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Abstract 

Polarization is an often-neglected term in molecular modelling, and this is particularly the 

case in docking. However, the growing interest in fragment-based drug design, coupled with 

the small size of fragments that makes them amenable to quantum mechanical treatment, 

has created new opportunities for including polarization, anisotropic electrostatics and 

realistic repulsion potentials in docking.  We have shown that polarization implemented as 

induced charges can offer in the region of a 10-15% improvement in native docking results, 

as judged by the percentage of poses within a rather tight threshold of 0.5 or 1.0 Å, where 

accurate prediction of binding interactions, are more likely. This is a significant improvement 

given the quality of current commercial docking programs (such as Glide used here). This 

improvement is most apparent when the correct pose is known a priori, so that the extent of 

polarization is correctly modelled, and scoring is based on force-fields that do not scale the 

electrostatics. The introduction of specific active-site water molecules was shown to have a 

far greater effect than the polarization, probably because of the introduction of 3 additional 

full charges, rather than introduction of smaller charge perturbations. With active site waters, 

polarization is more likely to improve the docking when the water molecule is carefully 

orientated using quantum mechanical/molecular mechanics (QM/MM) methods. The 

placement of such water molecules is a matter of great current interest; we have shown that 

the water molecule can be placed with some degree of reliability simply by docking with the 

ligand present, provided that the water makes good hydrogen bonding interactions (these are 

the very conditions under which it is desirable to include the specific active-site water). 

Anisotropic electrostatics and exponential repulsion for rigid fragments was investigated 

using Orient and compared to QM/MM methods, all methods merited further research. The 

general hierarchy is that native docking using Glide (with polarization) > QM/MM (with MM 

polarization) > Orient-based methods. Thus, we expanded the Glide (with polarization) 

dataset to include more realistic crossdocking experiments on over 5000 structures.  RMSD 

analysis resulted in many examples of clear improvement for including polarization.  
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1 An introduction to Fragment based Drug Design  
 

1.1 Background to Fragment Screening 

The drug design process involves a number of stages, can take many years and can cost up 

to 5 billion dollars (ACS drug discovery symposium, 2014, www.acs.org). The initial stage 

involves a strategic decision on the target disease, followed by target identification and 

validation. To develop a drug, it is then necessary to develop appropriate assays, which may 

be target-based or phenotypic. Once appropriate assays are in place, it is possible to employ 

various forms of screening, either high-throughput screening or fragment-based screening, 

which may be complemented by virtual screening. From this screening, it is hoped to identify 

a lead from the various hits, that can be optimized for preclinical development, where issues 

such as toxicology and formulation are addressed. The final stage involves clinical trial. Many 

practitioners are wary of the pitfalls of high throughput screening and so have turned to 

fragment-based screening; the work in this thesis is most relevant to fragment-based 

screening. 

 

1.1.1 Combinatorial Chemistry and HTS, a paradigm shift in library design 

Innovations in medicinal chemistry such as Merrifield’s method for the linear solid-phase 

synthesis of peptides, and the development of automated peptide synthesizers and 

eventually parallel and then split and pool synthesizers lead to ever more complex 

automation of the synthesis of peptides, with similar developments occurring in small non-

peptide molecule synthesis.   These advances in chemical synthesis and new High  

throughput screening (HTS) technologies went hand in hand, each driving advances in the 

other field and together they constituted the industrialization of the pharmaceutical industry.  

The first medicinal Combinatorial Chemistry (CC) library, featured benzodiazepines and was 

reported by Bunin and Ellman in 1992 (Gershell and Atkins, 2003).    

http://www.acs.org/
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The industrialization of the drug industry has not been without its hiccups, and the resulting 

improvements in quality of compounds and data generated is analogous to the 

improvements in car quality after the introduction of assembly line automation (Macarron et 

al., 2011).   

The focus in early CC libraries was on the impressive number of compounds that could be 

generated, but early libraries often used relatively simple chemistries.  Solid-phase chemistry 

was in itself soon considered limiting with respect to the diversity of chemistries that could be 

performed (Mario Geysen et al., 2003).  Additionally, the technical challenges of making 

traditional drug-like molecules would typically involve more than 20 chemical operations and 

only a few less purifications.  Therefore medicinal chemists largely experimented with 

screening of many simple compounds, often sharing wells in the hope that sheer numbers 

would generate hits (Gershell and Atkins, 2003).  These early hits, although numerous, could 

often not be validated in duplicate screens due to artefacts such as metabolite instability.  

The subsequent purification of hit compounds also led to largely biologically inactive 

substances  (Rydzewski, 2008).  This approach referred to as the ‘massive library’ model has 

now been largely abandoned in favour of small focused non-peptide libraries with 

elaborations on a small number of promising scaffolds (Gershell and Atkins, 2003). 

These libraries have been given names such as ‘lead-like’ and ‘scaffold’ libraries which along 

with their lead optimization derivatives are perhaps where the highest value of CC is found.  

Retrospective studies of physicochemical properties that predict good oral bioavailability 

through consideration of Absorption, Distribution, Metabolism, Excretion and Toxicity 

(ADMET) and their structural activity relationships (SAR) have become common in the 

industry and are used to support the development of new design strategies (Rydzewski, 

2008). For example, a study of the Comprehensive medicinal chemistry database (CMCD) at 

Vertex pharmaceuticals identified 5120 suitable drug compounds for SAR investigations.  

Analysis of these 5120 suitable drug compounds indicated that just 32 ‘SHAPES’ or scaffolds 

consisting of 5 and 6 member rings described over 50% of them.  All of the 32 ‘SHAPES’ 
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comprised of either 1 ring system or 2 ring systems joined by a linker (Bemis and Murcko, 

1996).  This and other studies concluded that the significant structural contributions 

determining the oral bioavailability and other desirable physicochemical properties of a drug 

are overwhelmingly found in the scaffolds or core structure, and not the contributions of the 

side groups (Vieth et al., 2004, Boehm et al., 2000). Elaboration of scaffolds such as 

SHAPES have therefore become a key philosophy in both fragment and CC libraries (Fejzo 

et al., 1999).   

Small lead-like and indeed fragment-like molecules are more likely to bind to a receptor 

because they have a better chance of finding a binding mode than larger drug-like molecules 

(Hann et al., 2001).  Once a small polar molecule has been found with μM affinity, more 

focused libraries can rapidly improve on it. For example, the addition of a lipophilic side 

group can improve affinity and pharmacokinetic properties.  In addition, as this strategy only 

requires one or two step elaboration from a series of promising templates it therefore does 

not require the use of complicated chemistries and split and pool techniques (Teague et al., 

1999). High architectural diversity can also be achieved without a significant impact on 

molecular weight (MW) by having a high proportion of sp3 saturated atoms within the core 

structures of molecules.  This is an important consideration in the design of all libraries as 

high MW has a negative impact on what are deemed good ‘drug-like’ properties; this has 

been identified through retrospective studies on predicting good oral-bioavailability through 

ADMET (see 1.1.2).  There is also a link between size (usually achieved predominantly 

through hydrophobic contributions) and permeability, solubility and promiscuity (Lovering et 

al., 2009, Lipinski et al., 1997).  

Early robotic HTS screening systems were designed to operate on 96 well plates, often using 

fluorescence as readout.  Steady improvements in speed, reliability, accuracy and 

miniaturization soon led to 384 and 1536 well plates respectively (Rydzewski, 2008).  In 

demonstration of the new HTS technology, the first paper available on PubMed citing ‘HTS’ 

in the title appeared 1991; it took 6 years before ten such papers were published in a single 
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year (Macarron et al., 2011). Early HTS conference discussions and excitement focused on 

the technology innovations required to reach ultra HTS (100,000 compounds screened a 

day).  In this scenario low affinity, low MW fragments were not considered an attractive 

starting point for screening as the binding events of fragments were largely undetectable 

using the new HTS screening technologies (Rydzewski, 2008).  When ultra HTS was 

achieved attention instead focused on what else HTS could offer to the pre-clinical process 

other than lead identification, such as High Throughput target validation. The relatively low 

levels of initial success in finding desirable ‘drug-like’ compounds with good ADMET 

properties led to studies of the desirable physicochemical properties required, and the main 

focus of industry discussion turned to ‘what targets should be screened?’ (Walters and 

Namchuk, 2003).  It was within this receptive forum that FBDD emerged as an important 

complimentary drug design strategy  (Congreve et al., 2008).    

1.1.2 From what makes a good drug to Fragment based drug Design 

A retrospective study of the United States adopted name (USAN) library, consisting 

predominantly of drug candidates that have undergone preclinical and phase 1 safety 

evaluation, revealed that the physicochemical properties of HTS hits were different from pre 

HTS era hits.  These changes emerged as an artefact of the screening processes used to 

detect hits.   HTS compounds had higher molecular weight (MW) and higher LogP (log of the 

octanol-water partition coefficient measuring a drug’s lipophilicity) and lower turbidimetric 

solubility than pre HTS leads (Lipinski et al., 1997).   

Lipinski et al., (1997) studied four parameters universally associated with solubility and 

permeability, which along with potency form a triad of important drug absorption properties.  

The drug-like property cut-offs for these parameters are all close to or multiples of 5, so they 

were named the ‘rule of 5’ guidelines. These drug-like parameter limits are MW <500 Daltons 

(Da), logP <5, (or Moriguchi (M) logP <4.15), and <10 H-bond acceptors (such as O and N), 

and <5 H-bond donors (such as OH and NH). Approximately 10% of USAN compounds 

exceed one or more of the cut-offs,  and therefore  exceeding one or more ‘rules of 5’ cut-offs 
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reduces the chance of a drug candidate making it to clinical trials to less than 10% (Lipinski 

et al., 1997).  

A more recent study of patent application drug candidates showed a positive correlation 

between promiscuity and increased logP. Excessively lipophilic molecules are more likely to 

bind to multiple targets (be promiscuous); such molecules are associated with toxicity and 

therefore increased attrition (Leeson and Springthorpe, 2007). We note that binding to 

multiple targets is required for the action of some drugs such as central nervous system 

(CNS) agents 

A study of over 1100 drug candidates at GlaxoSmithKline for oral bioavailability 

measurements in rats also revealed that MW > 500 Da largely results in poor bioavailability. 

It was also found that having a high polar surface area (PSA - which is from the sum of polar 

atoms in a molecule) and a large number of rotatable bonds has a negative impact on 

permeation rate. In addition PSA<140 Å 2 was found to correlate better with increased 

permeation rate than cLogP  (calculated LogP)  (Veber et al., 2002). Cross-correlation 

studies showed a 0.96 R2  between PSA and the number of O and N atoms (Vieth et al., 

2004).  

 The ‘rule of 5’ guidelines are widely accepted guidelines as to what constitutes drug-like 

physicochemical properties. Although useful, the ‘rule of 5’ guidelines have been reported as 

mostly unsuitable for identifying lead compounds from screening campaigns.   This is 

because most drug candidates complete a physicochemical property-changing lead 

optimization process necessary to improve target affinity to biologically functional levels.   

HTS screen studies revealed potent ligands (IC50<0.1 μM) occur with small probability 

(<1:106), where most ligands (83%) occur in the low affinity range of (IC501- 10 μM) (Teague 

et al., 1999). The lead optimization process can yield a 100-1000 fold improvement in target 

affinity equating to 2.8 - 4.2 kcal mol-1 of binding energy (Erlanson et al., 2004).  Studying the 

lead optimization of a set of small polar low affinity binders revealed increases in MW of 1-
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200 Da and in clogP of 0.5-4.0. Therefore, optimizing drug-like lead molecules is likely to 

result in physicochemical properties that exceed the ‘rule of 5’ cut-offs and hence is likely to 

yield poor bioavailability.  Instead,  scaffolds with MW 100-350 Da and clogP = 1-3 are a 

highly superior starting points for lead-like libraries that can be elaborated on (Teague et al., 

1999). 

Fragment libraries have smaller sizes still (typically MW 120-250 Da or 8-18 non-hydrogen 

atoms).  The properties of 40 diverse fragment hits were identified against a range of targets 

using High Throughput X-ray crystallographic screening technology; the results of this study 

indicated on average that a new mnemonic called the ‘rule of 3’ would form appropriate 

guidelines as to what is Fragment-like.  These parameters were MW <300, ≤ 3 H-bond 

donors, ≤ 3 H-bond acceptors, cLogP≤3 and in addition the same study suggested that 

keeping the number of rotatable bonds ≤ 3 and the average PSA ≤ 60 Å 2, might provide 

further guidance on fragment selection (Rees et al., 2004).  

The ‘rule of 3’ is a widely accepted view of what is fragment-like, so by definition fragments 

have good physicochemical properties (Congreve et al., 2008).  The technical difficulties of 

working with fragments have been largely overcome in the last 10-15 years, although FBDD 

is still heavily reliant on biophysical methods for detection.  The idea that smaller is better 

when designing screening libraries has become increasingly popular drug design strategy in 

a large number of both academic and industry groups (Congreve et al., 2008).   

1.2 The concepts of FBDD 

1.2.1 Fragments are more than the sum of their parts 

William Jencks was an early pioneer of the theoretical basis of FBDD. Jencks, when studying 

rates of reactions between compounds, showed that ligand interactions, can be viewed as a 

combination of two or more individual binding epitopes.  This view of the combination of 

individual binding epitopes later became synonymous with the term and concept of 

‘fragments’ (Rees et al., 2004).  Small fragments often bind weakly or negligibly in their 



7 
 

individual moieties, but when linked together they can become high affinity binders.  This is 

because the intrinsic binding energy of connected fragments can be approximated as 

additive once cost in binding entropy has been considered.  Linked fragments effectively pay 

only one conformational entropy loss penalty when they bind to their individual protein target, 

(Jencks, 1981). A similar conformational entropy loss penalty phenomenon has been 

observed for example in the binding of chelating agents to metals and in the non-polar 

interactions and hydrogen bonding that holds a protein in its native structure when the 

groups are connected in a peptide chain.  However, it is also possible to introduce 

conformational strain from suboptimal binding geometries.  Therefore, this approximation is 

most accurate when the binding epitopes are small molecules and they match their moieties 

optimally (Rees et al., 2004). 

1.2.2 Receptor Match 

Andrews attempted to quantify the average strength of individual functional group 

contributions of drug binding. Data was collected on the binding constants and structural 

components of 200 drugs and enzyme inhibitors. The data was used to calculate the average 

binding energy contributions of the ten most commonly occurring functional groups. Each of 

the 200 drug compounds, in which the functional groups occurred, was assessed for the 

number of these present.  An equation summed each of a drug’s present functional groups 

average binding energy contributions, then entropy penalties were added to these additive 

totals giving an additive average expected binding energy for each drug.  The contributions 

from each functional group in diminishing order were charged, polar, and non-polar groups.  

The binding energy penalties incurred by each drug were -14 kcal mol-1 for 

rotational/translational entropy loss and -0.7 kcal mol-1 entropy loss per degree of internal 

conformational freedom. The observed binding energies for the 200 drugs were also 

calculated from their binding constants. The average binding energy expected from each of 

these drugs' functional group contributions were then compared to the calculated observed 

binding energies to give an indication of how well each of the drugs matched it’s receptor 
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energetically; regression analysis and substitution of entropy values were used to test the 

appropriateness of the method (Andrews et al., 1984). 

Receptor match was a precursor to ligand efficiency (discussed in 1.2.4) and relates to how 

many of a ligand's substituents are involved directly in binding.  Exceptionally well matching 

drugs for example were identified such as biotin and camphor, that have binding energies 

that are significantly above the calculated average functional group binding energy 

contribution, and poorly matching drugs were identified such as methotrexate and ouabain 

having binding energies significantly below the calculated average expectations.  

methotrexate’s excellent Ki was noted, even though it produced the worst energy fit.  The 

reason suggested was that the bound form was likely a high energy conformation, with a 

portion of the binding energy being used to achieve this form.  The energy deviations 

between the calculated averages and the observed averages of the 200 compounds were 

found to be up to +/- 16-17 kcal mol-1. These results were as a whole in keeping with the 

expected observable energies as when optimally bound, a drug’s geometry should be 

relatively fixed, resulting in negligible rotational and translational entropy loss (Andrews et al., 

1984).   

The ‘Andrews analysis’ method was again used to assess the quality of a ligands match to its 

receptor in 106 HTS screening studies using pKi.  22% of the compounds of average 

molecular complexity screened were expected to have an average pKi < 10 nM. An observed 

IC50 < 10 nM was seen in none of the compounds, indicating poor receptor matches. This 

supported their hypothesis that drug-like leads such as those found in HTS campaigns are 

likely to achieve μM affinity using many poorly optimized interactions (Teague et al., 1999). 

Optimization of these HTS hits is deemed ‘difficult’ as without detailed structural information, 

about the protein-ligand interaction a medicinal chemist does not know where to focus 

improvements see Figure 1.1 (Rees et al., 2004) .  
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Figure 1.1. Schematic representing the many poorly optimized interactions of a drug-like lead. Taken 

from (Rees et al., 2004) 

 

1.2.3 Fragments are efficient binders 

Fragments may have a better chance of finding a binding mode, but must be extremely 

efficient binders for their size.  This is to counter the entropy loss involved in binding, which 

has only a small relationship to MW.   A large proportion of a fragments atoms must be 

involved in the binding interactions, thus requiring high binding energies per unit of mass, 

and therefore a good receptor match is also required (see Figure 1.2).  This high per atom 

interaction ratio for the fragment, must be carefully maintained, throughout the lead 

optimization process until high affinity is reached (Chessari and Woodhead, 2009).   

 

Figure 1.2. Schematic representing the good receptor match of a fragment. Adapted from  (Rees et al., 

2004) 

The maximal affinity of ligands was studied by Kuntz et al., (1999) indicating that an increase 

in potency of up to -1.5 kcal mol-1 per heavy (i.e. non-hydrogen) atom could be achieved in 
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the strongest non-metallic complexes from natural or synthetic ligands. The contributions per 

heavy atom followed a sharp slope until about 15 heavy atoms where contributions became 

increasingly negligible.  In addition, a maximal affinity plateau for the tightest binding ligands 

picomolar (pM) was achieved at ≈-15 kcal mol-1  regardless of the heavy atom count (HAC) 

(Kuntz et al., 1999).   

In a related study, Hadjuk (2006) looked at 18 highly optimized inhibitors from 15 lead 

discovery programs at Abbott Laboratories.  Findings suggested successful lead optimization 

yielded an approximate uniform potency increase of -0.3 kcal mol-1 per heavy atom.  

Additionally, a series limit in affinity was approached at ≈-12 kcal mol-1. These results were 

found to be in good agreement with Kuntz et al., (1999), as only subjective differences 

appeared in interpretation.  If the Kuntz et al., (1999) series was viewed between 5 and 25 

heavy atoms, a uniform slope of -0.27 kcal mol-1 per heavy atom emerged. In addition, apart 

from the tightest picomolar binders, the series also approached a maximal affinity limit at ≈-

12 kcal mol-1 (see Figure 1.3).  The results were also in agreement with Hopkins et al.’s, 

(2004) work on a concept called Ligand efficiency (LE) where a value of 0.3 kcal mol-1kcal 

mol-1 per heavy atom or LE >0.3 had been suggested as the minimum binding efficiency per 

heavy atom for lead optimization.  It was also found that to improve pKD by 1 log10 unit 

required on average an increase in MW of 64 Da and of clogP of 1 unit (Hajduk, 2006).   

 

 

 

 

 

 

 

Kuntz et al. 

Hadjuk 
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Figure 1.3. Plots of the HAC against the calculated Gibbs free energy of binding (ΔG = -RT In KD at 

300 K).  Sharp slope through the zero intercept refers to the initial 1.5 kcal mol-1 slope in Kuntz et al., 

(1999).  Parallel slopes:  Red 5-25 atom trend line using Kuntz et al., (1999) data; Black trend line 

from Hadjuk (2006) data. Taken from Hadjuk (2006) 

1.2.4 Binding efficiency indices 

There have been many binding efficiency indices developed in the last few years in response 

to the work of Kuntz et al., (1999) and the development of FBDD; some are mentioned 

below. 

Ligand Efficiency (LE) 

LE=-ΔG⁄ HAC ≈-RTln(IC50) ⁄ HAC  

LE suggests a value ≥0.3 per heavy atom for lead optimization (Units of LE are kcal mol-1) 

(Congreve et al., 2008) 

Group Efficiency (GE) 

GE = -ΔG/HAC 

GE looks at the group contributions to overall Gibbs free energy of binding (ΔG) by using a 

matched pair of compounds compared with a Free-Wilson analysis. The conversion of ΔG 

into GE is done identically to LE so that GE ≥ 0.3 indicates an acceptable group contribution.  

This metric can be used to quickly identify active site ‘hot spots’ were contributions from 

groups on an inhibitor are most significant (Congreve et al., 2008). 

Ligand-Lipophilicity Efficiency (LLE) 

LLE = pIC50 (or pKi) - cLogP (or LogD) 

LLE can be used to guide increases in lipophilicity during optimization and is based on the 

relationship between high lipophilicity, promiscuity and increased toxicity identified by Leeson 

and Springthorpe (2007) (see 2.2), who recommend an LLE for a low nM potency lead of ~5-

7 or greater.  Astex, a world leader in FBDD, identified that their patent molecules had lower 
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average cLogP (2.4) when compared with 4 Big Pharma companies that have more 

established HTS influenced strategies, namely Astra Zeneca (3.7); Glaxosmithkline (4.2); 

Merck (4.0); Pfizer (3.5), suggesting another advantage of using fragments (Leeson and 

Springthorpe, 2007); (Congreve et al., 2008). 

1.2.5 Complexity and Chemical Space in Fragment screening 

Hann et al., (2001) identified that with regards to molecular complexity there is an inverse 

relationship between the chances of detecting a binding event and the probability of that 

binding event having a unique mode.  The distribution under the opposing trend lines is 

where a useful binding event can be detected, see Figure 1.4.   A fragments small size offers 

them a higher chance of finding a binding mode, yet low affinity binding, at least with 

conventional HTS methods, is difficult to detect.  Although FBDD is heavily reliant on 

biophysical methods to detect the weaker binding events, when detection occurs the area of 

useful event distribution and therefore the probability of detecting a useful binding event is 

greatly increased. 

 

 

Figure 1.4. The impact of molecular complexity on the probability of detecting a useful binding event.  

The Green line gives the chance of binding with unique mode, if the red detection line is moved to the 

left as with fragment screening, the distribution for the orange useful event line is increased 

accordingly. Taken from (Hann et al., 2001). 
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An additional advantage of fragment screening is the ability to better explore the useful 

chemical space, when compared with established HTS screening methods of larger drug-like 

and even lead-like libraries.   Estimates of the number of synthesisable organic molecules 

range between 1018-10200 compounds (Fink et al., 2005).  This phenomenal number is put in 

perspective when we consider the universe is only approximately 1018 seconds old 

(Rydzewski, 2008). The chemical universe at typical drug-like screening size ≈30 heavy 

atoms is estimated to be more than 1060 compounds.  The significant exploration of typical 

drug-like chemical space even with 106 screening techniques is therefore negligible 

(Congreve et al., 2008).  In contrast, if the chemical space up to 11 heavy atoms is explored 

there are only 13.9 million estimated drug-like compounds (Fink et al., 2005) and for up to 13 

heavy atoms 970 million drug-like compounds are estimated (Blum and Reymond, 2009).  

Therefore fragment-like screening of chemical space typically ≤ 18 heavy atoms is likely to 

cover larger diverse chemical space than HTS even using 103-104 screening techniques 

(Congreve et al., 2008). 

1.3 Screening of Fragments 

NMR. There were some early in silico successes in the fledging field of FBDD (Verlinde et 

al., 1992), but only when a biophysical experimental technique called SAR by NMR (A 2-D 

isotope edited NMR method) emerged to detect low MW low affinity binders (Shuker et al., 

1996), did the field of FBDD really begin to be valued as an alternate or complementary 

design strategy (Congreve et al., 2008).  SAR by NMR is a linked fragment approach 

patented by the Abbott group that can detect the weak binding of fragments and was able to 

make SAR determinations of a fragment library demonstrated against the FK506 binding 

protein (FKBP). 

The protein target (e.g., FKBP) is radio isotope labelled with 15N before screening occurs.  

The observable chemical shift changes in two- dimensional 15N-Heteronuclear single 
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quantum correlation (15H-HSQC) spectra then indicate binding in the presence of a ligand.  A 

second ligand interacting with a nearby site was also sought, using detected binding 

observed in a different set of amide chemical shift changes, which was then analysed to give 

the approximate location of the second bound ligand.  The two fragments once selected had 

their location and orientation in the protein-ligand complex established by either NMR 

spectroscopy or X-ray crystallography.  The structural data was used to guide the synthesis 

of compounds where the two fragments were linked in the hope of producing a high affinity 

ligand (Shuker et al., 1996).  

An advantage of SAR by NMR is that no signal from the ligand is observable when N15 

spectral editing is used, making the binding event detectable at high compound 

concentrations.  In contrast, conventional HTS screening assays, such as fluorimetric and 

colorimetric assays often give large background signals at high compound concentrations. 

 Despite the success of SAR by NMR in beginning a revolution in applications of biophysical 

screening techniques, it was patented, required radiolabelled protein and was only applicable 

to small molecules (protein) <30 kD that can be obtained in quantities of >200 mg  (Shuker et 

al., 1996).  A plethora of alternative screening approaches soon began to emerge in the drive 

to explore the new science of FBDD.  By the year 2000 a glut of papers on these techniques 

appeared including the SHAPES, NEEDLES and TETHERING strategies used in FBDD 

(Chessari and Woodhead, 2009).   

Hoffman-La Roche used in silico ‘NEEDLE’ screening to identify hits that predicted good 

physicochemical properties and solubility at high concentrations, then using programs such 

as LUDI and CATALYST performed an early High Content Screening (HCS) method to 

validate hits, before lead optimization (Boehm et al., 2000).  A collaboration between Sunesis 

Pharmaceuticals and University of California saw that the presence of a disulphide linker 

between two weak binders could be TETHERED by a native or engineered cysteine in an 

active site to increase affinity 103 fold. In addition, cysteine-captured ligands have highly 
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stable conformations and are detectable by Mass Spectroscopy (MS) at typical drug 

screening concentrations (10-200μM) (Erlanson et al., 2000).  The SHAPES method used 

elaborations on Bemis and Murcko (1996) SHAPES library using Nuclear Overhauser Effect 

(NOE) ligand detection NMR techniques for screening.   This NMR technique uses a 

qualitative but extremely reliable line broadening of 1H spectra of a ligand-protein mixture to 

detect the binding event.  The SHAPES method doesn’t require the use of radioisotope 

labelled ligand and has no limitations in MW, which is in contrast to SAR by NMR (Fejzo et 

al., 1999).  Many NMR techniques now exist and NMR has become a widely used tool with 

particularly successful applications in the FBDD process (Pellecchia et al., 2008).  NMR and 

X-ray crystallography have become very popular FBDD screening techniques.  

X-ray crystallography. In parallel to the evolution of FBDD, new High-throughput 

crystallography techniques have emerged showing improvements in speed at all stages of 

the crystallization process and in the subsequent structure solving from X-ray diffraction data 

(Blundell et al., 2002).   This has proven a massive boon to FBDD and SBDD in general, 

giving structural determinations for a large number of protein targets and making practical X-

ray crystallography screening of small fragment libraries (typically 103 compounds) possible.  

X-ray crystallography comes into its own when a target is amenable to structural 

determination early in the drug design process. The information helps kick start the lead 

optimization process (Chessari and Woodhead, 2009).   The advantages and disadvantages 

of common screening techniques are reviewed by Carr et al., (2005), see Table 1.1. 

Surface Plasmon Resonance. More recently Surface Plasmon Resonance (SPR) has 

emerged as an increasingly popular method for fragment screening as information on 

stoichiometry is provided.  Surface plasmons are collective oscillations of electrons at a 

metal surface.  The oscillations manifest as electromagnetic waves confined to the interfacial 

plane between a metal and a dielectric.  In a phenomenon called resonance these 

oscillations occur with greater amplitude at some frequencies than they do at others.   The 

waves can be excited to resonate using a variety of optical setups (e.g., grating or prism 
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coupling) that result in the coupling of polarized light to the surface plasmon modes of the 

metal (e.g., gold or silver). At resonance conditions, photon energy is transferred to the 

surface plasmon mode and hence the reflected light exhibits a sharp attenuation (SPR 

minimum).  The angle and wavelength position of this reflectance minimum, has a strong 

dependence on the refractive index of the medium adjacent to the metal surface.  Processes 

that alter the local refractive index such as absorption of biomolecules on the sensor layer 

result in a shift in resonance position and consequently the SPR minimum.   This shift can 

then be used to deduce kinetic constants and hence thermodynamic  equilibrium binding 

data, namely Kd, ,kon and koff (Neumann et al., 2007) 

Isothermal titration calorimetry. Isothermal titration calorimetry (ITC) is another widely 

used screening technique to acquire thermodynamic and stoichiometric data.  ITC involves a 

single titration experiment where stepwise changes in enthalpy of the ligand-receptor 

interaction are measured.  An appropriate model to describe the interaction makes the 

thermodynamic parameters readable from a non-linear least squares curve fitting.  Difficulties 

arise when ITC is applied to fragments as accepted models (such as the Wiseman isotherm) 

are unable to read the thermodynamic parameters of low affinity binders. This is because 

Table 1.1 Comparison of fragment screening methods arranged in order of decreasing throughput and 

increasing information content. 

Approach Typical 

throughput 

per screen 

(compounds) 

Quality of 

information 

about ligand 

binding mode 

Resource and instrumentation 

requirements 

Protein 

structure 

required 

Key technical 

considerations 

HTS 100-1000K None Specialized infrastructure 

required 

No Not suitable for fragments 

High concentration 

bioassay 

10-50K None Very straightforward method No High false-positive rates 

can often hinder 

interpretation of data 

Surface Plasmon 

resonance 

10-50K None Straightforward method, but 

requires costly instrumentation 

No Protein or compounds 

must be immobilized; false 

positives possible 
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Affinity mass 

spectrometry 

10-50K None Straightforward method, but 

requires costly instrumentation 

No Limited applications 

reported 

Covalent attachment 

and MS 

10-50K None Specialized infrastructure 

required 

No Requires cysteine residue 

close to active site 

Dynamic 

combinatorial 

chemistry and LC/MS 

1-10K None Straightforward method No Limited range of chemistry 

is suitable 

Ligand-detected NMR 

(1D/2D) 

1-10K Can distinguish 

active site vs non-

active site binders 

Straightforward methods using 

1H or 19F, but requires costly 

instrumentation.  Well suited 

to screening of mixtures 

No Protein typically <20 kDa 

in size; moderate protein 

requirements 

Protein-detected 

NMR (2D) 

1-10K Information on 

principle 

interactions 

between ligand 

and protein 

Straightforward methods using 

1H/15N NMR resonance 

assignments for amide groups. 

Requires costly 

instrumentation 

Usually Protein typically <30 kDa 

in size; high protein 

requirements 

X-ray crystallography 500 – 1000 Detailed binding 

mode elucidated 

Specialized infrastructure 

required 

Yes Limited to ~35% drug 

targets where the 

structure can be solved; 

moderate protein 

requirements 

Adapted from (Carr et al., 2005). 

 

the reading of a desired sigmoidal curve is not possible if the c value (the product of receptor 

concentration (M) and association constant (Ka)) is too low.  The c value may be viewed as 

the ratio between the receptor concentration and dissociation constant (Kd) and influences 

the shape of the isotherm.  A c value between 10-500 is required for the Wiseman isotherm 

to work where fragments often have c value <10 or even <1.   Alternative models and careful 

experimental design have made ITC screening of fragments possible (Turnbull and Daranas, 

2003). 
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1.4 The Optimization of Fragments  

There are considered to be two approaches to drug design, these are blind and rational.   

HTS is typically a blind technique that can produce leads even when structural information 

isn’t amenable.  Many drug discovery programmes now take an orthogonal approach to 

research and development, utilising the advantages and minimizing the impact of the 

disadvantages of a number of strategies.  FBBD is a rational or semi-rational approach often 

synonymous with structure based drug design (SBDD).  ‘In silico’ rational methods require 

extensive structural information to progress through a lead optimization phase and produce a 

promising drug candidate.  Ligand-protein complexes offer many opportunities to a skilled 

computational chemist, such as identifying key interactions that guide 3D optimization of 

fragments and the creation of ‘de novo’ ligands and acting as a test bed for assessing the 

accuracy of docking simulations, and in the identification of new binding sites and validation 

of optimized leads (Congreve et al., 2008).  

‘De novo’ design involves the ‘in silico’ creation of a New Chemical Entity (NCE) that is 

distinct from its constituent parts. Notable overlaps exist in the optimization strategies of 

FBDD and ‘de novo’ drug design and at least to some extent they have become 

interchangeable (Loving et al., 2010).  In silico methods used to describe fragment-like 

molecules existed at least in concept before SAR by NMR.  The GRID program for instance 

used small chemical probes to assess energetically favourable ‘hotspots’ in the active site 

with compact significant contributions to the binding event; the results of these probes 

correlated with what was observed in known enzyme inhibitors (Goodford, 1985).  Fragments 

can be used to identify new binding sites by blocking an active site hotspot with a binding 

fragment and then to probe the resulting protein-ligand complex for a second binding event, 

potentially allowing linked fragments if the binding sites are adjacent. 

The early 1990’s saw the first linked fragment approaches pioneered computationally 

(Verlinde et al., 1992, Böhm, 1992). In an ensuing report, the lead optimization approaches 

that would later become most typical in FBDD were described; these approaches were 
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referred to as building (later called growing or evolving) and linking, the fragments were 

referred to both as ‘fragments’ and ‘seeds’ (Verlinde and Hol, 1994).   

1.4.1 Evolving of Fragments 

The binding of fragments can usually be improved by substituted additional functionality at 

one or more vectors, see Figure 1.5. Therefore, a  fragment with at least one chemical 

handle (which has suitable functionality for further chemical elaboration) should be selected 

in the library design process (Siegal et al., 2007). The fragment evolution will only succeed 

rationally if the binding mode is maintained during optimization (Congreve et al., 2008).  

Deconstruction of a known ß-lactamase inhibitor showed that this is not always the case. 

(Babaoglu and Shoichet, 2006).  If however the fragment is an optimal inhibitor, or close to it, 

there is no convincing evidence that the binding mode will not be maintained (Ciulli and 

Abell, 2007).  Many examples of evolved fragments now exist (e.g., BACE-1 inhibitors that 

show promise in treating Alzheimer’s disease, see Figure 1.6).  Evolving is the most popular 

and successful lead optimization strategy in FBDD (Congreve et al., 2008). The reason for 

the popularity of this approach over linking is that a multistep optimization of LE and MW can 

be used to give a more flexible exploration of the binding site. In contrast, linking is 

constrained by the size of the original fragments and the size of the linker, resulting in a rapid 

single step build-up of atoms.  Additionally, the conformational strain and flexibility of linked 

fragments results in an entropy loss during linkage (Hung et al., 2009).  

 

Figure 1.5 Schematic of Fragment Evolution. a Tight binding fragment/inhibitor in a protein active 

site moiety. b The Fragment is evolved across the active site, utilizing other potential interactions in 

the active site.  Taken from (Rees et al., 2004) 
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Figure 1.6 Evolved lead optimization resulting in compound [3] a potent BACE-1 inhibitor. Taken 

from (Congreve et al., 2008) 

 

1.4.2 Linked Fragments 

The rationale behind the linking of fragments is discussed in 1.2.1 and appropriate screening 

methods to identify a second fragment for linking such as ‘SAR by NMR’ is discussed in 1.3. 

Fragment linking requires the often challenging identification of a linker that allows both 

fragments to obtain their original binding mode when combined into a new ligand with 

acceptable affinity and LE, see Figure 1.7.  An example of a successfully linked approach 

leading to potent non-amidine containing thrombin inhibitors is given in Figure 1. 8 (Congreve 

et al., 2008). 

 

 

Figure 1.7. Schematic of Fragment Linking. a Fragment binds to a receptor at one site. b fragment 

binds to a receptor at adjacent site. c the addition of a linker group allows the lead molecule to span 

both sites.  Taken from (Rees et al., 2004) 
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Figure 1.8. Fragment linking leading to potent thrombin inhibitors. Taken from (Congreve et al., 

2008) 

 

1.5 Relevance to project 

Computational methods lend themselves to many areas of the FBDD process yet are not 

considered accurate enough to predict reliably the binding mode of fragments, which is still 

heavily dependent on biophysical methods for hit detection and validation (Congreve et al., 

2008).  Fragment docking is particularly sensitive to the accurate description of charges and 

other parameters that govern their interaction with their protein target and it is in the context 

that this research was initiated. Because structural information is so important in FBDD, we 

are seeking to introduce more accurate docking methods to aid in fragment growth. We will 

therefore seek to improve the charge description through the inclusion of polarization via 

induced charges, since this approach is compatible with state of the art docking programs 

such as GLIDE and Autodock. However, this is only part of the problem so we will also 

consider the use of anisotropic charge distributions through the use of distributed multipole 

analysis (DMA) and the use of more realistic repulsion than the commonly used r12 term. 

General computational approaches are discussed in the next chapter. 
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1.6 Conclusion 

FBDD is proving a successful design strategy with many compounds either in or entering 

clinical trials (de Kloe et al., 2009).  In a scenario where resources are often limited, design 

strategy often comes down to what experience and resources are available for use from 

previous campaigns such as the available equipment, stored compound collections and 

philosophies and expertise of staff in employment (Rydzewski, 2008).   For many large 

organizations the significant up-front investment and timely commitment to structural biology 

to establish binding modes and eliminate false positives is difficult to achieve.   Incentive to 

add to HTS strategies is further reduced by need for specialist equipment /staff and in that 

only a proportion of targets are readily available to 3-D structural determinations.   In 

contrast, in an academic setting, assembling a small library of fragments and their screening 

using biophysical techniques such as NMR and X-ray crystallography followed by SBDD is 

much more achievable than the assembly and screening of a large compound library in a 

HTS bioassay.  This, coupled with its intellectual appeal, makes FBDD a promising approach 

to drug design. The requirement for structural biology and the need to use improved 

computational chemistry methods to exploit this structure is one of the driving forces behind 

this project. 
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2 Methods Overview 

2.1 Introduction to Virtual Screening 

Despite ultra HTS’s power to perform individual biochemical assays on a huge number of 

compounds, it still has limitations in hit identification.  The technical complexity and high cost 

and attrition rates as discussed in chapter 1 encourage the continued exploration of 

alternative and supplementary techniques (Tuccinardi, 2009).  These techniques include in 

silico methods, which are not yet considered accurate or reliable enough to rival biophysical 

screening techniques and so cannot be used independently. They can however be used in 

an orthogonal fashion with biophysical techniques, and when successful provide insights that 

drive forward the science and reduce costs in the research and development stage (Hajduk 

and Greer, 2007, Congreve et al., 2008).   

Virtual screening (VS) integrates biophysical principles with computer science and 

largely attempts to predict likely ‘hits’ for subsequent bioassay or HTS evaluation.   VS 

techniques can be classified as ligand or receptor-based.  Ligand based methods use known 

binders (compound or active series) of a particular biomolecular target to extract other 

molecules with similar properties from a compound library.  Examples methods include 

Similarity searching, quantitative structure-activity relationship (QSAR) models, fingerprint 

and pharmacophore searching.   

Docking-based Virtual Screening (DBVS), our focus here, is an important receptor 

based method in the drug design process where 3D structural knowledge of a receptor target 

is used to search for molecules with favourable interactions (Tuccinardi, 2009, Jorgensen, 

2004).  Until recently,  Structure based Drug Design (SBDD) ‘in silico’ methods had 

contributed to approximately fifty compounds that have entered clinical trials (Jorgensen, 

2004). However progress in crystallography, homology modelling, and a range of 

computational techniques and the hardware they use has resulted in receptor based in silico 
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methods in general being increasingly recognized in speeding up and reducing the costs 

involved with hit identification and lead optimization (Zoete et al., 2009, Tuccinardi, 2009). 

