1 0.1 98.7 1.3 0.0

0.3 50 6.8 21.7 71.5 52.3 36.5 11.2 0.6 8.2 91.2 13.6 38.0 48.4 11.4 36.6 52.0 19.0 36.5 44.5

100 30.3 42.0 27.7 73.2 23.5 3.3 15.5 39.2 45.3 25.0 45.5 29.5 65.8 28.7 5.5 72.6 23.1 4.4

200 51.9 34.7 13.4 92.0 7.4 0.6 39.5 40.1 20.4 44.8 38.0 17.2 91.3 8.1 0.6 94.3 5.4 0.4

400 65.0 28.1 6.9 98.6 1.4 0.0 57.7 32.8 9.5 64.7 28.4 6.9 97.9 2.0 0.1 98.5 1.5 0.0

0.5 50 3.5 15.0 81.5 40.0 40.0 20.0 0.2 4.6 95.1 5.3 27.6 67.1 7.6 30.4 62.1 14.6 30.7 54.7

100 29.7 40.4 29.9 83.0 15.0 2.1 13.7 36.9 49.4 29.7 40.8 29.5 63.2 30.4 6.4 76.1 20.0 3.8

200 50.0 35.8 14.3 95.3 4.5 0.2 37.4 40.6 22.0 50.3 35.7 14.0 90.1 9.2 0.7 94.2 5.5 0.3

400 63.6 29.1 7.3 98.5 1.5 0.0 56.6 33.4 10.0 63.6 29.2 7.3 97.7 2.3 0.1 98.4 1.6 0.0

0.9 50 0.2 2.0 97.8 29.3 33.8 36.9 0.0 0.1 99.9 1.5 9.2 89.3 0.6 5.3 94.1 3.7 9.8 86.5

100 12.0 30.8 57.3 70.0 24.5 5.5 3.0 16.9 80.1 13.8 33.4 52.8 39.2 39.2 21.6 58.1 30.2 11.7

200 32.7 40.2 27.1 90.4 9.0 0.6 22.2 39.4 38.4 33.2 40.3 26.5 81.8 16.0 2.2 89.0 10.0 1.0

400 51.5 35.5 13.0 97.5 2.5 0.1 44.6 39.0 16.4 51.5 35.5 13.0 95.5 4.3 0.2 97.2 2.7 0.1