2.1.1 Docking-based Virtual Screening 

DBVS is a strong area of active research that has three main applications at different stages 

of the drug discovery process.   Firstly, there is in the prediction of binding mode for a known 

active, secondly identifying potential ‘hits’ using virtual screening, and thirdly predicting 

binding affinity of compounds from within a known active series. The area where arguably 

the most success has been reported (and the main area of focus here) is in successful 

prediction of a ligand binding mode (Huang et al., 2010).   

Docking studies attempt to address the complex issues involved in identifying 

features of specific biomolecular recognition or ligand binding affinity prediction.  These 

challenges can be difficult to understand and harder to simulate.  Therefore Docking 

Programs adopt multi-step approaches, which filter the number of potential binding solutions 

with incremental increases in complexity (Kitchen et al., 2004).  Docking, although complex, 

can be roughly summarized as a search algorithm that attempts to suggest the most likely 

small molecule binding geometries (poses) and a scoring function that will endeavour to rank 

these to identify the true or native binding mode (Zoete et al., 2009). 

2.1.2 Docking as a complex problem  

The ideal DBVS tool needs to combine a docking algorithm capable of finding the correct 

ligand orientation and conformation (pose) with a fast reliable scoring function, while 

considering the hardware limitations of the average computer workstation (Kellenberger et 

al., 2004).  The current state of the art in DBVS programs can usually provide a selection of 

poses that largely includes the pose associated with the X-ray experimental binding, across a 

diverse range of protein classes.  The problem with reliability is therefore more often 

attributed to the scoring functions, which in many cases are not yet considered sophisticated 
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enough or versatile enough to rank poses accurately across these same diverse range of 

protein classes (Warren et al., 2006).   

Successful and reliable DBVS is technically challenging with many potential pitfalls to 

consider across a range of scientific disciplines.  Many will be mentioned below, but in brief 

regard these include, but are by no means exclusive to:  

 The accuracy and relevance of the crystallographic model, i.e. the resolution of x-ray 

diffraction data, protonation states and the assignment of the hydrogen bond network;  

 the induced fit problem associated with identifying novel binders i.e. ligand/protein 

flexibility;   

 Single binding pocket focus, with poor consideration or validation against allosteric or 

multiple binding pockets.  

 The difficulties in modelling of the condensed phase i.e. solvation effects, the 

treatment of ions and consideration for water mediated binding interactions.   

 The selection of potentials and schemes in the modelling of bonded and non-bonding 

terms (e.g., the pair-wise approximation).  

 The exploration of phase space both when considering the scheme and the 

philosophy e.g., energy minimization methods only explore local minima over 

pragmatic time steps; 

 The exploration of chemical space and the diversity/focus of the training set e.g., 

adoption of ‘Lipinski’ or ‘fragment space’, potentially defines the usefulness against 

future docking runs.  the expectation to find high affinity binders without consideration 

of the optimization potential, and reliable and consistent methods of docking 

performance evaluation when considering the possibilities with different training sets 

and protein classes. (Scior et al., 2012, Jorgensen and Tirado-Rives, 2005, Kitchen et 

al., 2004). 
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2.2 The Molecular Representation 

Molecular representations used for docking in order of increasing complexity and 

computational expense are the surface, grid and atomic representations. The surface 

representation is primarily for describing protein-protein interactions.  While the potential 

energy grid representation pioneered by (Goodford, 1985), stores the receptor's energetic 

contributions e.g., electrostatic and van der Waals (VDW) terms on a number of grid points. 

Grid representations greatly reduce computational expense for the evaluation and treatment 

of the potential energy surface when posing and scoring the ligand, but complicate the ability 

to model conformational flexibility of the receptor.  The majority of the work described here 

uses a grid since this is the approach used by Glide. Atomic representations generally use a 

potential energy function that rank the pair-wise interactions at the final stage of ranking by 

the scoring function (Kitchen et al., 2004).   

2.2.1 The Docking Algorithm 

The Docking algorithm, through a fuzzy process known as ‘Posing’ (see Figure 2.1), attempts 

to explore the chemically relevant conformational space and orientation of a ligand's binding 

within its target receptor. It does this through a process of first placing and then scoring the 

ligand to determine the most likely available solutions (Kitchen et al., 2004).  Even simple 

rigid body posing (lock and key model) without consideration of protein or ligand flexibility is a 

complex computational task and must model the six degrees of freedom (DOF), i.e. 

translational and rotational of one body relative to another (Leach et al., 2006).   However, 

during formation of the protein-ligand complex, a process known as induced fit occurs where 

both the ligand and protein adapt conformations to each other.   
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Figure 2.1 Example of Glide Posing solutions within active (wireframe) pocket. e.g., PDB 2jjc shows 

several ligand poses at the bottom of the pocket including 2 that are closer to the left, 2 at the top and 1 

on the right. Each ligand is distinguished by different coloured carbon atoms. 

 

Sometimes a protein may have multiple or allosteric pockets; this becomes a difficult problem 

to consider and validate using docking algorithms, which are designed to dock ligands with 

single binding pockets in mind (Scior et al., 2012).  For example, in tandem with the Induced 

fit model is the Population shift protein-ligand complex model.  In this model, the inhibitor 

(ligand) changes the enzyme (protein) conformation to a less active or an inactive 

conformation which (in terms of statistical mechanics) occurs throughout the population 

(Teague, 2003).  While the binding pocket is preformed to facilitate this conformation change, 

it is also possible to destabilize the folded structure of the protein through allosteric binding 

(Horn and Shoichet, 2004).    
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2.2.2 The Induced fit model  

The induced fit phenomena in the context of enzyme activity, can be described by enzyme 

activation requiring the specific substrate, in finding its binding conformation and orientation, 

to make appreciable changes in the three dimensional structure/relationship of the amino 

acids at the active site to precisely orient the catalytic groups for reaction (Koshland Jr, 

1958).  The ‘induced fit’ conformational changes can be subtle or linked to refolding and 

orientating of entire protein domains. X-ray crystallography of protein-ligand complexes 

typically show the ligand to have ~70%-100% of their surface area buried, giving evidence of 

protein encapsulation of the ligand (Teague, 2003).  Therefore, modelling of protein/ligand 

flexibility should ideally be considered in the docking algorithm.  However these additional 

conformational degrees of freedom (DOF) lead to a combinatorial explosion of the sampling 

space that, when unrestricted, lead to a near infinite number of putative pose possibilities 

(Zoete et al., 2009, Durrant and McCammon, 2010). 

𝑁𝐶𝑜𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 = ∏ ∏
360

𝜃𝑖𝑗

𝑛𝑖𝑛𝑐
𝑗=1

𝑁
𝑖=1                 (2.1) 

This can be represented in Eq. 2.1, where 𝑁 is the number of rotatable bonds and 𝜃𝑖𝑗 is the 

size of the incremental rotational angle j  for bond i, where the total number of increments for 

each bond, ninc, i can be calculated using ninc =  
360

𝜃𝑖𝑗
 (Kitchen et al., 2004).  There are three 

broad categories of sampling algorithm used to treat mainly ligand flexibility these are 

systematic, stochastic (or random), and simulation search methods. However, within this 

work, protein flexibility is generally not included due to limitations within Glide. 

2.2.3 Ligand Flexibility 

2.2.3.1 Systematic Sampling Algorithms 

The Systematic approach ideally requires fast exploration of all the conformational and rigid 

body degrees of freedom (DOF) to find the native binding mode.  Strategies for dealing with 



32 
 

the DOF combinatorial explosion for systematic searches involve various methods for the 

incremental build of the ligand in the binding site (Zoete et al., 2009).  The ligand is treated 

as a series of fragments and in this way these approaches are equivalent to the linking and 

growing of fragments in FBDD.  The linking strategy docks molecular fragments in the active 

site during posing, linking them covalently.  Alternatively, ligands are docked as core 

fragments, with the flexible parts treated as side chains.  These side chains are grown 

incrementally from the docked fragment during posing based on favourable scoring.  

Sometimes  additional energy minimization occurs between each accepted increment, as in 

the Hammerhead Program (Welch et al., 1996).  The Glide docking program (Friesner et al., 

2004) chosen for this research is considered among the state of art docking programs and 

uses an exhaustive systematic search algorithm made possible by introducing a number of 

hierarchal filters to incrementally reduce the search space. 

2.2.3.2 Random Sampling Algorithms 

Random (or stochastic) sampling algorithms consider the ligand as a whole. Stepwise 

changes are made to the starting pose or population of poses.  These steps are kept or 

rejected based on the favourability of scoring while posing.  Monte Carlo or evolutionary 

algorithms (EA) are considered stochastic sampling methods.  EA mimic the process of 

Darwinian evolution; the stepwise changes called operators mimic biological (gene) 

mutations that introduce binding mode perturbations such as rotation of a dihedral angle and 

crossovers (mimicking gene recombination) that combine two poses.  Operators  (for posing) 

are applied to selected poses to identify the fittest elements of the population and attempt to 

generate fitter solutions (Zoete et al., 2009).  Monte Carlo after generation of a random 

starting pose, typically keeps the stepwise changes which are further randomly generated 

poses based on the ‘Metropolis criterion’. These criteria are to keep the new solution 

immediately if a new minimum is obtained. If not a Boltzmann-based probability function test 

is applied where if more probable, the new pose is also kept; otherwise it is rejected.  These 

methods as with ‘tabu search’ algorithms that relax the strictness of conditions for finding 
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local search minima to check for similar solutions that may offer improvement, need to keep 

track of the favourability of already explored areas of conformational space. Ideally, these 

methods lead to convergence into a relatively small pose population of potential solutions 

(Kitchen et al., 2004).  The Glide Program also uses Monte Carlo sampling in the final stages 

of hierarchal pose evaluation (Friesner et al., 2004). 

2.2.4 Molecular Dynamics Methods 

Molecular dynamics (MD) is the most popular simulation method and is capable of giving 

many insights unavailable to other more conventional docking algorithms. However, in 

consideration of docking, a local minima problem arises as MD is often unable to cross high 

energy barriers within pragmatic simulation time scales.  Therefore, a common usage 

strategy is to start molecular dynamics calculations from different ligand positions perhaps 

from the final pose population reached using other docking methods.  The use of alternative 

conformations can be handled using the locally enhanced sampling (LES) method 

(Simmerling et al., 1998), which simulates multiple non-interacting copies of the ‘enhanced’ 

part of the system, with modifications to the force field that enhance sampling.  Another 

approach to MD simulation attempts the simulation of different parts of the protein-ligand 

complex at different temperatures. Replica exchange molecular dynamics (REMD) (Sugita 

and Okamoto, 1999) uses multiple copies of the system, with each copy at a different 

temperature. The copies at high temperature can sample more widely, and so can find new 

regions of conformational space; configurations can exchange according to the Metropolis 

criteria and so the main room temperature configuration can effectively sample wider 

regions. These methods can be used to provide a better homology model (see 2.2.5.1).  

Alternatively to MD, energy minimization methods although largely incapable of exploring 

beyond local energy minima are often used in conjunction with other search methods to 

refine geometries during posing to hopefully reach a few well defined minima (Kitchen et al., 

2004, Zoete et al., 2009).   
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2.2.5 Protein Flexibility 

Protein flexibility can be simulated by molecular dynamics, subject to the limitations 

discussed in 2.2.4, but is often not included in docking for the reasons discussed in section 

2.2.2. Glide does offer a solution to limited flexibility of a small number of protein side chains 

through the use of Glide in combination with the Prime homology modelling program, but 

Prime was not available for this work and so a rigid protein model was used. This could be a 

problem when a pose is generated that presents say a strongly positive atomic charge on the 

ligand in the vicinity of a strongly positive charge on the protein. Normally this clash would be 

resolved by movement of the two groups away from each other. In our studies, this situation 

can be partially ameliorated by polarization of charges on both the ligand and the protein so 

that electrostatic polarization reduces the clash. This type of flexibility (in the electronic 

distribution) is not available in standard docking methods. 

2.2.5.1 Global Flexibility 

MD is commonly used as an alternative to NMR, or X-ray crystallography, or Monte Carlo 

simulation with regards to the induced fit problem to generate multiple conformationally 

diverse structures that can be used in modelling of global protein flexibility, even for 

homology models. Computational methods are attractive because they generate a full 

continuum of structures, although concerns over adequate sampling of conformational space 

at largely nanosecond scales exist. An additional method is the ensemble average energy 

grid which uses a composite energy grid generated by averaging grids calculated over 

multiple structures for use during DBVS. Dynamic pharmacophore modelling typically uses 

multiple MD structures to characterize the active binding site regions in building a composite 

model, which can then be screened against a ligand database for compounds with 

complementary chemical features.  Normal mode analysis has also been incorporated into 

ligand-identification protocols to account for protein flexibility (Durrant and McCammon, 

2010). These methods have generally not been explored in this thesis, though flexibility has 
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been explored in cases where multiple structures (including multiple protein chains within an 

asymmetric unit) are available. 

2.2.5.2 Local Receptor Flexibility 

General treatments that incorporate local receptor flexibility in increasing order of flexibility 

are soft docking, side chain flexibility, and side chain and backbone flexibility.   Soft docking 

exchanges the commonly used Lennard-Jones potential which rapidly increases to infinity as 

interatomic distances approach zero with a more forgiving often exponential potential for 

describing the VDW force.   The soft potential does not approach infinity or carry massive 

energy penalties at short interatomic distances, effectively allowing for minor steric clashes 

(Durrant and McCammon, 2010).  Soft docking is explored in this research, both through 

scaling of the van der Waals’ potential in a 1.0/0.8 scaling configuration where polar ligand 

radii remain unscaled and nonpolar ligand radii are scaled by 0.8 as a standard Glide option 

(Friesner et al., 2004) and through the use of an exponential repulsion, here the Williams 

potential (Williams, 1999, Williams, 2001a, Williams, 2001b) in Chapter 4. 

Rotamer libraries containing a number of experimentally observed discrete rotameric 

states can explore side chain flexibility amenable to binding.  These are commonly optimized 

by recursively removing dead-end rotation steps, that do not contribute to a minimum-energy 

structure (Kitchen et al., 2004).  A fuller spectrum of backbone and sidechain motions can 

also be explored by using energy refinement techniques involving relaxed geometry 

optimization following docking; these still suffer from only being able to explore local energy 

minima (Durrant and McCammon, 2010). 

2.2.5.3 Difficulties with Induced fit modelling and application to this research 

The treatment of protein flexibility is currently considered less advanced than that of ligand 

flexibility (Kitchen et al., 2004). In a ligand similarity study of the Protein data bank (PDB) it 

was shown that the binding sites of paired proteins with structurally similar ligands differ in 

83% of cases, where the most common difference was water molecule architecture, side 
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chain movements (altered receptor conformations) were observed in half the pairs, while 

backbones were largely unmoving.  It was also noted that small changes in ligand or binding 

site character can often lead to unpredictable changes in activity, e.g. an incorrect 

(specificity) of side chain rotamer which is difficult to account for using molecular similarity 

techniques  (Boström et al., 2006).  Like docking itself, the difficulties involved in homology 

and induced fit modelling of the receptor make reliable universally applicable techniques hard 

to establish (Seifert and Lang, 2008, Kairys et al., 2005, Alvesalo et al., 2006).  

Solving steric problems caused by lack of motion / flexibility in protein models used 

for docking, have previously been shown to outweigh the contribution from using more 

sophisticated MM non bonded force-field related terms in providing docking success (Kitchen 

et al., 2004).  For instance, using now aging force-field based scoring methods in a number 

of native case studies, a docking success rate of ~80% was obtained (RMSD < 2 Å of the X-

ray pose).  This success rate dropped to only 56% during a cross docking study of the same 

ligands that used a different version of the protein structure with which the ligand was not co-

crystallized/soaked (Pérez and Ortiz, 2001).  Here we largely consider just the problem of 

successful prediction of an X-ray experimental ligand binding mode within its receptor, where 

the need to model for receptor induced fit is greatly reduced.  While ligand flexibility is dealt 

with by a filtered exhaustive systematic flexible ligand search carried out by Glide (Friesner 

et al., 2004).  For the native docking experiments in chapters 3-5 the active pockets have 

been primed through protein-ligand complex energy minimization using the IMPACT 

Program (Banks et al., 2005) to expect the native ligand and some modelling of the water 

molecule architecture has also been applied (see 3.2.4).  We address these biases through 

investigating the cross-docking problem with and without polarization in Chapter 6. 

2.3 Generation of the Protein-ligand Model 

X-ray Crystallography is the main source of structural information for protein-ligand 

complexes generally and in this research (Davis et al., 2003).  The assumption (which is 
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usually justified) is that the protein-ligand complex crystallizes with the ligand in its most 

thermodynamically stable or ideal geometry (Kleywegt, 2006). In a crystallographic (X-ray 

diffraction) experiment, the positions and intensities of reflections are given by the diffraction 

pattern of the crystal.  Structure-factor amplitudes can be approximately calculated as the 

square root of these intensities.  Fourier transforms on the (post phase established) 

structure-factors provide a local electron density map in the form of a three dimensional 

matrix of numbers.  The crystallographer (or sometimes a computer program) uses this map 

through an iterative process to build a discrete atomic model in a piece-meal fashion.  A 

refinement program is used at each stage to ensure the model is chemically reasonable and 

best describes the experimental data, the crystallographer then evaluates the model for 

improvement (Davis et al., 2003).   Molecular mechanics (MM) simulation (see 2.5.4), is 

typically used by the refinement program to perform a restrained energy minimization which 

is parameterized based on experimental data e.g., favourably observed bond rotations 

angles etc. (Leszczynski, 2012).   

If the resolution of the X-ray diffraction data is higher than 1.5 angstroms (<1.5 Å) then it is 

probable that above 95% of the atomic model is directly a result of observed data.  However, 

at lower resolutions below (>2.5 Å), the atomic model likely becomes undesirablly subjective.  

For example, at ~2 Å  the isoelectronic nature of the sidechain atoms of asparagine (e.g., N𝛿 

and 𝑂𝛿) and glutamine (e.g., 𝑁𝛾 and 𝑂𝛾) typically make their relative positions 

undeterminable from observation of the electron density because they are isoelectronic.  

Atom assignment is then based on inspecting the local hydrogen-bonding networks, these 

uncertainties add to the model-associated pitfalls during docking and scoring efforts (Davis et 

al., 2003).   X-ray diffraction data resolution has been given consideration in compound 

selection for this research - see 3.2.3. 
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2.4 Scoring Functions (applied to this research) 

Scoring functions, may be classified as physical, or statistical (empirical/ knowledge based) 

potentials (Tuccinardi, 2009). The physical based scoring functions use force-field methods 

(see 2.5) and are the main target for improvement in this research.  Empirical scoring 

functions use weighted energy terms where G = ∑ Wi ∙ Gii .  G represents the change in 

Gibbs energy in the formation of the protein-ligand complex (see 2.5.1), and Gi  represents 

the energy terms such as hydrogen bonding, hydrophobicity, entropy, and desolvation 

energy in addition to standard VDW and electrostatic terms (Huang et al., 2010).  The 

weighting coefficients,  Wi are typically determined by fitting experimental activity values for 

known protein-ligand X-ray structures (Huang et al., 2010, Tuccinardi, 2009).  The empirical 

scoring function used by the Glide Program in this research is known as Glide Score 

(Friesner et al., 2004) and is explained elsewhere (see 3.2.6.1).  In keeping with previous 

work (Kontoyianni et al., 2003), although Glide is considered to have an empirical scoring 

function (see Table 2.1) we have also treated the EMODEL (Heavily Force-field weighted) 

and CVDW (Just Force-field) terms as separate scoring functions (see 3.2.6.2 and 3.2.6.3). 

Additionally, exploring the efficacy of an explicit polarization treatment (Ferenczy and 

Reynolds, 2001) upon them (see 3.2.7 and 3.2.8) while docking fragments.   Knowledge 

based scoring functions are largely overlooked by this research.  They borrow the inverse 

Boltzmann method from statistical mechanics (Physics) to obtain pair-wise potentials based 

on their occurrence frequency within an experimentally determined structural database 

(Huang et al., 2010). 

2.4.1 The current state of Scoring Functions 

The accuracy of the scoring function is a primary factor in the success of the docking 

experiment (hence the purpose of these studies on the effect of polarization).  Study results 

can mislead when the final rankings are unable to identify true poses over decoys.  

Therefore, docking decoys can be useful for testing and improving docking algorithms.  Hit-

list decoys occur when a non-binder is predicted over a true binder for a target, and 
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geometric decoys occur when an incorrect ligand pose is predicted over a true one.  The 

latter is more simple to address through evaluation of whether the highest ranking pose is 

also closest to the experimental binding mode (Graves et al., 2005), this is discussed further 

in subsequent chapters. 

Table 2.1 A variety of docking programs and the strategies they use. 

Program Ligand flexibility Protein flexibility Scoring function 

Autodock 4.0 (Morris et al., 

1998, Huey et al., 2007). 

Evolutionary 

algorithm 

Flexible side chains Force field 

Gold (Jones et al., 1997, 

Verdonk et al., 2003). 

Evolutionary 

algorithm 

Protein side chain and 

backbone flexibility 

Empirical score 

FlexX (Rarey et al., 1996), 

FlexE (Claußen et al., 2001). 

Incremental build Ensemble of protein 

structures 

Empirical score 

Dock 6.2 (Kuntz et al., 1982, 

Ewing et al., 2001). 

Incremental build Protein side chain and 

backbone flexibility 

Force field or contact 

score 

Glide (Friesner et al., 2004, 

Friesner et al., 2006). 

Exhaustive search - Empirical score 

ICM (Abagyan et al., 1994), 

IFREDA (Cavasotto and 

Abagyan, 2004). 

Pseudo-Brownian 

sampling and 

internal 

coordinate local 

minimization 

Flexible side chains Force field and 

Empirical score 

QXP (McMartin and Bohacek, 

1997). 

Monte Carlo - Force field 

Hammerhead (Welch et al., 

1996). 

Incremental build - Empirical score 
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EA dock (Zoete et al., 2009) Evolutionary 

algorithm 

Protein side chain and 

backbone flexibility 

Force field 

Adapted from (Zoete et al., 2009). 

Many older scoring functions consider just the geometric fit of the ligand within the 

protein structure and make relatively simple calculations of electrostatic potential (ESP) and 

VDW radius in the treatment of energetics with little consideration for entropic and solvation 

effects (Kitchen et al., 2004).   However, this situation has improved in recent years but 

progress is ongoing.  For instance, in discussion of entropy treatment, where empirical 

scoring functions commonly account for the favourable entropy of ligand desolvation, this is 

largely done through pair-wise atom-atom terms or buried surface area terms.  These terms 

are parameterized by averaging over many different molecular environments to represent a 

measure of the hydrophobic contacts between protein and ligand, while this is often a valid 

treatment, it works best when different molecular environments do not vary significantly 

(Young et al., 2007). 

MD simulations (Young et al., 2007), analysed largely using inhomogeneous 

solvation theory (Lazaridis, 1998), revealed two protein active site molecular recognition 

motifs where a ‘gross underestimation’ of binding affinity occurred. The first motif occurred 

when multiple water molecules were surrounding the ligand in an enclosure containing 

multiple hydrophobic side chains.  The second motif occurred in the formation of multiple 

protein-ligand hydrogen bond interactions (stated between one and three), when the rest of 

the local environment was hydrophobically enclosed (Young et al., 2007).  Results using an 

advanced treatment of hydrophobic enclosure, implemented in Glide XP (Friesner et al., 

2006) are shown in Appendix A.   

Another commonly used, and often useful scoring function metric, is to give torsional 

entropy (energy) penalties proportional to a ligand’s rotatable bond number. However, there 

is a lack of compelling evidence that ligands lose the same amount of rotational and 
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translational energy on binding.  Contradictions arise based on the level of ligand/protein 

conformation change required in binding.  Therefore, favourable starting conditions can 

greatly improve a scoring function’s ability to cope with the more difficult to quantify aspects 

of treating entropy (Chang et al., 2007).   

These conditions arise when the initial conformation is highly comparable to the 

bound one (i.e., largely sampled with 6 DOF).  Ligands with lower degrees of torsional 

freedom will tend to be planar, and have fewer rotatable bonds. Ligands achieve further 

reductions in torsional freedom through high ligand-pocket structural complementarity or 

‘snugness of its fit’ (Chang et al., 2007), see ligand binding indices,1.2.4.  Fragment 

molecules have largely planar cores and relatively few rotatable bonds, and efficient active 

site interactions making them a good starting point for DBVS, by potentially reducing the 

need of a scoring function to describe more difficult entropy based terms, see 1.2 and 2.5.2.  

2.4.2 Scoring Fragments 

An early fragment docking study (Verdonk et al., 2004) using the GOLD docking program 

(Jones et al., 1995, Jones et al., 1997) focused on CDK2 inhibitors.  It showed that fragment 

size (<250 Da) actives were harder to retrieve than larger actives (>250 Da) from a database 

seeded with decoys.  Despite this, docking was still considered useful, offering approximately 

a 14-fold enrichment of the top 1% of the database. 

Most fragment libraries consist of between 1000 and 10000 focused compounds. It is 

unlikely that they represent all the chemo types available in the 300 000 commercially 

available fragments. This large gap in chemical space can potentially be explored through 

fragment SBVS.  However there are additional concerns over the reliability of docking 

fragments, over and above those associated with drug-like molecules (Marcou and Rognan, 

2007, Chen and Shoichet, 2009).  These concerns are mainly the appropriateness of the 

scoring functions, which have typically been empirically parameterized using Lipinski-space 

molecules and the perceived promiscuity of fragments in their binding mode that is difficult to 
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predict (Babaoglu and Shoichet, 2006).  The lack of studies comparing X-ray experiment 

binding to docked fragment results also contributed to this concern (Chen and Shoichet, 

2009).   

Where fragments make relatively few protein interactions they are efficient ones, and 

there is now evidence from several studies (Chen and Shoichet, 2009, Gleeson and 

Gleeson, 2009, Sándor et al., 2010, Verdonk et al., 2011), that native docking experiments 

can correctly predict the binding poses of fragment inhibitors and the interactions are largely 

accurate when compared with X-ray experiment structures.  A reason attributed to this 

success, despite a lack of empirical parameterization with fragment training sets, is that the 

physics-based elements of the scoring functions have no specific bias against fragment 

compounds (Chen and Shoichet, 2009).  Fragments (by virtue of their small size) are more 

sensitive to change in enthalpy ∆H when binding; they are typically very polar and water 

soluble relative to previous drug-like compounds.  They also tend to be more rigid than leads, 

with relatively few rotatable bonds (Congreve et al., 2008).  This reduces the difficulty in 

accounting for changes in entropy ∆S (Freire, 2008), for which the empirical elements of the 

scoring function are largely developed, making them easier to treat by docking (Chen and 

Shoichet, 2009), e.g., Glide performs better at posing and scoring molecules with fewer 

rotatable bonds (Friesner et al., 2004). 

Even the promiscuity of fragments may be a virtue and perhaps arises from their 

ability to adapt to different environments within proteins, forming different hydrogen bonds 

with the receptor (Chen and Shoichet, 2009).  The highly polar nature of fragments has been 

exploited in the evaluation of an explicit polarization treatment (Ferenczy and Reynolds, 

2001) upon the OPLS 2005 force-field (Banks et al., 2005) and is a main theme of this 

research and is outlined in sections 3.2.7 and 3.2.8, which has been applied to the rescoring 

of the Glide Docking Program (Friesner et al., 2004), considered an industry standard. 
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2.5 Force-Field based Methods 

2.5.1 Gibbs free energy calculation at chemical equilibrium 

The reversible interaction between a protein (P) and a ligand (L) that forms the protein 

ligand-complex is P + L ↔ PL.  When considering the Gibbs energy change (∆G) from 

forming this complex, it is useful to think of the relationship between the total free energy and 

the reaction mixture as it approaches equilibrium. When experimental data is available this 

potentially allows the calculation of 𝐾𝑑  from G = G0 + RTlnQ. In terms of G = G0 + 

RTlnK, ∆𝐺0 is the standard free energy of the interaction. Standard refers to the conditions 

where partial pressure of any gases involved in the reaction is 0.1 MPa (mega pascals), and 

any aqueous solution involved has a concentration of 1 M (Molar). R is the gas constant 

(R=1.99 cal mol-1K-1 / 8.184 J mol-1 K-1), T is the absolute temperature K, is the equilibrium 

constant for a specific equilibrium mixture, which is equal to the reaction quotient Q at 

thermodynamic equilibrium. If an equilibrium mixture is mainly reactants, K<1 and G0 >0, if 

the mixture is mainly products K>1 and G0 <0, but the mixture contains comparable 

amounts of both reactants and products when  K=1, lnK =0 and G0=0 (Fay and McMurry, 

2012). Simplifying ∆𝐺0 = −𝑅𝑇In(𝐾𝑒𝑞) now allows direct calculation of ∆𝐺0 for the protein-

ligand complex from experimental values of K. or the reciprocal of 𝐾 (i.e. 𝐾𝑑).  Substituting 

therefore gives ∆𝐺0 = 𝑅𝑇In(𝐾𝑑) which in principle allows direct calculation of 𝐾𝑑 (de Azevedo 

et al., 2008). 

2.5.2 Entropy and Enthalpy  

∆𝐺 in forming of the protein-ligand complex is given by ∆𝐺0  = ∆𝐻0 − 𝑇∆𝑆0.  It can be 

considered in terms of variations in standard enthalpy (∆𝐻0) and entropy (∆𝑆0).  Ideally, both 

should contribute favourably to binding in order to achieve `extremely high or super affinity` 

in the low nano-molar to pico-molar range  (Freire, 2008, Young et al., 2007).  The balance 

between ∆𝐻0 and ∆𝑆0 of a compound during binding is the thermodynamic signature. The 

easiest and most popular lead optimization strategy has historically been to target favourable 
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∆𝑆0 gains in ∆𝐺.  The two major contributors to ∆𝑆 in ∆𝐺 are desolvation ∆𝑆0 and 

conformational ∆𝑆0 (Freire, 2008).  The former is commonly cited to be the primarily driven 

by the hydrophobic effect (Young et al., 2007).  However, this is considered only to be true if 

all the surfaces are large enough  As the force behind the assembly of clusters of 

hydrophobic particles in water, although involving entropy contributions is also considered to 

be driven by the difference in solvation free energy between entropically dominated small 

molecules contribution with  linear growth in their free energies relating to their excluded 

volume, and the enthalpically dominated large surface contributions with linear growth 

relating instead to their solvated hydrophobic surface area (Chandler, 2005).  The latter 

conformational contributor almost always incurs an ∆𝑆0 energy penalty to ∆𝐺, caused by loss 

of degrees of freedom for the protein-ligand complex.  Typically the interaction energy is 

entropically optimized by the addition of hydrophobic groups to the ligand within the 

framework of ‘Lipinski’s rule of 5’ and conformational restraints are engineered to maintain 

the similarity between the bound and free ligand conformations e.g., more planar, fewer 

rotatable bonds (Freire, 2008).  These are typical fragment-like considerations too (see 1.2).  

The complete thermodynamic data for two classes of drug from the first in marketed 

drugs to the best in class compounds, emerging after over a decade of development for HIV-

1 protease inhibitors and statins, showed higher selectivity, better potency, pharmokinetics 

and/or drug resistance profile as improvements were made.   It has been noted that the best 

in class drugs also had a favourable enthalpy contribution to the thermodynamic signature 

(Freire, 2008).  Improving affinity through the primary mechanism of adding hydrophobic 

groups decreases drug solubility, permeability and consequently leads to a poorer 

absorption, distribution, metabolism, and excretion – toxicity (ADMET) profile.  The 

improvement in the type of interactions determining binding when ∆𝐻0 is also optimized has 

been shown to lead to a better drug profile. Although now an important consideration is that 

optimizing ∆𝐻0 interactions is a notoriously harder strategy (Freire, 2008). 
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The difficulty arises from a conflict in the contributions to ∆𝐻0.  Firstly, favourable ∆𝐻0 

comes largely from formation of hydrogen bonds and VDW contacts (where perfect 

geometric fit between protein and ligand optimizes ∆𝐻0).  While unfavourable ∆𝐻0 is largely a 

result of the energy penalty associated with the desolvation of polar groups ~8-9 kcal/mol at 

25oC.  Hydrogen bond strength is maximal when the distance and angle between acceptors 

and donors are optimal.  A well placed hydrogen bond that is stronger than the one formed 

with water by either the ligand or protein can have a favourable ∆𝐻0 of ~4-5 kcal/mol.  

(Freire, 2008)It is estimated that for every 1.4 kcal mol-1 of ∆𝐻0, binding affinity is 

increased/decreased by an order of magnitude when ∆𝑆0 = 0.  Therefore the maximal 

increase in binding affinity is 1000-5000 fold for a well placed hydrogen bond (Freire, 2008).  

However, this favourable ∆𝐻0 can be negated by compensating entropy loss primarily 

due to conformational structuring induced by the hydrogen bond.  This too can be managed 

by directing several hydrogen bonds against the same donor/acceptor so the first one pays 

the entropy penalty and subsequent ones bind to the structured region.    SBDD can be used 

to visualize the general location of hydrogen bond donors and acceptors which can then be 

more precisely defined by experiment e.g., effect of hydrogen bond functionality placement 

can be assessed by isothermic calorimetry (ITC) (Freire, 2008).  ∆𝐻0 contributions such as 

VDW forces and electrostatics can largely be calculated using force-field based methods (de 

Azevedo et al., 2008) e.g., MM (see 2.5.4).  However, the accuracy required for modelling of 

H-bonds to the necessary tenths of an angstrom using SBDD alone is beyond the current 

state of the field (Freire, 2008).  To address this somewhat, we explore the potential of an 

improved description of electrostatics and hydrogen bonding called Distributed Multipole 

Analysis (DMA) (Stone, 1981) in Chapter 4.   

2.5.3 The Quantum Mechanical view of Intermolecular forces.  

Molecular Dynamics (MD) simulation has principally aided in solving chemical problems that 

involve the 3D structure of the macromolecule such as protein folding pathway prediction 
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(using restricted experimental data) and refinement of structures derived from X-ray 

diffraction data (where resolution is largely unachievable by experiment alone).  But MD, 

despite its semi-empirical nature, is also usefully applied to the problems of protein-ligand 

complexation and molecular recognition (Leszczynski, 2012).  Molecular mechanics (MM) 

and MD use classical (physics) potential energy functions, that can reproduce the basic 

atomic level features of the protein energy landscape  (Ponder and Case, 2003).  We discuss 

amongst the simplest and widely used potential energy function below (see 2.5.4).  

However, it is the quantum mechanics (QM) intermolecular interaction theories, that best 

describe the physical phenomena responsible for the attraction and repulsion between 

molecules.  These phenomena, which arise most importantly from the electrostatic 

interactions between all particles (e.g. electrons and nuclei) within two interacting molecules 

(Stone, 1996), should not be overlooked here. 

London (London, 1937) proposed that interaction energy between molecules is the 

sum of four basic components.  The first three, electrostatic, induction, dispersion are 

considered ‘long range’ effects, where the approximate behaviour of their interaction energy 

follows an inverse power function of separation distance r (Stone, 1996, Cieplak et al., 2009).  

The remaining ‘short range’ component to the interaction energy is exchange or exchange-

repulsion.   At short distance molecular wave-functions overlap significantly, and electron 

exchange becomes possible between molecules.  The exchange contributions have 

displayed an exponential dependence on r (Cieplak et al., 2009). Two other effects can arise 

at ‘long range’, these are resonance and magnetic effects, but as they have little importance 

in the context of intermolecular forces, we can avoid discussion of these for now (Stone, 

1996). 

The ‘long range’ contributions survive at large separation, yet remain present at short 

distance even when there is a strong molecular overlap. Thus, when looking at the physical 

phenomena of the electrostatic interaction, it remains finite until the nuclei come into contact 
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and is well defined at any distance in an unperturbed molecular charge distribution.  The 

approximation for modelling long range interaction with inverse powers of r introduces two 

immediate errors.  The first is a ‘penetration error’ where these ‘long-range’ series converge 

to a point instead of extend into space at insufficient distances of r>0.  The second is a 

common ‘truncation error’ where in practice it is required to have a finite number of points or 

terms in the series (Stone, 1996).   

The four basic interaction energy components each have a specific interpretation in 

terms of molecular properties.  The electrostatic effects involve the static charge 

distributions, including permanent electric multipole moments of the classical interaction 

between two molecules.  Electrostatic effects can be either attractive or repulsive, and are 

pairwise additive (Stone, 1996). Induction is an important part of polarization energy and is 

defined as, ‘one molecules permanent multipoles interacting with the multipole moments 

induced in another molecule’ (Cieplak et al., 2009). Induction is always attractive, and 

strongly non-additive, as the fields of other neighbouring molecules may either reinforce or 

cancel each other (Stone, 1996).  Dispersion involves the mutually polarized fluctuations of 

the charge distributions  of two molecules (Cieplak et al., 2009), as the electrons move.  The 

electrons' motions become correlated in a way that favours low energy configurations, with 

the electron correlations becoming stronger as the molecules approach.  This gives rise to an 

attractive interaction, with the average effect being a lowering of energy (Stone, 1996). 

The ‘short range’ energy exchange or exchange-repulsion component, is thought to 

comprise two effects, the weaker effect is the attractive one arising from exchange-induction 

and exchange-dispersion.  The other effect which dominates overall at short range is a 

repulsive effect.  This arises from the energy cost of the Pauli anti-symmetry requirement, 

that same-spin electrons must not occupy the same orbital.  The above energy contributions 

are summarized in table 2.2, it is recommended to think of the charge-transfer term, as part 

of the induction energy rather than a separate component, at least in terms of perturbation 

theory (Stone, 1996, Stone and Misquitta, 2009).  
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There are two general quantum mechanical approaches to dealing with the calculation of 

intermolecular interactions: the perturbation theory, and the supermolecular theory. In brief, 

the perturbation approach, in its simplest form can be referred to as ‘the polarization  

 

Table 2.2.  Contribution to the interaction energy between molecules. Taken from (Stone, 1996). 

Contribution Additive Sign Comment 

Long-range (U ~ R-n)    

Electrostatic Yes  Strong orientational dependence 

Induction No -  

Dispersion Approx. - Always present 

Resonance No  Degenerate states only 

Magnetic Yes  Very small 

Short-range ( ~e-R)    

Exchange-repulsion Approx. + Dominates at very short distance 

Exchange-induction Approx. -  

Exchange-dispersion Approx. -  

Charge transfer No - Donor-acceptor interaction 

 

approximation’, where the perturbation expansion parameter (ξ) is introduced to the 

Schrodinger equation.  It is perhaps enough to say here, that the ξ in terms of the total 

interaction energy can be viewed as an infinite series of corrections called polarization 

energies. Where the largest first order polarization energy is the electrostatic energy, which 

incorporates the most important exchange term, accounting for ~90% of the total exchange 

energy (Jeziorski et al., 1994).  The second and third order terms are sums of induction and 

dispersion energies. It is at this point multipole expansions of the operator V can be applied 

(V is intermolecular interaction operator). These expansions lead to energy components 

dependent on the separation distance r (Cieplak et al., 2009).  
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The supermolecular approach is used to define the difference between the energy of 

the dimer and the energies of the two monomers as the total interaction energy.  An 

important consideration here is that interaction energy between two molecules is frequently 

in the order of several kcal mol-1.  However, this may be five or six orders of magnitude less 

than energy of the dimer obtained quantum mechanically from using the supermolecular 

approach.  Therefore the calculation level, in terms of theory sophistication and basis set 

quality effects the results (Cieplak et al., 2009).  Approaches to quantify supermolecular 

energies into clearly defined energy contributions, highlight the presence of the basis set 

superposition error (BSSE), (Boys and Bernardi, 1970).  BSSE entails the non-physical 

lowering of the monomers' energy in a dimer calculation, since each monomer uses its 

partner’s basis set to lower its own energy.  

While in supermolecular theory, the charge-transfer term is commonly accepted in 

partitioning interaction energies, but suffers from being contaminated by the BSSE.  It is 

harder to define charge-transfer within perturbation theory. However, when extracted from 

the induction energy component (which contains a polarization term), it is less dependent on 

basis set (Stone, 1996).  The term also becomes small to negligible when proper handling of 

exchange repulsion is taken into account (Stone and Misquitta, 2009). 

Hybrid QM/MM approaches contain features of both perturbation theory and the 

supermolecule approach. However, in the traditional approach, there is no charge transfer or 

BSSE and only the QM part is polarized.  Empirical force fields typically consist of 

electrostatic, repulsion and attraction terms.  They all employ various levels of approximation 

and error compensation.  After general discussion in the next section, we can further explore 

their effectiveness as potentials (see 2.5.4 to 2.5.9). 

 

2.5.4 Molecular Mechanics Force Fields 

A force-field consists of classical potential energy expressions and their associated 

adjustable parameters (Jorgensen and Tirado-Rives, 2005).  For a system of N interacting 
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particles, the total potential energy of that system can be written as a series of n-body 

potentials (Elrod and Saykally, 1994, Hodges et al., 1997, Dahlke and Truhlar, 2006), where 

Vn is the n-body interaction term:  

𝑉(𝑟1, 𝑟2, … , 𝑟𝑁) = ∑ 𝑉2

𝑁

𝑖<𝑗

(𝑟𝑖, 𝑟𝑗) + ∑ 𝑉3

𝑁

𝑖<𝑗<𝑘

(𝑟𝑖, 𝑟𝑗, 𝑟𝑘) + … + ∑ 𝑉𝑛

𝑁

𝑖<𝑗<𝑘,…,𝑧

(𝑟𝑖, 𝑟𝑗, 𝑟𝑘, … , 𝑟𝑧)  

(2.2) 

Truncating of (Eq. 2.2) after the first term in the series however leads to the pair-wise 

additive approximation that is used in most practical molecular mechanics-based 

applications:  𝐸(𝑋⃗) =  ∑ 𝐸𝑎𝑏𝑎<𝑏 + ∑ 𝐸𝑎
𝑖𝑛𝑡

𝑎 .  When 𝐸(𝑋⃗) refers to the total potential energy of 

the above system with coordinates 𝑋⃗.  𝐸(𝑋⃗) is equal to the sum of the intramolecular 

interaction energies between the components ∑ 𝐸𝑎𝑏𝑎<𝑏   plus the sum of the intermolecular 

energies of the components ∑ 𝐸𝑎
𝑖𝑛𝑡

𝑎  (Jorgensen and Tirado-Rives, 2005). The subscript a<b 

ensures that interactions are not double-counted. In principle, inclusion of polarization using 

induced dipoles involves truncating Eq. 2.2 after the second term, even though our 

implementation of polarization as a set of induced charges means that the energy only has to 

be evaluated with pair-wise additive terms (see 2.5.9). 

Condensed-phase simulations largely adopt the pair-wise additive approximation 

(Jorgensen and Tirado-Rives, 2005), although considered less quantitatively accurate than 

the many-body potential description, it is considered valid for many measurable properties, 

(Elrod and Saykally, 1994, Dahlke and Truhlar, 2006). Nevertheless, this is an approximation 

that many consider should be avoided (see 2.5.8 to 2.5.9). 

Molecular mechanics (MM) simulation as eluded to (2.5.3) uses classical physics. 

MM applies Newtonian mechanics to the system without considering electrons which are too 

small to obey the rules of classical mechanics. The convention is to treat the system 

involving the protein and ligand as a series of hard spheres (atoms) connected by springs 
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(covalent bonds).  The simplest system for this is described in Figure 2.2 (de Azevedo et al., 

2008).  

 

 

Figure 2.2. The simplest system of two covalently bound atoms represented as hard balls. Adapted 

from (de Azevedo et al., 2008). 

 

In Figure 2.2, atom 1 is fixed at position A, atom 2 is free to move to a new position x 

along the x-axis from position X0, which is the equilibrium point of the spring. Where potential 

energy, U, is 0 at x = x0 (Figure 2.2).  When atom 2 in this system is moved the spring is 

compressed or stretched at the x position.    

This is best described by Hooke’s law for simple (classical) harmonic oscillators, namely F = 

-kx. When an atom is moved from its equilibrium position the spring acts with a conservative 

(path independent) force as in Newton’s 2nd law, namely 𝐹⃗ = 𝑚𝑎⃗. Here a force, F, on the 

atomic mass pulls it back towards its origin, where k is the spring constant (Hrabovsky and 

Susskind, 2012, de Azevedo et al., 2008), this gives: 

𝑈(𝑥) = − ∫ 𝐹. 𝑑𝑥

𝑥

𝑥0

= − ∫(−𝑘𝑥)

𝑥

𝑥0

𝑑𝑥 =
1

2
(𝑥 − 𝑥0)2 

                                                                               (2.3) 

The force-field energy potential U(r) is given by a sum of terms, e.g., 𝑈(𝑟) = 𝐸𝑏𝑜𝑛𝑑 + 𝐸𝑎𝑛𝑔𝑙𝑒 +

𝐸𝑡𝑜𝑟𝑠 + 𝐸𝑣𝑑𝑤 + 𝐸𝑒𝑙  , with each describing the energy required to distort a molecule in a 
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specific fashion (Jensen, 2007).  The most common interaction potential to describe (U(r)) 

(Weiner and Kollman, 1981) can be expressed as (de Azevedo et al., 2008):  

𝑈(𝑟) =
1

2
∑ 𝑘𝑏(𝑏𝑖 − 𝑏𝑖,𝑜)2 +

𝑏𝑜𝑛𝑑

1

2
∑ 𝑘𝜃(𝜃𝑖 − 𝜃𝑖,𝑜)

2

𝑎𝑛𝑔𝑙𝑒

+
1

2
∑ 𝑉𝑛[1 + cos(𝑛𝜔 − 𝑦)]

𝑡𝑜𝑟𝑠𝑖𝑜𝑛

  

+ ∑ ∑ 𝑘𝑖𝑗 {4𝜀 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

] +
𝑞𝑖𝑞𝑗

4𝜋𝜀𝑜𝑟𝑖𝑗
}

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

 

                                                                    (2.4) 

This potential is common to the AMBER type or ‘Class 1’ force-fields.  It can describe the 

protein energy landscape in an effective but somewhat limited way (Ponder and Case, 2003). 

The bonded interactions (Figure 2.3) are those over bonds (1-2 interactions), angles (1-3 

interactions), and torsion (1-4 interactions).  The term ‘improper’ torsion applies when the 

four angle-defining atoms are not all connected covalently.  These improper torsions are a 

functional form for planarity enforcement around sp2 central atoms.  The final pairwise sum of 

atoms with subscripts 𝑖 and 𝑗, excludes the 1-2 and 1-3 interactions and often uses separate 

parameters for 1-4 interactions as compared with atoms separated by three or more bonds 

(Ponder and Case 2003). 

 

Figure 2.3. Schematic showing the terms used to calculate potential energy. Adapted from (Ponder 

and Case, 2003).  Solid lines apply to bonded terms and the dashed line represents non-bonded terms. 
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The mathematical forms of the bonded terms b,   and  and non-bonded terms 𝑟𝑖𝑗 are given in Eq. 

2.3. 

Dispersion and exchange forces, often referred to as the ‘van der Waals’ terms, are 

typically modelled by the Lennard-Jones 6-12 potential, which is considered rather simplistic 

(Cieplak et al., 2009), (see 2.5.5).  The bonded terms (see Figure 2.2, 2.3) that form the first 

half of (Eq. 2.3) applied to the intramolecular potential, where the bond stretching (b) and 

angle bending (𝜃) terms usually follow the ‘simple Hooke’s law’ dependencies from (Eq. 2.3), 

but modern force-fields, typically include cubic or quartic terms in a Taylor series to reflect 

anharmonicity, while a Fourier series (Eq. 2.5) is applied to each torsional angle (𝜔), 

(Jorgensen and Tirado-Rives, 2005, Maple et al., 2005).  Additionally, descriptions for 

improper torsions or out of plane bending and a number of cross terms most importantly 

bond/angle are more commonly added to the force field, blurring older ‘class 1’ and ‘class 2’ 

distinctions (Jensen, 2007, Leszczynski, 2012). 

𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛 =
1

2
∑{𝑉1[1 + cos(𝜑)] + 𝑉2[1 − cos(2𝜑)] + 𝑉3[1 + cos(3𝜑)] + 𝑉4[1 − cos(4𝜑)]}      (2.5)  

The non-bonded terms given in the second half of (Eq. 2.3) are the Coulomb 𝐸𝑒𝑙 =
𝑞𝑖𝑞𝑗

4𝜋𝜀𝑜𝑟𝑖𝑗
 and 

the afore mentioned Lennard-Jones ,𝐸𝑣𝑑𝑤 = 4𝜀 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

], potentials, which involve the 

atoms separated by 3 or more bonds (Jorgensen and Tirado-Rives, 2005).   

 

2.5.5 van der Waals non-bonded interactions 

The dispersive and exchange-repulsion interactions between atoms can be described 

in a highly non-trivial way using quantum mechanics calculation methods that require 

electron correlation and large basis sets.  However, force-fields typically model the 

interatomic potential curve of the van der Waals non-bonded energy (𝐸𝑣𝑑𝑤) using only a 

rapid calculation method using a simple empirical expression (Leach, 2001).  The Lennard-
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Jones potential (Jones, 1924), written here as 𝐸𝑣𝑑𝑤 = 4𝜀 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

], has become a 

popular and fairly straight forward way to satisfy the functional conditions of the VDW non-

bonded energy (𝐸𝑣𝑑𝑤).  The  𝐸𝑣𝑑𝑤  describes the repulsion (Fierz and Pauli, 1939) and 

attraction (London, 1937) between atoms that are not directly bonded (Eq. 2.6): 

𝐸𝑣𝑑𝑤(𝑅𝐴𝐵) = 𝐸𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒(𝑅𝐴𝐵) −
𝐶𝐴𝐵

(𝑅𝐴𝐵)6
 

  (2.6) 

𝐸𝑣𝑑𝑤(𝑅𝐴𝐵) is very positive over small distances, reaches it minimum when two atoms are 

slightly touching and it heads towards zero as distance increases.  Although the repulsive 

interaction 𝐸𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒(𝑅𝐴𝐵) is not directly derivable, it is a sufficient approximation that it 

heads towards zero faster than the (𝑅𝐴𝐵)6 term as distance goes to infinity (Jensen, 2007). 

The mean of atomic radii (𝑅𝐴𝐵) is modelled using constants CAB (or ij, Eq. 2.4; and 

CAB Eq. 2.6) that act as fitting parameters (Jensen, 2007). Indeed, the majority of the 

constants in equation 2.4 are fitting parameters that are largely derived from experiment. An 

approximation inherent in this work is that these parameters are reasonable and that they are 

transferable between similar systems (Jensen, 2007).  

The Lennard-Jones potential contains just two adjustable or fitting parameters – the 

collision diameter 𝜎𝑖𝑗 at which the separation gives an energy of zero and the well depth 𝜀, 

which is the minimum of the potential (Leach, 2001).  The Lennard-Jones potential uses  

(𝑟𝑖𝑗)
12

 from divisor above for the repulsive part.  Theoretically this has no strong basis, where 

more accurate quantum mechanical exchange-repulsion energy depends on overlapping of 

electronic densities, which displays an exponential dependence on 𝑟, therefore suggesting 

an exponential power form (Cieplak et al., 2009).  In contrast, the twelfth power form 

produces a potential curve considered rather steep for modelling systems such as 
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hydrocarbons, its popularity instead arises from rapid calculation properties in reducing 

computational expense (Leach, 2001).    

The short-range repulsive (𝑟𝑖𝑗)
12

 term is calculated directly from squaring the (𝑟𝑖𝑗)
6
 

term. The relatively fast calculation of the (𝑟𝑖𝑗)
6
 can also be achieved from the square of the 

distance, which does not require an otherwise typical square root calculation (Leach, 2001).  

As (𝑟𝑖𝑗)
12

  has no physical basis, different powers have been used to produce a less steep 

curve such as 9, 10 to improve modelling of 𝐸𝑣𝑑𝑤 against experimental results (Leach, 2001, 

Cieplak et al., 2009)   Some attempts at better correlation with experimental data, also 

propose alternative calculation schemes.  These attempt to recreate performance with 

comparable rapid calculation properties, such as a buffered 14-7 potential (Halgren, 1992, 

Halgren, 1996a, Halgren, 1996b). 

The longer range attractive (𝑅𝐴𝐵)6 term has the same dependence as the (dipole-

dipole) London dispersion energy, which for two particles with polarizabilities 𝛼 is 

proportional to −𝛼2/𝑟6.   Lennard Jones parameters typically don’t use known values of 𝛼, 

but this interaction provides a way to parameterize to include polarization in an average way 

in non-polarizable models (Rick and Stuart, 2003).  This same power law relationship, used 

in theoretical treatments of dispersion energy (e.g., The Drude model), gives (𝑟𝑖𝑗)
6
  a 

theoretical basis (Leach 2002).  Attractive power terms greater than (𝑟𝑖𝑗)
6
are rarely used, but 

they have theoretical basis in the multipole expansion of induction and dispersion energy 

components.  It is noteworthy, that popular terms employed to describe intermolecular 

interactions in classical force fields such as 𝑟12, 𝑟6 and 𝑟, absorb many of the energy 

components (such as induction) in a way that is effective, yet not always correct (Cieplak et 

al., 2009). 
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2.5.6 Electrostatic potential and Coulomb's Law. 

The van der Waals interactions and the electrostatic interactions are considered ‘through-

space’ non-bonded interactions as they are not dependent upon a specific bonding 

relationship between atoms.  They are instead normally modelled in the general form of a 

function giving some inverse power of distance (Leach, 2001) see Figure 2.4 and 2.5.5.  

Applied here, this means that the electrostatic force/energy between two particles gets 

smaller as they get further apart see Figure 2.4. 

 

Figure 2.4. The variation of potential energy V=f(r) as a function of r. f(r) is typically used in 

describing the interaction between two molecules, 𝑟−1 black line for electrostatic potential energy 

interaction, and 𝑟−2 red line the electrostatic force.  Higher powers can be used in describing a 

multipole series e.g.,  𝑟−3 describes the charge-dipole interaction. 

 

The electrostatic (or Coulomb) potential energy (𝐸𝑒𝑙) is the potential or stored energy of a 

charged object due to its position in a force field.  When considered as just an interaction 

energy between two charges it can be given simply as 𝐸𝑒𝑙 =
𝑞𝑖𝑞𝑗

4𝜋𝜀𝑜𝑟𝑖𝑗
, e.g., it varies inversely 

with distance.  The value 𝑞𝑖𝑞𝑗 is the product of the charges on the two particles identifiable 

from their individual subscripts 𝑖 and 𝑗.  The term 𝑟𝑖𝑗 gives the distance between point 

charges  𝑞𝑖 and  𝑞𝑗 . The term  4𝜋𝜀𝑜, refers to where 4𝜋 is the isotropic spherical nature of the 

charge density cancelled by the field strength (both having 𝑟2 in the divisor).   The 𝐸𝑒𝑙 can be 
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described by Coulomb's law in terms of an electrostatic potential (𝜈). Where the coulomb 

potential for two interacting molecules or different parts of the same molecule is pair-wise 

additive giving,  𝜈 = ∑ ∑ {
𝑞𝑖𝑞𝑗

4𝜋𝜀𝑜𝑟𝑖𝑗
}𝑁

𝑗=𝑖+1
𝑁
𝑖=1  from Eq. 2.4. 

There is an attraction between oppositely charged objects, and that gives rise to a 

force between them.  Forces are typically proportional to the inverse square of the distance 

between two objects, and when here those objects are charges we call this the electrostatic 

or Coulomb interaction (Keeler and Wothers, 2003). The electrostatic force (𝐹) between two 

particles carrying a charge, acting upon each other is given by 𝐹 = 𝑘𝑒
𝑞𝑖𝑞𝑗

𝑟2 
 . This formulation 

because of the ‘inverse square rule’ closely mimics Newton’s law of gravitation.  This ‘inverse 

square rule’ can be visualized as a cone projecting from a point, with a circular cross section 

where the vertices of the distance proportional square fit perfectly. The one important 

difference from the law of gravitation is that the two types of charges commonly called 

positive and negative affect the action of the force.  When making an arithmetic comparison 

of the product of charge 𝑞𝑖𝑞𝑗, ++ or -- charges give a positive force which is repelling, and 

unlike charges +- or -+ give a negative attractive force.   The convention is to assign the 

positive charge to protons and negative charge to electrons.  The term  𝑘𝑒 = 1/4𝜋𝜀𝑜 relates 

to the permittivity of free space see 2.5.7 (Leach, 2001).   

The electrostatic potential is defined as the force acting on a unit positive charge, placed at 

that point.  We can use Figure 2.5 to demonstrate the electrostatic potential 𝑣(𝑟) in action at 

point 𝑃. Forces derived from a potential are conservative forces; the negative gradient of 

energy is the force.  The work done (W) by a conservative force is  𝑊 = −∆𝑈, where ∆𝑈 is 

the change in potential energy associate by force, negative indicating that work done against 

and force field increases potential energy.  Transferring the work done into point P, we get 

𝑣(𝑟) =
1

4𝜋𝜀0
 (

𝑞1

𝑟1
+  

𝑞2

𝑟2
+  

𝑞3

𝑟3
+ 

𝑞4

𝑟4
+  

𝑞5

𝑟5
).  Where the 𝑘𝑒  =

1

4𝜋𝜀0
 term described previously is 

multiplied by the sum of individual charges divided by their distances from point 𝑃. 
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Figure 2.5. Hypothetical Methoxyl system demonstrating electrostatic potential 𝜙(𝑟) in action at point 

𝑃. 

The electrostatic potential is directly observable from the quantum mechanical 

wavefunction, it is considered to be the sum of contributions from nuclei and electrons.  It has 

continuous properties, that is hard to represent using an analytical function, and therefore 

requires discrete representation for analysis numerically. The charges are typically 

constrained to their nuclear centres, in the lowest and most widespread ‘point charge’ 

approximation for the consideration of electron density. This is limited to the assignment of 

positive and negative partial charges, qi, to an interaction site on each atom, which along with 

their LJ fitting parameters result in typical class 1 all atom (AA) force-field models (Leach, 

2001), using the non-bonded terms  ∑ ∑ {4𝜀 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

] +
𝑞𝑖𝑞𝑗

4𝜋𝜀𝑜𝑟𝑖𝑗
}𝑁

𝑗=𝑖+1
𝑁
𝑖=1  from Eq. 2.4 

(de Azevedo et al., 2008). We explore the limitation of these approximation further below 

(see 2.5.8 to 2.5.9). 
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2.5.7 Dielectric Modelling 

The formula for electrostatic energies, forces and potentials include a term relating to 

the permittivity of free space (𝜀𝑜), or vacuum permittivity (8.854 x 10-12 F m-1), in the gas 

phase  it’s unit is farads meter-1 (F m-1) (Keeler and Wothers, 2003).  However, when it is 

desired to mimic solvent effects which dampen electrostatic interactions (without the 

inclusion of explicit solvent molecules), a different dielectric model can be used in the 

equations for electrostatic interactions.  The simplest dampening model applies a dielectric 

constant, also called the relative permittivity (of free space), which is a relative scaling factor 

when compared to vacuum.  This relative permittivity (𝜀𝑟) models the different properties of 

an insulating material to increase capacitance or stored charge, when placed between the 

plates of a capacitor (Fischer-Cripps, 2014).  In context here, it is more appropriately the 

factor that the electric field between charges is dampened relative to a vacuum by using an 

appropriate value for 𝜀𝑟 in Coulomb’s law equation (i.e. 𝜀 =  𝜀𝑜𝜀𝑟).  As 𝜀𝑜 appears in the 

divisor the greater the value of 𝜀𝑟 the lower the magnitude of the interaction between two 

charges, thus in vacuo charges have the greatest electrostatic effect (Leach, 2001).   

 For instance, paper has an 𝜀𝑟  value of 2-3, and glass an 𝜀𝑟  value of 8 (Fischer-

Cripps, 2014). It may be set to a value or magnitude of 80 to model properties of water, 

allowing for an implicit treatment of solvation (Jensen, 2007, Leszczynski, 2012), but 𝜀𝑟 is 

only set/scaled to 1, the value for a vacuum, when all atoms including water are treated 

explicitly. In the condensed phase (where we find solids and liquids together), when we look 

at a large solute (i.e. protein) in solvent, the shortest distance between two charges could 

pass through solute rather than the solvent.  This makes it difficult to choose an appropriate 

value for 𝜀𝑟, one solution is to choose an arbitrary intermediate value between water and 

vacuum, then adjust it to best fit the desired modelling properties required from the force-

field, this is also a very simplistic way to include an averaged treatment of polarization 

implicitly (Leach 2001).  
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Another approach introduces a ‘distance-dependent dielectric’, where the dielectric is 

dependent upon the distance of charged species separation. The simplest model is to make 

the relative permittivity 𝜀𝑟 (i.e. 𝜀 =  𝜀𝑜𝜀𝑟) proportional to the distance 𝑟.  It is worth noting that 

this electrostatic potential 𝑣(𝑟) =
1

4𝜋𝜀0

𝑞𝑖𝑞𝑗

𝑟2 
 with 𝑟 and 𝜀𝑟 added to the divisor, now looks 

quantitatively identical to the inverse square rule applied to the electrostatic force between 

two particles.  The introduction of the invisible 𝜀𝑟 in the divisor product is the difference.  This 

simplest distance dielectric, although considered a slight improvement on the previous 

electrostatic dampening model (without the extra divisor 𝑟), is not normally recommended as 

it is considered without physical basis (Leach, 2001). An improvement at this level of 

solvation continuum complexity is to add a sigmoidal (dielectric) function for distance, where 

at short range relative permittivity is low and then approaches bulk values at longer distances 

(Smith and Pettitt, 1994).  There are many solvent continuum, and explicit solvation schemes 

to model the free energy of solvation of a solute. The polarization term is often considered of 

major importance. It adds sophistication at each level of the modelling complexity hierarchy, 

particularly when treated in an explicitly (Leach, 2001).  We look at the influence of 

polarization below (see 2.5.8 and 2.5.9). 

2.5.8 The form and limitations of the typical force fields  

The analytic formula used to calculate energy as the sum of bonded and non-bonded 

terms, can be traditionally separated into two main groups Class 1 and Class 2.  The 

diagonal or Class 1 force fields, can include amongst the most popular of their number: 

OPLS (used heavily in this research) (Jorgensen et al., 1996, Kaminski et al., 2001, Banks et 

al., 2005, Friesner et al., 2004),  CHARMM (MacKerell et al., 1998), ECEPP (Zimmerman et 

al., 1977), GROMOS (Ott and Meyer, 1996, Schuler et al., 2001), and AMBER (Weiner and 

Kollman, 1981, Cornell et al., 1995, Wang et al., 2001, Duan et al., 2003).  The last to be 

mentioned AMBER (Assisted Model Building with Energy Refinement) has also become 

synonymous with the naming of this type of Class 1 force field (Cieplak et al., 2009).  We 
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have discussed the functional form of the AMBER type potential (see 2.5.4 to 2.5.7) above, 

and can consider this a general start point for this group of force fields.   Force field research 

has been around for many decades now, with each new generation borrowing heavily from 

the last (Leszczynski, 2012). It has proven technically difficult to judge a ‘gold standard’ for 

direct force field comparison in the condensed phase environment.  It has been observed 

that condensed phase experimental measurements involve substantial thermal averaging of 

conformers.  However, the conformational sampling of protein (or peptide) simulations have 

until recently lacked meaningful convergence to a level where deviations can be attributed to 

force field deficits alone (Ponder and Case, 2003).  

The Class 1 force-fields that apply a fixed point charge model have displayed a high 

level of convergence in their electrostatic models (Ponder and Case, 2003).  It is apparent 

that they have just minor adjustments to the number of energy terms and treat van der Waals 

and electrostatic separately which are scaled in magnitude (Cieplak et al., 2009) (Eq.2.4).  

Class 1 force fields have evolved to treat large systems (e.g., DNA or protein), and have 

made high levels of approximation and kept their functional from relatively simple (Ponder 

and Case, 2003, Jensen, 2007, Cieplak et al., 2009).  It has been proved that the 

qualitatively ‘correct’ behaviour of these force fields is strongly linked to the type of simulation 

and desired results.  Historically force-fields and the computer codes that implement them 

have shown a less than ideal, yet important interdependency; this has become less true with 

time (Ponder and Case, 2003). There has also been a blurring of the traditional force field 

groups, with Class 1  bonded terms now including cross terms, and expansions to cubic and 

quartic level terms that reflect anharmonicity, as these force fields have evolved (Banks et 

al., 2005, Leszczynski, 2012). 

We now briefly consider Class 2 force fields, which typically have more complicated 

and varied functional forms for their interaction energy potentials.  A traditional distinction is 

that Class 2 force fields contain higher order bonded terms, and cross terms, as we have just 

seen this is no longer a straight forward distinction.  The class 2 force fields offer varied 
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functional forms of their electrostatic models, e.g., employing an exponential type potential 

(Buckingham and Corner, 1947) for 𝐸𝑣𝑑𝑤 (see 2.5.5), or point dipoles located at chemical 

bonds (Allinger et al., 1989).  Class 2 force fields aim to reproduce with high accuracy the 

interactions of small to medium size molecules.  The descriptive level of interaction is also 

expanded beyond the calculating of relative energies and geometries, to also perform 

vibrational analyses (Cieplak et al., 2009).  Some of the popular Class 2 force fields are: CFF 

(Niketic and Rasmussen, 1977), UFF (Rappé et al., 1992), MMFF (Halgren, 1999), and MM4 

(Allinger et al., 2003).  The moniker ‘Class 3’ has been offered to force-fields allowing 

parameters that depend on neighbouring atom types (e.g., hyperconjugation) and include 

polarization effects (Jensen, 2007).  This may just be an evolution in the Class 2 approach 

e.g., just as Class 1 force-fields have evolved in their parameterizations and bonded terms.   

Perhaps a clearer way of thinking of these newer developments is just going beyond the 

‘minimalist approach’ (Leszczynski, 2012).   

The emphasis on this ‘minimalist approach’ is to achieve a good enough level of 

approximation, while cleverly limiting computational expense, based on current performance 

vs technical capabilities at the everyday workstation level (Leszczynski, 2012).  We eluded to 

(see 2.5.5) the electrostatic potential as a continuous property that requires discrete 

representation for numerical analysis.  The typical All Atom (AA) model charge distribution 

involves the reproduction of a molecules electrostatic properties, through careful assignment 

of fractional point charges restricted to nuclear centres (Leach, 2001).  The partitioning of 

these fractional charges can be done in huge number of ways that reflect the reproduction of 

the same desired experimental properties. Some considerations in the force field and 

parameterization design are: the emphasis on which experimental data to reproduce, the 

computational efficiency, the transferability of parameters outside the ‘fit set’ between force-

fields with same or different experimental data emphasis, the environment of the molecular 

interaction (e.g. solvent, vacuum), and indeed the physical meaning of the parameters used.  
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Despite their relative convergence over time, typical force fields still exhibit significant 

differences (Ponder and Case, 2003). 

 The fixed point-charge models approximate hydrogen bonding through 

electronegativity. Linus Pauling defined electronegativity as ‘the power of an atom to attract 

electrons to itself’ (Leach, 2001). So for instance hydrogen partial charges are partitioned 

relative to the electronegativity of their bonded neighbours (Veenstra et al., 1992).  The 

attraction between an electron deficient hydrogen increases with highly electronegative 

elements such as oxygen or nitrogen.  This gives rise to unequal distribution of charge 

density and this inequality is reflected in the partitioning of related partial charge parameters 

(Leach, 2001, Jorgensen and Tirado-Rives, 2005, Jensen, 2007).  Typically, after fitting, the 

partial charges, and ‘stiff’ internal angle and bond parameters, only a small number of LJ 

parameters for the 𝐸𝑣𝑑𝑤  term are typically required for a level of agreement with experiment.  

These can be largely referenced from densities and heats of vaporization in liquid-state 

simulation (Ponder and Case, 2003).   

A number of protein simulation subjective features e.g., the average folded structure 

and the fluctuations about this average structure are deemed insensitive to force field 

parameterization.  The non-bonded interactions between moving group ends are intricately 

linked to the energy profile concerning rotation about torsion angles and their related 

potentials.  The partitioning of torsional parameters into their bonded and non-bonded 

contributions is a grey area with less theoretical underpinning and typically adopts an 

empirical approach.  The ‘soft’ torsional parameters around single bonds, are usually the last 

to be fitted when generating a new force field.  The torsional parameters therefore serve as 

an empirical ‘error function’ for fitting the force field to a target extracted from QM or 

experiment (Ponder and Case, 2003).   Here the energy expression can be considered as 

entirely empirical parameters and are adjusted until the closest coincidence to experiment 

occurs (e.g., via the least squares method) (Leszczynski, 2012).  As the torsion parameters 
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are empirically linked to their non-bonded potentials, they typically lack transferability 

between force fields  (Ponder and Case, 2003). 

During the 1980s and 1990s there was considerable refinement in Class 1 force field 

partial charge values, but more recently emphasis has turned more to refining protein 

torsional potentials (Cieplak et al., 2009). Improvements in key backbone torsional 

parameters have arisen from the ability to carry out converged peptide or protein simulations 

then compare the conformational populations with experimental results (Damm and van 

Gunsteren, 2000). There has also been a desire to better model protein dynamics through 

the prediction of side chain rotamer preferences.  This has led to extensions that fit torsional 

parameters to quantum mechanical results (Kaminski et al., 2001).  Modelling or fitting of 

partial charges based on QM calculation results is subject to the limitations of the fixed atom-

centred charge approach (Ponder, 2004). 

When carrying out an energy minimization or MD simulation, it is important to know 

the forces acting directly on the nuclei.  An advantage of the fixed atom-centred partial 

charge approach is it simplifies this problem (Leach, 2001).  However, this approach lacks 

the mathematical flexibility to describe many features of a molecules charge distribution.  

Additionally the fixed charges cannot respond directly to the molecular environment e.g., the 

charge of a carbonyl oxygen is the same whether exposed to water on the protein surface or 

buried within a folded protein (Ponder and Case, 2003). The first round of AMBER type force 

fields used an electrostatic potential fitting (ESP) fitting method using a series of molecular 

surfaces.  Each surface would have points at which the potential was fitted to the van der 

Waals radii, which gradually increased over the series.  The basis set used to derive the 

wave function heavily influences the charge sets (Leach, 2001). 

However, larger basis sets do not necessarily mean better charges.  It is also 

important to treat the QM calculation with the same basis set.  The 6-31G* basis set is 

largely considered to provide a good level of agreement to experimental results relevant to 
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protein modelling in the condensed phase (Leach, 2001).  It is also possible to use scale 

factors to obtain comparable results using smaller basis sets STO-3G, or lower levels of 

approximation e.g., AM1 (Ferenczy et al., 1990). The first generation of the AMBER AA force 

field (Cornell et al., 1995) recognised the problem of buried charges having artificially high 

charges, and introduced the RESP or Restrained ESP fitting model (Bayly et al., 1993). 

RESP uses a hyperbolic restraints on non-hydrogen atoms that serves best to reduce the 

charges on buried carbon atoms (Leach, 2001). MULFIT charges do not suffer this problem 

and can be derived without the use of restraints (Winn 1997) see 2.5.9 and 2.7. 

Despite improvements, a problem with ESP fitting, even with RESP, is that the fit 

charges are undesirably dependent on the conformation during the QM calculation (Williams, 

1990). This can in part be addressed statistically by fitting charges weighting by a Boltzmann 

factor for the conformation population, derived from the calculated Boltzmann distributions of 

multiple conformations (Reynolds et al., 1992a). Alternatively continuous variation in charges 

based on conformation can be achieved through a charge equilibration model (Rappe and 

Goddard III, 1991).  Ultimately, any amount of parameterization cannot fully address the 

inflexibility of the fixed charge model. Therefore, better electrostatic models (Stone, 1981, 

Winn et al., 1997, Ferenczy and Reynolds, 2001) are required to describe polar molecules 

within ‘chemical accuracy’ (Ponder and Case, 2003), which is the main theme of this 

research.   

The OPLS (optimized potentials for liquid simulation) potential (Jorgensen et al., 

1996), and its earlier incarnations highly influenced the first generation of AA force fields to 

describe solute-solvent versus solvent-solvent interactions in a balanced way.  These new 

potentials would be more suited to condensed phase simulation, as previous emphasis was 

mainly on gas phase behaviour (Ponder and Case, 2003).   OPLS achieved this balance by 

parameterization to reproduce heats of vaporization and densities for neat organic liquids 

(Jorgensen et al., 1996).  A force field fitted to reproduce experiment and QM calculated 

results for isolated (gas phase) molecules, will likely translate poorly when applied to liquid 
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state-simulation.  This applies to a much greater extent when polarization is ignored in the 

electrostatic model (Ponder and Case, 2003, Cieplak et al., 2009).   

It had been known for some time that Hartree-Fock QM calculations at the 6-31G* 

basis level have a tendency to overestimate the experimental gas phase values for bond-

dipoles for the 20 protein amino acids.  Fortuitously there is also an over estimation of the 

water dimerization energy in the TIP3P water model.  The CHARMM (Chemistry at HARvard 

Macromolecular Mechanics) force field (MacKerell et al., 1998) utilized these overestimates 

to provide a relatively easy way of achieving balanced water-solvent, solvent-solvent 

interactions for the 20 amino acids.  In practice, a single water was fitted to several 

interaction sites around the amino acids or model compounds, and supermolecular QM 

calculations were performed with the interaction energies weighted with a 1.16 scaling factor 

that mirrored the ratio of water dimerization energy of TIP3P compared to the amino acid 

calculations at HF/6-31G* (Ponder and Case, 2003).  This overestimation of charges can be 

viewed as an implicitly included ‘over polarization’, this only improves the flexibility of the 

charge distribution in a very average way.  To further improve the charge distributions ability 

to adapt to the molecular environment it is necessary to go beyond the fixed point charge 

approximation (Leach, 2001, Ponder and Case, 2003), which we shall explore in the next 

section (see 2.5.9). 

2.5.9 Beyond fixed point charges 

Many-body effects describe the motion of every atom influenced by the motion of all of its 

atomic neighbours. These effects are non-additive, and cannot be solved easily, requiring 

coupled equations to describe the dynamics of the system (Illingworth and Domene, 2009).  

If we consider the interaction of two molecules, a dipole induced on one molecule will affect 

the electric field and subsequent charge distribution on the other. Additionally, moments can 

be many-body effects, as if a dipole is induced on a polarizable molecule it can be affected 

by the presence of a second dipole and so on (Leach, 2001). Modelling effects such as 
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polarization and the multipole expansion series, are important steps in improving the 

description of electrostatics (Leach, 2001, Cieplak et al., 2009). 

The historical united atom (UA) force fields made a charge distribution and force 

centre approximation to reduce computational expense.  This approximation was the 

inclusion of only polar hydrogens and heavy atom force centres (Leach, 2001). 

Computational power improvements and the limitations from this charge distribution model 

gave impetus for a next generation of AA force fields (Cornell et al., 1995).  The UA 

approach with heavy atom only force centres made it difficult to describe ‘pucker’ of five 

member aliphatic rings or pseudo rotation between conformations or the electrostatics of 

aromatic rings (Ponder and Case, 2003).  The situation is analogous to the current situation 

with AA force fields where better electrostatic models are now required (Ponder and Case, 

2003, Cieplak et al., 2009). 

The complete description of the interaction energy between two molecular charge 

distributions is an infinite series of interacting non-zero moments. Therefore in practice 

truncation or approximation is required at some point and as contribution to total energy can 

tail off quickly, the pair-wise approximation with charges placed at atomic nuclei has largely 

sufficed in large atomic models until now (Leach, 2001).  However, the omission of higher 

order multipoles and explicit polarization can have large impacts on the description of the 

interaction and total energies (Winn et al., 1997). The induction energy and related 

polarization term alone is thought to account for 10%-20% of the interaction energy 

(Illingworth et al., 2006b, Cieplak et al., 2009).  It is also thought that similar levels of error 

can occur from ignoring the multipole expansion (Winn et al., 1997).  The fixed point charge 

AA force-field models, still struggle with describing the electrostatic interactions of ions with 𝜋 

electron system including aromatic rings, and charge concentrated atomic ions.  This is 

largely due to a lack of consideration for many body non-additive contributions to the 

electrostatics (Jorgensen and Tirado-Rives, 2005).  
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The atom-centred charge approach without explicit extensions models a spherical or 

isotropic charge density (Leach, 2001). This is most applicable where a molecule’s electron 

density typically contains a high degree of anisotropy.  This is particular true when we 

consider phenomena such as atoms with lone pairs (Leach, 2001) and 𝜋 electron systems 

(typical to aromatic rings), where each atom has a large quadrupole moment.  The standard 

charge density ESP fitting method (e.g., not MULFIT), described in the last section, are the 

CHELPG (for Charges from Electrostatic Potentials using a Grid based) methods (Breneman 

and Wiberg, 1990).  Fitting charges this way allows some consideration for the omission of 

the higher moments, and using a constrained least square fitting method, charge sets that 

model the molecular dipole moment can be produced.  However, point charges cannot 

account effectively for the 𝜋 systems where there are no neighbouring atoms above or below 

the plane to adjust (Stone, 2013).  

 One simple yet effective solution was able to reproduce the major geometric features 

of aromatic dimers (Hunter and Sanders, 1990) and later apply the principals to larger 

systems (e.g., DNA base-pairs).  This model used dummy atoms with negative charges 

placed above and below the plane, combined with modified positive ring carbon charges 

(Stone, 2013).  This inclusion of dummy atoms highlights some of the limitations of 

representing higher moments as point charges that are dependent on the plane of 

neighbouring atoms, and the importance of anisotropy in the charge distribution.  The error in 

the electrostatic potential due to exclusion of higher moments is greater in proximity to polar 

and quadrupolar atoms, that are well represented in the active site of protein enzymes 

(Stone, 2013). 

The high anisotropy of a molecule’s charge distribution, effectively makes a single 

point charge set inadequate regardless of the fitting scheme (Wiberg and Rablen, 1993).  

One problem with introducing additional sites (e.g., to mimic lone pairs) to the fixed point 

charge model, is the arbitrary nature of such an approach.  A more systematic way to 

improve a fixed electrostatic model is to include higher multipole terms such as dipole terms 
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or above that automatically include anisotropy (Wiberg and Rablen, 1993, Stone, 2013). The 

model we use in this work is the Distributed Multipole Analysis (DMA) method (Stone, 1981), 

which we have used up to rank 4 , i.e. hexadecapole moments (Stone, 2013).   In this 

method, distributed multipoles are derived directly from the properties of the Gaussian basis 

functions of the QM wave function. This is where the overlap of two of these functions, 

produces a Gaussian which represents their product along the connecting line.  At any point 

P on the line of the product Gaussian there is a corresponding charge density.  The multipole 

expansion of this charge density at P can be expressed through a Taylor series, allowing 

higher order moments that are dependent on the basis set used (Leach, 2001).  If the ESP 

fitting of point charges is desired, the MULFIT procedure (Winn et al., 1997), can use a DMA 

as the source of the fitting potential.  Doing ESP fitting from a DMA is faster than a charge 

density fitting and the potential avoids the penetration error (Stone, 2013) (see 2.5.3), and as 

we have access to DMA we also use MULFIT in this research as part of the QM/MM 

polarization methodology.  

It is widely recognised that one set of parameters is inadequate to describe both the 

gas-phase and condensed-phase without at least the inclusion of explicit polarization 

(Ponder and Case, 2003).  Work on polarisable force-fields has provided promising results 

using hybrid QM/MM methodologies (Cho et al., 2005, Maple et al., 2005).  Polarization can 

be defined as, ‘The redistribution of a particle’s electron density due to an electric field’ (Rick 

and Stuart, 2003).  In a protein’s condensed phase-like environment, any particle can be 

considered to be in the electric field of all its neighbours (Illingworth and Domene, 2009).  