HQC(1, r) BIC(1, r) Q∗
r,k̂AIC,T

Q∗
r,k̂HQC,T

Q∗
r,k̂BIC,T

0.0 50 28.5 40.1 31.4 76.5 20.1 3.3 82.2 15.8 2.0 72.1 23.6 4.2 91.2 7.1 1.7

100 43.4 39.6 17.0 90.3 9.1 0.6 74.9 21.4 3.7 88.0 9.9 2.1 93.6 5.5 0.9

200 57.0 32.6 10.4 96.5 3.4 0.1 84.8 13.2 2.1 92.9 6.4 0.7 93.8 5.6 0.6

400 67.0 26.9 6.1 98.8 1.2 0.0 90.9 7.8 1.2 94.5 4.9 0.6 94.7 4.7 0.6

0.3 50 16.9 41.2 42.0 52.8 36.2 11.0 82.7 15.3 2.0 67.4 27.4 5.3 72.7 22.7 4.6

100 25.4 46.0 28.6 67.0 28.5 4.5 75.4 20.9 3.8 79.0 17.7 3.3 76.9 20.2 3.0

200 33.8 44.4 21.8 77.7 20.2 2.1 85.1 12.8 2.1 91.1 7.7 1.2 85.4 12.7 1.9

400 39.8 43.4 16.8 85.2 13.7 1.0 91.1 7.7 1.3 94.0 5.4 0.7 94.1 5.3 0.6

0.5 50 5.9 31.6 62.5 24.3 46.1 29.6 82.7 15.2 2.1 68.7 26.2 5.1 57.4 32.3 10.4

100 8.7 39.1 52.2 32.9 47.2 19.9 76.0 20.6 3.4 84.2 13.2 2.6 86.5 10.5 3.0

200 11.9 41.5 46.7 42.6 43.4 14.0 85.1 12.8 2.1 91.8 7.1 1.0 93.1 6.1 0.8

400 14.0 44.7 41.3 51.7 38.7 9.6 90.7 8.1 1.3 94.0 5.4 0.7 94.2 5.2 0.6

0.9 50 0.0 0.8 99.2 0.0 3.5 96.5 75.7 20.5 3.7 62.0 31.1 6.9 72.3 19.8 7.9

100 0.0 0.9 99.1 0.0 3.4 96.5 72.5 23.6 3.9 79.7 17.3 3.0 89.3 9.2 1.5

200 0.0 1.0 99.0 0.0 3.8 96.2 84.9 12.8 2.4 91.1 7.8 1.1 92.7 6.4 0.9

400 0.0 1.2 98.8 0.1 5.2 94.7 90.3 8.4 1.3 93.9 5.4 0.7 94.2 5.1 0.6

IC(k, r) denotes the joint IC-based procedure for determining k and r; IC(k̂IC, r) denotes the sequential IC-based procedure for determining k in the first step and r in the second step

based on the lag order k̂IC(p) obtained in the first step; IC(1, r) denotes the semi-parametric IC-based approach by Cheng and Phillips (2009, 2012) for determining r by fixing k = 1;

Q∗
r,k̂IC,T

denotes the sequential wild bootstrap PLR test-based procedure for determining r in the second step based on the lag order k̂IC(p) obtained by an IC-based procedure in the

first step.
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TABLE 4.1: Determination of cointegration rank. VAR(2) model with rank r0 = 1, GJR-GARCH errors [Case A]

HQC(k, r) BIC(k, r) HQC(k̂AIC, r) HQC(k̂BIC, r) BIC(k̂AIC, r) BIC(k̂HQC, r)

γ T r = 0 1 2,3,4 r = 0 1 2,3,4 r = 0 1 2,3,4 r = 0 1 2,3,4 r = 0 1 2,3,4 r = 0 1 2,3,4

0.0 50 37.5 44.4 18.2 89.4 10.3 0.3 30.1 39.1 30.8 37.2 44.6 18.3 78.4 13.9 7.7 88.8 10.7 0.6

100 10.7 74.0 15.3 78.1 21.3 0.6 14.4 68.9 16.7 15.2 69.7 15.1 73.7 25.5 0.8 76.0 23.2 0.8

200 0.0 86.3 13.7 8.3 91.7 0.0 0.0 86.3 13.7 0.0 86.3 13.7 9.3 90.7 0.0 8.3 91.7 0.0

400 0.0 90.3 9.7 0.0 99.7 0.3 0.0 90.3 9.7 0.0 90.4 9.6 0.0 99.7 0.3 0.0 99.7 0.3

0.3 50 37.7 36.3 25.9 85.7 12.4 1.9 15.1 31.1 53.8 42.1 36.9 21.0 51.9 28.4 19.7 76.2 20.5 3.3

100 15.8 66.7 17.6 86.3 13.3 0.4 6.2 73.8 20.1 24.4 52.5 23.1 56.8 42.3 0.9 63.5 35.7 0.9

200 0.0 86.2 13.8 27.8 71.3 1.0 0.0 86.2 13.9 0.0 79.3 20.7 5.7 94.0 0.3 5.4 93.9 0.7

400 0.0 90.9 9.1 0.0 99.7 0.3 0.0 91.0 9.0 0.0 91.0 9.0 0.1 99.6 0.3 0.0 99.7 0.3

0.5 50 10.7 38.3 51.1 56.9 36.1 7.1 4.6 27.1 68.3 11.7 39.2 49.0 36.5 37.7 25.8 52.6 37.0 10.4

100 0.6 77.2 22.2 25.5 71.8 2.8 0.6 75.9 23.5 0.7 76.2 23.1 23.2 73.8 3.1 23.1 74.1 2.8

200 0.0 85.2 14.8 0.0 98.9 1.1 0.0 84.7 15.3 0.0 84.4 15.6 0.3 99.1 0.6 0.0 99.7 0.3

400 0.0 90.7 9.3 0.0 99.7 0.3 0.0 90.5 9.5 0.0 90.6 9.4 0.1 99.6 0.3 0.0 99.7 0.3

0.9 50 0.3 8.9 90.8 1.7 56.6 41.6 0.3 2.5 97.3 0.3 8.8 91.0 0.8 25.9 73.2 1.4 54.5 44.1

100 0.0 41.4 58.6 0.0 89.8 10.2 0.0 39.3 60.8 0.0 41.4 58.6 0.0 88.1 11.9 0.0 89.9 10.1