The induction energy can be modelled in MM force fields somewhat through a polarization 

term (Cieplak et al., 2009, Stone, 2013). In addition to the above definition, we can refer to 

polarization in terms of the resulting changes in a molecule's conformation and charge 

density as a result of electron density redistribution (Winn et al., 1999).  

Polarization improves the description of a number of modelled interactions, such as, 

ions with 𝜋 electron system (e.g., potassium-benzene) (Jorgensen and Tirado-Rives, 2005, 
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Cieplak et al., 2009), atoms with lone pairs (e.g., N-methyl-acetamide-water dimers) (Cieplak 

et al., 2009), and water dimers (Stone, 2013), and consequently more generally hydration 

effects (Ren et al., 2012).  For instance, water is an example of a highly polar molecule, the 

electronegative oxygen atom draws shared electron density from the two covalently bonded 

hydrogen atoms.  The uneven sharing of electron density creates a concentrated negative 

charge (𝛿−) on the oxygen atom, and in relation to the oxygen a distal area of positive 

charge( 𝛿+) on the hydrogens. This in turn leads to dipoles directed from the two hydrogen 

atoms towards the oxygen atom in the plane of the covalent bonds, the resultant dipole is 

shown in Figure 2.6 (Schwartz et al., 1997).   

The mutual polarization of water molecules alone in bulk (see Figure 2.7a) or in the 

solvent-solute hydration interaction (see Figure 2.7b) can be thought of in terms of the 

tendency of molecules to align their permanent moments, and the combinations of their 

additive and non additive contributions.  Mutual polarization during the solvent-solute 

hydration interaction explains the dampening of electrostatics between two hydrated 

molecules, and therefore the high dielectric constant for water (see 2.5.7) (Stillinger, 1975). 

This highlights the importance of inclusion of particularly an explicit polarization term in 

solvation models (Ponder and Case, 2003, Cieplak et al., 2009), and therefore we research 

the explicit inclusion of polarization here both with and without consideration for water. 

There are several approaches to including polarization in MM force fields.  The Drude 

oscillator model employs an extra point charge called a Drude particle, which is connected 

on a spring at shell distances to each atom, this particle is moves in response to the 

electrostatic forces to reproduce polarization effects (Cieplak et al., 2009).   The fluctuating 

charge model (Rappé et al., 1992) is based on the electronegativity of  
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Figure 2.6 Example of a hydrogen bond formed by a water dimer, lines with rings represent dipole 

moment including the two permanent moments, through the two oxygen atoms. Adapted from (Harker 

et al., 2007).  

 

Figure 2.7 (A) A water molecule can form 4 hydrogen bonds, two at its 𝛿− oxygen atom, and one at 

each of its 𝛿+.  This figure was generated using PyMOL using QSITE calculations from JAGUAR 7.8 

and GLIDE 5.9 (B) Mutual polarization response of insertion of cation (K+) into bulk water calculated 

using AMOEBA Force Field(Ponder, 2004). Figure 2.7 B Taken from (Ren et al., 2012). 

 

A B 
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atoms becoming equalized, where charges are coupled to their molecular environment and 

adjusted to mimic polarization (Cieplak et al., 2009, Illingworth and Domene, 2009). The 

widely researched induced dipole method, where polarization is included through the addition 

of the induced dipole moments arising from the point charges (Ponder and Case, 

2003).Finally, there is the QM model, where polarization is derived at the electronic level 

from the wavefunction calculation (Illingworth and Domene, 2009).   

A ‘polarization catastrophe’ can arise when nearby centres undergo an infinite mutual 

polarization, increasing the interaction energies absolute value (Ferenczy and Reynolds, 

2001). One way this can occur is through using point polarizabilities instead of more accurate 

diffuse charge approaches (Cieplak et al., 2009).  Related to point polarizabilities, is a close 

range infinite catastrophe produced by the interaction of two particles with polarizabilities 𝛼,  

which is proportional to – 𝛼2/𝑟6 (Cieplak et al., 2009).  The Drude model avoids this situation 

naturally, by keeping interactions at 𝐸𝑣𝑑𝑤  shell distances typical of the Lennard Jones 

Potential (Ponder and Case, 2003).  The MM scheme, where 1-2 and 1-3 bonded 

interactions are turned off is also a cause of the ‘polarization catastrophe’ when using point 

polarizabilties typically observed in the induced dipole method (Cieplak et al., 2009). 

Approaches to avoiding the polarization catastrophe include using a 1-2 and 1-3 

interaction damping function (Thole, 1981), or turning them off completely within the 

polarization scheme (Cieplak et al., 2009).  Alternatively, Gaussian functions applied to 

higher moments are able to interact at short distances, and can thus be used to describe the 

charge distributions without a polarization catastrophe (Elking et al., 2007). Another way is to 

avoid interaction within induced moment models (Ferenczy and Reynolds, 2001). 

The induced charge method used in this research is an approximation of the induced 

dipole model, but offers ~2-4 fold time saving in respect to the iterated calculation for the 

induced dipole method.  This approximation is effect with errors at close range between 

10%-40% (with water-water interaction at the low end), with better approximation at 
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increased separation (Ferenczy and Reynolds, 2001). The induced charge Method (Winn et 

al., 1999, Ferenczy and Reynolds, 2001) adopts a dispersed charge approach, with each 

atom giving and receiving charge from its atomic neighbour, it is related to the fluctuating 

charge model in this way. However, it is the induced dipole that is approximated on each 

atom from the dipoles of its bonded neighbours, in an iterative fashion (Ferenczy and 

Reynolds, 2001).  While the combination of charge-charge, charge-dipole, and dipole-dipole 

interactions are many body effects (Leach, 2001), the product of the groups method is an 

induced point charge that can be evaluated in the pair-wise MM scheme in which the induced 

charges were created.  We now explore the platform for this research further. 

2.6 Previous Work relevant to this research 

2.6.1 Induced charges 

The most significant in-house development work relevant to this research is the 

induced charge model for explicit polarization of an MM force field (Winn et al., 1999, 

Ferenczy and Reynolds, 2001).  The use of a distributed multipole analysis (DMA) (Stone, 

1981), has also been explored within the group, both to facilitate the induced charge work ( 

Winn et al 1997, Illingworth et al., 2008a) and in its own right for improving interaction 

energies (Ferenczy et al., 1997).  The point charges derived from the purely MM induced 

charge polarization scheme were assessed against QM Hartree-Fock calculations at the 

HF/6-31G* level (Boys et al., 1956, Hehre et al., 1972) on the water-water interaction of the 

dimer and trimer, and for small molecules (e.g., DNA base pairs) (Winn et al., 1999). The 

induced charge method was applied within a QM/MM scheme calculated with the BLYP 

functional (Becke, 1988, Lee et al., 1988) and a DZVP double zeta basis set with a 

polarization function for the study of iodine-based halogen bonding (Gooding et al., 2000). 

Further, water-water interactions and small molecule studies (albeit also with larger 

polypeptides) were explored under a QM/MM scheme using double and triple zeta quality 

basis sets, calculated with the B3LYP functional (Illingworth et al., 2006a).  The QM/MM 
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scheme for induced charge polarization was then explored with Morokuma energy 

decomposition analysis (Umeyama et al., 1975, Kitaura and Morokuma, 1976), with various 

model chemistries on water dimers at the Hartree-Fock level, where medium sized basis sets 

(e.g. 6-31G*) were found to give the best agreement with the induced charge method, and 

larger basis sets gave the best agreement with the induced dipole method (Illingworth et al., 

2008b). While these studies showed that small molecule interaction energies could be 

improved through inclusion of polarization relative to the use of fixed charges calculated on 

isolated molecules, none of these studies addressed protein-ligand docking. 

2.6.2 Balanced parameterization in QM/MM calculations 

For the QM/MM study of protein-ligand systems, a balance is usually struck between 

computational expense and model accuracy, which affects the degree of electron correlation 

or the size of the basis set (Illingworth et al., 2008b).  QM/MM schemes generally have the 

potential problem of MM parameterization being inconsistent with the level of QM theory 

used for the calculation, but the 6-31G* (Hehre et al., 1972) family of basis sets is consistent 

with the treatment of polarization via induced charges (Illingworth et al., 2008b).  Moreover, it 

has been proposed that density functional theory (DFT) approaches (e.g., B3LYP) can avoid 

many of the problems related to the parameterization of ligands since the ligand can be fully 

treated at the QM level (Cho et al., 2005). Together, these two sets of observations pave the 

way of a QM/MM treatment of docking that incorporates polarization.  

2.6.3 QM/MM methods in docking: inclusion of ligand polarization 

The investigation of the accuracy of the point charges including polarization of the 

QM ligand, by the MM protein derived at a QM/MM B3LYP/6-31G* level, has been applied to 

protein-ligand docking (Cho et al., 2005).  In that instance, the QM ligand charges were 

derived from the QM/MM calculated wave function using the more accurate electrostatic 

potential (ESP) fitting method (which yields more accurate charges than Mulliken population 

analysis), and carried out as single point calculations (e.g., without iteration for optimization).   

The hybrid QM/MM calculation was carried out with an MM protein using OPLS 2005 (Banks 
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et al., 2005) and a QM ligand. The QM/MM interface was simplified by treating the non-

covalent ligand and enzyme at the QM and MM levels respectively, and as the QM region 

was calculated in the presence of the MM environment; this naturally allowed the response to 

the external field and thus the polarization of the ligand (Cho et al., 2005). It additionally 

removed the complication of ligand parameterization (Illingworth et al., 2006a). QM/MM 

calculations treat the MM region point charges as an additional set of nuclear centres without 

basis functions; these charges are treated as a perturbation in the core Hamiltonian 

(Illingworth et al., 2008a).  Thus, avoiding the problem of basis set superimposition errors 

(BSSE), for QM/MM calculations (Gooding et al., 2000).  

The resulting ligand QM point charges replaced the fixed charges from the OPLS 

2005 force field parameterization (Banks et al., 2005) and were evaluated within the MM 

framework of Glide (Friesner et al., 2004), which is considered amongst the most accurate 

docking programs (Cho et al., 2005, Warren et al., 2006). This method gave overall improved 

RMSD analysis results for Glide standard precision docking for 40 diverse co-crystallized or 

native protein complexes.  The usage of this method was currently suggested in a lead 

optimization context, where the effort of producing higher quality charges could be balanced 

against computational expense when screening hundreds or thousands of ligands, compared 

to potentially millions of HTS ligands.  Cho et al. hoped that they would address full explicit 

complex polarization in future studies (Cho et al., 2005). Our work fulfils this aspiration of 

Cho et al., as we additionally include MM polarization via the induced charge method. 

2.6.4 Inclusion of polarization in Autodock 

The groups own investigations to address the problem of docking through the 

accuracy of the point charges and attempting to expand on previous work by other groups 

(Cho et al., 2005), included the implementation of the induced charge method for the enzyme 

to supplement the ligand polarization that arises through use of the QM/MM method 

(Illingworth et al., 2008a).  In that work, six distinct experiments using differing point charges 

were carried out on 12 co-crystallized protein structures.  The resulting charges used in the 
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docking experiments were evaluated using a beta version of Autodock 4.0 (Morris et al., 

2009).  The Autodock framework was selected for the experiments, as in addition to direct 

energy evaluation, the size of the cluster pose populations for accessible state energy 

minima gives an indication of the quality of a docking pose (Illingworth et al., 2008a).  Like 

the Glide docking experiments mentioned above, regardless of the source of the charges, 

the docking force field evaluation was carried out at the MM level (Illingworth et al., 2008a).   

The six distinct charge experiments are now listed, the first used default Gasteiger 

charges (Gasteiger and Marsili, 1980) for ligand and receptor. The second used default 

Gasteiger charges for the ligand and AMBER potential derived charges (Wang et al., 2004), 

for the receptor. The third through to sixth charge experiments used QM (e.g., third 

experiment) and QM/MM calculations at the B3LYP/6-31G* (Hehre et al., 1972, Becke, 1993, 

Lee et al., 1988) carried out by the Gaussian 03 program (Frisch et al., 2004).  The third and 

fourth experiments were used as benchmarks for QM/MM charge treatment without the 

induced charge method.  The third experiment also used AMBER charges for the receptor, 

but the ligand charges were calculated in vacuo, a DMA was obtained using GDMA (Stone, 

2005), and then MULFIT (Winn et al., 1997) was used to convert to point charges (e.g., 

without penetration errors). The fourth experiment derived point charges using QM/MM 

calculations at the X-ray crystallographic positions of the QM ligand and the (AMBER) MM 

protein with the caveat the MM region was defined as the residues with at least one atom 

within 5.5 Å of the ligand. This cut off was deemed apt as induction effects are short-range 

and largely only significant within this distance (Illingworth et al., 2008a).  The AMBER MM 

region polarized the QM region of the ligand, and MULFIT was used to assign charge to the 

ligand based on the converged wave function.  The fifth and sixth experiment used the 

induced charge method within the QM/MM scheme with and without iteration (sixth and fifth 

experiments respectively).  The induced charge method allowed for the MM region that 

polarized the ligand to be mutually polarized, with and without convergence. Scalar isotropic 

atomic polarizabilities were taken from (Miller and Savchik, 1979). MULFIT again assigned 
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charges to the ligand.  The docking results from the induced charge experiments did not 

show overall clear improvement for the 12 complexes studied using the induced charge 

method.  However, there were some encouraging examples of improvement that merited 

further investigation (Illingworth et al., 2008a), hence this current investigation. The induced 

charge method is described briefly in 3.2.8 for a full description see (Ferenczy and Reynolds, 

2001).  

2.6.5 Aims of the current work: inclusion of polarization 

In this work we intend to return to the original Glide SP platform used for ligand only 

polarization, where results showed clear overall improvement (Cho et al., 2005), but to 

extend the method to include MM polarization. The intention is to apply a more rigorous 

evaluation of explicitly polarized charges within the IMPACT MM framework using the OPLS 

2005 force field, and use the Glide docking engine (Friesner et al., 2004) for posing and 

rescoring (Banks et al., 2005).  We also intend to investigate the effects of polarization 

beyond the co-crystallized native position since that is not known in a de novo drug design 

situation.  Thus, the effects on docking of polarization at different pose geometries within the 

protein will be investigated along with studies of how to polarize when the answer is not 

known.  For example, one approach will be to polarize the optimized ligand geometries from 

QM/MM optimization using QSITE in the JAGUAR 7.9 (Murphy et al., 2000) and IMPACT 

(Banks et al., 2005) environments.  

2.6.6 Aims of the current work: beyond the point charge approximation 

We also intend to build on previous work using DMA (Ferenczy et al., 1997) and use 

the MM framework of ORIENT 4.6 (Stone et al., 2006) that is capable of handling rank 4 

multipoles, and therefore go beyond the point charge approximation.  Despite this 

sophistication, ORIENT it is not designed for docking and therefore we will use the default 

Glide standard precision flexible ligand docked poses (Friesner et al., 2004) presented from 

the docking experiments and then recalculate their energies in ORIENT using the 

eigenvector following method with geometries optimized through reorientation (Stone et al., 
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2006).  Thus, as Glide presents a number of rank ordered poses for each molecule the 

calculations will have to be carried out for each specific pose and for its pose specific QM 

region within the protein environment to avoid symmetry problems with the interface between 

the ligand and the protein environment DMA.  In the Orient framework the QM/MM 

calculations and subsequent DMAs will be defined as the residues with at least one atom 

within a revised 4 Å of the ligand, as substantial QM calculations on neighbouring residues 

are required that will also be subject to DMAs, and some consideration must be given for the 

treatment of charge transfer (e.g., cut offs, ions, capping).  Through these calculations we 

hope to address the question, as to whether going beyond the point charge approximation 

can offer improved geometries and give a better description of hydrogen bonding. 

We hope from our investigation into high quality charges we will be able to address 

the docking problem.  However, these QM/MM calculations can be computationally 

expensive so in these initial studies we have used fragments as representative ligands both 

because of their smaller size resulting in potential large computational time savings (relative 

to typical drug-like molecules), and their largely polar nature making them amenable to QM 

calculations. In addition to charge quality, neglect of explicit water molecules is another 

source of potential error (Cho et al., 2005) that will also be explored. 

2.6.7 Aims of the current work: cross-docking 

 Additionally, although for native docking of a ligand in its co-crystallized protein 

structure the error is non-trivial, the situation for cross-docking is far worse (Cho et al., 2005, 

Warren et al., 2006).  Cross-docking refers to when a ligand is docked in a protein with which 

it wasn’t co-crystallized, the problem occurs as the ligand is allowed to move yet the protein 

remains rigid (e.g. grid representations), and therefore potential steric problems are more 

pronounced as the protein environment has not been primed for the ligand in the cross 

docked structures.  Therefore, we will try to address this problem with the caveat that are 

initial native docking results are encouraging enough for further research.  We will also be 
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careful to maintain a low level of docking bias by not priming the protein with the non-native 

ligand prior to docking. 

 

2.7 Additional Computational Aspects of this Research 

 

The calculation of the DMA is relatively inexpensive in computational terms when 

compared to some other multipole expansion methods (Stone, 2013).  However, QM 

calculations are still largely limited to small molecules, so as suggested in 2.7 we propose to 

use QM/MM methods (Illingworth et al., 2008a) applied to fragments. Regarding the DMA 

calculations, we shall use the protein ligand modelling strategy of including a thin shell of 

protein residues in the QM region. For now, the DMA residue(s) and ligand calculations shall 

be done separately from each other and the rest of the protein in-vacuo.  We will therefore 

attempt to address the problem of evaluating one charge set arising from different 

environments, with a different treatment scalar isotropic treatment of polarization, as 

implemented in ORIENT 4.6 (Stone et al.).  As the Lennard-Jones potential (See 2.5.4 Eq. 

2.4) is less quantitatively accurate than the three parameter models using an exponential 

component for exchange (Buckingham and Corner, 1947, Williams, 1999), we will also 

explore the soft Williams potential (Williams, 1999) within the DMA framework. 

The current QM/MM implementation of induced charges was scripted in house.  In this 

implementation, the MM environment is included in the QM calculation in Gaussian 03 as a 

set of point charges and additional force centres (Frisch et al., 2004), which allows fast 

approximation of the electrostatic potential (and electric field) at each atomic centre, which is 

extracted to compute the MM induced dipoles, and subsequently reduced to induced charges 

and added to the MM point charge framework of OPLS 2005 (Banks et al., 2005).  The MM 

polarization implementation and iterations are controlled through a series of in-house Perl 

scripts.  Docking was largely carried out using Glide 5.8 SP  (Friesner et al., 2004).  
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Rescoring of docked poses was carried out largely using Glide 5.8 SP protocols, namely 

GSCORE, CVDW and EMODEL.  Atom Typing / Parameterization was carried out by 

IMPACT 5.8 (Banks et al., 2005) using the parameters from OPLS 2005 force-field (Banks et 

al., 2005).  When considering atomic charges other than OPLS 2005, ligand atomic charges 

were determined using Gaussian ESP (Frisch et al., 2004) and/or Gaussian in conjunction 

with MULFIT 2.1 to remove penetration errors (Reynolds et al., 1992b, Winn et al., 1997).  

Charges, as done previously (Cho et al., 2005, Illingworth et al., 2008a), were 

determined using density functional theory at the B3LYP/6-31G* level rather than at the 

Hartree-Fock level. This is because the Hartree-Fock method overestimates the polarity of 

the wavefunction, which is useful for studies in which the effects of polarization are implicit in 

the parameterization, but would result in double-counting if used with explicit polarization.  

The density functional method, because it includes electron correlation does not suffer this 

problem (Winn et al., 1997). Distributed multipole analysis was carried out on the QM region 

using Gaussian 03 in combination with GDMA 2.2 (Stone, 2005) and glide docked poses 

were re-orientated, with pose specific distributed multipoles using ORIENT 4.6 (Stone, 1981, 

Stone et al., 2006). Visualization was carried out using Maestro 9.3 (Banks et al., 2005); 

pictures were generated using PyMOL.  Analysis of the results, unless otherwise mentioned 

was facilitated by Perl Scripts.  As the biggest difficulty in docking is not the force fields, but 

rather the treatment of hydration, our polarization approach is also applied to the inclusion of 

specific water molecules. 
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3 Inclusion of polarization in docking 
 

3.1 Introduction 

Fragment based drug design is an exciting new approach to drug design that is highly reliant 

on biophysical methods, particularly those related to structure (Congreve et al., 2008). In 

concert with this, it is important to fully exploit computational methods, both to identify new 

lead fragments and once these have been identified to direct the way they are grown into 

potential lead compounds. Virtual screening therefore plays a significant part in this process. 

Moreover, for the growing process to be effective, it is important for the modelled interactions 

to be as accurate as possible. While current docking programs such as Autodock (Ewing et 

al., 2001) and Glide (Friesner et al., 2004) have been effective in many applications, there 

are still a number of known effects that influence docking that are not included in such 

programs, partly because the programs need to be fast so as to handle the huge number of 

molecules in commercial screening collections. Here we restrict ourselves to an investigation 

of the effect of polarization on docking. For the docking experiments, we have investigated 

polarization of the QM/MM calculated charges using the induce charge method as explained 

in 2.6 and 3.2.8.  The three polarization treatments were 1. neglect, 2. polarization of the QM 

ligand only in the field of the MM protein, and 3. mutual polarization of MM protein by the MM 

polarized QM ligand, where iteration to convergence was allowed (e.g., typically 3 iterations).   

Furthermore, to mimic the effects of applying polarization, when the answer is not known we 

decided to carry out the two active polarization treatments at a number of geometries.  These 

geometries were divided into two groups: control experiments where the answer is known, 

and experiments to simulate the situation where the answer is not known but arrived at using 

various methods described in Table 3.1.  In the spirit of the requirement for rapid docking, 

are induced charge polarization method produces a set of accurate point charges, so that the 
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docking program can work in its usual manner, albeit with modified (polarized) atomic 

charges. 

Table 3.1 The geometries where polarization occurs in our charge experiments, and the 

abbreviations used to describe them in figure 3.1 and figure 3.3. 

GEOMETRY POLARIZED METHOD OF ACQUIRING GEOMETRY 

GLIDE SP Not polarized (neglect). 
 

POSE Polarized at the geometry of the top ranking glide pose (GSCORE 
protocol). 
 

RMSD Polarized at the lowest RMSD geometry to the x-ray experimental 
result, measured in angstroms (Å).  This is a control. 
 

ENERGY SP Polarized at the lowest single point energy geometry using QSITE 
QM/MM electrostatic potential fit calculation at the B3LYP 6-31G* 
level using the IMPACT 5.8 and JAGUAR 7.9 environments. 
 

ENERGY   Polarized at the lowest optimized energy geometry using QSITE 
QM/MM electrostatic potential fit calculation at the B3LYP 6-31G* 
level using the IMPACT 5.8 and JAGUAR 7.9 environments. 
 

REF Polarized at the X-ray experimental result after Maestro 9.3 protein 
preparation wizard applied. This is a control. 
 

INDIV Polarized at the individual geometries of each of the requested ~15 
rank ordered poses presented from Glide SP docking for each of the 
74 molecules. 

 

Both Autodock and Glide use scaled atomic charges as part of their parameterization, which 

is part of the implicit treatment of hydration. However, Glide uses a number of scoring 

methods, namely GSCORE, CVDW and EMODEL, which place a differing emphasis on the 

electrostatics. Consequently, we will use all three methods so as to more fully explore the 

effects of polarization. It could be argued that induced dipoles would offer an improved 

approach to polarization. However, such an approach would be inconsistent for a number of 

reasons, not least because it would mean that the major electrostatic effects were treated at 

the monopole level while the minor polarization effects would be treated at a higher level. It is 

true that induced charges do not capture 100% of the polarization effect as the degree of 
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anisotropy possible is dependent on the molecular shape. However, it should be noted that 

there are also other major deficiencies in docking programs, as discussed in Chapters 4 and 

5, and so an over-emphasis on polarization would be inappropriate as long as the other 

errors are ignored. Nevertheless, polarization is relevant to the case of docking to a rigid 

enzyme, because the polarization of repulsive charges can help to alleviate this effect  

(Illingworth et al., 2008b). 

3.2 Methods 

3.2.1 Glide Exhaustive Search Algorithm 

Glide was designed to perform as close to exhaustive search as is feasible, of the ligand 

pose space, also while achieving sufficient computational speed to screen large libraries. 

Glide achieves this by using a novel multi-grid approach.  Like more conventional grid 

representations, Glide treats the receptor conformation as a rigid object, thus reducing 

computational cost by allowing the pre-computing of the molecular mechanics potential for 

the receptor and mapping it onto a number of grid points.  The novel multi-grid technology 

uses several resolutions of grid-boxes where the energy gradient attributable to a particular 

ligand atom in the field of the protein can be rapidly computed via standard interpolation 

techniques.  The hierarchal search itself employs an increasing level of sophistication, with 

every round of ligand conformation eliminations.  The flexible ligand conformations are 

explored as docked poses in a manner approximate to the incremental search (see 2.2.3.1).  

To account for solvation, water molecules are also docked with the energetically favourable 

ligands, as isoelectronic 2.8 Å spheres on the energy grid.  As mentioned in section 2.2.5.2, 

soft docking is included in a 1.0 and 0.8 setup where non-polar ligand atom radii are scaled 

to 0.8 to allow for minor steric clashes (Banks et al., 2005).  

The early stages eliminate conformations with poor steric matches, and the 

intermediate stages adopt ‘rough scoring’ and ‘greedy scoring’, where an experimentally 

parameterized heuristic screening function eliminates high energy conformers unsuitable for 
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binding using a truncated version of the OPLS Force-field. In the later stages of posing, the 

final typically 400 poses are assessed through energy minimization using the multi-grid 

approach. The final ~3-6 poses are subjected to Monte Carlo simulation (see 2.2.3.2); the 

poses are then re-scored by EMODEL (see 3.2.6.3) which serves to direct the final 

conformational-search algorithm (Friesner et al., 2004). 

3.2.2 Glide /IMPACT Molecular Mechanics environment 

3.2.2.1 Atom Typing/Parameter fitting 

Atom typing and parameter fitting programs such as AMBER’s Antechamber are used 

to: recognize the atom type and bond type, judge atomic equivalence, find reasonable 

substitutes for missing force field parameters and then generate a residue topology file 

(Wang et al., 2001).   

The IMPACT – Integrated Modelling Program, Applied Chemical Theory, Molecular 

Mechanics environment used in this work by Glide employs atom types that are obtained by 

fitting the molecules' substituent groups to parameterized functional groups covered by the 

force-field.  These substituent groups are stored as character strings that that use similar 

notation to SMILES/SMARTS language (Weininger, 1988), which is used in cheminformatics.  

The SMARTS algorithm relies on the Lewis structure of the molecule, which is defined by the 

atomic number and formal charge of each atom as well as the bond orders of each covalent 

bond.  The Lewis structure may be available from the topology file, but when it is inconsistent 

or unavailable it is calculated iteratively from the formal charge and valence data, computed 

as the sum of bond orders, for every atom (Banks et al., 2005). 

3.2.2.2 OPLS 2005 Parameterization 

The OPLS 2005 force-field was used in this work to describe the MM region; it 

evolved from the AMBER force-field. Initially, the stretching and angle bending parameters 

were largely taken from AMBER, while torsional and non-bonded parameters were derived 

computationally and predicted parameters compared until in good agreement with available 
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experimental results (Jorgensen et al., 1996). Further parameters were then added for 

amines that better described hydrogen bonding, as a result improving the ordering of free 

energies of hydration (Rizzo and Jorgensen, 1999). The AMBER parameters were later 

replaced using accurate ‘ab initio’ data derived using quantum mechanical LMP2/cc-pvTZ(-

f)/HF/6-31G** calculations, where it was shown that a sufficiently large basis set such as cc-

pvTZ(-f) could yield excellent results when compared to experiment using a Localized Moller-

Plesset method- LMP2 (Kaminski et al., 2001, Murphy et al., 1995).  

3.2.3 Source of Molecules used for Validation Dataset 

The search for molecules suitable for this validation set was simplified by the existence of a 

purpose built fragment data set, namely the SERAPhiC set (Favia et al., 2011).  These 

fragment complexes were extracted from the Protein Databank (Berman et al., 2003).  To 

ensure high quality, the criteria for acceptance within the SERAPhiC dataset were firstly that: 

the resolution of the X-ray crystal structure was <2.5 Å; that X-ray diffraction data was 

available; that the structure was a recent submission (after the year 2000) and that it was 

subject to a scientific study resulting in publication.  Specific considerations were that the 

protein contained no mutations, had a polymer type that was not DNA or RNA, and that the 

protein contained less than 200 residues.  The considerations for the ligand were that the 

molecular weight (MW) fell into the fragment range >78 (MW for benzene) and  <300, and 

that the ligand was not commonly found in crystallization buffers (e.g., sulphates, glycol etc) 

(Favia et al., 2011). In addition, the four distinct proteins where the active site was located at 

the interface between two chains were not used in our final dataset (e.g., 1yki, 2p1o, 2wx, 

3dsx).   This gave a total of 54 complexes, which included some cases with more than one 

ligand (e.g., 1e2i, 2hdq, 2q6m).  In addition to the SERAPhiC dataset, two more sources of 

molecules that when used alone formed the preliminary dataset and in conjunction with 

SERAPhiC formed the final dataset.  These were firstly 12 molecules (namely 1eqg; 1fv9;  

1gwq; 1n1m; 1qwc; 1sj9; 1wcc; 1yz3; 2adu; 2c90; 2jjc; and 2ohk) which are  popular within 

fragment datasets (Sándor et al., 2010) and initially selected as case studies to cover a 
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representative varied range of targets where fragment screening has been successful, often 

resulting in molecules that have reached phase two clinical trials (Congreve et al., 2008).  

Then secondly, some fragments (e.g., 3imc; 3ime; 3img) were used as examples of 

molecules screened in Mycobacterium Tuberculosis Pantothenate Synthetase (Hung et al., 

2009).  This produced 8 molecules by considering the steric effects of docking the two 

fragment ligands in both chains. The final tally for this dataset was therefore 74 molecules.  

3.2.4 Ligand and Protein Preparation 

The crystal structures were imported in pdb format and then prepared using the Protein 

preparation Wizard in Maestro (Banks et al., 2005) as follows. The bond orders were 

assigned, hydrogen atoms were added, and metal atoms were treated using default 

parameters, and protein capping was applied where absent. Then at this point additional 

chains were removed from the structure.  There were initially, two approaches to the 

subsequent assignment of the hydrogen bond network and MM minimization of the protein.  

In the first approach, the water molecules and ions and common crystallization buffer 

molecules not interacting with the ligand were deleted prior to hydrogen bond network 

assignment and MM minimization.  In the second approach, the water molecules, ions and 

common crystallization buffer molecules were retained during hydrogen bond network 

assignment and MM minimization before being deleted. 

Test results from the preliminary dataset of 20 molecules (Congreve et al., 2008, 

Hung et al., 2009) docked using Glide SP gave a docking success rate at 55% for the first 

approach and 75% for the second approach to protein preparation, as judged by docking to 

within a threshold of < 2 Å RMSD (results not shown). Consequently, the second approach 

was taken even though this left less scope for improvement when considering polarization, 

but gave Glide a better chance to get the right answer, which seemed the most appropriate 

approach. A possible reason for this improved model performance is that small binding 

pockets shrink less when minimized with the water molecules present, thus allowing for 

fewer steric concerns. 
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The Hydrogen bond assignment was optimized using exhaustive sampling to assist in 

selection of correct rotamer and ionization states of the amides (Asn and Gln), hydroxyls 

(Ser, Thr, and Tyr), thiol groups (Cys), and Histidines (His). The option for these decisions, 

partially informed by pKA calculations carried out within Maestro using PROPKA 3.0 (Olsson 

et al., 2011), was also set and the sensible option (Barillari et al., 2007) to remove waters 

with less than 3 non water Hydrogen bonds was temporarily disabled. 

To complete formation of each reference complex, restrained energy minimization 

was carried out on both the protein and ligand to within 0.3 Å RMSD from the X-ray 

experimental structure.  This was done within the IMPACT 5.8. Molecular Mechanics 

environment  using the OPLS 2005 force-field parameters (Banks et al., 2005) –see sections 

3.2.2 and 2.5.4. 

 The EPIK 2.3 Program (for assigning pKa’s) was unavailable for this research, so for 

consistency default tautomerization states were used in this work, despite one or two 

alternatives being identified through visualization. 

3.2.5 Docking Setup 

3.2.5.1 Receptor Grid Generation 

Based on the results from a few preliminary test molecules for each protein structure, the 

default outer grid box and the subsequent area that was considered by the molecular 

mechanics energy potential was increased from the default 30 x 30 x 30 Å3 box to the 

maximum 46 x 46 x 46 Å3 box.  The inner grid box in which the posing through the 

exhaustive search algorithm see 3.2.1 was done was kept at the default 10 x 10 x 10 Å3.   

This large outer grid box although not recommended (Glide manual) because of a  

~2-3 fold increase in computational expense for receptor grid generation, still kept grid 

generation times within ~5 minutes using an intel i7 860 cpu @2.8 GHz desktop PC with 16 

GB of DDR3 non ECC memory @1066 MHz.  Therefore, we persisted with this larger 

treatment area for consistency, despite retrospectively only slight changes in docking 

performance.  The same grids were used to dock the explicitly polarized ligand geometries 
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(see 3.2.8), but when the newly polarized enzyme partial charges were used instead the ‘use 

input partial charges’ option was ticked in the receptor tab. In all other respects default 

parameters were used, and no constraints were included.  Grid generation although largely 

created manually within the Maestro 9.3 GUI (Banks et al., 2005), was in one case for 

individual polarization of ~15 ligand pose complexes (see 3.2.8) generated by a perl script 

from a template ligand specific input file.  In this instance, centroids were calculated from 

Cartesian co-ordinates and considering the large number of poses to generate grids for and 

the subsequent use of ‘score in place’ docking protocol, the outer box size was reduced to 15 

x 15 x 15 Å.3 

3.2.5.2 In Consideration of Docking Protocols 

The Glide SP docking algorithm was used solely in this research into the effects of full 

explicit polarization.  Glide SP was selected for its ‘softer’ more forgiving potential as it is 

considered flexible and still fast enough to screen large ligand libraries (Friesner et al., 

2004).In addition, this algorithm provides a larger number of possible pose solutions, when 

compared with Glide XP.  Thus, it was considered to have higher potential to recreate the 

experimental binding and explore low lying energy minima when the top ranked pose is 

wrongly scored.  Glide XP, an alternative ‘harder’ more chemically aware docking algorithm 

(Banks et al., 2005), designed for lead optimization, and more focused studies on only a 

small number of reliable confirmed ligand candidates  (Friesner et al., 2006), Glide XP was 

also explored for performance across the full dataset.  These results, with the addition of 

several different docking protocols and sampling schemes some including polarization, can 

be found in Appendix A. 

3.2.5.3 Docking Protocol 

For Glide SP and all but one of the polarization schemes, default docking protocols and 

sampling schemes were used in Glide re-docking, i.e. we used the Glide SP flexible ligand 

docking option, with post processing (or pose docking) MM energy minimization of the pose 

candidates.  5000 ligands were considered in the initial docking phase, with the 400 best 
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poses kept for energy minimization after a rough score sorting phase, and the final ~3-6 

poses subjected to Monte Carlo stochastic methods.  Glide was set to write a report file that 

included the best 15 poses per ligand.  

3.2.6 Scoring Methods 

3.2.6.1 GSCORE 

GSCORE or Glide scoring is designed to rank ligands with varying degrees of similarity e.g., 

different net charges, from within a virtual compound library.  It uses the empirical based 

ChemScore function as a start point (Eldridge et al., 1997): 

∆𝐺0 = 𝐶0 + 𝐶𝑙𝑖𝑝𝑜 ∑ 𝑓(𝑟1𝑟) + 𝐶ℎ𝑏𝑜𝑛𝑑 ∑ 𝑔(∆𝑟)ℎ(∆𝛼) + 𝐶𝑚𝑒𝑡𝑎𝑙 ∑ 𝑓(𝑟1𝑚) + 𝐶𝑟𝑜𝑡𝑏𝐻𝑟𝑜𝑡𝑏 

  (3.1) 

In Eq.3.1, the second term extends over all ligand-atom/receptor-atom pairs that are defined 

by ChemScore as lipophilic, the third term extends to ligand/receptor hydrogen-bonding 

interactions. Here f; g; and h serve as weighting nominals (scored between 1.00-0.00) that 

give a full score when optimal. Here, (g) is for distance, (h) is for angle and (f) is a factor or 

fractional term related to metal and lipophilic interactions e.g., 𝑔(∆𝑟) is 1.00 if the H∙∙∙X 

hydrogen bond distance is <0.25 Å of a nominal value of 1.85 Å but approaches zero in a 

linear fashion if the distance lies between 2.10 and 2.50 Å.  Similarly (carbonyl scenario), the 

Z−H∙∙∙X angle is within 300 of 180o and decreases to zero between 1500 and 1200 (Friesner 

et al., 2004). 

GSCORE here refers to the softer Glide SP version of GSCORE, which is softer for more 

general screening use compared with Glide XP.  The GSCORE extended version of the 

ChemScore function is shown as:  
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∆𝐺0 = 𝐶𝑙𝑖𝑝𝑜−𝑙𝑖𝑝𝑜 ∑ 𝑓(𝑟1𝑟) + 

                 𝐶ℎ𝑏𝑜𝑛𝑑−𝑛𝑒𝑢𝑡−𝑛𝑒𝑢𝑡 ∑ 𝑔(∆𝑟)ℎ(∆𝛼) + 

                𝐶ℎ𝑏𝑜𝑛𝑑−𝑛𝑒𝑢𝑡−𝑐ℎ𝑎𝑟𝑔𝑒𝑑 ∑ 𝑔(∆𝑟)ℎ(∆𝛼) + 

                𝐶ℎ𝑏𝑜𝑛𝑑−𝑐ℎ𝑎𝑟𝑔𝑒𝑑−𝑐ℎ𝑎𝑟𝑔𝑒𝑑 ∑ 𝑔(∆𝑟)ℎ(∆𝛼) + 

                𝐶𝑚𝑎𝑥−𝑚𝑒𝑡𝑎𝑙−𝑖𝑜𝑛 ∑ 𝑓(𝑟1𝑚) + 𝐶𝑟𝑜𝑡𝑏𝐻𝑟𝑜𝑡𝑏 + 

                𝐶𝑝𝑜𝑙𝑎𝑟−𝑝ℎ𝑜𝑏𝑉𝑝𝑜𝑙𝑎𝑟−𝑝ℎ𝑜𝑏 + 𝐶𝑐𝑜𝑢𝑙𝐸𝑐𝑜𝑢𝑙 + 

                                        𝐶𝑣𝑑𝑊𝐸𝑣𝑑𝑤 + 𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚𝑠    (3.2) 

 

In Eq.3.2, the hydrogen bonding and lipophilic-lipophilic terms are taken in the ChemScore 

form, but the hydrogen bonding term is separated into differently weighted components.  

These depend on whether both the donor/acceptor are neutral (n-n); or both charged (c-c); or 

one from each (n-c) e.g., here n-n is the most stabilizing and the c-c least important.  The 

metal-ligand interaction again uses the same form as ChemScore, but three important 

adjustments to improve metal-ligand descriptions are made: (i) It only considers interactions 

with anionic acceptor atoms by preference (ii) but only if the net charge of the metal in the 

apo protein is positive, (iii) it only counts the single best interaction when two metal ligations 

are found.    

In addition to these adjustments, the coulombic term is reduced by ~50% on formally 

charged groups e.g., carboxylates; and the van der Waals interaction energy is also scaled 

on the atoms directly involved, this is done to make the gas-phase non-bonding terms a 

better predictor of binding. The CVDW force-field scoring below also uses these adjustments 

to ionic charge interactions except in the case of anionic ligand–metal interactions.  EMODEL 

does not reducing the weighting of these interactions, as it already in part incorporates 

GSCORE. 
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Finally solvation is taken into account by docking explicit waters into the binding site of each 

of the energetically competitive ligand pose, and the water scoring is made efficient by the 

use of grid algorithms (Friesner et al., 2004). 

3.2.6.2 CVDW - molecular mechanics force-field scoring 

CVDW uses the IMPACT environment OPLS 2005 force-field based MM (Banks et al., 

2005); the setup of this environment is  described in 3.2.2. It uses the MM methods 

described in 2.5.4, but, with the adjustments described at the end of 3.2.6.1above. 

3.2.6.3 EMODEL 

EMODEL uses heavily-weighted force-field scoring that is a specific combination of CVDW 

(without formal charge weighting - see 3.2.6.1), ligand strain energy and GSCORE. It is used 

to rank order poses of the same ligand, EMODEL is also considered the best at 

distinguishing the experimental pose from geometric decoys and as such is used to direct the 

final stages of the conformational search algorithm while posing (Friesner et al., 2004).     

3.2.7 In Consideration of Explicit Polarization  

Mixed QM/MM methods are currently considered to be amongst the most accurate methods 

applicable to molecular docking programs.  These methods are particularly accurate when 

some consideration of polarization is made (Cho et al., 2005).  The MM region usually 

polarizes the QM region and the MM region remains un-polarized (Nevertheless the MM 

region may contain implicit polarization by virtue of the fact that the atomic charges are 

sometimes set deliberately too high to include this effect in an average way), but polarization 

of the MM region is often considered to be the missing term in molecular docking programs 

(Jorgensen, 2007).  Previous work within the research group has looked in detail at the 

accuracy and applications of polarization within QM/MM methods (Illingworth et al., 2006, 

Illingworth et al., 2008b, Illingworth et al., 2008c) using techniques originally developed by 

(Winn et al., 1999, Gooding et al., 2000, Ferenczy and Reynolds, 2001).  Here we seek to 

undertake a more rigorous investigation using a state of art collection of commercial 
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programs namely GAUSSIAN 03 (Frisch et al., 2004) plus Maestro 9.3, Glide 5.8, QSITE and 

JAGUAR 7.9 which are part of the SCHRODINGER SUITE of molecular modelling programs 

(Murphy et al., 2000, Friesner et al., 2004, Halgren et al., 2004). These commercial programs 

will be combined with in-house software designed to implement the modelling of full induced 

charge polarization briefly described in the following methodology in 3.2.8. 

3.2.8 Full Polarization using the Induced Charge method 

MM treats the electrostatic energy as the sum of atomic charge interactions, which are 

evaluated using Coulomb’s law (Eq.3.3). 

𝐸𝑒𝑙𝑒 =
1

2
∑ 𝑞𝐼

𝑝𝑒𝑟
𝑞𝐽

𝑝𝑒𝑟 1

𝑟𝐼𝐽
𝐼,𝐽     (3.3) 

Here, Eele is the Electrostatic energy, qper
J is the Permanent atomic charge on atom J, which 

includes the average ‘implicit polarization’ by overestimating the permanent atomic charges. 

rIJ is the distance between the interacting atomic charges on atoms I and J.   

Quantum mechanics treats electrostatic interactions using an explicitly polarized electronic 

wave function.  In typical Hybrid QM/MM methods, the QM region is polarized by the MM 

region and the MM region usually remains unpolarized.  

The induced dipole method of polarization is an approach to polarization, with a large 

contribution from permanent charges (monopoles) and a small contribution from the induced 

dipole moments (Eq. 3.4) only make a small contribution to the method (Eq. 3.5). 

    𝜇𝐴⃗⃗ ⃗⃗⃗ =  𝛼𝐴𝐹⃗𝐴       (3.4) 

Here, μA is the induced dipole, αA is the atomic polarizability of atom A and FA is the 

electrostatic field at atom A. The total energy from the interaction between the permanent 

atomic charges and the induced dipoles is given by equation (3.5). 
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 (3.5) 

 Here, μind
 is the induced dipole and Eself is self polarization energy (the energy to create the 

induced dipole). The induced charge method approximates the dipole from charges on 

neighbouring atoms (Eq. 3.6)  

     𝜇𝐴 = 𝜒𝐴 ∙ 𝑝𝐴    (3.6) 

Here, the vector 𝜇𝐴contains the induced dipoles, 𝜒𝐴 is a matrix based on the geometry and 

𝑝𝐴 is a matrix containing the partial induced charges. 

The geometric term is based on (Eq. 3.7) 

𝜒𝐴 = (𝑟𝐵1−𝐴, 𝑟𝐵2−𝐴, 𝑟𝐵3−𝐴)   (3.7) 

Here 𝑟𝐵𝑛−𝐴is the monopole moment for each of the neighbouring atoms. 

The partial induced charge is derived from (Eq. 3.8) 

𝑝𝐴 = (

𝑝𝐴(𝐵1)

𝑝𝐴(𝐵2)

𝑝𝐴(𝐵3)

)   (3.8) 

Here, Bn are the neighbouring atoms partial charges. 

The induced dipole method can now be written as (Eq.3.9) 

𝑝𝐴 = 𝛼𝐴 ∙ (𝜒𝐴
+𝜒𝐴)−1𝜒𝐴

+ ∙ 𝐹⃗𝐴  (3.9) 

However, using the Taylor series expansion for electrostatic potential (ESP), the final formula 

can be truncated and generalized and written as (Eq.3.10) 

   (3.10)  

1( ) ( )A A A A Ap       
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Here ФA is the electrostatic potential determined from the wave function. As long as 

derivatives are not required (as in this work), equation (3.10) avoids the calculation of the 

electrostatic field required by equation (3.4). 

For a full and detailed explanation of this method see (Ferenczy and Reynolds, 2001). 

3.2.9 Programs used in Induced Charge method and Comparisons 

The Maestro 9.3 all purpose molecular modelling environment (Banks et al., 2005) is used to 

retrieve and prepare the protein complex.  Glide 5.8 (Friesner et al., 2004, Halgren et al., 

2004) is used to perform docking tasks within the Maestro 9.3 environment.  The IMPACT 

5.8 program is used for non QM minimizations which call upon the OPLS 2005 force-field 

(Banks et al., 2005, Jorgensen et al., 1996, Kaminski et al., 2003). The Qsite program is 

used within the Maestro 9.3 environment to prepare hybrid QM/MM calculations (see 

Chapter 4) that call on the JAGUAR 7.9 program for the QM component of calculations (Cho 

et al., 2005, Murphy et al., 2000).  The Gaussian 03 program (Frisch et al., 2003) is used to 

calculate the Gaussian wave function, and GDMA 2.2 (Stone, 2005) is then used to assign 

DMA multipole expansions.  The Mulfit 2.1 program (Illingworth et al., 2006) is used to derive 

improved point charges from the DMA multipole expansions. 

3.2.10 Evaluation Methods 

3.2.10.1 RMSD evaluation 

The success of a docking program in predicting a ligand binding pose is most popularly 

measured by root mean-square deviation (RMSD). The RMSD metric, is used to study the 

displacement of atoms in a docked pose compared with the experimental pose (Cole et al., 

2005, Baber et al., 2009) as shown: 

𝑟𝑚𝑠𝑑 = √
1

𝑁
∑ 𝑑𝑖

2

𝑁

𝑖=1

 

                                (3.11) 
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Where di is the Euclidean distance between N pairs of equivalent i atoms (Baber et al., 

2009). The most frequently used statistic to describe docking success rate is the number of 

test complexes that have a 1st ranked pose of RMSD of ≤ 2 Å from the experimental pose 

(Cole et al., 2005, Warren et al., 2006, Sándor et al., 2010).  However, it has been noted that 

low RMSD’s do not always result in poses that maintain the experimental pose interactions, 

this is particularly true of small ligands such as fragments (Cole et al., 2005).  In response to 

this many other evaluation metrics have emerged (Kroemer et al., 2004, Yusuf et al., 2008, 

Baber et al., 2009), but despite these alternate metrics RMSD remains popular.   

It is hard to judge the value of a particular RMSD result e.g., if a pose has an RMSD of 0.3 Å  

or 0.6 Å from the experimental pose they may be of equal use to a medicinal chemist (Cole 

et al., 2005).  However in a study of the RMSD deviations, from a dataset of 69 ligands with 5 

or more rotatable bonds it was shown through visualisation that Glide invariably achieved 

‘close’ to experimental interactions at RMSD of ≤ 1.5 Å (Kontoyianni et al., 2003).  Also in a 

previous work, an RMSD of ≤ 2 Å was considered to be a good indication of docking 

success, while an RMSD of ≤ 4 Å a rather rough one (Warren et al., 2006).  Considering the 

small size of the fragments docked here and the thresholds reported in the literature 

(Kontoyianni et al., 2003, Warren et al., 2006), we have decided to use 4 discrete thresholds 

of RMSD of ≤ 0.5 Å; RMSD of ≤ 1 Å; RMSD of ≤ 2 Å; and RMSD of ≤ 4 Å respectively.  

Although still somewhat subjective the first two thresholds may be viewed when comparing 

the top ranked pose to the experimental pose as maintaining close interactions, while the 

latter two thresholds are more approximately within the active site, with the RMSD of ≤ 2 Å 

threshold being of greater value, both to the medicinal chemist and to our ability to evaluate 

docking performance. 

3.2.10.2 Boltzmann probabilities and clustering 

Native retrospective docking studies, of the type reported here in chapters 3 to 5, 

report reasonably high accuracy of about 70-80% success, with success defined as docking 

the best pose of the native ligand to within 2 Å RMSD of its X-ray structure (Cho et al., 2005, 
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Warren et al., 2006, Kolb and Irwin, 2009). Typically docking programs use a scoring function 

to rank order each molecule’s best pose, often from a database containing millions of distinct 

poses (Kolb and Irwin, 2009).  

 

The poses are typically subjected to a clustering algorithm, as is the case with GLIDE 

(Friesner et al., 2004).  This, in addition to a distinct selection of ligand molecules, offers an 

investigator an increased likelihood that the final rank ordered poses per molecule show 

useful conformational alternatives, e.g. for consideration during ligand optimization.  Post-

docking protocols may apply to a given number of top-ranked poses.  However, the final 

decision on the molecules acquired and tested from the top scoring hits lies with the 

investigator. It has been suggested, that the cherry picking of compounds from expert 

experience, introduces a subjective bias, influencing the number of successful screens 

attributed to docking (Kolb and Irwin, 2009). 

 

In this research, for the retrospective native docking studies chapters 3 to 5, we have a 

number of energy calculation methods involving e.g., grid-based energy calculations, 

QM/MM energies.  The posing search algorithm of Glide SP (e.g., an initial flexible Glide SP 

dock) has been combined with these methods, to produce ~15 poses to address the problem 

of energy calculation only exploring local energy minima.  We have made the decision to 

explore a level of depth within the rank ordered poses, searching for the correct docked 

pose, when it is not presented as the top ranked or lowest energy pose.   However, these 

poses still display a level of convergence with energy minimization, and we would like to 

investigate the distinct poses.   

Therefore, the first step, (with the exception of the pre-clustered and relatively low energy 

weighted GLIDE GSCORE scoring function), involved applying a simple divisive hierarchal 

clustering algorithm, to all methods and protocols.  The algorithm assessed the similarity of 

docked poses using the distance metric of RMSD (measured in angstroms, see 3.2.10.1), 
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and also the linkage criteria of minimum binding energy, which was measured by relative 

energy in kcal mol-1 (or equivalent, in the case of EMODEL). 

 

In addition to the hierarchal clustering algorithm, we also used the Boltzmann probability, as 

an assessment tool. In brief, all poses were sorted lowest to highest by energy.  The 

Boltzmann distribution of the population was approximated (e.g. 15 poses considered to 

include all accessible states), and relative population values pi, were calculated, Eq. 3.12.  



𝑝𝑖 =
𝑒−1000𝜀𝑖/𝑅𝑇

∑ 𝑒−1000𝜀𝑗/𝑅𝑇𝑀
𝑗=1





3.12) 

 

Here i is the pose, ε is the energy of state, j is the sum of accessible states i, where M is the 

number of accessible states (typically 15), T is the absolute temperature, here 298 K, R is the 

Universal gas constant, here 8.314 J mol-1 K-1., The relative population values pi estimates 

the probability of pose i, being accessed (Illingworth et al., 2008a). The pi values are summed 

within a cluster of poses. The poses were clustered (generously) so that each cluster had an 

RMSD of ≤ 1 Å and energy within 1.1 kcal mol-1 of the lowest energy member of that pose 

cluster; the choice of 1.1 kcal mol-1 is somewhat arbitrary but was found to give reasonable 

clustering, as explained below.  

 

An explorative heuristic approach (although approximately quantitative), was adopted for the 

(generous) cluster criteria. We aimed to produce the scenario where many pose clusters 

could potentially exist, but just one distinct alternative low lying minima would be 

energetically accessible, judged by the somewhat arbitrary Boltzmann probability pi>10%.  

The threshold of 1.1 kcal mol-1 also prevented formation of a third accessible cluster with 

pi>10% for 73 of the 74 cases. Therefore, the distinct lowest energy pose within the second 

pose cluster could be tested for reproducing the experimental binding within the RMSD of ≤ 2 
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Å threshold.  This approach was useful when the overall lowest energy / top ranking pose 

failed within the RMSD of ≤ 2 Å, because it provides an approximate way of taking into 

account the error in the Glide scoring functions and energy calculations. The same clustering 

method and thresholds were used to assess if the pose closest to experiment, measured by 

RMSD, was also within a cluster containing the overall lowest energy or top ranked pose 

(e.g., Fig. 3.1C and E white bars, discussed in 3.3.2).  

 

3.3 Results 

3.3.1 Analysis of top ranked poses 

3.3.1.1 Ligand polarization 

 

Glide SP flexible ligand docking is usually able to identify the experimental pose amongst the 

full set of returned poses, whether as the top ranked pose, or as a lower ranked pose, as will 

be discussed later (see 3.3.3 and 3.3.4).  Figure 3.1A (first bar) shows that the top ranked 

pose (according to Glide SP, i.e., GSCORE) is also the pose with the smallest RMSD to the 

experimental pose in 36% of the 74 cases. This 36% is therefore one of the benchmark 

results that can be used to see if explicit polarization can improve docking. When the ligand 

partial charges are explicitly polarized using (i) the geometries of the 1st Ranked GLIDE SP 

(GSCORE) pose (2nd bar, denoted POSE(L)), (ii) the lowest Energy QM/MM (Jaguar/Impact) 

single-point pose (4th bar, ENERGY SP(L)), (iii) the lowest Energy QM/MM (Jaguar/Impact) 

optimized pose (5th bar, ENERGY(L)), then flexible ligand re-docking results in the top ranked 

pose being the one with the smallest RMSD to the experimental pose in 38%, 41% and 38% 

of cases respectively.  Under these circumstances, polarization does not improve docking. 

The key issue with this analysis is whether the ligand is correctly polarized – if the top pose is 

not similar to the experimental pose then the ligand may not be polarized correctly. To test 

whether a correctly polarized ligand results in better results, we have (i) polarized the ligand 
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in the pose with the lowest RMSD to the experimental pose and (ii) polarized the 

experimental pose. Fig 3.1.A, bar 3 (RMSD(L)) and bar 6 (REF(L)) show that under these 

circumstances, the top ranked pose is the one with the smallest RMSD to the experimental 

pose in (i) 36% and (ii) 53% of cases respectively. Explicitly polarizing of the ligand partial 

charges at each of the ~15 individual ligand geometries of the pose population then re-

docking using the ‘Score in Place’ (7th bar, INDIV(L)) results in the top ranked pose being the 

one with the smallest RMSD to the experimental pose in 35% of cases. It is disappointing 

that, in general, explicit polarization of the ligand at one of the docked poses does not give 

an improvement in the results as determined by this measure. However, the controls show 

that polarization clearly can improve docking results as polarization of the experimental pose 

improves the results from 36% to 53%.  However, this is not strong evidence alone, as 

polarization at the smallest RMSD to experimental pose shows no improvement. 
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Figure 3.1. The effect of polarization on docking, for poses generated by Glide. For A and B, the poses 

( 15) were generated and ranked using GSCORE. For C and D, the poses were generated according 

to GSCORE and ranked according to CVDW. For E and F, the poses were generated according to 

GSCORE and ranked according to EMODEL. The percentage of times that the top ranked pose is also 

the pose closest to the experimental pose, as measured by RMSD, is denoted in A, C and E by a grey 

bar; the percentage of times that a pose from the first cluster is also the pose closest to the 

experimental pose, as measured by RMSD, is denoted in A, C and E by a white bar. The percentage of 

cases that the top ranked pose is below the 0.5 Å, 1.0 Å, 2.0 Å and 4.0 Å thresholds is shown by 

green, yellow, orange and dark red bars respectively. In each panel, the first bar, denoted GLIDE SP, 

indicates docking with no polarization. In subsequent bars, (L) indicates that only the ligand was 
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polarized and (C) indicates that the ligand and protein were polarized. POSE indicates that the ligand 

was polarized using the geometry of the top ranked pose docked using glide, RMSD indicates that the 

ligand was polarized using the geometry of the pose closest to the experimental result, ENERGY SP 

indicates that the ligand was polarized using the geometry of the top ranked pose scored according 

to the single point QM/MM calculations, ENERGY indicates that the ligand was polarized using the 

geometry of the top ranked pose scored according to the QM/MM optimization calculations and REF 

indicates that the polarized charges for were determined at the experimental geometry. INDIV 

indicates that each of the initial 15 poses was polarized individually. 

 

 

3.3.1.2 Ligand and protein polarization 

 

In the previous section we considered polarization of the ligand; here we follow similar 

polarization strategies, but both the ligand and the protein are polarized. In Fig.3.1A, when 

the ligand and protein partial charges are explicitly polarized using (i) the geometries of the 

1st Ranked GLIDE SP pose (8th bar, denoted POSE(C)), (ii)  the lowest Energy QM/MM 

(Jaguar/Impact) single-point pose (10th bar, denoted ENERGY SP(C)), (iii)  the lowest Energy 

QM/MM (Jaguar/Impact) optimized pose (11th bar, denoted ENERGY (C), then flexible ligand 

re-docking results in the top ranked pose being the one with the smallest RMSD to the 

experimental pose (according to Glide SP, i.e. GSCORE) in 44%, 41% and 39% of cases 

respectively (Fig. 3.1A).  Under these circumstances, polarization alludes to improve 

docking, particularly for the first case with ~8% improvement over Glide SP benchmark of 

36%, compared with ~2% improvement with ligand only polarization. Notably, this ~8% 

improvement is the best that comes without knowledge of the correct answer. Again, to test 

whether a correctly polarized ligand results in better results, we have (i) polarized the ligand 

and complex in the pose with the lowest RMSD to the experimental pose and (ii) polarized 

the experimental pose. Fig 3.1A, bar 9 (denoted RMSD(C)) and bar 12 (denoted REF(C)) 

shows that under these circumstances, the top ranked pose is the one with the smallest 

RMSD to the experimental pose in (i) 52% and (ii) 49% of cases respectively. Although, full 

polarization of the experimental pose, offers marginally less improvement than ligand only 

polarization. There is a case that polarization can improve docking.  Indeed, when fully 
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polarized, both controls show clear improvement. Finally, success is only 34% when each 

individual pose complex partial charges is explicitly polarized before docking using ‘score in 

place’ occurs (13th bar, denoted INDIV(C)); this suggests there is no advantage in polarizing 

the ligand at each geometry. 

 

Figure 3.2 Examples of where polarized docking improves upon basic glide docking. In the three 

examples, basic glide docking causes the ligand to flip whereas fully polarized docking generates a 

native-like pose. A. Nitric oxide synthase oxygenase domain, pdb code 1qwc, showing the interactions 
of the heme, Trp587 and Glu592 with the ligand (14W). The reference ligand (X-ray pose) is in cyan, the 

fully polarized ligand is blue, and the basic Glide-docked ligand is pink. B.  A Close up of the 1qwc 

reference ligand (grey) and Glide docked ligand (red), (shown in A) demonstrating a 1800 rotation. C. 

Human microurokinase, pdb code 1fv9, showing key interaction between the ligand, 2-amino-5-

hydroxy-benzimidazole, and Asp191. The reference ligand (X-ray pose) is in cyan, the fully polarized 

ligand is blue, and the basic Glide-docked ligand is pink. The fully polarized ligand undergoes ~400 

rotation to interact with Ser192, while the basic Glide-docked ligand flips to interact with Ser197, giving 

a much larger error. D. Mycobacterium Tuberculosis Pantothenate Synthetase, pdb code, 3img (chain 
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B) BZ3 showing the interaction of the ligand with Val187 and a bridged sulphate ion. The reference 

ligand (X-ray pose) is in cyan, the QM/MM optimized ligand is pink. The basic Glide-docked ligand 

flips (results not shown). 

 

Figure 3.2 (continued).  E. Mycobacterium Tuberculosis Pantothenate Synthetase, pdb code 3img, 

showing interactions of His47, Met40, and HOH627 with ligand. The reference ligand (X-ray pose) is in 

cyan, the fully polarized ligand is blue, the basic Glide-docked ligand is pink and the optimized 

QM/MM method is in green. All the QM methods (e.g. QM/MM opt) cause a symmetrical pivot along 

the key interaction axis stabilized by the HOH627 interaction. F. Mycobacterium Tuberculosis 

Pantothenate Synthetase, pdb code 3ime, showing interactions of His47 and Met40 with ligand. The 

reference ligand (X-ray pose) is in cyan, the QM/MM optimized ligand is blue, the basic Glide-docked 

ligand is pink.  The basic Glide-docked ligand moves to interact with Asn69. beta secretase, pdb code 

2ohk, The reference ligand (X-ray pose) is in cyan, the fully polarized ligand is blue, the basic Glide-

docked ligand is red/pink. H. An alternative view of G, showing how the Glide docked ligand (1-

amino-isoquinoline) moves to interact with Phe108. 
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3.3.2 Alternative approaches to identifying the top pose 

The results of Figure 3.1A are interesting as they suggest that some improvement can be 

obtained by polarizing just the top ranked pose, provided that both the ligand and protein are 

polarized. For this reason, we have considered alternative scoring protocols for ranking the 

poses, namely CVDW (Figure 3.1C) and EMODEL (Figure 3.1E). 

3.3.2.1 CVDW rescoring:  Ligand polarization 

In Figure 3.1C (first grey bar, denoted GLIDE SP) we consider the top ranked pose (docked 

according to (GSCORE) but with the poses rescored according to CVDW); the figure shows 

that this pose (and for subsequent grey bars) is also the one with the smallest RMSD to the 

experimental pose in 39% of the 74 cases. This 39% is a slight improvement over the 

GSCORE ranking of Figure 3.1A (bar 1, denoted GLIDE SP). Moreover, the poses have 

been clustered (generously) so that each cluster has an RMSD of ≤ 1 Å and energy within 

1.1 kcal mol-1 of the lowest energy member of that pose cluster (see 3.2.10.2).  

When we set the criteria that the pose with the lowest RMSD to experiment could 

also be a member of the first cluster, then success increases to 46% (white bar(s) in Fig. 

3.1C).  When the ligand partial charges are explicitly polarized using (i) the geometries of the 

1st Ranked GSCORE pose (2nd bar, denote POSE(L)), (ii)  the lowest Energy QM/MM 

(Jaguar/Impact) single-point pose (4th bar, denoted ENERGY SP(L)), (iii)  the lowest Energy 

QM/MM (Jaguar/Impact) optimized pose (5th bar, denoted ENERGY(L)), then flexible ligand 

re-docking results in the top ranked pose being the one with the smallest RMSD to the 

experimental pose in 46%, 50% and 44% of cases respectively; this rises to 52%, 55% and 

47% when the cluster rather than the first pose is considered. Under these circumstances, 

ligand polarization does give improved results. The control results where the ligand is 

polarized at either the lowest RMSD structure (3rd bar, denoted RMSD(L)) or the 

experimental structure (6th bar, denoted REF(L)) are 52% and 53% respectively, rising to 

57% and 58% when the second cluster is considered, giving clear evidence that ligand 

polarization can improve the docking results.  
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Explicit polarization of the ligand partial charges at the ~15 individual ligand 

geometries of the pose population then re-docking using the ‘Score in Place’ option (7th bar, 

denoted INDIV(C)) lowers the success to 26% for the first pose and 35% when the second 

pose cluster is considered, again indicating that there is no value in polarizing poses other 

than the top-ranked pose. 

3.3.2.2 CVDW rescoring:  Ligand and protein polarization 

Because there is already improvement resulting from ligand polarization, the scope for 

further improvement from polarizing both the ligand and the protein is reduced. Nevertheless, 

polarizing the ligand and protein does give improvements over Glide SP.  Thus, the control 

results where the ligand is polarized at either the lowest RMSD structure (9th bar, denoted 

RMSD(C)) or the experimental structure (12th bar, denoted REF(C)) are 57% and 56% 

respectively, rising to 73% and 61% when the first second pose cluster is considered. These 

figures are well above the initial results of 39% (top pose) and 46% (first cluster), and show 

that polarization does improve docking success. The practical approaches, relevant to when 

the experimental result is not known and where polarization is based on the top pose 

determined by the scoring methods, gives results in the range of 42%-46% (8th bar, 10th bar, 

11th bar), which rise to 50-53% when the first cluster is considered. For this to work, it is 

essential that the top ranked pose has features of the correct pose; it seems that the CVDW 

score is more appropriate to this task than GSCORE.  Finally, success is only 28% when the 

individual pose complex partial charges are explicitly polarized before re-docking with ‘score 

in place’ occurs (bar 13), this rises to 39% for the first pose cluster. 

3.3.2.3 EMODEL rescoring:  Summary 

Figure 3.1E shows that EMODEL gives very similar results for explicit polarization to scoring 

with CVDW (especially when considering re-scoring by the lowest Energy QM - Jaguar/MM - 

Impact poses), and thus offers an alternative method of selecting the top ranked pose for 

polarizing the ligand and the enzyme. However, there is less scope for improvement as when 

we consider the top ranked pose (docked according to GLIDE SP/GSCORE but with the 
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poses rescored according to EMODEL); the figure shows that this pose (1st grey bar – all 

colour coding as Figure 3.1C) is also the one with the smallest RMSD to the experimental 

pose in 48% of the 74 cases.  This 48% is a significant improvement over the 36% achieved 

by GSCORE or the 39% achieved by CVDW ranking of Figure 3.1A (bar 1, denoted GLIDE 

SP) and Figure 3.1C (bar 1, denoted GLIDE SP) respectively. Moreover, when we set the 

criteria that the pose with the lowest RMSD to experiment should also be a member of the 

cluster as with CVDW, then success increases slightly to 52% (1st white bar (denoted GLIDE 

SP) in Fig. 3.1E).  This finding is consistent with EMODEL being Glide’s best scoring function 

for ranking poses of the same ligand molecule (Friesner et al., 2004). Despite the reduced 

scope for improvement, we still see minor increases in performance particularly when 

considering the ligand (2nd bar, denoted POSE(L)) and then complex partial charges (7th bar, 

denoted POSE(C)) that are explicitly polarized when using the geometries of the 1st Ranked 

GSCORE pose then flexible ligand re-docked. This results in the top ranked pose being the 

one with the smallest RMSD to the experimental pose in 50%, and 54% of cases 

respectively; this rises to 56% and also 56%, when the first cluster rather than the first pose 

is considered. 

The control results where the ligand (3rd bar) or complex (8th bar) is polarized at the lowest 

RMSD structure are 53% and 59% respectively; this rises to 54% and 63%, when the first 

second pose cluster rather than the first pose is considered.  The control results where the 

ligand (6th bar) or complex (11th bar) is polarized at the experimental structure are 58% and 

also 58% respectively, rising to 63% and 61% when the first cluster is considered. So here all 

the non-clustered first pose controls slightly outperform CVDW scoring (e.g., grey bars 3, 6, 8 

and 11), while the clustered pose results are similar (with the exception of Fig. 3.1C bar 9, 

denoted RMSD(C)). 

3.3.3 RMSD analysis 

In sections 3.3.1 and 3.3.2, Figure 3.1A, 3.1C and 3.1E we considered the proportion of 

cases where the top ranked pose was also the one with the lowest RMSD to the 
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experimental structure. However, in some of these cases the lowest RMSD might still be 

rather high. In figures 3.1B, 3.1D and 3.1E we consider the proportion of molecules where 

the RMSD is below 0.5 Å (green); RMSD of ≤ 1 Å (yellow); RMSD of ≤ 2 Å (orange); RMSD 

of ≤ 4 Å (dark red) respectively. 

3.3.3.1 Benchmark results 

Figure 3.1B, 3,1D and 3,1E (1st bar, denoted GLIDE SP) shows percentage of times that the 

top ranked pose (according to GSCORE, cVDW and EMODEL) is within a given threshold; 

this threshold is the distance measured by RMSD from the experimental pose. These 

benchmark results shown in table 3.2 can be used to see if explicit polarization can improve 

docking.  

 

Table 3.2 The percentage of times that the top ranked pose is within a given threshold, 

evaluated over all 74 cases. 

  Threshold   

Method 0.5 Å 1.0 Å 2.0 Å 4.0 Å 

GSCORE 32% 48% 74% 88% 

cVDW 37% 47% 68% 84% 

EMODEL 44% 54% 78% 91% 

  

In the section that follows, we focus on the 0.5 Å GSCORE results (Figure 3.1B); the 

remaining results will be summarized. 

3.3.3.1.1 RMSD of ≤ 0.5 Å from experimental geometry GSCORE (green bars) 

When the ligand partial charges are explicitly polarized using (i) the geometries of the 1st 

Ranked GSCORE pose (2nd bar, denoted POSE (L)), (ii) the lowest Energy QM/MM single-

point pose (4th bar, denoted ENERGY SP(L)), (iii) the lowest Energy QM/MM optimized pose 

(5th bar, denoted ENERGY SP(L)), then flexible ligand re-docking results in the top ranked 
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pose having an RMSD of ≤ 0.5 Å 33%, 33% and 34 % of the time, respectively.  When the 

complex partial charges are explicitly polarized in the same fashion using (i) the geometries 

of the 1st Ranked GSCORE pose (8th bar, denoted POSE(C)), (ii) the lowest Energy QM/MM 

single-point pose (10th bar, ENERGY SP(C)), (iii) the lowest Energy QM/MM optimized pose 

(11th bar, denoted ENERGY(C)), then flexible ligand re-docking results in the top ranked 

pose having an RMSD of ≤ 0.5 Å 36%, 32% and 29 % of the time respectively. 

To explore the same key issue as in 3.3.1.1 as to whether the ligand is correctly 

polarized.  We have (i) polarized the ligand in the pose with the lowest RMSD to the 

experimental pose and (ii) polarized the experimental pose.  When the ligand partial charges 

are explicitly polarized then flexible ligand re-docked we find the top ranked pose having an 

RMSD of ≤ 0.5 Å (i) 35% (bar 3, denoted RMSD(L)) and (ii) 42% (bar 6, denoted REF(L)) of 

the time respectively. When the ligand and protein partial charges are explicitly polarized 

instead, these change to (i) 41% (bar 9, denoted RMSD(C)) and (ii) 39% (bar 12, denoted 

REF(C)) respectively.   

Explicit polarization of the ligand partial charges (7th bar, denoted INDIV (L)) and the 

ligand and protein partial charges (13th bar, denoted INDIV(C)) at each of the  ~15 individual 

ligand geometries of the pose population then re-docking using the ‘Score in Place’ results in 

an RMSD of ≤ 0.5 Å from the experimental pose 33% and also 33% of the time.  

The controls (where the ligand is polarized correctly, i.e. RMSD (L/C) and REF (L/C)) show 

that polarization can offer up to a 10% improvement to the docking results. The average 

increase is ~6.5% for ligand polarization and ~8% for the ligand and protein polarization. 

Significantly, polarization gives a 4% improvement even when the answer is not known 

(POSE(C)). Overall these results show that polarization can make a positive effect in 

generating accurate poses with an RMSD of less than 0.5 Å, but the superior results of the 

control results shows that it is important to polarize the ligands correctly. 
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3.3.3.1.2 RMSD of ≤ 1 Å from experimental geometry GSCORE (yellow bars) 

The controls show that polarization can offer up to a 9% improvement to the docking 

results. The average increase is ~0% for ligand polarization and ~7% for the ligand and 

protein polarization at this 1.0 Å threshold.  

Significantly, polarization can give up to a 4% improvement even when the answer is 

not known, but here the average over all methods is 0%. Overall these results show that 

polarization can make an effect in generating accurate poses with an RMSD of less than 1.0 

Å, but the effect is less marked than at the 0.5 Å threshold. 

3.3.3.1.3 RMSD of ≤ 2 Å from experimental GSCORE (orange bars) 

Here the controls show little advantage from polarization which at best offered a 2 % 

increase from 74% to 76% at this threshold.  There is even an overall minor negative effect 

to GSCORE when the answer is not known. It is noteworthy that polarization has a positive 

effect at the lower thresholds of 1.0 Å and particularly 0.5 Å, but little effect at the 2.0 Å 

threshold. It is likely that at this higher level of inaccuracy (2.0 Å threshold) that factors other 

than polarization play a role in determining the accuracy.  A similar conclusion arises from 

analysis of the results at the 4 Å threshold (dark red bars). 

3.3.3.1.4 RMSD of ≤ 0.5 Å from experimental geometry CVDW (green bars) 

There is slightly less scope for improvement compared to GSCORE at this threshold 

as there is a rise from 32% (GSCORE) to 37% (CVDW) for the basic unpolarized results.  

The controls show that polarization does again offer up to 10% improvement to docking 

results.  The average increase is ~6% for the ligand and ~9% for ligand and protein 

polarization. Significantly, ligand polarization gives up to a 7% improvement when the answer 

is not known, and ligand and protein polarization gives up to a 9% improvement. 

3.3.3.1.5 RMSD of ≤ 1 Å from experimental geometry CVDW (yellow bars) 

The controls show that polarization can offer up to a 16% improvement to the docking 

results at this 1.0 Å threshold. The average increase is 7.5% for ligand polarization and 15% 



118 
 

for the ligand and protein polarization at this 1.0 Å threshold.  We also see an improvement 

in results up to 7% for ligand polarization, and up to 10% for the ligand and protein 

polarization, when the answer is not known.  This occurs when polarizing by ligand or ligand 

and protein at the geometries of the 1st Ranked GSCORE pose. 

3.3.3.1.6 RMSD of ≤ 2 Å from experimental geometry CVDW (orange bars) 

When the ligand partial charges are explicitly polarized using (i) the geometries of the 1st 

Ranked GSCORE pose (2nd bar, denoted POSE(L)), (ii) the lowest Energy QM/MM single-

point pose (4th bar, denoted ENERGY SP(L)), (iii) the lowest Energy QM/MM optimized pose 

(5th bar, denoted ENERGY(L)), then flexible ligand re-docking results in the top ranked pose 

having an RMSD of ≤ 2 Å 76%, 73% and 73 % of the time respectively, compared to the 

benchmark results of 68%.  When the complex partial charges are explicitly polarized in the 

same fashion using (i) the geometries of the 1st Ranked GSCORE pose (8th bar, denoted 

POSE(C)), (ii) the lowest Energy QM/MM single-point pose (10th bar, denoted ENERGY 

SP(C)), (iii) the lowest Energy QM/MM optimized pose (11th bar, denoted ENERGY(C)), then 

flexible ligand re-docking results in the top ranked pose having an RMSD of ≤ 2 Å 83%, 69% 

and 71% of the time respectively. 

For the controls where we have: (i) polarized the ligand in the pose with the lowest 

RMSD to the experimental pose and (ii) polarized the experimental pose.  When the ligand 

partial charges are explicitly polarized then flexible ligand re-docked we find the top ranked 

pose having an RMSD of ≤ 2 Å (i) 82% (bar 3, denoted RMSD(L)) and (ii) 76% (bar 6, 

denoted REF(L)) of the time respectively. When the ligand and protein partial charges are 

explicitly polarized instead this changes slightly to (i) 82% (bar 9, RMSD(C)) and (ii) 83% (bar 

12, REF(C)) respectively.   

The controls again show that polarization clearly does offer improvement to the 

docking results at this threshold as polarization of the ligand and protein partial charges 

improves the result by up to 15% (average ~14.5%).  Polarizing the ligand partial charges 

improves results by up to 14% (average 8%). When the answer is not known, polarizing the 
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geometries of the 1st Ranked GSCORE pose again gives the best results (15% improvement, 

giving 83% of poses within 2 Å) particularly when considering ligand and protein polarization. 

Some improvement is also seen at the 4 Å threshold (not discussed). 

It is interesting to note that in this CVDW section 3.3.3.1.6, but not in the GSCORE 

section 3.3.3.1.3 , polarization gave improved results. This is linked to the use of CVDW 

rather than GSCORE for ordering the poses and probably arises because the electrostatics 

are not scaled in the CVDW method. 

3.3.3.2 EMODEL rescoring:  Summary 

Figure 3.1F shows that EMODEL gives very similar results to scoring with CVDW, but as the 

initial unpolarized method gives a higher percentage of poses with the threshold, the scope 

for improvement is less (results not discussed). 
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Figure 3.3. The influence of clustering on polarized docking performance. For G and H, the poses 

were generated according to GSCORE and ranked according to CVDW. For I and J, the poses were 

generated according to GSCORE and ranked according to EMODEL. K is given for reference and is 

equivalent to the orange bars in Fig 3.1B. In G and I, the percentage of cases that the top ranked pose 
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is below the 2.0 Å threshold is denoted by grey bars; the increase in the percentage of cases below 

the 2.0 Å threshold obtained by additionally considering the top ranked pose of a second (low-lying) 

cluster is denoted by white bars. For H and J, the mean sum of the Boltzmann probabilities of the 

poses in the first cluster for molecules with RMSD < 2.0 Å is denoted by grey bars; for the subset of 

molecules were there was no pose with an RMSD < 2.0 Å within the first cluster, the mean sum of the 

Boltzmann probabilities of the poses in the second cluster is denoted by the blue bars. GLIDE SP, 

indicates docking with no polarization. In subsequent bars, (L) indicates that only the ligand was 

polarized and (C) indicates that the ligand and protein were polarized. POSE indicates that the ligand 

was polarized using the geometry of the top ranked pose docked using glide, RMSD indicates that the 

ligand was polarized using the geometry of the pose closest to the experimental result, ENERGY SP 

indicates that the ligand was polarized using the geometry of the top ranked pose scored according 

to the single point QM/MM calculations, ENERGY indicates that the ligand was polarized using the 

geometry of the top ranked pose scored according to the QM/MM optimization calculations and REF 

indicates that the polarized charges for were determined at the experimental geometry. INDIV 

indicates that each of the initial 15 poses was polarized individually. 

3.3.4 Cluster analysis. 

In figures 3.1B, 3.1D and 3.1F we considered the proportion of molecules where the RMSD 

is below the four given thresholds, namely 0.5 Å (green), 1 Å (yellow), 2 Å (orange) and 4 

Å(dark red) respectively. In some cases while the lowest energy pose may have a rather high 

RMSD, there may still be a pose with a low RMSD that is not too high in energy above the 

lowest energy pose; we consider this scenario in Figure 3.3 for the popular 2.0 Å threshold 

(Warren et al., 2006).  As discussed in 3.2.10.2, the poses have been clustered so that each 

cluster has an RMSD of ≤ 1 Å and an energy within 1.1 kcal mol-1 of the lowest energy 

member of that pose cluster.   We then set the criteria that the lowest energy member of the 

2nd pose cluster should also be considered for analysis at an RMSD of ≤ 2 Å, in the cases 

where the lowest energy member of the first pose cluster was docked unsuccessfully. This 

clustered RMSD analysis assumes that the lowest member of the 1st and 2nd pose clusters is 

representative of all members of that cluster and so the other members are not therefore 

considered. We evaluated the improvement in the docking results when both clusters were 

considered, as shown in Figures 3.3G and 3.3I, where the white bars indicate the higher 

percentage that comes by including the second cluster.  
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To ensure that poses in the second cluster are accessible, only poses that are members of a 

cluster with a Boltzmann probability (𝑝𝑖) greater than 10% have been considered.  The extent 

of this Boltzmann probability has been explored in Figures 3.3H and 3.3J and in section 

3.3.4.4.1 (blue and grey bars). Each molecules Boltzmann probability was summed for all 

members of each of clusters.  The mean (𝜇) Boltzmann probabilities for specific clusters was 

reported for two subsets of molecules from the above clustered RMSD analysis (that used 

lowest energy / top ranked poses that was representative of all members of that cluster). The 

first subset included the molecules with 1st clusters with the lowest energy/ top ranked pose 

was within RMSD of ≤ 2 Å. (grey bars).  The second subset included molecules from the 2nd 

clusters with the lowest energy/ top ranked pose was within RMSD of ≤ 2 Å, and the best 

overall lowest energy/ top ranked pose from 1st cluster was not (blue bars). These are 

different subset of molecules so the percentages should not add up to 100%.  