200 0.0 72.8 27.2 0.0 97.7 2.3 0.0 72.7 27.3 0.0 72.7 27.3 0.0 97.7 2.3 0.0 97.7 2.3

400 0.0 84.9 15.1 0.0 99.7 0.3 0.0 84.5 15.5 0.0 85.0 15.0 0.0 99.7 0.3 0.0 99.7 0.3

HQC(1, r) BIC(1, r) Q∗
r,k̂AIC,T

Q∗
r,k̂HQC,T

Q∗
r,k̂BIC,T

0.0 50 40.3 39.8 19.9 90.1 9.4 0.5 87.7 11.1 1.3 90.3 8.8 1.0 90.8 8.6 0.6

100 12.4 70.8 16.8 76.7 23.0 0.3 55.9 40.7 3.4 56.6 40.2 3.2 56.8 40.1 3.1

200 0.0 84.7 15.3 9.9 90.1 0.0 2.2 91.7 6.1 2.1 91.9 6.0 2.1 92.0 5.9

400 0.0 90.2 9.8 0.0 99.9 0.1 0.0 94.4 5.6 0.0 94.6 5.4 0.0 94.6 5.4

0.3 50 37.6 43.2 19.2 86.0 12.3 1.7 83.4 15.5 1.2 83.7 14.7 1.6 86.4 12.1 1.5

100 28.4 49.3 22.4 88.8 10.4 0.9 51.1 44.6 4.3 53.0 42.9 4.1 64.9 29.8 5.4

200 0.6 73.9 25.6 49.4 49.4 1.2 1.1 93.7 5.2 0.8 94.0 5.3 5.6 83.6 10.8

400 0.0 76.0 24.0 0.0 97.9 2.1 0.1 95.0 4.9 0.0 94.8 5.2 0.0 94.7 5.3

0.5 50 20.6 46.3 33.2 59.1 33.6 7.3 82.2 17.0 0.9 76.0 21.5 2.5 66.3 29.6 4.2

100 23.2 39.0 37.8 72.5 24.4 3.1 26.9 68.7 4.4 26.9 69.3 3.8 26.9 68.9 4.2

200 0.6 50.8 48.6 64.9 27.0 8.1 0.3 94.3 5.4 0.0 95.2 4.8 0.0 95.2 4.8

400 0.0 46.8 53.2 0.0 86.1 13.9 0.0 94.7 5.3 0.0 94.5 5.5 0.0 94.6 5.5

0.9 50 0.5 6.9 92.6 1.2 16.9 81.9 50.9 44.4 4.7 17.4 77.0 5.6 17.0 78.2 4.8

100 0.2 9.7 90.1 1.2 22.6 76.2 1.7 90.4 7.8 0.2 94.2 5.7 0.1 94.2 5.7

200 0.0 1.2 98.8 1.8 25.7 72.5 0.0 94.8 5.2 0.0 95.3 4.7 0.0 95.0 5.0

400 0.0 0.6 99.4 0.6 1.8 97.6 0.0 95.3 4.7 0.0 95.5 4.6 0.0 95.4 4.6

IC(k, r) denotes the joint IC-based procedure for determining k and r; IC(k̂IC, r) denotes the sequential IC-based procedure for determining k in the first step and r in the second step

based on the lag order k̂IC(p) obtained in the first step; IC(1, r) denotes the semi-parametric IC-based approach by Cheng and Phillips (2009, 2012) for determining r by fixing k = 1;

Q∗
r,k̂IC,T

denotes the sequential wild bootstrap PLR test-based procedure for determining r in the second step based on the lag order k̂IC(p) obtained by an IC-based procedure in the

first step.