This probability evaluation explored high values which are indicative of alternative poses of 

similar energy, a situation that may arise, for example, when approximately symmetric 

molecules flip their binding mode. 

 

3.3.4.1 Clustered CVDW Rescoring:  Benchmark results 

GSCORE was not used for clustering in Figure 3.3, mainly because of the heavily scaled 

nature of the force-field terms and also because of its default usage within Glide, but 

GSCORE results are shown at the RMSD of ≤ 2 Å threshold for reference in Figure 3.3K 

(identical to the orange bars in Fig 3.1B). As in Figure 3.1D, (orange, 1st bar denoted GLIDE 

SP), the results in Figure 3.3G (1st bar – grey, denoted GLIDE SP), are for the top ranked 

pose (docked according to GSCORE but with all the poses rescored according to CVDW).; 

Figure 3.3G (and Figure 3.1D) shows that the top ranked pose has an RMSD below 2 Å in 

68% of cases. When we also consider the lowest energy member of the 2nd cluster at an 

RMSD of ≤ 2 Å (for the cases where first cluster did not yield an RMSD < 2 Å) the success 

rate rises to 83% (1st bar – white, denoted GLIDE SP).  These two sets of results show that 
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there is considerable improvement of ~15% when clustering of the CVDW scored poses 

occurs. The energetic reason for considering such low lying clusters is (a) that the energy 

function is not sufficiently accurate to determine that the 1st cluster is indeed the lowest 

energy cluster and (b) low lying poses would normally be populated.   

3.3.4.2 Clustered CVDW Rescoring:  Ligand and Ligand and protein polarization 

Considering the rest of the results in Figure 3.3G, the figure shows, when the ligand partial 

charges are explicitly polarized using (i) the geometries of the 1st Ranked GSCORE (re-

scored by CVDW) pose (2nd bar, denoted POSE(L)), (ii) the lowest Energy QM/MM single-

point pose (4th bar, denoted ENERGY SP(L)), (iii) the lowest Energy QM/MM optimized pose 

(5th bar, denoted ENERGY(SP)), then flexible ligand re-docking results in the top ranked 

pose having an RMSD of ≤ 2 Å 77%, 73% and also 73 % of the time respectively (grey bars). 

When we also consider the lowest energy member of the 2nd cluster at an RMSD of ≤ 2 Å (in 

the cases where the lowest energy member of the first cluster had an RMSD > 2, Å white 

bars), the success rate rises to 80%; 76% and also 76% respectively. 

When the ligand and protein partial charges are explicitly polarized in the same 

fashion using (i) the geometries of the 1st Ranked GSCORE pose (8th bar, denoted 

POSE(C)), (ii) the lowest Energy QM/MM single-point pose (10th bar, denoted ENERGY 

SP(C)), (iii) the lowest Energy QM/MM optimized pose (11th bar, denoted ENERGY(C)), then 

flexible ligand re-docking results in the top ranked pose having an RMSD of ≤ 2 Å 83%, 69% 

and 71% of the time respectively (grey bars). When we also consider the lowest energy 

member of the 2nd cluster at an RMSD of ≤ 2 Å (in the cases where the lowest energy 

member of the first cluster is unsuccessful (white bars)) the success rate rises to 84%, 73% 

and 75% respectively.     

For the controls where we have: (i) polarized the ligand in the pose with the lowest 

RMSD to the experimental pose and (ii) polarized the experimental pose.  When the ligand 

partial charges are explicitly polarized then re-docked (flexible ligand) we find the top ranked 

pose having an RMSD of ≤ 2 Å (i) 82% (bar 3 – grey, denoted RMSD (L)) and (ii) 76% (bar 6 
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– grey, denoted REF(L)) of the time respectively. When we also consider the lowest energy 

member of the 2nd cluster at an RMSD of ≤ 2 Å, the success rate rises to (i) 84% (bar 3 - 

white) and (ii) 81% (bar 6 - white). 

When the ligand and protein partial charges are explicitly polarized instead, this 

changes to (i) 82% (bar 9 – grey, denoted RMSD(C)) and (ii) 83% (bar 12 –grey, denoted 

REF(C)) respectively.  When we also consider the lowest energy member of the 2nd pose 

cluster at an RMSD of ≤ 2 Å, the success rate rises to (i) 83% (bar 9 – white) and (ii) 85% 

(bar 12 - white).  Explicit polarization of the ligand partial charges (7th bar, denoted INDIV (L)) 

and the ligand and protein partial charges (13th bar, denoted INDIV(C)) does not convey any 

advantage, as discussed above.   

  

3.3.4.3 Clustered CVDW Rescoring:  Summary remarks 

The results here indicate that at the RMSD of ≤ 2 Å threshold, there seems to be a cap on 

docking success at ~85%, above which polarization or clustering and inclusion of the lowest 

energy member of the 2nd cluster cannot offer further improvements. We conclude that there 

are likely to be other issues that polarization alone cannot address in these cases, the most 

likely being protein flexibility and hydration. While the success rate of Glide SP at ~68% for 

the RMSD of ≤ 2 Å threshold, scored by CVDW, offers improvement over GSCORE. It is also 

significant that clustering and inclusion of the lowest energy member of the 2nd cluster 

improves the docking success to 83%, which is approximately the same success for 

including ligand and protein explicit polarization (Figure 3.3G, 3rd bar denoted RMSD(L), 7th 

bar denote POSE(C), 8th bar denoted RMSD(C) and 11th bar denoted REF(C)).  

The margins for clustering improvement depend on there being a pose with a low RMSD that 

is not too high in energy above the lowest energy pose; such a scenario is quite common, 

e.g. for approximately symmetric molecules that have two similar binding modes separated 

by a rotation of 180. These margins decrease when explicit polarization is included.  This is 
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an indication that when polarization can help differentiate the correct pose from an 

energetically close geometric decoy.  

 

3.3.4.4 Clustered EMODEL Rescoring:  Summary Remarks 

3.3.4.4.1 Analysis of the extent of the energetic viability of using a 2nd pose 

cluster. 

Figure 3.3I shows that rescoring with EMODEL yields very good results as 78% of the poses 

have an RMSD ≤ 2 Å (1st grey bar, denoted GLIDE SP). Given these excellent results, there 

is little scope for improvement, either by clustering and considering the second pose, or by 

inclusion of polarization. which rises to 81% when we consider the second cluster. Indeed, 

examination of Figure 3.3I shows that clustering can improve the results by about 3% (e.g. 

11th bar, denoted REF(C)) and that polarization can improve the results by about 3% (e.g. 

11th bar), up to 85% (e.g. 11th white bar, denoted ref(C)). 

As discussed in section 3.3.2.1, the poses have been clustered so that the each cluster has 

an RMSD of ≤ 1 Å and energy within 1.1 kcal mol-1 of the lowest energy member of that pose 

cluster.  We also determined that to consider the lowest energy member of the 2nd cluster in 

the clustered docking success results at an RMSD of ≤ 2 Å, there was a need to ensure a 

significant probability of the pose adopting the 2nd cluster minima as opposed to the first 

cluster minima. Consequently, only poses that were members of a cluster with a sum greater 

than 10% Boltzmann probability were included in the results. 

3.3.4.5 Clustered CVDW Rescoring:  Summary 

Figure 3.3H shows the percentage Boltzmann probability of the sum of the poses within the 

first cluster minima (all 74 molecules), and the second cluster minima (the subset of 

molecules with no pose < 2.0 Å in the first cluster). These Boltzmann probabilities have been 

averaged over the total number of molecules docked successfully with an RMSD of ≤ 2 Å, 

thus corresponding with the results in Figure 3.3G. This gives the average percentage 
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Boltzmann probability for a pose adopting the first minima (grey bars, associated with Figure 

3.3G grey bars), and subsequently the second minima (dark blue bars, associated with 

Figure 3.3G white bars).   Consequently, for example for Glide SP Figure 3.3G (grey bar 1), 

there was a 68% docking success at an RMSD of ≤ 2 Å.  The corresponding average of the 

sums of the Boltzmann probabilities for first cluster members within this minima across these 

successful molecules is shown in Figure 3.3H (grey bar 1) to be 91%. There is only once an 

average Boltzmann probability less than 90% at 84%, which applies to ~15 individually ligand 

polarized geometries (grey bar 7, denoted INDIV(L)).  The highest average Boltzmann 

probability is 94% is for ligand and protein polarization of the lowest Energy QM/MM single-

point pose (grey bar 10, denoted ENERGY SP(C)). These are sensible numbers considering 

the generous nature of the clustering criteria as seen again above in 3.3.4.4 and that they 

also refer to the lowest energy members of the first clusters, where these minima are always 

most likely to be populated. We next consider the extent to which the 2nd cluster could be 

also be populated.   

We have seen for Glide SP Figure 3.3G (white bar 1, denoted GLIDE SP) that there 

was a lowest energy pose member from the 2nd pose cluster that was successful at the 

RMSD of ≤ 2 Å threshold, when the lowest energy member of the 1st pose cluster was not.  

When his was included, we saw an increase in success from 68% to 83%.  This ~15% 

improvement in docking successes equates to ~11 molecules.  

The corresponding average of the sums of the Boltzmann probability for second pose 

cluster members within this 2nd minima across these 11 successful molecules is shown in 

Figure 3.3H (dark blue bar 1, denoted GLIDE SP) to be ~29%.  This is significantly high, 

when we consider the generous clustering criteria, the number of molecules involved and 

that the theoretical range based on our criteria gives an average Boltzmann probability 

between ~10% and ~49% for each molecule.  So when we look at the next largest clustered 

docking success improvement in Figure 3.3G considering the lowest energy pose member 

from the 2nd cluster by our criteria, there was an ~11% improvement (~8 molecules).  This 

was from explicit polarization of the ligand partial charges at each of the ~15 individual ligand 
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geometries of the pose population then re-docking using the ‘Score in Place’, where the 

lowest energy pose by CVDW was originally 63% (bar 7 – grey, denoted INDIV(L)) and rose 

to 74%(bar 7 – white).  The corresponding average of the sums of the Boltzmann probability 

for second cluster members within this 2nd minima across these 8 successful molecules is 

shown in Figure 3.3H (dark blue bar 7, denoted INDIV(L)) to be 27%.  This is very similar to 

the Glide SP results shown above.  It is therefore reasonable to say in both instances with an 

average ~28% that with a middle of the road result when considering theoretical range of 

~10% to ~49% that the 2nd pose cluster minima is also likely to be populated, with the rest of 

the results in Figures 3.3H supporting this when clustering is done by the criteria in 3.2.10.2. 

The most likely scenario for involvement of a low-lying second cluster is when the ligand is 

pseudo-symmetrical and can bind in alternative modes with similar energies. 

 

3.3.4.6 Clustered EMODEL Rescoring:  Summary 

Figure 3.3I shows that EMODEL again gives very similar results to scoring with CVDW, and 

with the average Boltzmann probabilities for the 1st pose cluster minima understandably 

slightly higher as there are smaller improvements from considering the 2nd cluster minima 

compared with CVDW (Figure 3.3G).  However, there is still a reasonable probability (> 10%) 

that the 2nd pose cluster minima is also likely to be populated, as shown in Figure 3.3J.  
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Figure 3.4 The probability that a pose is within a discrete 1 angstrom class bin, for a given value of 

RMSD. The probability was calculated using variables for RMSD from the top-ranked CVDW poses.  
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3.3.5 Probability plots 

Given the improvements in the polarization results for CVDW compared to GSCORE, we 

have determined the probabilities of achieving an accuracy at a given RMSD class bin, as 

shown in Figure 3.4. This provides a different graphical representation of the probability data, 

other than a stacked percentage bar plot in Figure 3.1D. The results and cumulative 

probabilities ascertained from the area under the curve, otherwise remains the same. Figure 

3.4E shows the improvement in docking results through polarization of the ligands at the 

control (experimental geometry, denoted REFERENCE). The purple line shows that the 

polarized ligand and protein is likely to have a higher probability of having a low RMSD of ~1 

Å than the regular Glide results as it is higher than the blue line and more to the left. 

Similarly, polarization of ligand and protein is less likely to result in a large error of ~4 Å or 

more as the purple line is below the blue line at this point. Similar results are shown in Figure 

3.4B for polarization according to the geometry of the pose with the lowest RMSD. 

Polarization of the ligand alone (red line) gives rise to intermediate results in Figure 3.4B and 

3.4E. These two plots perhaps provide the strongest indication that polarization improves 

docking. Indeed, for example, Figure 3.4B shows the increased probability peaks at less or 

equal to one angstrom RMSD, which of course match the results of 3.3.5.1.1., where we see 

the incremental increase of probability as a decimal instead of a percentage from 0.473 for 

benchmark result, to 0.554 an ~8% improvement for ligand polarization, to 0.635 for ligand 

and protein polarization ~16% improvement for ligand and protein polarization respectively. 

Thus, the purple line (and the red line) show that polarization improves both the number and 

the quality of the good poses. 

 Figure 3.4 A, C and D show the effect of polarization when the correct answer is not 

known. The best results of these three are shown in Figure 3.4A, where the ligand and 

protein are polarized according to the best Glide pose. Again, the purple peak is higher than 

the blue peak at low RMSD class bins of 1 and 2 angstroms, and the higher RMSD class 

bins the remaining curve is within that of the blue line. In these results, ligand polarization 
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again gives rise to intermediate results when compared with Glide SP and ligand and protein 

polarization especially for the low RMSD class bins of 1 and 2 angstroms. 

 

In principle quantum mechanics offers the promise of improved results. When we look 

at the 1 angstrom class bin peaks in Figure 3.4C, they show that polarizing the ligand at the 

best QM/MM single point result (red line), shows an improvement over the blue line CVDW 

benchmark. This improvement is lost in polarizing it at the QM/MM optimized result in Figure 

3.4D. One possible interpretation of this is that the QM/MM optimization moves the ligand 

away from the experimental position, especially for poses with a high RMSD. This is 

presumably because GSCORE, through which the poses of Fig 3.4C were determined 

(although not ranked finally), includes solvent effects (in a parameterized way) while the 

QM/MM calculations ignore solvent effects. An alternative explanation is the imbalances in 

the QM/MM force field at the interface region. Polarization offers no change in the quality of 

the results over CVDW in Fig 3.4C, but polarization of the ligand only does offer a small 

improvement. See Appendix C for 0.5 angstrom RMSD binned probability plots. 

3.4 Discussion 

We have shown that polarization of fragments can offer in the region of a 10-15% 

improvement in docking results, as judged by the percentage of poses within a rather tight 

threshold of 0.5 or 1.0 Å. Clearly, such an improvement could make a significant difference to 

a fragment-based drug design program. These results are most apparent when the correct 

pose is known a priori, as under these circumstances the ligand and the protein can be 

polarized correctly, and polarizing the ligand and the protein gives better results than just 

polarizing the ligand. It does not seem to matter whether the ‘correct pose’ is the 

experimentally determined one or the docked pose with the lowest RMSD to this. Analysis of 

the results shows that the improvement is generally small and incremental, but the docking of 

some ligands did improve considerably (e.g., 2rdr; 2brt; 1s5n; 3ime (B); 1wcc; 1fv9), albeit 

the improvement was most marked when scored by CVDW scoring only.  



131 
 

The improvement is more apparent for the CVDW results as these are based on a 

molecular mechanics force field and so the electrostatics (and hence polarization effects) are 

not scaled down as much as they are in GSCORE; the improvement there continues up to 

the 2 Å threshold. The improvement is also apparent for EMODEL, which is a hybrid of 

GSCORE and CVDW, and so again the polarization effects are more apparent, as they are 

scaled down less than for GSCORE.  Analysis of the results that are correct to within a given 

threshold suggests that polarization is more relevant to improving the good results 

(thresholds 0.5 – 1 Å, and possible 2 Å) than it is for improving the less good results 

(threshold 4 Å). In previous work on polarization in docking, the improvement was not so 

marked, and could only be taken into account by also checking the number of similar poses 

returned (Illingworth et al., 2008b).  This is partly because electrostatics plays a more 

prominent role in docking than in Autodock.  

There are many factors that contribute towards accurate docking. The Glide program 

is well optimized and so generally gives good results. This makes it difficult to improve these 

results. Nevertheless, there are several deficiencies in the Glide method that arise primarily 

from the requirement to be fast. One of these is the problem of the rigid enzyme/receptor. In 

some ways, the electronic flexibility introduced by polarization may alleviate this problem. 

Indeed, in fully flexible docking with a rigid charge distribution, rotamer and backbone 

changes make take place to minimize electrostatic clashes that should otherwise be reduced 

by polarization (Illingworth et al., 2008b).  Hydration is another major problem in ligand 

design (Mason et al., 2013) that we will address in subsequent chapters. Crystal structure 

prediction competitions have shown that the semi-hard sphere repulsion of the standard 12-6 

potentials is a weakness and that softer exponential repulsion can give improved results 

(Misquitta et al., 2008). In the next chapter we address this problem by using Orient for rigid 

body docking. This method also enables us to address the deficiencies of the fixed charge 

distribution. 



132 
 

3.5 References 

BABER, J. C., THOMPSON, D. C., CROSS, J. B. & HUMBLET, C. 2009. GARD: a generally applicable 
replacement for RMSD. Journal of chemical information and modeling, 49, 1889-1900. 

BANKS, J. L., BEARD, H. S., CAO, Y., CHO, A. E., DAMM, W., FARID, R., FELTS, A. K., HALGREN, T. A., 
MAINZ, D. T. & MAPLE, J. R. 2005. Integrated modeling program, applied chemical theory 
(IMPACT). Journal of computational chemistry, 26, 1752-1780. 

BARILLARI, C., TAYLOR, J., VINER, R. & ESSEX, J. W. 2007. Classification of water molecules in protein 
binding sites. Journal of the American Chemical Society, 129, 2577-2587. 

BERMAN, H., HENRICK, K. & NAKAMURA, H. 2003. Announcing the worldwide protein data bank. 
Nature Structural & Molecular Biology, 10, 980-980. 

CHO, A. E., GUALLAR, V., BERNE, B. J. & FRIESNER, R. 2005. Importance of accurate charges in 
molecular docking: Quantum mechanical/molecular mechanical (QM/MM) approach. Journal 
of Computational Chemistry, 26, 915-931. 

COLE, J. C., MURRAY, C. W., NISSINK, J. W. M., TAYLOR, R. D. & TAYLOR, R. 2005. Comparing protein–
ligand docking programs is difficult. Proteins: Structure, Function, and Bioinformatics, 60, 
325-332. 

CONGREVE, M., CHESSARI, G., TISI, D. & WOODHEAD, A. J. 2008. Recent Developments in Fragment-
Based Drug Discovery. Journal of Medicinal Chemistry, 51, 3661-3680. 

ELDRIDGE, M. D., MURRAY, C. W., AUTON, T. R., PAOLINI, G. V. & MEE, R. P. 1997. Empirical scoring 
functions: I. The development of a fast empirical scoring function to estimate the binding 
affinity of ligands in receptor complexes. Journal of computer-aided molecular design, 11, 
425-445. 

EWING, T. J., MAKINO, S., SKILLMAN, A. G. & KUNTZ, I. D. 2001. DOCK 4.0: search strategies for 
automated molecular docking of flexible molecule databases. Journal of computer-aided 
molecular design, 15, 411-428. 

FAVIA, A. D., BOTTEGONI, G., NOBELI, I., BISIGNANO, P. & CAVALLI, A. 2011. SERAPhiC: A benchmark 
for in silico fragment-based drug design. Journal of chemical information and modeling, 51, 
2882-2896. 

FERENCZY, G. G. & REYNOLDS, C. A. 2001. Modeling polarization through induced atomic charges. 
The Journal of Physical Chemistry A, 105, 11470-11479. 

FRIESNER, R. A., BANKS, J. L., MURPHY, R. B., HALGREN, T. A., KLICIC, J. J., DANIEL, T., REPASKY, M. P., 
KNOLL, E. H., SHELLEY, M. & PERRY, J. K. 2004. Glide: a new approach for rapid, accurate 
docking and scoring. 1. Method and assessment of docking accuracy. Journal of medicinal 
chemistry, 47, 1739-1749. 

FRIESNER, R. A., MURPHY, R. B., REPASKY, M. P., FRYE, L. L., GREENWOOD, J. R., HALGREN, T. A., 
SANSCHAGRIN, P. C. & MAINZ, D. T. 2006. Extra precision glide: docking and scoring 
incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of 
medicinal chemistry, 49, 6177-6196. 

FRISCH, E., FRISCH, M. & TRUCKS, G. W. 2003. Gaussian 03, Gaussian. 
FRISCH, M., TRUCKS, G., SCHLEGEL, H., SCUSERIA, G., ROBB, M., CHEESEMAN, J., MONTGOMERY JR, 

J., VREVEN, T., KUDIN, K. & BURANT, J. 2004. GAUSSIAN 03 program. Gaussian Inc., 
Wallingford, CT. 

GOODING, S. R., WINN, P. J., MAURER, R. I., FERENCZY, G. G., MILLER, J. R., HARRIS, J. E., GRIFFITHS, 
D. V. & REYNOLDS, C. A. 2000. Fully polarizable QM/MM calculations: An application to the 
nonbonded iodine–oxygen interaction in dimethyl‐2‐iodobenzoylphosphonate. Journal of 
Computational Chemistry, 21, 478-482. 

HALGREN, T. A., MURPHY, R. B., FRIESNER, R. A., BEARD, H. S., FRYE, L. L., POLLARD, W. T. & BANKS, J. 
L. 2004. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors 
in database screening. Journal of medicinal chemistry, 47, 1750-1759. 



133 
 

HUNG, A. W., SILVESTRE, H. L., WEN, S., CIULLI, A., BLUNDELL, T. L. & ABELL, C. 2009. Application of 
fragment growing and fragment linking to the discovery of inhibitors of Mycobacterium 
tuberculosis pantothenate synthetase. Angewandte Chemie, 121, 8604-8608. 

ILLINGWORTH, C. J., MORRIS, G. M., PARKES, K. E., SNELL, C. R. & REYNOLDS, C. A. 2008a. Assessing 
the role of polarization in docking. The Journal of Physical Chemistry A, 112, 12157-12163. 

ILLINGWORTH, C. J. R., GOODING, S. R., WINN, P. J., JONES, G. A., FERENCZY, G. G. & REYNOLDS, C. A. 
2006. Classical polarization in hybrid QM/MM methods. J. Phys. Chem. A, 110, 6487-6497. 

ILLINGWORTH, C. J. R., MORRIS, G. M., PARKES, K. E. B., SNELL, C. R. & REYNOLDS, C. A. 2008b. 
Assessing the Role of Polarization in Docking. The Journal of Physical Chemistry A, 112, 
12157-12163. 

ILLINGWORTH, C. J. R., PARKES, K. E. B., SNELL, C. R., FERENCZY, G. R. G. & REYNOLDS, C. A. 2008c. 
Toward a Consistent Treatment of Polarization in Model QM/MM Calculations. The Journal of 
Physical Chemistry A, 112, 12151-12156. 

JORGENSEN, W. L. 2007. Special issue on polarization. J. Chem. Theory Comput, 3, 1877. 
JORGENSEN, W. L., MAXWELL, D. S. & TIRADO-RIVES, J. 1996. Development and testing of the OPLS 

all-atom force field on conformational energetics and properties of organic liquids. Journal of 
the American Chemical Society, 118, 11225-11236. 

KAMINSKI, G. A., FRIESNER, R. A., TIRADO-RIVES, J. & JORGENSEN, W. L. 2001. Evaluation and 
Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate 
Quantum Chemical Calculations on Peptides†. The Journal of Physical Chemistry B, 105, 
6474-6487. 

KAMINSKI, G. A., STERN, H. A., BERNE, B. J. & FRIESNER, R. A. 2003. Development of an Accurate and 
Robust Polarizable Molecular Mechanics Force Field from ab Initio Quantum Chemistry. The 
Journal of Physical Chemistry A, 108, 621-627. 

KOLB, P. & IRWIN, J. J. 2009. Docking screens: right for the right reasons? Current topics in medicinal 
chemistry, 9, 755-770. 

KONTOYIANNI, M., MCCLELLAN, L. M. & SOKOL, G. S. 2003. Evaluation of Docking Performance:  
Comparative Data on Docking Algorithms. Journal of medicinal chemistry, 47, 558-565. 

KROEMER, R. T., VULPETTI, A., MCDONALD, J. J., ROHRER, D. C., TROSSET, J.-Y., GIORDANETTO, F., 
COTESTA, S., MCMARTIN, C., KIHLÉN, M. & STOUTEN, P. F. 2004. Assessment of docking 
poses: interactions-based accuracy classification (IBAC) versus crystal structure deviations. 
Journal of chemical information and computer sciences, 44, 871-881. 

MASON, J., BORTOLATO, A., WEISS, D., DEFLORIAN, F., TEHAN, B. & MARSHALL, F. 2013. High end 
GPCR design: crafted ligand design and druggability analysis using protein structure, lipophilic 
hotspots and explicit water networks. Silico Pharmacol, 1, 23. 

MISQUITTA, A. J., WELCH, G. W., STONE, A. J. & PRICE, S. L. 2008. A first principles prediction of the 
crystal structure of. Chemical Physics Letters, 456, 105-109. 

MURPHY, R. B., BEACHY, M. D., FRIESNER, R. A. & RINGNALDA, M. N. 1995. Pseudospectral localized 
Mo/ller–Plesset methods: Theory and calculation of conformational energies. The Journal of 
Chemical Physics, 103, 1481-1490. 

MURPHY, R. B., PHILIPP, D. M. & FRIESNER, R. A. 2000. A mixed quantum mechanics/molecular 
mechanics (QM/MM) method for large-scale modeling of chemistry in protein environments. 
Journal of Computational Chemistry, 21, 1442-1457. 

OLSSON, M. H., SØNDERGAARD, C. R., ROSTKOWSKI, M. & JENSEN, J. H. 2011. PROPKA3: consistent 
treatment of internal and surface residues in empirical p K a predictions. Journal of Chemical 
Theory and Computation, 7, 525-537. 

RIZZO, R. C. & JORGENSEN, W. L. 1999. OPLS all-atom model for amines: resolution of the amine 
hydration problem. Journal of the American Chemical Society, 121, 4827-4836. 

SÁNDOR, M., KISS, R. & KESERŰ, G. R. M. 2010. Virtual fragment docking by Glide: A validation study 
on 190 protein− fragment complexes. Journal of chemical information and modeling, 50, 
1165-1172. 



134 
 

STONE, A. J. 2005. Distributed Multipole Analysis of Gaussian wavefunctions GDMA version 2.2. 02. 
WANG, J., WANG, W., KOLLMAN, P. A. & CASE, D. A. 2001. Antechamber: an accessory software 

package for molecular mechanical calculations. J. Am. Chem. Soc, 222, U403. 
WARREN, G. L., ANDREWS, C. W., CAPELLI, A. M., CLARKE, B., LALONDE, J., LAMBERT, M. H., 

LINDVALL, M., NEVINS, N., SEMUS, S. F. & SENGER, S. 2006. A critical assessment of docking 
programs and scoring functions. Journal of medicinal chemistry, 49, 5912-5931. 

WEININGER, D. 1988. SMILES, a chemical language and information system. 1. Introduction to 
methodology and encoding rules. Journal of chemical information and computer sciences, 28, 
31-36. 

WINN, P. J., FERENCZY, G. G. & REYNOLDS, C. A. 1999. Towards improved force fields: III. Polarization 
through modified atomic charges. Journal of computational chemistry, 20, 704-712. 

YUSUF, D., DAVIS, A. M., KLEYWEGT, G. J. & SCHMITT, S. 2008. An alternative method for the 
evaluation of docking performance: RSR vs RMSD. Journal of chemical information and 
modeling, 48, 1411-1422. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



135 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



136 
 

4 Assessing the use of distributed multipoles and 

exponential repulsion in docking for FBDD 

4.1 Introduction 

In chapter 3 we saw that ligand docking using Glide can achieve reasonably high success 

rates of at best ~83%, as judged by the proportion of ligands where the RMSD of the top 

pose is < 2 Å. However, lack of polarization is not the only weakness in standard docking 

methods and so to increase docking success further we proposed that it is also important to 

address some of the other weaknesses. Solvation is clearly a major issue that is not 

considered fully in Glide and other similar docking programs, and we will address this to 

some degree in Chapter 5. However, here we propose to address two major weaknesses of 

traditional molecular mechanics (MM) force fields. 

 The first is the electrostatic element of the force field. Atomic charges are inherently 

isotropic and so can fail to describe the anisotropic nature of intermolecular interactions 

around an atom, e.g., as seen in halogen bonding (Metrangolo et al., 2005), where a linear 

interaction is seen between a carbon-halogen bond and an oxygen atom, and the anisotropic 

distribution of hydrogen bonds around a carbonyl group (Singh and Thornton, 1993).  One 

way to go beyond the point charge distribution is to use quantum mechanics (QM) in QM/MM 

methods where the ligand is treated by QM and the enzyme target by MM (Lonsdale and 

Mulholland, 2014). This effectively improves the description of the ligand, but not the contact 

residues in the protein – unless key residues are also included in the QM region. Another 

way to go beyond the point charge approximation is to include a multipole series (i.e. charge, 

dipole, quadruple, hexadecapole...) on each atom, either through a distributed multipole 

analysis (Stone, 1981) or through effective multipoles (Ferenczy et al., 1997), for example as 

implemented in the Amoeba force field (Ponder and Case, 2003). The treatment of flexible 

molecules using a DMA is not well developed, except perhaps in the Amoeba force field, as 

implemented in Tinker (Ponder, 2004), but this is not a major problem for preliminary studies 

as a large proportion of fragments are rigid. Consequently, we propose to address the 



137 
 

docking of fragments using Orient, which was specifically developed for DMA calculations, 

since there is expertise in using Orient in the lab. 

 The second weakness is the r-12 repulsion term, which was introduced because of its 

ease of calculation, as it is trivially related to the r-6 dispersion term. This repulsion is rather 

hard and is not too dissimilar to a hard-sphere repulsion. An exponential repulsion term is 

more realistic (Buckingham and Corner, 1947, Cieplak et al., 2009), and can be readily 

incorporated into Orient. Consequently, we propose to use Orient to dock rigid ligands to 

their target and compare the results to Glide and QM/MM calculations. Where the ligand is 

not rigid, it will nevertheless be held in its experimental conformation. 

4.2 Methods 

4.2.1 Method Specific Technicalities 

The protein structure PDB files were imported into Glide and written as single point truncated 

Newtonian compressed IMPACT files.  The verbose pparam command was added to the 

IMPACT input file (next to species command), to create an IMPACT parameter file, that was 

parameterized as OPLS 2005 (Banks et al., 2005).  To maintain consistency in atom 

numbering between the hydrogens and other atom types in the IMPACT parameter file and 

exported PDB co-ordinates, hydrogens and bond orders were left by prep-wizard to be 

assigned by IMPACT 5.8, see section 3.2.1 and 3.2.2, but waters were removed, (and 

disulphide bridges added) in Maestro 9.3. Then after IMPACT 5.8 was run, and file 

uncompressed, the maestro file was exported back into maestro 9.3 and exported again in 

PDB, and XYZ file formats for protein and ~15 ligand pose files from Glide SP 5.8 (Friesner 

et al., 2004) respectively. 

Perl scripting was applied to acquire the shell of neighbouring residues with an atom 

within 4 Å of the ligand, then capping was applied at the C-terminus and N-terminus of the 

amino acid residues that were treated as continuous if their primary ‘backbone’ sequence 

was in within the RMSD range.  This capping (replacing -NHR at the N-terminus, -COR at the 
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C-terminus and the side chain with H) was done by altering the Euclidean distances for the 

three atoms attached to the tetrahedral backbone chiral (unless glycine) C atom beyond the 

amide bonds to 1.09 angstroms e.g., hydrogen bond lengths, with cysteine bridge forming 

atoms also being capped at the 𝐶𝛽 atoms in the same fashion, see Figure 4.1.  

 

Figure 4.1 An example of where protein caps were applied for ab initio calculations. Here, a Glycine-

Serine-Valine tri-peptide was capped at C𝛼 atoms, circled in green, to calculate the Serine residue in 

isolation. 

This was achievable as the pdb atom types exported by glide, were standardized 

(although the perl script required slightly different pdb atom names for replacing rules for 

Glycine and Proline).  Gaussian accepts input files that are in Cartesian XYZ file format with 

formal charges and some input specifications, so once the capping of the pdb file was 

achieved, it was then converted to xyz format, with the net charge being calculated from the 

sum of the formal charge column conveniently provided by Maestro 9.3.  That is unless ions 

were involved where grouping was needed to allow for charge transfer and then the net 

charges of the neighbourhood residues were also taken into account, which were grouped to 

within 3 Å RMSD of the ion.  This grouping provided neighbouring residues, allowing the ion 

to realistically spread it charge. Once the net charge of the Gaussian file was accurate and 
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sufficient residues included, in either isolation or as grouped molecules accordingly, then  the 

Gaussian calculations were carried out using the Becke-3-Lee-Yang-Parr – B3LYP (Lee et 

al., 1988, Becke, 1993) DFT method (Hohenberg and Kohn, 1964) and a Pople 6-31G* basis 

set (Hehre et al., 1972), which was consistent with other parts of the thesis where the 

QM/MM energy calculations prepared in the Maestro 9.3 using the QSITE module to call on 

JAGUAR 7.9 also used these settings (see 3.2.9 for more detail). The Gaussian wave 

functions were then used within the GDMA 2.2 program (Stone, 2005) to create a rank 4 

atom-based distributed multipole series., Finally, for the neighbouring residues, the caps 

were removed (including for cysteine bridges) and the point charges of the cap residues 

belonging to the protein were added in equal proportion to the rest of the residue or group of 

backbone attached residues; this was carried out through a perl script. 

Meanwhile, the atom typing parameters in the IMPACT file were read, and Cartesian 

co-ordinates from the pdb file were used to parameterize and convert to an ORIENT 4.6 

(Stone et al., 2006) file template. ORIENT accepts user defined potentials, and was designed 

to perform DMA minimizations; the Lennard Jones potential (Jones, 1924) was initially used, 

then additionally the Williams 1999 Exp6 potential (Williams, 1999) was created using the 

parameters from (Williams, 2001). Simple isotropic polarization without charge flow was 

adding later to fit in with our polarization scheme using largely literature polarizabilities (Miller 

and Savchik, 1979). However Orient is capable of handling tensor polarizabilities with charge 

flow (Stone et al., 2006). 

After GDMA 2.2 minimization, the residue groups were uncapped, with the point 

charges spread from the caps to the remaining atoms in a ‘quick fix’ to avoid using 

complicated Langragian multipliers.  The now uncapped Rank 4 DMA (hexadecapole) atoms, 

replaced the corresponding atoms in the ORIENT template file with ~matching Cartesian co-

ordinates.  Finally, the ~15 Glide ligand pose XYZ files were separately run through 

Gaussian 03 and GDMA 2.2 (no capping required), before being inserted into the template 

file. Then the Orient program was run for a geometry optimization using eigenvector 
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following, with the final optimized XYZ co-ordinates being re-inserted into a template maestro 

file, for perl scripted RMSD geometry analysis.  However, as the enzyme was moved in 

orient, a superimposition matrix using Jacobian rules and user defined symmetry awareness 

rules was incorporated (using in-house code).  The results (energies, geometries) were 

extracted from the Orient output file for further analysis; the results were plotted in R. 

4.3 Results and Discussion 

4.3.1 Analysis of top ranked poses 

4.3.1.1 Hybrid QM/MM and DMA Benchmarks 

 

As discussed in 3.3.1.1, Glide SP flexible ligand docking is usually able to identify the 

experimental pose amongst the full set of returned poses, whether as the top ranked pose, or 

as a lower ranked pose.  Additionally, as discussed in section 2.2.4, energy minimization 

methods are usually only able to explore local minima.  To take advantage of the Glide’s 

fuller coverage of the pose space, we have taken the full set of ~15 returned poses from 

Glide SP and implemented various QM/MM based energy minimizations to provide a 

benchmark dataset.  A primary reason for this was to explore the efficacy of using a DMA 

and/or a softer exponential exchange repulsion term within high quality classical energy 

calculations.  To make an effective quality comparison we have used high quality QM/MM 

benchmark results, namely results obtained from the QSITE module within the Jaguar QM 

and Impact MM environments (referred to here as QM/MM).  To establish a control in Figure 

4.3A (first bar and second bars), we consider the lowest energy pose according to QM/MM 

taken at (i) the single point geometry (ii) the QM/MM optimized geometry; the figure shows 

that these poses are also the ones with the smallest RMSD to the experimental pose in (i) 

44% (grey bar 1, denoted Jaguar (S)) and (ii) 38% (grey bar 2, denoted Jaguar(O)) of the 74 

cases.  Using the same clustering criteria as in 3.2.10.2, when we set the criteria instead that 

the pose with the lowest RMSD to experiment should also be a member of the first pose 
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cluster, then the success rate increased slightly to (i) 45% (white bar 1, denoted Jaguar (S)) 

and (ii) 41% (white bar 2, denoted Jaguar (O)) respectively.  These four QM/MM energy 

results can be considered as benchmarks by which to judge the implementation of DMA 

and/or a softer exponential exchange repulsion term. As an alternative benchmark, the Glide 

SP results (38% for the lowest energy pose) are given as the bar 10 at the end of Figure 

4.3A (c.f. Figure 3.1A). 

 However, before comparing these results to other methods, it is instructive to 

compare the single point QM/MM results to the optimized results. All figures 4.2 to 4.6 in 

these results show, that the single point results are superior to the optimized results; this is 

particular evident from the probabilities as demonstrated below in Figure 4.2, with further 

examples in Figures 4.5 and 4.6.  This observation is somewhat counter-intuitive, but 

presumably arises because of the lack of solvation treatment in these simple QM/MM 

calculations, meaning that the optimization may in some cases move the pose further away 

from experiment. On the positive side, single point calculations are easier and faster to carry 

out, and so this means that it is more feasible to apply QM/MM calculations to fragment 

screening. 

 

Figure 4.2 RMSD across the 74 molecules top-ranked poses as a binned (1 angstrom RMSD) 

probability plot for the QM/MM calculations. 



142 
 

4.3.1.2 Single Point Calculations 

The Orient based single point energy calculations under consideration include the use of: (i) 

DMA with a Lennard Jones potential; (ii) DMA with an Exponential 6 Williams potential; (iii) 

DMA with a Lennard Jones potential and explicit ligand polarization (iv) DMA with an 

Exponential 6 Williams potential and explicit ligand polarization.  Figure 4.3A shows that the 

lowest single point energy poses are also the ones with the smallest RMSD to experiment in 

(i) 36% (grey bar 3, denoted LJ (S)), (ii) 34% (grey bar 7, denoted EXP6 (S)), (iii) 32% (grey 

bar 5, denoted LJ (LS)) and (iv) 34 % (grey bar 9, denoted EXP6 (LS)) of the cases 

respectively.  When we set the criteria instead that the pose with the lowest RMSD to 

experiment should also be a member of the first pose cluster, then success rate increases by 

2-8% to (i) 41% (white bar 3, denoted LJ (S)), (ii) 42% (white bar 7, denoted EXP6 (S)), (iii) 

34% (white bar 5, denoted LJ (LS)) and (iv) 39 % (white bar 9, denoted EXP6 (LS)) 

respectively. 

When we assess whether the lowest single point energy pose also has the lowest 

RMSD to experiment, the benchmark result from using Jaguar to calculate the QM region 

single point energy has the highest success rate at 44% (Figure 4.3A, bar 1 and bar 2).  This 

is about an 8% improvement on the DMA with a Lennard Jones potential.  This is also true 

when we consider the members of the lowest pose cluster by the same criteria where the 

success rate is 45% (Jaguar, single point calculations, Fig 4.3A, 1st bar).  Thus, it appears 

that DMA offers no improvement over QM/MM here, but is able to give comparable results 

especially when using clustering with either potential in cases (i) and (ii) (Figure 4.3A, bar 3 

denoted LJ (S) and bar 7, denoted EXP6 (S)) where there is 41-42% success rate.  

Additionally, the explicit ligand polarization also offers no improvement to the DMA based 

Orient calculations but rather makes the results worse, possibly indicating that polarization is 

not implemented in a balanced way. 
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4.3.1.3 Optimized Energy Calculations  

The Orient based optimized energy calculations as above in 4.3.1.2 include the use of the 

same four energy schemes as in the previous section ((i) DMA with a Lennard Jones 

potential; (ii) DMA with an Exponential 6 Williams potential; (iii) DMA with a Lennard Jones 

potential (the best DMA result) and explicit ligand polarization (iv) DMA with an Exponential 6 

Williams potential and explicit ligand polarization).  Figure 4.3A again shows that the lowest 

optimized energy poses are also the ones with the smallest RMSD to experiment in (i) 35% 

(grey bar 4, denoted LS (O)), (ii) 33% (grey bar 8, denoted EXP6 (O)), (iii) 29% (grey bar 6, 

denoted LJ (LO)) and (iv) 34 % (grey bar 10, denoted EXP6 (LO)) of the cases respectively.  

When we set the criteria that the pose with the lowest RMSD to experiment should also be a 

member of the first pose cluster, then success rate increases to (i) 38% (white bar 4, denoted 

LS (O)), (ii) 45% (white bar 8, denoted EXP6 (O)), (iii) 31% (white bar 6, denoted LJ(LO)) 

and (iv) 43% (white bar 10, denoted EXP6 (LO)) respectively. 

The general conclusions to emerge from Figure 4.3A are that optimization of the 

poses, either by QM/MM or by DMA confers no advantage. Moreover, inclusion of ligand 

polarization within the DMA treatment by Orient also conveys no advantage. As discussed in 

Chapter 3, this may be due to the lack of treatment of solvent in these approaches, 

 

4.3.1.4 Assessment of DMA minimized geometries  

After the results of Figure 4.3A showed largely no improvement over QM/MM or results in 

chapter 3, we now investigate whether the Glide geometries that had undergone energy 

minimization with DMA, offer any improvement over the standard Glide geometries.  This 

idea is applied to the Glide scoring methods namely GSCORE and CVDW, using the ‘score 

in place’ option. To establish a performance benchmark in Figure 4.3C, we consider the 1st 

Ranked or lowest energy Glide pose (docked according to GSCORE) using flexible ligand 

docking and scored by (i) GSCORE and (ii) CVDW.  The figure shows that these poses are 

also the ones with the smallest RMSD to the experimental pose in (i) 37% (grey bar 1, 
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denoted Glide(GS)) and (ii) 39% (grey bar 4, denoted Glide(CVDW)of the 74 cases.  Using 

the same clustering criteria as in 3.2.10.2, when we set the criteria that the pose with the 

lowest RMSD to experiment should also be a member of the first pose cluster, for CVDW 

only then the success rate increase to 46% (white bar 4, denoted Glide(CVDW)). So for 

GSCORE, the benchmark success was 37% and for CVDW 39%, then 46% when the 

members of the first pose cluster were included, using the ‘score in place’ option. The Orient-

based optimized geometries (as in 4.3.1.3) from (i) DMA with a Lennard Jones potential; and 

(ii) DMA with an Exponential 6 Williams potential were scored using GSCORE; both gave 

~39% success rate in identifying the top ranking pose as also the lowest RMSD to 

experiment in the 74 cases.  When CVDW was used instead for scoring, the success rates 

were (i) 46% (grey bar 6, denoted LJ (CVDW)) and (ii) 43% (grey bar 6, denoted 

EXP6(CVDW)) respectively. The addition of considering the members of the first pose cluster 

as also the lowest RMSD to experimental pose saw the success rates rise to (i) 51% and (ii) 

52 % for the 74 cases respectively.  So, there was a ~2% improvement using GSCORE for 

both DMA-minimized geometries, and up to ~7% (averaging ~5.5%) improvement using 

CVDW scoring for the DMA-minimized geometry (DMA and a Lennard Jones potential).  

Also, up to ~6% improvement over CVDW scoring (averaging again ~5.5%) was seen when 

considering members of the first pose cluster as also the lowest RMSD to experimental pose, 

indicating an overall Glide scoring preference for the DMA-minimized Geometries. 

  It is interesting therefore that although Glide is an excellent method, improved results 

can be obtained by optimizing the geometry and re-scoring with Glide – this offers the 

potential of determining the geometry using the more sophisticated DMA while retaining the 

advantages of the scoring within Glide that is able to include hydration effects. The fact that 

the impact (OPLS) Leonard Jones potentials are better than the exponential repulsion is 

contrary to accepted knowledge, but this probably arises because the OPLS force field is 

well parameterized while the exponential repulsion used is possibly not so well 

parameterized, and not so well balanced within the force field as a whole. 
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Figure 4.3 Assessment of Docking success using DMA. In A and B, Jaguar indicates - 
QM/MM energy calculations are done in Jaguar. DMA methods are indicated by (i) LJ and (ii) 
EXP6, where (i) and (ii) refer the specific type of exchange repulsion used for modelling van 
der Waals interactions. Here, Single point calculation (S) and Optimized calculation (O) 
denote the energy used for scoring, and (L) indicates that isotropic ligand polarization has 
been included using Orient.  In C and D, Glide refers to Glide SP (see Chapter 3), LJ and 
EXP6 again refer to treatment of van der Waals forces in DMA methods, (GS) indicates 
GlideScore scoring was used, and (CVDW) indicates that the Glide MM Force-field only was 
used for ‘score in place’ of the optimized Orient (DMA) geometries. In plots A and C, the bars 
show the percentage (over 74 molecules) where the highest ranked/lowest scoring Pose 
(Grey), Pose cluster (White**) is also the lowest available pose.  In B and D, the bars show 
the percentage (over 74* molecules) where highest ranked/lowest scoring pose is 
successfully docked at given discrete cut-offs: <0.5 RMSD (Green); <1 RMSD (Yellow); <2 
RMSD (Orange); <4 RMSD (Red). * Isotropic ligand polarization was attempted in Orient for 
only 68 and 72 molecules for Exp6 and LJ respectively Exp6 due to convergence/ 
implementation issues.  
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4.3.2 RMSD analysis 

In sections 4.3.1 and Figure 4.3A and 4.3C we considered the proportion of cases where the 

top ranked pose was also the one with the lowest RMSD to the experimental structure. 

However, in some of these cases the lowest RMSD, as in 3.3.3, might still be rather high. In 

Figures 4.3B and 4.3D we consider the proportion of molecules where the RMSD is below 

0.5 Å (green); RMSD of ≤ 1 Å (yellow); RMSD of ≤ 2 Å (orange); RMSD of ≤ 4 Å(dark red) 

respectively. 

4.3.3 QM/MM Benchmark Results 

In Figure 4.3B (bar 1, denoted Jaguar (S)) we consider the lowest single point energy 

QM/MM pose; the figure shows that this pose has a distance measured by RMSD from the 

experimental pose of: (i) ≤ 0.5 Å; (ii) ≤ 1 Å; (iii) ≤ 2 Å; (iv) ≤ 4 Å in (i) 38%, (ii) 46%, (iii) 59% 

and (iv) 74% of the 74 cases respectively. When instead we consider the lowest optimized 

energy QM/MM pose, Figure 4.3B (bar 2, denoted Jaguar (O)) shows that this pose has an 

RMSD from experiment of: (i) ≤ 0.5 Å; (ii) ≤ 1 Å; (iii) ≤ 2 Å; (iv) ≤ 4 Å in (i) 35%, (ii) 38%, (iii) 

53% and (iv) 67% of the 74 cases respectively. It is clear that QM/MM optimization reduces 

the proportion of successful docking by 3-8%, probably because Glide has a more 

appropriate approximation to hydration and entropy than QM/MM as implemented in QSITE 

and the optimization gives worse results because it is carried out in the absence of a 

hydration treatment. These benchmark results can be used as a guideline to see if energy 

calculations that include DMA can improve the docking results.  

4.3.3.1 RMSD of ≤ 0.5 Å from experimental geometry (green bars) 

The Orient based single point energy calculations include the same 4 energy functions as in 

section 4.3.1.2, (i) DMA with a Lennard Jones potential (bar 3, denoted LS (S)); (ii) DMA with 

an Exponential 6 Williams potential (bar 7, denoted EXP6 (S)); (iii) DMA with a Lennard 

Jones potential and explicit ligand polarization (bar 5, denoted LJ (LS)); and (iv) DMA with an 

Exponential 6 Williams potential and explicit ligand polarization (bar 9, denoted EXP6 (LS)).  
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Figure 4.3B shows that the lowest single point energy poses have an RMSD of ≤ 0.5 Å in (i) 

31%, (ii) 27%, (iii) 30% and (iv) 26% of the cases respectively.   

The Orient based optimized energy calculations again include the use of: (i) DMA 

with a Lennard Jones potential (bar 4, denoted LJ (O)); (ii) DMA with an Exponential 6 

Williams potential (bar 8, denoted EXP6 (O)); (iii) DMA with a Lennard Jones potential and 

explicit ligand polarization (bar 6, denoted LS (LO)); and (iv) DMA with an Exponential 6 

Williams potential and explicit ligand polarization (bar 10, denoted EXP6 (LO)).  Figure 4.3B 

shows that the lowest optimized energy poses have an RMSD of ≤ 0.5 Å in (i) 30%, (ii) also 

30%, (iii) 24% and (iv) 28% of the cases respectively.   

When compared with the QM/MM benchmarks with an RMSD threshold of ≤ 0.5 Å, 

the (i) lowest single point energy and the (ii) lowest optimized energy are within this threshold 

in (i) 38% (bar 1, denoted Jaguar (S)) and (ii) 35% (bar 2, denoted Jaguar (O)) respectively, 

the Orient calculations with a DMA and explicit polarization, offer no improvements over the 

QM/MM results, and indeed deliver worse results. Similar results are seen at the 1.0 Å 

threshold (yellow bars in Fig 4.3B, not discussed) 

While we tend to see a reduction in performance under optimization, this does not 

arise when exponential repulsion is used, possibly this is related to the softer repulsion 

potentials, but further investigation is likely to be difficult because the exponential force fields 

are probably not well balanced. 

4.3.3.2 RMSD of ≤ 2 Å from experimental geometry (orange bars) 

The Orient calculations with DMA only offer improvements over QM/MM for both 

single point and optimized calculations when DMA is implemented with a Lennard Jones 

potential without explicit ligand polarization.  Specifically, there is a ~2% improvement for the 

single point calculation (bar 3, denoted LS (S)) and a ~4% improvement for the optimized 

calculation (bar 4, denoted LJ (O)) relative to QM/MM.  The Orient calculations with explicit 

ligand polarization again are worse than the results without polarization. 
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4.3.3.3 RMSD of ≤ 4 Å from experimental geometry (dark red bars) 

The 4 Å cut-off is rather crude and generally just measures whether the ligand is in the 

correct binding site. The Orient calculations with DMA only offer improvements for the single 

point calculations when DMA is implemented with a Lennard Jones potential without explicit 

ligand polarization, where there is ~2% improvement. When the Orient calculations with DMA 

are optimized the lowest energies for all methods improve on docking success over QM/MM 

at this threshold.  The explicit ligand polarization again however offers no improvement or 

makes the results worse for Orient calculations with DMA.   

 

Assessment of DMA energy minimized geometries  

Figure 4.3D shows whether the Glide geometries that have undergone energy minimization 

with DMA offer any improvement in docking success over the standard Glide geometries if 

they are rescored.  This idea is applied to the Glide scoring methods namely GSCORE and 

CVDW, using the ‘score in place’ option. The benchmark results as in 4.3.1.4 are the 1st 

Ranked or lowest energy Glide pose (docked according to GSCORE) using flexible ligand 

docking and scored by GSCORE and CVDW.   

Figure 4.3D (bar 1, denoted Glide(GS)) for the 1st Ranked GSCORE pose, shows that this 

pose has a distance measured by RMSD from the experimental pose of: (i) ≤ 0.5 Å; (ii) ≤ 1 Å; 

(iii) ≤ 2 Å; (iv) ≤ 4 Å in (i) 32%, (ii) 48%, (iii) 74% and (iv) 88% respectively of the 74 cases 

respectively.  

When we consider the lowest energy CVDW pose, Figure 4.3D (bar 4) shows a pose 

distance measured by RMSD from the experimental pose of: (i) ≤ 0.5 Å; (ii) ≤ 1 Å; (iii) ≤ 2 Å; 

(iv) ≤ 4 Å in (i) 37%, (ii) 47%, (iii) 68% and (iv) 84% of the 74 cases respectively. These 

benchmark results can again be used as a guideline to see if energy calculations that include 

DMA can improve docking.  
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4.3.3.4 Assessment RMSD from the experimental geometry  

Figure 4.3D shows that the Orient - optimized geometries, optimized using DMA with 

a Lennard Jones Potential, offered slight improvements of ~3% for GSCORE scoring (bar 2, 

green denoted LJ(GS)) and ~1% for CVDW scoring (bar 5, green denoted LJ(CVDW)). At the 

1.0 Å threshold, only CVDW scoring with both the Orient based optimized energy geometries 

(with DMA) offered some improvements in docking success at this threshold with at best 

~3% improvement when the Exponential 6 Williams potential was used (bar 6, yellow, 

denoted EXP6 (CVDW), and ~1% improvement for the Lennard Jones potential geometry 

(bar 5, yellow, denoted LJ (CVDW). At the 2.0 Å threshold, only CVDW scoring with both the 

Orient based optimized energy geometries (with DMA) offers any comparability in docking 

success (bar 5, orange, denoted LJ (CVDW). All methods give similar results at the 4.0 Å 

threshold. The DMA results in Figure 4.3D are not hugely different to the non-DMA results, 

with some indication of improved results at lower thresholds, which is consistent with the 

ability of DMAs to treat anisotropic interactions. Given that the DMA-based docking methods 

have not been optimized in anyway, this is a positive result. 

4.3.4 Hydrogen bond analysis. 

            In Table 4.1 below, we decided just to consider the 32 cases where RMSD analysis 

produces a pose below two angstroms for Glide SP (GSCORE) and both DMA methods. To 

see if the RMSD when the answer is approximately correct, improves with DMA-based 

docking methods.  However, this analysis revealed no notable improvements in performance 

across the methods, with Glide and DMA with a Lennard Jones potential producing 

marginally better results than DMA with a William Exp6 potential.  Therefore, we also looked 

at the number of hydrogen bonds between the ligand and protein, using the molecular 

graphic program - visual molecular dynamics (vmd) (Humphrey et al., 1996) and its hbond 

analysis tool (Caddigan et al., 2003).  

In this first investigation of the quality of the hydrogen bonds, we looked at the lowest 

energy/top ranking poses for Glide SP (GSCORE), and both DMA methods.  We set two 
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hydrogen bond thresholds for angle and distance, one tighter than the other.  The angle 

thresholds were set at 20o and 30o, from the ideal hydrogen bond angles. The 20o angle was 

default, and the 30o was recommended ‘looser criteria’ in the vmd literature (Caddigan et al., 

2003).  The distance thresholds from donor atom D with a hydrogen bond attached to it, 

(e.g., D…H) were set at 2.8 Å and 3.2 Å from the acceptor atom respectively.  The distances 

were arbitrarily set at 0.2 Å either side of the default distance for hydrogen bond counting of 

3 Å.  The results of the numerical hydrogen bond analysis are shown in Table 4.2. 

Table 4.1 Molecules with RMSD <2 A for both Glide SP and both DMA Methods.   

PDB RMSD Å 

Glide SP 

RMSD Å 

LJ 

RMSD Å 

Williams 

∆RMSD Å 
LJ 

∆RMSD Å 
Williams 

1eqg 1.1 1.3 1.3 0.2 0.2 

1s39 0.2 0.1 0.4 -0.1 0.2 

1yz3 0.4 0.3 0.2 -0.1 -0.2 

2adu 1.5 1.2 1.4 -0.3 -0.1 

3imc A 0.2 0.2 0.2 0 0 

3imc B 0.2 0.2 0.3 0 0.1 

3img A BZ3 0.1 0.2 0.1 0.1 0 

3img B BZ3 0.2 0.1 0.2 -0.1 0 

1f5f 0.2 0.2 0.2 0 0 

1f8e 1 1.1 1.1 0.1 0.1 

1m3u 0.9 1.7 0.3 0.8 -0.6 

1mlw 1.3 1.8 1.6 0.5 0.3 

1ofz 1313 0.4 0.3 0.2 -0.1 -0.2 

1ofz 1314 0.2 0.1 0.2 -0.1 0 

1pwm 0.2 0.3 0.3 0.1 0.1 

1r5y 0.1 0.1 0.2 0 0.1 

1sqn 0.1 0.1 0.1 0 0 

1uwc 0.2 0.1 0.7 -0.1 0.5 

1w1a 0.6 0.7 0.7 0.1 0.1 

1xfg 0.6 0.6 0.6 0 0 

1ynh 0.6 0.6 0.8 0 0.2 

2b0m 0.6 1.6 1.2 1 0.6 

2bkx 1.5 2.1 2.1 0.6 0.6 

2bl9 0.2 0.1 0.1 -0.1 -0.1 

2f6x 1.7 1.8 1.5 0.1 -0.2 

2fdv 1.3 0.6 1.2 -0.7 -0.1 

2ff2 0.2 0.2 0.1 0 -0.1 

2gvv 0.8 0.5 0.5 -0.3 -0.3 

2i5x 1.5 1.3 0.3 -0.2 -1.2 

2iba 0.5 0.8 0.6 0.3 0.1 
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2j5s 1.4 0.3 0.4 -1.1 -1 

3c0z 0.9 1 1.9 0.1 1 

𝝁RMSD 0.65 0.68 0.66   

TOTAL 

BEST 

16 16 13   

The table shows individual molecule RMSD Å columns 2 to 4, and mean 𝝁RMSD Å from these results. Bold in 

these three columns indicates the lowest (or matching lowest) RMSD for that molecule.  TOTAL BEST is a sum 

of these lowest RMSDs by molecule for each methods lowest energy/top ranking pose from Glide SP and the 

DMA methods.  LJ is DMA with Lennard Jones potential, and Williams is DMA with the Williams potential.  

The last two columns show the change in RMSD (∆RMSD Å), compared to Glide SP (GSCORE) by DMA 

method. For these last two columns bold indicates an improvement in RMSD >1 Å, bold red indicates a 

refractory case where Glide shows an improvement over DMA method >1 Å.  Capital letters e.g., A or B after 

the pdb code in first column indicate the chain, also BZ3, 1313, and 1314 refer to specific ligands where more 

than one ligand was present in the pdb and used in our dataset.  

Table 4.2 Numerical Hydrogen Bond Analysis using vmd hbond plug in and the cut-off criteria: 

(1) Acceptor atom distance from donor atom with hydrogen bond attached, and (2) angle within 

threshold from ideal hydrogen bond.  

PDB 30o & 3.2Å 

Glide SP 

20o & 2.8Å 

Glide SP 

30o & 3.2Å 

LJ 

20o & 2.8Å 

LJ 

30o & 3.2Å 

Williams 

20o & 2.8Å 

Williams 

1eqg 3 3 3 3 3 1 

1s39 4 0 4 1 3 2 

1yz3 1 0 1 0 1 0 

2adu 0 0 0 0 0 0 

3imc A 1 0 1 0 1 0 

3imc B 2 0 1 0 1 0 

3img A BZ3 2 0 2 0 2 0 

3img B BZ3 3 0 2 0 1 0 

1f5f 1 0 2 0 2 0 

1f8e 6 2 6 2 4 1 

1m3u 3 1 2 1 3 2 

1mlw 1 0 1 1 1 0 

1ofz_1313 5 2 5 2 5 1 

1ofz_1314 3 0 3 0 3 0 

1pwm 2 0 2 0 2 0 

1r5y 6 1 5 1 5 0 

1sqn 0 0 0 0 0 0 

1uwc 2 0 3 0 0 0 

1w1a 4 1 5 1 5 2 

1xfg 6 2 7 3 8 1 

1ynh 7 3 8 3 9 2 

2b0m 3 1 2 2 2 1 
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2bkx 6 3 6 3 3 0 

2bl9 2 0 3 0 3 0 

2f6x 5 2 7 4 6 2 

2fdv 1 0 1 0 0 0 

2ff2 5 3 6 4 5 3 

2gvv 2 2 2 1 2 0 

2i5x 4 2 5 3 5 0 

2iba 3 0 3 1 3 0 

2j5s 0 0 1 1 1 0 

3c0z 2 0 2 0 0 0 

TOTALS 

TOTAL BEST 

95 

 

28 

6 

101 

 

37 

13 

89 

 

18 

3 

The table shows the amount of hydrogen bonds at two cut-off criteria for the lowest energy/ top ranking poses 

from Glide SP and the DMA methods.  LJ is DMA with Lennard Jones potential, and Williams is DMA with the 

Williams potential. Total number of hydrogen bonds are shown at the bottom for each method and criteria.  Bold 

indicates the highest per molecule number of hydrogen bonds at the tighter threshold across the methods (or a 

match above zero), a TOTAL BEST sum is provided at the bottom, for each method. 

The results in Table 4.2 show, that DMA with a Williams exp6 potential does not improve 

over Glide SP (GSCORE), when the lowest energy/ top ranked geometries are 

approximately correct.  However, using a Lennard Jones potential with DMA increases the 

number of hydrogen bonds identified at both cut-off criteria, with 6 more at the looser 

thresholds, and 9 more at the tighter thresholds.  The tighter cut-off criteria indicate that the 

quality of these hydrogen bonds have improved.  However, future research, visualization and 

measurements would be helpful, before being able to draw any clearer conclusions.  

4.3.5 Cluster analysis. 

The results are presented in figure 4.4 using the same analysis and criteria as 3.3.4 and 

3.2.10.2 and are similar to the results presented above, namely that there are a few low-lying 

energy minima that have a low RMSD and where the pose would be thermally accessible. 

This emphasises that it is sometimes mis-leading to only consider the top ranked pose. 

4.3.6 Probabilities. 

The results presented in figures 4.5 and 4.6 are just a different method of presenting the 

previous discrete ‘cut off’ results, that may provide better visualisation of some trends. So we 
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again see there are no notable improvements using DMA methods, over QSITE Jaguar QM/ 

IMPACT MM calculations. Again the figures show, single point calculations generally fare 

better than optimized calculations, and polarization does not improve results, but rather 

makes them worse.  

 

 Figure 4.4. A Rough (<2 RMSD) Assessment of Additional Clustering on (15 pose) Docking 

Success (as Figure 4.3). In E and F, Jaguar indicates - QM/MM energy calculations are done 
in Jaguar. DMA methods are indicated by (i) LJ and (ii) EXP6 to denote the specific type of 
exchange repulsion used: Single point calculation (S) and Optimized calculation (O) denote 
the energy used for scoring, and (L) indicates that isotropic ligand polarization has been 
used in Orient.  In G and H, Glide refers to Glide SP (also Chapter 3), LJ and EXP6 again 
refer to treatment of van der Waals forces in DMA methods, (GS) indicates GlideScore 
scoring used (Plot G), and (CVDW) indicates Glide MM Force-field only used for ‘score in 
place’ of the optimized Orient (DMA) geometries.  Plots E and G, show the percentage over 
74* molecules where the highest ranking/lowest scoring pose cluster (Grey) is successful 
(RMSD < 2 Å) and the % increase when additionally accounting for 2nd Pose cluster (White), 
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RMSD < 2 Å when 1st pose is not.  Plots H and J show the Boltzmann probabilty (%) 
averaged over 74 molecules for the Pose Population adopting the highest ranked/lowest 
scoring pose minima (Grey) and of adopting the 2nd Pose Cluster minima when the first does 
not have an RMSD <2 Å  (Dark Blue). *When isotropic ligand polarization was attempted in 
Orient only 72 molecules were used for LJ and 68 for Exp6 when calculating docking success 
percentages due to convergence/implementation issues. The basic unpolarized Glide results 
(scored using GSCORE) are given in Figure 3.1. 
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Figure 4.5. RMSD across the 74 molecules top-ranked poses as a 1 angstrom binned probability plot 

(decimal) for DMA/Orient-based methods. 
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Figure 4.6. RMSD across the 74 molecules top-ranked poses as a 1 angstrom binned probability 

plot(decimal) for Jaguar QM/MM and DMA/Orient-based methods and Glide score in place. WILL 

DMA includes exponential-6 repulsion. The QM/MM results (K) are given for comparative purposes 

and is the same as Figure 4.2. 
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4.4 Conclusions 

Generally, excluding the hydrogen bond analysis section 4.3.4, the DMA results are 

disappointing as the results are not as good as those given in Chapter 3, despite the 

potential to include important factors such as anisotropic charge distributions and exponential 

repulsion through Orient. However, before dismissing the relevance of these factors for drug 

design, it is important to recognize a number of factors. Firstly, Orient was not designed as a 

drug design tool, meaning that it was not possible to treat the whole enzyme, but rather the 

calculations were restricted to a small shell of residues around the active site. This process 

was rather laborious and so in its current implementation, would not be suitable for drug 

design applications. Secondly, the exponential terms of the force field were not optimized to 

be included with the anisotropic electrostatics, hence the Lennard-Jones repulsion performed 

better than exponential repulsion in Figure 4.6I. Thirdly, there was no treatment of solvation. 

This manifested itself in a rather subtle way, in that the results from optimization were not as 

good as the results for single point calculations – for both Orient (DMA) and Jaguar (QM) 

calculations. The most obvious explanation of this is that the ‘gas phase’ optimization moved 

the structures away from the solution structures, which can to some extent be modelled 

using Glide due to its implicit treatment of solvent effects. In addition, it is possible that a 

higher basis set, e.g. one containing diffuse basis functions (Illingworth et al., 2008) might 

have given a better DMA, and hence better results. Given a hierarchy of errors, it is important 

to address the most important errors first, hence in the next chapter we address the role of 

specific water molecules in the active site.  However, the results in this chapter are 

encouraging as judged by comparing the performance of basic Glide SP with QM/MM and 

DMA/LJ and DMA/LJ poses rescored by CVDW, and with the polarized Glide results as 

shown in Table 4.3. The Table shows that in most respects the performance of the QM/MM 

and DMA methods is comparable to the Glide-based methods. 
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Table 4.3. A comparison of the new methods introduced in Chapter 4 with the basic Glide 

and polarized glide methods discussed in Chapter 3. 

   Percentage  

Method top pose is 
lowest RMSD 
pose 

RMSD < 0.5 Å RMSD < 2.0 Å 

Glide 36% 32% 74% 
Glide(CVDW) 39% 37% 68% 
QM/MM(S) 44% 38% 59% 
LJ(S) 36% 31% 61% 
LS(CVDW) 46% 38% 74% 
POSE(C) 44% 36% 74% 
REF(C) 49% 39% 75% 

 

This favourable comparison suggests that these issues should be explored more fully in the 

future, but ideally a more protein-related piece of software should be used. In this respect, it 

would probably be worthwhile exploring the use of the Amoeba force field in Tinker, because 

this uses anisotropic electrostatics, and a softer, more realistic repulsion potential (but not 

exponential repulsion). Moreover, the program is designed for protein simulations, and so 

would offer the benefit of a molecular dynamics treatment of hydration. As an initial 

approach, it would be possible to use Tinker/Amoeba in a similar fashion to the way we used 

Orient, without the inherent disadvantages of Orient. For subsequent refinement, it would be 

possible to simulate the fully hydrated protein-ligand complex to check whether it was stable. 

When this work commenced, Tinker was not parallelized and so was not such an obvious 

choice, but we understand progress has been made in this area. Moreover, the Amoeba 

force field has a well-defined parameterization protocol and so extension to new ligands 

would not be as difficult as in our approach. Of the methods studied here, the QM/MM results 

were generally the best as shown in Figure 4.3A, but Figure 4.6I and 4.6J do show that the 

DMA out-performed the QM/MM calculations in some respects, see also Table 4.1. However, 

while QM/MM has many benefits over classical approaches, Chapter 3 shows that Glide 

generally works better (by virtue of its specific parameterization). The occasional success of 

QM/MM methods in FBDD should therefore be viewed with caution (Gleeson and Gleeson, 
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2009), but again these are methods that could be improved. The improvement through 

polarization was generally less than in Chapter 3 and this is probably because the effects are 

being swamped by other errors. 
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5 Inclusion of specific water molecules 

5.1 Introduction 

It has been claimed that water is the new dimension in drug design (Congreve et al., 2011).  

While a full treatment of water in docking is beyond the focus of this thesis where we have 

largely concentrated on the effects of polarization, it has become apparent that water is an 

extremely important factor in drug-target interactions.  Mason and other have discussed the 

idea that ideally, a drug should displace ‘unhappy’ (i.e. weakly bound) water molecules to 

gain the entropy increase upon their release, but that there is little to be gained by displacing 

‘happy’ (i.e. strongly bound) water molecules (Congreve et al., 2011, Wang et al., 2011, 

Young et al., 2007). Barillari et al., have shown that the number of hydrogen bonds formed 

by a water identified in X-ray crystal structures is a key factor in determining how strongly it 

binds, as determined by free energy simulations (Barillari et al., 2007). We have therefore 

taken a simple approach to identifying ‘happy’ water molecules: we have simply counted the 

number of hydrogen bonds to other non-water molecules, i.e. to protein and to ligand. This is 

in line with Barillari et al., who found from Monte Carlo simulations that tightly bound water 

molecules tended to be in polar cavities and make 3 or 4 hydrogen bonds while weakly 

bound water molecules tended to be in polar cavities with less than 3 hydrogen bonds 

(Barillari et al., 2007). We have focused on water molecules that interact directly with the 

ligand and have classified them by the number of hydrogen bonds formed. In previous 

chapters we ignored the role of water molecules in docking, but given that ‘happy’ water 

molecules play a positive role in ligand binding, we have investigated whether incorporation 

of these water molecules (i.e. with multiple hydrogen bonds) in the target increases docking 

success. In addition, we have investigated whether docking can be used to predict the 

position of a subset of these water molecules, both in the presence of ligand (which will be 

useful in low resolution structures where water molecules are not well defined) and in the 

absence of ligand (which may be useful in allosteric binding sites or in cases such as HIV 

protease where the water pattern is ligand dependent).  
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5.2 Methods 

All methods follow the same format as those described in section 3.2 with the exception of 

the following. 

5.2.1 Source of Molecules used for Validation Dataset and Water preparation  

We used the previous 74 molecule dataset that included the 54 molecules from the 

SERAPhiC set (Favia et al., 2011) and the 20 molecules from the preliminary set (Congreve 

et al., 2008, Hung et al., 2009) discussed in Chapter 3.2.3. In addition to the two ‘no water’ 

preliminary test set docking runs discussed in 3.2.4, we also did two initial preliminary test 

set docking runs ‘with water’, the first of these docking runs included just optimized waters 

from the X-ray structure.  The second was achieved by using only structural homology 

source clustered waters within a 5 angstrom cut-off of the ligand, in these structures the 

water molecules are present at roughly the same position in the structural homologues.  

These were acquired by running a BLASTp search (Madden et al., 1996) of the PDB 

structural databank (Berman et al., 2003). This was done for all our preliminary models, with 

the rest of the Mycobacterium Tuberculosis Pantothenate Synthetase structures mention in 

3.2.3 (Hung et al., 2009), sharing BLAST structural homology results with 3img.   

The resulting structures between (5 and 42) were superimposed in Maestro 9.3. 

(Banks et al., 2005) and clustered visually (for all 20 molecules).  This was done by 

displaying waters within 5 angstroms then showing the overlaid superimposed water result, 

and keeping the waters for the final structure when at least 5, or 60% of the waters (when 

less than 10 structures were available) clustered at the water site.  This revealed a good 

number of potential conserved water sites within the protein structures.  The results for both 

docking runs were very good (data not shown).  But it became apparent that few (4) 

molecules from the preliminary dataset had conserved waters that made useful interactions 

with the ligand and the protein binding site, therefore docking success was achieved for 

these molecules simply through confining the ligand conformation possibilities when posing 
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(e.g., 3img (2), 2jjc, 1yz3). It was with this in mind a new approach was taken, inspired by 

(Barillari et al., 2007), where a single water molecule that had a near optimal number of non 

water-water hydrogen bond interactions would be used for the Docking studies.  At this point, 

the rest of the structural homology conserved water data for the SERAPhiC set (Favia et al., 

2011) was also gathered for later use (not used here).  However, the new strategy was to re-

import the dataset of 74 molecules into Maestro 9.3 (Banks et al., 2005) and carry out the 

ligand and protein preparation steps as in 3.2.4 without removing the water and then 

afterwards visualizing the hydrogen bonding interactions made with the ligand and protein, 

for cataloguing.  These interactions were divided into three groups, the water molecules were 

divided by having: (i) Strong interactions - three or more hydrogen bond interactions (one or 

more at each water hydrogen), with at least one ligand and one protein interaction, (ii) 

Moderate interactions - two hydrogen bond interactions with at least one ligand and one 

protein interaction, (iii) Weak interactions: one hydrogen bond interaction with the ligand. 

Waters were then all removed from the protein structure with the exception of the 

‘lone water’ molecule that was categorized as above.  All of these groups and structures 

were used in water docking experiments in Figure 5.3, see section 5.3.7 and 5.3.8, including 

an additional docking run where the ligand was removed for the strong interactions.  

However, the strong interaction and moderate interaction structures were only used for 

ligand docking runs, that included the particular ‘lone water’ molecule, the results for the 

moderate interactions are considered in Appendix B only.  The new structures containing 

strong interaction ‘lone water’ molecules used in 5.3.1 to 5.3.6 are summarized in Table 5.1. 

below. Additionally, another set of structures where the hydrogens of these ‘lone water’ 

molecules from Table 5.1 were QM/MM orientated using methods described in 5.2.2 from the 

pre-prepared MM structure. 
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Table 5.1 Dataset structures containing the strongly interacting ‘lone water’ molecules.  Here 

(brackets) indicate the ligand molecule used where more than one was available. 3IMG A and 3IMG B 

refer to chain A and B respectively. 

PDB NAME WATER ID NO H-BONDS PDB NAME WATER ID NO H-BONDS 

1F8E 484 3 1WOG 1680 3 
1F8E 732 3 2F6X 6 3 
1MLW 629 3 2HDQ (501) 532 3 
1Y2K 1016 3 2HDQ (501) 537 3 
2BKX 2362 3 2V77 2365 3 
2I5X 61 3 3EKO 902 4 
2J5S 2247 3 3EKO 904 3 
1E2I (APS) 2044 3 1YZ3 1040 3 
1E2I (APS) 2123 3 2JJC 2166 3 
1K0E 1049 4 3IMG A (BZ2) 627 3 
1SD1 1337 4 3IMG B (BZ2) 633 3 
1SD1 1361 3    

 

5.2.2 Additional tasks during Ligand and Protein Preparation 

The crystal structures were imported and prepared for docking using the methods described 

in 3.2.4, with the additional water considerations discussed in 5.2.1. When polarization was 

used, this involved polarization of the 1st ranked GSCORE pose, which produced the best 

results in sections 3.3.1 to 3.3.5 (see also Appendix A) using the methods of section 3.2.7 

and 3.2.8.  In addition to the previous preparation, a new set of strong interaction structures 

where produced by the QM/MM orientation of the ‘lone water’ hydrogens, using the QSITE 

program within the Maestro 9.3, which called upon the Jaguar 7.9 program for the QM region 

geometry optimization calculation, and IMPACT 5.8 was used for the MM region single-point 

calculation, as section 3.2.9.  The quantum mechanical calculations employed the B3LYP 

method with a 6-31G* basis set, denoted B3LYP/6-31G*. The ligand was removed in grid 

generation and QM/MM derived partial charges were not kept at this stage. 

5.2.3 Docking Setup 

Flexible ligand docking with the same grid and docking protocols used in section 

3.2.5 was used, with the exception of the inclusion of the ‘lone water’ molecule within the 

grid.  In addition to this amendment, the outer box size for the area considered when posing 
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by the Glide search algorithm was reduced to 15 x 15 x 15 Å 3 when carrying out the ‘lone 

water’ docking, but not when docking the ligand.   

5.3 Results 

5.3.1 Analysis of top ranked poses 

5.3.1.1 Using a single strongly bound ligand attached water molecule 

As described previously in 3.3.1.1, Glide SP flexible ligand docking is usually able to identify 

the experimental pose amongst the full set of returned poses, whether as the top ranked 

pose, or as a lower ranked pose.  In Figure 5.1 generally we consider the 23 cases where a 

ligand attached water molecule with three or more non water hydrogen bonds exists within 

our Dataset and the effects of adding these ‘lone waters’ to the target receptor grid on 

subsequent ligand docking.  Firstly, though, to establish benchmarks in Figure 5.1A (1st bar, 

denoted GLIDE 23)) we consider the ‘no water’ 23 molecules across the above range from 

the original docking run for the top ranked pose (according to GSCORE), the figure shows 

that this pose is also the one with the smallest RMSD to the experimental pose in 22% of the 

current 23 cases.  When we consider these 23 molecules from the original ‘no water’ docking 

run where the (i) ligand partial charges (3rd bar, denoted POSE (L)) and (ii) ligand and protein 

partial charges (5th bar, denoted POSE(C)) were explicitly polarized using the geometries of 

the 1st Ranked GSCORE pose, then flexible ligand re-docking results in the top ranked pose 

being the one with the smallest RMSD to the experimental pose in 43% and 35% of cases 

respectively.  These three results of 22%, 43% and 35% are therefore benchmark results 

that can be used to see if a strongly bonded ligand attached ‘lone water’ molecule can 

improve ligand docking.  