7



TABLE 4.2: Determination of cointegration rank. VAR(2) model with rank r0 = 1, Autoregressive Stochastic Volatility [Case B]

HQC(k, r) BIC(k, r) HQC(k̂AIC, r) HQC(k̂BIC, r) BIC(k̂AIC, r) BIC(k̂HQC, r)

γ T r = 0 1 2,3,4 r = 0 1 2,3,4 r = 0 1 2,3,4 r = 0 1 2,3,4 r = 0 1 2,3,4 r = 0 1 2,3,4

0.0 50 29.7 39.6 30.8 75.5 20.2 4.3 18.0 30.2 51.7 30.3 40.4 29.4 51.3 29.8 19.0 71.5 21.4 7.1

100 14.1 54.9 31.0 63.2 32.2 4.7 13.9 52.6 33.6 13.9 55.1 31.1 61.7 33.1 5.2 62.0 33.0 5.1

200 1.4 68.7 29.9 18.3 76.1 5.6 3.4 66.8 29.8 1.0 68.6 30.3 30.3 65.2 4.4 19.0 75.4 5.6

400 0.2 75.2 24.6 0.9 95.6 3.5 0.7 76.0 23.3 0.1 74.6 25.3 10.4 86.9 2.8 1.6 95.0 3.5

0.3 50 27.8 36.1 36.1 72.6 22.4 5.0 10.1 24.6 65.3 31.9 36.9 31.1 36.4 34.9 28.7 58.4 29.1 12.5

100 13.9 51.4 34.7 70.4 25.0 4.7 8.6 52.6 38.8 20.6 45.8 33.7 50.1 42.8 7.1 52.4 40.7 6.9

200 0.8 69.5 29.8 22.9 71.3 5.9 1.9 67.4 30.8 0.9 67.2 31.9 20.7 74.4 4.9 11.8 82.5 5.7

400 0.1 77.0 22.9 0.6 96.1 3.3 0.2 77.2 22.5 0.1 76.1 23.8 4.8 92.4 2.8 1.0 95.9 3.2

0.5 50 8.5 35.2 56.4 47.7 39.2 13.1 3.5 19.4 77.1 10.3 36.5 53.2 24.2 36.8 39.0 38.5 40.5 21.0

100 2.7 56.9 40.4 27.4 63.8 8.8 3.5 53.1 43.5 3.0 56.0 41.0 29.5 61.1 9.5 24.8 65.6 9.6

200 0.2 69.5 30.4 2.3 91.5 6.2 0.8 67.4 31.8 0.1 69.3 30.6 10.7 83.6 5.7 2.8 91.0 6.2

400 0.0 77.2 22.8 0.2 96.7 3.2 0.1 77.2 22.7 0.0 76.6 23.4 2.3 94.8 2.9 0.3 96.5 3.1

0.9 50 0.1 9.8 90.2 3.2 48.6 48.2 0.0 3.1 96.9 0.1 11.9 88.0 1.5 19.7 78.8 2.5 40.5 57.0

100 0.0 35.0 65.0 0.3 78.7 21.0 0.1 29.9 70.0 0.0 35.3 64.6 3.9 71.0 25.2 0.4 77.7 21.9

200 0.0 58.8 41.2 0.0 91.0 9.0 0.1 56.0 43.9 0.0 58.7 41.3 2.0 88.4 9.5 0.1 90.9 9.0

400 0.0 74.6 25.4 0.0 96.3 3.7 0.1 74.5 25.5 0.0 74.3 25.8 0.3 96.2 3.5 0.0 96.3 3.7

HQC(1, r) BIC(1, r) Q∗
r,k̂AIC,T

Q∗
r,k̂HQC,T

Q∗
r,k̂BIC,T

0.0 50 30.4 40.5 29.1 75.6 20.3 4.2 81.8 15.2 3.0 85.7 11.3 3.0 89.0 8.8 2.3

100 13.9 55.2 31.0 63.1 32.3 4.7 62.4 31.9 5.7 65.0 29.7 5.3 66.5 28.5 5.0

200 1.0 68.7 30.3 18.1 76.3 5.6 25.0 67.7 7.3 18.8 74.3 6.8 19.0 74.6 6.5

400 0.0 74.6 25.4 0.7 95.7 3.6 6.1 87.0 6.9 1.9 92.0 6.1 1.5 92.7 5.8

0.3 50 34.9 37.8 27.4 73.4 22.1 4.5 79.7 17.2 3.2 79.6 16.9 3.5 84.5 12.9 2.5

100 26.9 43.0 30.1 76.9 19.1 4.0 55.7 37.9 6.4 57.1 36.3 6.5 66.6 27.6 5.8

200 2.7 63.3 34.0 45.5 47.7 6.8 17.9 74.7 7.4 12.6 80.5 6.9 18.4 73.3 8.3

400 0.1 69.6 30.3 2.3 91.1 6.6 3.1 90.1 6.8 1.0 93.1 5.9 0.7 93.3 5.9

0.5 50 20.4 39.4 40.3 53.8 34.6 11.6 77.4 19.3 3.3 72.0 23.6 4.4 69.2 25.7 5.1

100 21.7 37.0 41.3 64.7 27.8 7.5 40.5 52.6 6.9 37.3 56.2 6.5 37.4 56.0 6.6

200 3.3 43.9 52.8 53.8 32.7 13.5 10.6 82.2 7.1 4.7 89.2 6.2 4.3 89.9 5.8

400 0.1 48.3 51.6 3.9 78.1 18.0 1.7 91.7 6.6 0.5 93.6 5.9 0.3 93.9 5.8

0.9 50 0.1 8.2 91.7 0.9 17.7 81.3 60.9 32.9 6.2 28.3 61.7 10.0 26.2 64.8 8.9

100 0.3 9.7 90.0 1.6 23.6 74.7 12.3 77.8 9.9 2.8 88.9 8.2 2.3 90.3 7.4

200 0.1 1.1 98.8 2.7 25.5 71.8 3.5 88.9 7.6 0.3 93.4 6.2 0.1 93.9 6.0

400 0.0 0.6 99.4 1.4 2.3 96.3 0.5 93.3 6.1 0.1 94.1 5.8 0.0 94.2 5.7

IC(k, r) denotes the joint IC-based procedure for determining k and r; IC(k̂IC, r) denotes the sequential IC-based procedure for determining k in the first step and r in the second step

based on the lag order k̂IC(p) obtained in the first step; IC(1, r) denotes the semi-parametric IC-based approach by Cheng and Phillips (2009, 2012) for determining r by fixing k = 1;

Q∗
r,k̂IC,T

denotes the sequential wild bootstrap PLR test-based procedure for determining r in the second step based on the lag order k̂IC(p) obtained by an IC-based procedure in the

first step.
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TABLE 4.3: Determination of cointegration rank. VAR(2) model with rank r0 = 1, Single Volatility Break [Case C]

HQC(k, r) BIC(k, r) HQC(k̂AIC, r) HQC(k̂BIC, r) BIC(k̂AIC, r) BIC(k̂HQC, r)

γ T r = 0 1 2,3,4 r = 0 1 2,3,4 r = 0 1 2,3,4 r = 0 1 2,3,4 r = 0 1 2,3,4 r = 0 1 2,3,4

0.0 50 6.9 28.6 64.5 60.6 31.9 7.5 1.4 14.4 84.2 12.6 40.8 46.7 19.0 43.1 37.9 28.2 39.4 32.5

100 4.8 54.1 41.1 46.8 48.9 4.4 8.3 39.0 52.7 4.3 55.4 40.2 53.8 38.6 7.7 44.2 49.6 6.2

200 0.1 65.9 34.1 6.7 90.1 3.3 3.4 56.9 39.7 0.0 66.1 33.9 41.3 55.1 3.7 7.4 89.2 3.4

400 0.0 73.1 26.9 0.0 98.5 1.5 0.1 68.4 31.5 0.0 73.2 26.8 9.4 88.8 1.8 0.0 98.5 1.5

0.3 50 4.8 22.0 73.2 51.6 36.4 12.0 0.9 11.4 87.8 11.3 35.1 53.6 14.2 41.2 44.7 17.6 40.8 41.6

100 3.7 48.7 47.6 49.1 43.7 7.2 5.8 36.6 57.6 5.9 46.2 47.9 46.3 43.4 10.3 31.1 58.4 10.6

200 0.1 63.7 36.3 9.7 85.2 5.1 1.8 56.6 41.6 0.1 60.1 39.8 29.5 66.1 4.5 4.1 91.6 4.2

400 0.0 72.0 28.0 0.0 98.3 1.7 0.0 67.8 32.2 0.0 71.8 28.2 3.8 94.2 2.1 0.0 98.3 1.7

0.5 50 1.5 16.0 82.4 27.7 50.0 22.3 0.3 8.3 91.4 3.2 26.3 70.5 9.8 37.3 53.0 10.9 38.1 51.0

100 0.9 47.3 51.9 15.5 74.4 10.1 3.9 34.9 61.1 0.5 48.7 50.8 37.1 49.7 13.2 14.8 72.1 13.2

200 0.0 61.7 38.3 0.3 95.1 4.6 0.8 54.7 44.4 0.0 61.9 38.1 19.8 74.6 5.6 0.6 94.3 5.1

400 0.0 71.1 28.9 0.0 98.3 1.7 0.0 67.0 33.0 0.0 71.2 28.8 1.4 96.4 2.3 0.0 98.3 1.7

0.9 50 0.0 2.6 97.4 2.8 43.7 53.5 0.0 0.9 99.1 0.1 8.7 91.2 1.5 13.3 85.2 0.8 15.9 83.3

100 0.0 27.8 72.2 0.1 77.8 22.1 0.3 17.7 82.1 0.0 30.2 69.8 13.3 55.5 31.2 0.6 71.2 28.3

200 0.0 49.2 50.8 0.0 91.6 8.4 0.0 41.7 58.3 0.0 49.9 50.1 3.1 85.3 11.6 0.0 90.8 9.2

400 0.0 63.2 36.8 0.0 97.1 2.9 0.0 58.4 41.6 0.0 63.3 36.7 0.0 96.2 3.8 0.0 97.0 3.0

HQC(1, r) BIC(1, r) Q∗
r,k̂AIC,T

Q∗
r,k̂HQC,T

Q∗
r,k̂BIC,T

0.0 50 13.3 42.0 44.7 61.1 31.6 7.3 81.4 16.3 2.3 66.8 27.4 5.8 84.4 12.4 3.2

100 4.4 55.5 40.1 46.7 49.0 4.3 58.7 33.3 8.0 59.2 34.2 6.6 64.9 30.7 4.4

200 0.0 66.2 33.8 6.6 90.1 3.3 34.2 56.8 9.0 11.6 82.2 6.2 11.6 82.6 5.8

400 0.0 73.2 26.8 0.0 98.5 1.5 4.9 87.6 7.5 0.0 94.4 5.6 0.0 94.6 5.5

0.3 50 15.2 39.1 45.8 54.6 34.8 10.6 82.1 15.7 2.2 62.9 30.9 6.2 70.3 24.2 5.4

100 8.9 46.5 44.7 56.7 35.8 7.5 54.6 37.0 8.4 45.8 45.3 8.9 54.3 38.5 7.2

200 0.2 53.5 46.3 25.6 63.5 11.0 26.0 64.4 9.6 7.1 85.8 7.1 10.6 80.4 9.0

400 0.0 56.2 43.8 0.0 89.5 10.5 2.2 89.9 7.9 0.0 94.2 5.8 0.0 94.3 5.7

0.5 50 8.5 34.0 57.4 32.8 44.8 22.5 82.2 15.5 2.3 62.2 31.2 6.6 53.9 36.8 9.4

100 6.5 35.4 58.1 38.5 43.9 17.6 49.1 41.8 9.2 31.1 59.6 9.3 33.8 58.7 7.4

200 0.4 33.1 66.5 26.5 48.7 24.8 17.6 72.5 9.9 1.2 91.7 7.1 1.0 92.6 6.4

400 0.0 32.2 67.8 0.2 68.2 31.6 0.8 91.1 8.1 0.0 94.1 5.9 0.0 94.2 5.8

0.9 50 0.1 6.9 93.0 0.6 17.2 82.2 77.1 19.5 3.4 51.9 39.2 8.9 26.2 61.1 12.8

100 0.1 7.6 92.3 1.0 21.4 77.6 37.0 51.7 11.3 2.9 85.2 11.8 0.8 90.8 8.4

200 0.1 1.1 98.8 1.2 19.4 79.4 5.8 83.5 10.8 0.0 92.1 7.9 0.0 93.0 7.0

400 0.0 0.4 99.6 0.5 1.9 97.6 0.0 92.2 7.8 0.0 94.1 5.9 0.0 94.3 5.7

IC(k, r) denotes the joint IC-based procedure for determining k and r; IC(k̂IC, r) denotes the sequential IC-based procedure for determining k in the first step and r in the second step

based on the lag order k̂IC(p) obtained in the first step; IC(1, r) denotes the semi-parametric IC-based approach by Cheng and Phillips (2009, 2012) for determining r by fixing k = 1;

Q∗
r,k̂IC,T

denotes the sequential wild bootstrap PLR test-based procedure for determining r in the second step based on the lag order k̂IC(p) obtained by an IC-based procedure in the

first step.
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