When we now include the ‘lone water’ molecule in the receptor grid for the 23 cases 

using   (i) the default OPLS 2005 partial charges (2nd bar, denoted GLIDE(3H)); (ii) the 

polarized ligand partial charges (4th bar, denoted POSE(L3H)); and (iii) the polarized ligand 

and protein partial charges (6th bar, denoted POSE(C3H)) that are both explicitly polarized 
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using the geometries of the 1st Ranked GSCORE pose, then flexible ligand re-docking results 

in the top ranked pose being the one with the smallest RMSD to the experimental pose in (i) 

52%, (ii) 43% and (iii) 43% of cases respectively.  Under these circumstances, adding a ‘lone 

water’ offers a clear ~30% improvement upon default ‘no water’ Glide docking when scored 

by GSCORE, while polarization does not further improve the docking results where a ‘lone 

water’ is included.  While having the luxury of including a ‘lone water’ clearly helps, again as 

in 3.3.1.1 a key issue is whether the ligand is correctly polarized - an issue that is largely 

affected by the initial geometry. To test whether further improvement to these lone water 

docking results could be made, the reference structures were docked again after the 

hydrogens from the water molecule had been orientated by a quantum mechanical (QM/MM) 

optimization.  When we now include the ‘lone water’ molecule with QM/MM orientated 

hydrogens in the receptor grid for the 23 cases using (i) default partial charges (7th bar, 

denoted GLIDE(3HO)), then we also use the (ii) ligand partial charges (8th bar, denoted 

POSE(L3HO)) and (iii) ligand and protein partial charges (9th bar, denoted POSE(C3HO)) 

that are explicitly polarized using the geometries of the 1st Ranked GSCORE pose, then 

flexible ligand re-docking results in the top ranked pose being the one with the smallest 

RMSD to the experimental pose in (i) 65%, (ii) 48% and (iii) 65% of cases respectively.  The 

‘lone water’ with QM/MM orientated hydrogen results offer ~13% improvement over the 

previous ‘lone water’ with MM orientated hydrogen results and ~43% improvement over the 

results with ‘no water’ across the same range of 23 cases. Interestingly, while polarization 

still offers no further improvement, the result for the explicitly polarized ligand and protein 

partial charges is no worse, also at 65% success. 
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Figure 5.1 Assessment of Polarization of the Ligand/Complex and the a Ligand attached 
water  Flexible re-docking success (15 poses) using Glide Standard Precision - GLIDE where 
(23) refers to number of molecules from original dataset without single water molecule, (3H) 
refers to the minimum number of protein/ligand hydrogen bonds formed namely 3,  (L) is 
Re-Docked with Polarized Ligand partial charges or (C) is Complex partial charges (C); (3HO) 
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is the same as (3H) but the single water molecule hydrogens were orientated by QM/MM 
calculation before the docking run.  POSE – is polarized at the Highest Ranking Glide 
GSCORE pose geometry. (CVDW), (EMODEL), (GSCORE) are the scoring functions used by 
Glide. Plots A, C, E – Percentage over 23 of the 74 molecules where highest ranked/lowest 
scoring Pose (Grey), Pose cluster (White*) is the lowest available pose.  Plots B, D, F – 
Percentage over 23 of the 74 molecules where highest ranked/lowest scoring pose is at 
discrete cut-offs <0.5 Å RMSD (Green);<1 Å RMSD (Yellow); <2 Å RMSD (Orange); <4 Å 
RMSD (Red). *Clustering parameters set at <1.1 kcal/mol and <1 Å RMSD. The initial 
Docking strategy was to keep 15 poses. 

5.3.2 Alternative approaches to identifying the top pose 

The results of Figure 5.1A are interesting as they suggest a large improvement can be 

obtained by including a lone water molecule with strong ligand and protein hydrogen bond 

interactions. However, when considering polarization, in 3.3.2, we previously saw a marked 

improvement when rescoring with alternative protocols.  For this reason, as we have again 

considered alternative scoring protocols for ranking the poses, namely CVDW (Figure 5.1C) 

and EMODEL (Figure 5.1E). 

5.3.2.1 CVDW rescoring:  Using a strongly bound ligand attached water molecule 

5.3.2.1.1 Top Ranked Pose (grey bars). 

In Figure 5.1C (1st bar, denoted GLIDE(23)) we consider the ‘no water’ 23 molecules across 

the above range from the original docking run for the top ranked pose (according to CVDW), 

the figure shows that this pose is also the one with the smallest RMSD to the experimental 

pose in 53% of the 23 cases.  When we consider these 23 molecules from the original ‘no 

water’ docking run where the (i) ligand partial charges (3rd bar, denoted POSE (L)) and (ii) 

ligand and protein partial charges (5th bar, denoted POSE(C)) were explicitly polarized using 

the geometries of the 1st Ranked GSCORE pose, then flexible ligand re-docking results in 

the top ranked pose being the one with the smallest RMSD to the experimental pose in 22% 

and 53% of cases respectively.  These three results of 53%, 22% and 53% are therefore the 

CVDW benchmark results that can be used to see if a strongly bonded ligand attached ‘lone 

water’ molecule can improve ligand docking.  
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When we now include the ‘lone water’ molecule in the receptor grid for the 23 cases 

using   (i) the default OPLS 2005 partial charges (2nd bar, denoted GLIDE(3H)); (ii) the 

polarized ligand partial charges (4th bar, denoted POSE(L3H)); and (iii) the polarized ligand 

and protein partial charges (6th bar, denoted POSE(C3H)) that are both explicitly polarized 

using the geometries of the 1st Ranked GSCORE pose, then flexible ligand re-docking results 

in the top ranked pose being the one with the smallest RMSD to the experimental pose in (i) 

57%, (ii) 61% and (iii) 48% of cases respectively.  Under these circumstances, adding a ‘lone 

water’ offers some improvement ~4% improvement over the default ‘no water’ Glide docking 

when scored by CVDW, while polarization improves the docking results with a ‘lone water’ 

only when the ligand partial charges are polarized giving a further ~4% improvement.   This 

now ~8% improvement is also a large ~39% improvement over the ‘no water’ polarized 

ligand partial charges result across the 23 cases.  This ~39% is also the same improvement 

over the ‘no water’ default partial charges result when scored by GSCORE above in 5.3.1.1.  

When we now include the ‘lone water’ molecule with QM/MM orientated hydrogens in 

the receptor grid for the 23 cases using (i) default partial charges (7th bar, denoted 

GLIDE(3HO)), then we also use the (ii) ligand partial charges (8th bar, denoted POSE(L3HO)) 

and (iii) ligand and protein partial charges (9th bar, denoted POSE(C3HO)) that are explicitly 

polarized using the geometries of the 1st Ranked GSCORE pose, then flexible ligand re-

docking results in the top ranked pose being the one with the smallest RMSD to the 

experimental pose in (i) 61%, (ii) 70% and (iii) also 70% of cases respectively.  The ‘lone 

water’ with QM/MM orientated hydrogen results offer up to ~13% improvement over the 

previous ‘lone water’ with MM orientated hydrogen results when polarization of the ligand or 

ligand and protein partial charges is included, this is at best ~17% better than the ‘no water’ 

default partial charges glide docking result when scored by CVDW in the 23 cases.   

5.3.2.1.2 Top Ranked Pose Cluster (white bars): Summary 

In brief consideration of the cluster analysis in Figure 5.1C, when the first pose cluster 

measured by the criteria (see 3.2.10.2) that each cluster has an RMSD of ≤ 1 Å and energy 
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within 1.1 kcal mol-1 of the lowest energy member of that pose cluster and the pose with the 

lowest RMSD to experiment should also be a member of the first cluster, there are no 

particularly interesting patterns other than there is usually a slight improvement ~4% (white 

bars 3-5 and 7-9),  however Glide SP with default charges and a ‘lone water’ (2nd white bar) 

shows ~8% improvement. 

5.3.2.2 EMODEL rescoring: Using a strongly bound ligand attached water 

molecule 

5.3.2.2.1 Top Ranked Pose (grey bars). 

In Figure 5.1E (1st bar, denoted GLIDE(23)) we consider the ‘no water’ 23 molecules across 

the above range from the original docking run for the top ranked pose (according to 

EMODEL), the figure shows that this pose is also the one with the smallest RMSD to the 

experimental pose in 53% of the 23 cases.  When we consider these 23 molecules from the 

original ‘no water’ docking run where the (i) ligand partial charges (3rd bar, denoted POSE(L)) 

and (ii) ligand and protein partial charges (5th bar, denoted POSE(C)) were explicitly 

polarized using the geometries of the 1st Ranked GSCORE pose, then flexible ligand re-

docking results in the top ranked pose being the one with the smallest RMSD to the 

experimental pose in 48% and 44% of cases respectively.  These three results of 53%, 48% 

and 43% are therefore the EMODEL benchmark results that can be used to see if a strongly 

bonded ligand attached ‘lone water’ molecule can improve ligand docking.  

When we now include the ‘lone water’ molecule in the receptor grid for the 23 cases 

using   (i) the default OPLS 2005 partial charges (2nd bar, denoted GLIDE(3H)); (ii) the 

polarized ligand partial charges (4th bar, denoted POSE(L3H)); and (iii) the polarized ligand 

and protein partial charges (6th bar, denoted POSE(C3H)) that are both explicitly polarized 

using the geometries of the 1st Ranked GSCORE pose, then flexible ligand re-docking results 

in the top ranked pose being the one with the smallest RMSD to the experimental pose in (i) 

70%, (ii) 61% and (iii) 52% of cases respectively.  Under these circumstances, adding a ‘lone 
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water’ offers at best ~17% improvement over the default ‘no water’ Glide docking, when 

scored by EMODEL and polarization is not included, while polarization does not improve the 

docking results with a ‘lone water’, or the ‘no water’ results here.   

 When we now include the ‘lone water’ molecule with QM/MM orientated hydrogens in 

the receptor grid for the 23 cases using (i) default partial charges (7th bar, denoted 

GLIDE(3HO)), then we also use the (ii) ligand partial charges (8th bar, denoted POSE(L3HO)) 

and (iii) ligand and protein partial charges (9th bar, denoted POSE(C3HO)) that are explicitly 

polarized using the geometries of the 1st Ranked GSCORE pose, then flexible ligand re-

docking results in the top ranked pose being the one with the smallest RMSD to the 

experimental pose in (i) 65%, (ii) 65% and (iii) 70% of cases respectively.  The ‘lone water’ 

with QM/MM orientated hydrogen results match the previous ‘lone water’ with MM orientated 

hydrogen results when polarization of the ligand and protein partial charges is included, but 

are slightly worse otherwise.   

The best results here are notably similar to the previous CVDW results, with the ‘lone 

water’ with QM/MM orientated hydrogen results performing the best on average, with 

polarization less important. 

5.3.2.2.2 Top Ranked Pose Cluster (white bars): Summary 

In brief consideration of the cluster analysis in Figure 5.1E when the first pose cluster 

measured by the criteria (see 3.2.10.2) that each cluster has an RMSD of ≤ 1 Å and energy 

within 1.1 kcal mol-1 of the lowest energy member of that pose cluster and the pose with the 

lowest RMSD to experiment should also be a member of the first cluster, there are only two 

cases with an improvement. These are using: (i) the ‘no water’ polarized ligand partial 

charges; and (ii) the ‘lone water’ with QM/MM orientated hydrogens and polarized ligand 

partial charges where success increases to (i) 65% and (ii) 74% for the 23 cases giving 

~17% and ~9% improvement respectively.  

As seen previously, the cluster analysis tends to offer less scope for improvement 

when alternative methods that also offer improvement have been incorporated. 
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5.3.3 RMSD analysis (GSCORE scoring) 

In sections 5.3.1 and 5.3.2 and Figure 5.1A, 5.1C and 5.1E we considered the proportion of 

cases where the top ranked pose was also the one with the lowest RMSD to the 

experimental structure. However, in some of these cases the lowest RMSD might still be 

rather high. In Figures 5.1B, 5.1D and 5.1F we consider the proportion of molecules where 

the RMSD is below 0.5 Å (green); RMSD of ≤ 1 Å (yellow); RMSD of ≤ 2 Å (orange); RMSD 

of ≤ 4 Å(dark red) respectively. 

Once again we consider the 23 cases where a ligand-attached water molecule with 

three or more non-water hydrogen bonds exists within our Dataset and the effects of adding 

these ‘lone waters’ to the target receptor grid on subsequent ligand docking by the above 

RMSD analysis criteria.  

5.3.3.1 RMSD of ≤ 0.5 Å from experimental geometry (green bars) 

In Figure 5.1B (1st bar, denoted GLIDE(23)) we consider the ‘no water’ 23 molecules across 

the above range from the original docking run for the top ranked pose (according to 

GSCORE), the figure shows that this pose has a distance measured by RMSD of ≤ 0.5 Å 

from the experimental pose in 17% of the 23 cases.  When we also consider these 23 

molecules from the original ‘no water’ docking run where the (i) ligand partial charges (3rd 

bar, denoted POSE(L)) and (ii) ligand and protein partial charges (5th bar, denoted POSE(C)) 

where explicitly polarized using the geometries of the 1st Ranked GSCORE pose, then 

flexible ligand re-docking results in the top ranked pose having an RMSD of ≤ 0.5 Å in 31% 

and 26 % of the cases, respectively.  These three results of 17%, 31% and 26% are 

therefore the GSCORE benchmark results that can be used to see if a strongly bonded 

ligand attached ‘lone water’ molecule can improve ligand docking at the RMSD of ≤ 0.5 Å 

threshold. 

When we now include the ‘lone water’ molecule in the receptor grid for the 23 cases 

using   (i) the default OPLS 2005 partial charges (2nd bar, denoted GLIDE(3H)); (ii) the 

polarized ligand partial charges (4th bar, denoted POSE(L3H)); and (iii) the polarized ligand 
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and protein partial charges (6th bar, denoted POSE(C3H)) that are both explicitly polarized 

using the geometries of the 1st Ranked GSCORE pose, then flexible ligand re-docking results 

in the top ranked pose having an RMSD of ≤ 0.5 Å in 48%, 43% and 34 % of the cases, 

respectively. 

Under these circumstances, adding a ‘lone water’ offers at best ~31% improvement 

over the default ‘no water’ Glide docking when scored by GSCORE and polarization is not 

included, while polarization does not improve the docking results with a ‘lone water’, but 

improves over the rather poor ‘no water’ results here.   

When we now include the ‘lone water’ molecule with QM/MM orientated hydrogens in 

the receptor grid for the 23 cases using (i) default partial charges (7th bar, denoted 

GLIDE(3HO)), then we also use the (ii) ligand partial charges (8th bar, denoted POSE(L3HO)) 

and (iii) ligand and protein partial charges (9th bar, denoted LOSE(C3HO)) that are explicitly 

polarized using the geometries of the 1st Ranked GSCORE pose then flexible ligand re-

docking results in the top ranked pose having an RMSD of ≤ 0.5 Å in 48%, 34% and 43 % of 

the cases, respectively. 

The ‘lone water’ with QM/MM orientated hydrogen results match the previous ‘lone 

water’ with MM orientated hydrogen results without polarization, giving again ~31% 

improvement over the ‘no water’ results at his threshold. However, on average there is no 

change for better or worse over the MM orientated hydrogen results. 

Overall the ‘lone water’ results therefore show a significant effect in generating 

accurate poses with an RMSD of less than 0.5 Å.  While polarization is only effective for the 

‘no water’ result set at this threshold, when scored by GSCORE.   

5.3.3.2 RMSD of ≤ 1 Å, 2 Å and 4 Å from experimental geometry  

Overall the ‘lone water’ results in Figure 5,1show a significant effect in generating 

accurate poses with an RMSD of less than 1 Å, 2 Å and 4 Å.  Polarization is generally 

effective for the ‘no water’ result set at these thresholds, particularly when using the ligand 

only partial charges.   However, consideration of the results at the 1 Å, 2 Å and 4 Å 
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thresholds shows there is no clear indication that polarization improves the results in the 

presence of a ‘lone water’. 

5.3.4 RMSD Analysis (CVDW rescoring) 

The results of Figure 5.1B are again of interest as they suggest a large improvement can be 

obtained by including a lone water molecule with strong ligand and protein hydrogen bond 

interactions. When considering polarization previously, we have seen a marked improvement 

when rescoring with alternative protocols.  For this reason, we have again considered 

alternative scoring protocols for ranking the poses, namely CVDW (Figure 5.1D) here, and 

EMODEL (Figure 5.1F) in section 5.3.5.  Here CVDW rescoring is expected to provide the 

clearest effects of polarization as it uses a molecular mechanics force-field scoring function. 

5.3.4.1 RMSD of ≤ 0.5 Å from experimental geometry (green bars) 

In Figure 5.1D (1st bar, denoted GLIDE(23)) we consider the 23 ‘no water’ molecules across 

the above range from the original docking run for the top ranked pose (according to CVDW), 

the figure shows that this pose has a distance measured by RMSD of ≤ 0.5 Å from the 

experimental pose in 43% of the 23 cases.  When we also consider these 23 molecules from 

the original ‘no water’ docking run where the (i) ligand partial charges (3rd bar, denoted 

POSE(L)) and (ii) ligand and protein partial charges (5th bar, denoted POSE(C)) where 

explicitly polarized using the geometries of the 1st Ranked GSCORE pose, then flexible 

ligand re-docking results in the top ranked pose having an RMSD of ≤ 0.5 Å in 22% and 39 

% of the cases, respectively.  These three results of 43%, 22% and 39% are therefore the 

CVDW benchmark results that can be used to see if a strongly bonded ligand-attached ‘lone 

water’ molecule can improve ligand docking at the RMSD of ≤ 0.5 Å threshold. 

When we now include the ‘lone water’ molecule in the receptor grid for the 23 cases 

using   (i) the default OPLS 2005 partial charges (2nd bar, denoted GLIDE(3H)); (ii) the 

polarized ligand partial charges (4th bar, denoted POSE(L3H)); and (iii) the polarized ligand 

and protein partial charges (6th bar, denoted POSE(C3H)) that are both explicitly polarized 

using the geometries of the 1st Ranked GSCORE pose, then flexible ligand re-docking results 
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in the top ranked pose having an RMSD of ≤ 0.5 Å in 57%, 61% and 39 % of the cases, 

respectively. 

Under these circumstances, adding a ‘lone water’ offers at best ~18% improvement 

over the default ‘no water’ Glide docking when scored by CVDW and polarization of the 

ligand partial charge is included, while full polarization does not improve the docking results 

with a ‘no water’, polarization of the ligand partial charges gives ~4% improvement over the 

‘lone water’ default charges result at this threshold.   

When we now include the ‘lone water’ molecule with QM/MM orientated hydrogens in 

the receptor grid for the 23 cases using (i) default partial charges (7th bar, denoted 

GLIDE(3HO)), then we also use the (ii) ligand partial charges (8th bar, denoted POSE(L3HO)) 

and (iii) ligand and protein partial charges (9th bar, denoted POSE(C3HO)) that are explicitly 

polarized using the geometries of the 1st Ranked GSCORE pose then flexible ligand re-

docking results in the top ranked pose having an RMSD of ≤ 0.5 Å in 48%, 52% and also 

52% of the cases, respectively.  The ‘lone water’ with QM/MM orientated hydrogens results 

offer no improvement over the ‘lone water’ with MM orientated hydrogen results, but adding 

polarization to either the ligand or ligand and protein partial charges gives ~4% improvement 

over the default charges when the ‘lone water’ hydrogens are QM/MM orientated. This takes 

the best improvement over ‘no water’ default glide partial charges to ~9 % improvement 

compared with the ~18% when using the ‘lone water’ hydrogens that are MM orientated at 

this threshold.  

Overall the ‘lone water’ results therefore show a significant effect in generating 

accurate poses with an RMSD of less than 0.5 Å.  Polarization in most also cases offers a 

slight improvement but only when applied to the ‘lone water’ results, with the exception of the 

MM orientated hydrogens using ligand partial charge result, when scored by CVDW. 

5.3.4.2 RMSD of ≤ 1 Å from experimental geometry (yellow bars) 

Overall the ‘lone water’ results therefore show a significant effect in generating 

accurate poses with an RMSD of less than 1 Å.  Polarization also shows a significant effect 
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for the ‘lone water’ results, but only when the ligand partial charges are used for the MM 

orientated hydrogens result, and when the ligand and protein partial charges are used for the 

QM/MM orientated hydrogens result, when scored by CVDW.  It appears that polarization of 

just the ligand is a relatively safe practice, but when QM/MM optimization of the water 

hydrogen atoms is included then polarization of the enzyme is more effective because the 

hydrogens are placed more appropriately. 

5.3.4.3 RMSD of ≤ 2 Å from experimental geometry (orange bars) 

Overall the ‘lone water’ results therefore show a significant effect in generating poses with an 

RMSD of less than 2 Å.  Polarization shows a significant effect for the ‘no water’ results, but 

only when the ligand partial charges are used.   Polarization also shows a significant effect 

for the ‘lone water’ results, but only when the ligand partial charges are used for the MM 

orientated hydrogens result, and when the ligand and protein partial charges are used for the 

QM/MM orientated hydrogens result, when scored by CVDW at this threshold.   

5.3.4.4 Summary of RMSD of ≤ 4 Å from experimental geometry (dark red bars) 

There are three best results that all achieve 96% success at this threshold these are the ‘no 

water’ result using polarized ligand partial charges (3rd bar, denoted POSE(L)), and both the 

QM/MM orientated hydrogen ‘lone water’ results where polarization is used for the ligand 

partial charges (8th bar, denote POSEL3HO)), and the ligand and protein partial charges (9th 

bar, denoted POSE(C3HO)).  The last of these three results is notable as in these 96% of 

cases, all were also within the RMSD of ≤ 2 Å threshold.   

 The two worst results at this threshold were both 83% for the ‘no water’ with default charges 

result (1st bar, denoted GLIDE(23)); and the ‘lone water’ MM orientated hydrogen result with 

polarization of the ligand partial charges (4th bar, denoted POSE(L3H)), the latter of which 

also had all of the 83% of cases within the RMSD of ≤ 2 Å threshold.   
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5.3.4.5 RMSD Analysis (EMODEL rescoring):  Summary 

Figure 5.1F shows that EMODEL gives similar results to scoring with CVDW (Figure 5.1D), 

and thus offers an alternative method of selecting the top ranked pose for polarizing the 

ligand and the enzyme. Again the results show distinct improvements when including the 

lone water. For some approaches at some thresholds, polarization offers some improvement, 

but the results are not consistent and the effect of including the additional water molecule is 

clearly dominant. 
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Figure 5.2. An (<2 Å RMSD) assessment of additional clustering on (requested 15 pose) 

docking success (as Figure 5.1) using Glide Standard Precision, denoted GLIDE, and where 
(23) refers to number of molecules from original dataset without single water molecule, (3H) 
refers to the minimum number of protein/ligand hydrogen bonds formed namely 3,  (L) is 
Re-Docked with Polarized Ligand partial charges or (C) is Complex partial charges (C); (3HO) 
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is the same as (3H) but the single water molecule hydrogens were orientated by a QM/MM 
optimization before the docking run.  POSE denotes that the pose was polarized at the 
Highest Ranking Glide GSCORE pose geometry. (CVDW), (EMODEL), (GSCORE) are the 
scoring functions used by Glide. Plots G, I, K – The percentage over 23 of the 74 molecules 
where the highest ranking/lowest scoring pose cluster (Grey) is a successful pose (below 2 Å 
RMSD). The % increase when including the 2nd Pose cluster (White) <2 Å RMSD (when 1st 
pose is > 2 Å) is also given.  Plots H, J, L – The percentage over 23 of 74 molecules where 
the sampling error is ignored and a pose exists below 2 RMSD and the highest 
ranking/lowest scoring pose is a successful (below 2 Å RMSD - orange). Clustering 
parameters were set at <1.1 kcal mol-1 and <1 Å RMSD. 
 

5.3.5 Cluster analysis. 

In figures 5.1B, 5.1D and 5.1F we considered the proportion of molecules where the RMSD 

is below 0.5 Å (green); RMSD of ≤ 1 Å (yellow); RMSD of ≤ 2 Å (orange); RMSD of ≤ 4 Å 

(dark red) respectively.  

In some cases, the lowest energy pose may have a rather high RMSD, but there may still be 

a pose with a low RMSD that is not too high in energy above the lowest energy pose. We 

consider this scenario in Figure 5.2.  The RMSD of ≤ 2 Å threshold from 5.1B, 5.1D and 5.1F 

has been used as the benchmark threshold for testing due to its popularity (Cole et al., 2005, 

Warren et al., 2006, Sándor et al., 2010).  These results can be seen again in Figures 5.2G, 

5.2I and 5.1K (grey bars).  As was first mentioned in 3.2.10.2, the poses have been clustered 

(generously) so that each cluster has an RMSD of ≤ 1 Å and energy within 1.1 kcal mol-1 of 

the lowest energy member of that pose cluster.   We now set the RMSD analysis criteria (see 

3.3.4) that the lowest energy member of the 2nd pose cluster should also be considered for 

analysis at an RMSD of ≤ 2 Å, in the cases where the lowest energy member of the first pose 

cluster was docked unsuccessfully.  Here we evaluate the improvement in the docking 

results when both clusters were considered by the above criteria, as shown in Figures 5.2I, 

5.2K.   The white bars indicate the higher percentage that comes from including the second 

cluster. To ensure that there is a significant probability (in terms of energy) of a pose 

adopting the 2nd pose cluster minima as opposed to the first pose minima, only poses that 

are members of a cluster with a sum greater than 10% Boltzmann probability have been 

considered.   
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5.3.5.1 Clustered CVDW Rescoring:  Summary 

GSCORE was not used for clustering in Figure 5.2, but GSCORE results are shown at the 

RMSD of ≤ 2 Å threshold for reference in Figure 5.2G (Figure 5.2G is identical to Figure 

5.1B, 2 Å threshold). 

In 5.2I, when considering the ‘no water’ default partial charges result (1st grey bar, denoted 

GLIDE(23)) for top ranked pose according to CVDW using Glide SP, the figure shows that 

this pose has an RMSD below 2 Å  in 70% of the 23 cases.  When we also consider the 

lowest energy member of the 2nd cluster at an RMSD of ≤ 2 Å, in the cases where first cluster 

did not yield an RMSD < 2 Å, the success rate rises to 83% (1st bar – white, denoted 

GLIDE(23)).  This ~13% improvement is the largest shown from clustering, when scored by 

CVDW in figure 5.2I.  The next three largest ~9% improvements all come from the MM 

orientated ‘lone water’ results using the default partial charges (2nd white bar, denoted 

GLIDE(3H)); the polarized ligand partial charges (4th white bar, denoted POSE(L3H)); and 

the polarized ligand and protein partial charges (6th white bar, denoted POSE(C3H)) taking 

the success at the RMSD < 2 Å to 83%; 91%; and 78% respectively.  Under these 

circumstances, polarization offers no effect on clustering improvement and/or in the 

distinguishing between two low lying pose clusters.   We see a reduced improvement of ~4% 

from clustering the QM/MM orientated hydrogen ‘lone water’ results using the default partial 

charges (7th bar, denoted GLIDE(3HO)); and the polarized ligand partial charges (8th green 

ba, denoted POSE(L3HO)), which now offer ~87% success in both cases at this RMSD < 2 Å 

threshold.   While both the ‘no water’ results using polarization for the ligand partial charges 

(3rd bar, denoted POSE(L)); and the ligand and protein partial charges (5th bar, denoted 

POSE(C)); and also the QM/MM orientated hydrogen ‘lone water’ result using the polarized 

ligand and protein partial charges (9th bar, denoted POSE(C3HO)), offer no improvement 

from clustering the results, remaining at 87%, 83%, and a rather high 96% success 

respectively.    
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Overall again the margins for clustering improvement depend on there being a pose 

with a low RMSD that is not too high in energy above the lowest energy pose. These margins 

decrease in all cases when compared with the ‘no water’ default partial charges scored by 

CVDW, explicit polarization in both cases decrease these margins to zero for the ‘no water’ 

results.  This is a good sign that polarization may be working properly in differentiating the 

correct pose from an energetically close geometric decoy.  In the case of the ‘lone water’ 

results, the most significant factor in decreasing these margins appears to be the whether the 

hydrogens are orientated by QM/MM or MM energy minimization, with QM/MM energy 

minimization having the smallest margins from clustering of the two.   

5.3.5.2 Clustered EMODEL rescoring:  Summary 

When EMODEL and clustering are used for scoring, Figure 5.2K shows there are three 

results that offer ~4% improvement for considering the 2nd pose cluster with a potential 

alternate low lying minima, two of which are from the MM orientated ‘lone water’ results, 

namely using the default partial charges (2nd white bar, denoted GILE(3H)) and the polarized 

ligand partial charges (4th white bar, denoted POSEL3H)).  The third comes from the QM/MM 

orientated hydrogen ‘lone water’ result using the polarized ligand and protein partial charges 

(9th white bar, denoted POSE(C3HO)).  The only other result that shows an improvement is 

the ‘no water’ using the polarized ligand and protein partial charges (5th white bar, denoted 

POSE(C)) which shows the largest margin of ~9% (~2 molecules) from considering the 

lowest energy member of the 2nd pose cluster, when the first pose cluster does not provide a 

correct answer within the below 2 Å RMSD threshold.  This result is interesting in that in 

Chapter 3, when the ‘no water’ dataset is 74 cases instead of 23 cases there were no further 

low lying minima, that were energetically reasonable alternatives.  Providing a cautionary 

message that size of the dataset has an effect on the patterns that the data reveals. 

5.3.6 Analysis of RMSD of available ≤ 2 Å from experimental geometry 

In Chapters 3 and 4 we considered the extent of the energetic viability of using a 2nd pose 

cluster.  Here as this answer has been previously established as providing a reasonable 
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likelihood, we instead explore an alternative question.    As previously mentioned, docking 

search algorithms are considered to show a good level of reliability in producing a pose close 

to the experimental pose in a given number of pose solutions, but the scoring functions are 

generally considered to be not yet reliable or sophisticated enough to correctly rank the final 

poses on offer (Warren et al., 2006). With high levels of reliability ~70% in identifying the top 

ranked pose, and even higher success rates at the RMSD < 2 Å, threshold, we now re-

assess the efficacy of the search algorithm versus the final ranking from the scoring 

protocols namely GSCORE, CVDW, EMODEL when the answer for a ‘lone water’ molecule 

with good hydrogen bond contacts is known, and polarization is included within the force-

field. Although this is approaching an idealized situation this still does not consider the whole 

picture, e.g., there is still no protein flexibility and so forth.    

5.3.6.1 RMSD of available poses ≤ 2 Å GSCORE: Summary 

In Figure 5.2H, when we ignore the sampling error and consider just the cases where there is 

a pose with an RMSD < 2 Å within each of the requested ~15 pose solutions, and scored by 

GSCORE.  The figure shows that there is one instance of the ‘no water’ result with polarized 

ligand partial charges (3rd bar, denoted POSE(L)) where the scoring function is successful in 

100% at this threshold.  The next best two results come from the MM orientated hydrogens 

‘lone water’ result where the ligand partial charges have been polarized (4th bar, denoted 

POSE(L3H)); and the QM/MM orientated hydrogens ‘lone water’ result using the default 

partial charges (7th bar, denoted GLIDE(3HO)) these offer 90% and 91% success at this 

threshold respectively.  The ‘no water’ result with default partial charges now offers 85% 

success (1st bar, denoted GLIDE(23), an ~11% increase over the initial docked result at this 

threshold.  Overall the patterns although a few percent more pronounced, follow the patterns 

of the initial scoring results in that do not always provide an answer that approaches the 

experimental geometry. Nevertheless, improvements over the default GLIDE results come 

from either including a lone water or including polarization.  
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5.3.6.2 RMSD of available poses ≤ 2 Å CVDW: Summary 

In Figure 5.2J, when we ignore the sampling error and consider just the cases where there is 

a pose with an RMSD < 2 Å within each of the requested ~15 pose solutions, and scored by 

CVDW.  Then the figure shows, there is again one instance the QM/MM orientated 

hydrogens ‘lone water’ result with polarized ligand and protein partial charges (9th bar, 

denoted POSE(C3HO)) where the scoring function is successful in 100% at this threshold.  

The next three best results come from the ‘no water’ result with polarized ligand partial 

charges (3rd bar, pose(L)); the ‘no water’ result with polarized ligand and protein partial 

charges (5th bar, POSE(C)); and the QM/MM orientated hydrogens ‘lone water’ result with 

polarized ligand partial charges (8th bar, denoted POSE(L3HO)), these all offer ~95% 

success at this threshold. 

 The MM orientated hydrogens ‘lone water’ result where the ligand partial charges have been 

polarized (4th bar, denoted POSE(L3H)) offers 90% success.  The three worst results include 

the ‘no water’ result with default partial charges (1st bar, denoted GLIDE(23)); the ‘no water’ 

result with lone water (2nd bar, denoted GLIDE(3H)); and the MM orientated hydrogens ‘lone 

water’ result using the fully polarized partial charges (6th bar, denoted POSE(C3H)), these all 

offer ~80% success.   

Overall, polarization offers the best results when a pose is available within the ~15 requested 

poses below 2 Å RMSD scored by CVDW.  In these circumstances, polarization of the ligand 

partial charges fares better when the ‘lone water’ hydrogens are MM orientated, and 

polarization of the ligand and protein partial charges fares better when the ‘lone water’ 

hydrogens are QM/MM orientated, with both ‘no water’ polarization results also doing well. 

5.3.6.3 RMSD of available poses ≤ 2 Å EMODEL: Summary 

In Figure 5.2L, we ignore the sampling error and consider the cases where there is a pose 

with an RMSD < 2 Å within each of the requested ~15 pose solutions scored by EMODEL.  

The Figure shows that there are three instances where 100% success is achieved, these are 

the ‘no water’ result with default partial charges (1st bar, denoted GLIDE(23)); the QM/MM 
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orientated hydrogens ‘lone water’ results with default partial charges (7th bar, denoted 

GLIDE(3HO)), and with polarized ligand partial charges (8th bar, denoted POSE(L3HO)).  

There are also three results where EMODEL is successful in ~95% at this threshold.  These 

are the ‘no water’ result with polarized ligand partial charges (3rd bar, denoted POSE(L)), the 

MM orientated hydrogens ‘lone water’ result with polarized ligand partial charges (4th bar, 

denoted POSE(L3H)) and the QM/MM orientated hydrogens ‘lone water’ result with polarized 

ligand and protein partial charges (9th bar, denoted POSE(C3HO)).  Overall, EMODEL does 

best at scoring when a pose is available within this threshold, but the fact that the ‘no water’ 

default charge result gives 100% success is indicative that EMODEL is most directly related 

to posing and ranking of poses from the same ligand molecule (Banks et al., 2005).  

However, two of the QM/MM orientated hydrogens ‘lone water’ results with default partial 

charges (7th bar, denoted GLIDE(3HO)) and polarized ligand partial charges (8th bar, denoted 

POSE(L3HO)) were also able to achieve 100% success, while the QM/MM orientated 

hydrogens ‘lone water’ result with the polarized ligand and protein partial charges (9th bar, 

denoted POSE(C3HO)) achieved ~95% success. Also in Figure 5.2K the two best results 

were the QM/MM orientated hydrogens ‘lone water’ results regarding with default partial 

charges, and polarized ligand and protein partial charges (7th and 9th bar) outperforming 

EMODEL at the RMSD < 2 Å threshold, with the other QM/MM orientated hydrogens ‘lone 

water’ result using polarized ligand partial charges (8th bar) matching EMODEL.  This 

indicates that any negative effects from tweaking the docking using EMODEL are cancelled 

by the improvements in docking success gained. 

5.3.7 Docking of the ‘Lone Water’ molecule, top ranked pose analysis: Summary 

In Figure 5.3A and Figure 5.3C, we consider the docking of the ‘lone water’ molecule with 

default partial charges, with the ligand and protein complex serving as the receptor grid 

unless otherwise stated.  It has been shown elsewhere that the number of non water-water 

hydrogen bonds formed should be a major factor in producing the lowest binding energy 

(Barillari et al., 2007).  In a simple test in Figure 5.3A, we consider the ‘lone waters’ with 
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three or more non water-water hydrogen bonds in the previous dataset range covered in 

5.3.1 to 5.3.6, then dock the ‘lone water’ with and without the ligand in the receptor grid.  This 

removal of the ligand obviously reduces the number of hydrogen bond interactions the ‘lone 

water’ can make at its current position within the receptor. When the ligand is present we can 

also assess the efficacy of a number of scoring protocols in recovering our ‘lone water’ pose.  

The figure shows that flexible ‘lone water’ docking results in the top ranked pose being the 

one with the smallest RMSD to the experimental pose more often when the ligand is present 

be it for GSCORE, CVDW, EMODEL, QM/MM single-point or the Optimized calculation than 

when the ligand is absent (Note that here the RMSD is for a single atom and so is equivalent 

to displacement – but RMSD is used for comparability to the other sections).  The ‘ligand 

present’ highest success ~73% is for GSCORE (1st bar, denoted LIG(GS)); the next three 

best results of ~64% success come from CVDW (3rd bar, denoted LIG(CVDW)), EMODEL 

(5th bar, denoted LIG(EMOD)) and the QM/MM lowest optimized energy calculation (9th bar, 

denoted LIG, OQM)). The worst ligand present result of ~59% comes from the QM/MM 

lowest single point energy calculation (7th bar, denoted LIG(SQM)) when docking a ‘lone 

water’.  When the ligand is absent the best two results of ~50% success both come from 

QM/MM Energy calculations for the lowest single-point energy (8th bar, denoted 

NOLIG(SQM)) and the lowest optimized energy (10th bar, denoted noLIG(OQM)).  The worst 

result of ~27% success in identifying the top ranked pose as the one with the smallest RMSD 

to experimental pose comes from GSCORE (2nd bar, denoted NOLIG(GS)).    

Figure 5.3C gives further confirmation that the number of non water-water hydrogen 

bonds formed is the most significant factor in flexible ‘lone water’ docking resulting in the top 

ranked pose being the one with the smallest RMSD to the experimental pose. The figure 

shows that the best three results come from the ‘lone waters’ with two non water-water 

hydrogen bonds when scored by GSCORE (1st bar, denoted “H(GS)), CVDW (2nd bar, 

2H(CVDW)) and EMODEL (3rd bar, denoted “H(EMOD)) offering 50%, 55% and 55% 

success respectively, with the worst result of ~23% coming from the single non water-water 

hydrogen bond result scored by GSCORE (6th bar, denoted 1H(GS)). The best single non 
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water-water hydrogen bond result is ~40% success from the QM/MM lowest optimized 

energy calculation (10th bar, denoted 1H(OQM)), the next three best single non water-water 

hydrogen bond results all of ~33% success come from CVDW (7th bar, denoted 1H(CVDW)), 

EMODEL (8th bar, denoted 1H(EMOD)) and the QM/MM lowest single-point energy 

calculation (9th bar, denoted 1H(OQM)).   

Overall the best performance in flexible ‘lone water’ docking resulting in the top 

ranked pose being the one with the smallest RMSD to the experimental pose unsurprisingly 

come when there are more non water-water hydrogen bond interactions.  

5.3.8 Docking of the ‘Lone Water’ molecule, RMSD analysis: Summary 

In section 5.3.7 and Figures 5.3A and 5.3C, we considered the proportion of cases where the 

top ranked pose was also the one with the lowest RMSD to the experimental structure. 

However, in some of these cases the lowest RMSD might still be rather high. In figures 5.3B 

and 5.3D we consider the proportion of molecules where the RMSD is below 0.5 Å (green 

bars); RMSD of ≤ 1 Å (yellow bars); RMSD of ≤ 2 Å (orange bars); RMSD of ≤ 4 Å (dark red 

bars) respectively.  However unlike ligand docking, the RMSD analysis is only meaningful up 

to the RMSD of ≤ 1 Å threshold as the docking of water molecules at larger distances would 

indicate alternate pose minima being adopted.   

In Figure 5.3B when we consider the more significant RMSD of ≤ 0.5 Å, and RMSD of 

≤ 1 Å thresholds, the Figure simply shows that flexible ‘lone water’ docking results in the top 

ranked pose being within these thresholds more often when the ligand is present, be it for 

GSCORE, CVDW, EMODEL or QM/MM single-point or the QM/MM Optimized calculations 

than when the ligand is absent.   The three best results with the ligand present are for 

GSCORE (1st bar, denoted LIG(GS)); CVDW (3rd bar, denoted LIG(CVDW)) and EMODEL 

(5th bar, denoted LIG(EMOD)) at the RMSD of ≤ 1 Å threshold offering ~73%, ~73% and 

~64% success respectively.  Most of these 1st Ranked Poses are also within the RMSD of ≤ 

0.5 Å threshold, which is to be expected considering the water molecule’s small size offering 

~64%; also ~64%; and 59% success respectively. Both the QM/MM calculation results with 
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the ligand present fare only slightly worse overall, with the lowest optimized energy result (9th 

bar, denoted LIG(OQM)) being the best of the two, particularly at the RMSD of ≤ 0.5 Å 

threshold with ~59% success.  The best results when the ligand is absent come from the 

QM/MM calculation results for the lowest single-point energy (8th bar, denoted NOLIG(SQM)) 

and lowest optimized energy (10th bar, denoted NOLIG(OQM)); these offer ~27% and ~36% 

success respectively within the RMSD of ≤ 0.5 Å threshold, and offer ~45% and ~41% 

success respectively within the RMSD of ≤ 1 Å threshold.  The worst result is for GSCORE 

when the ligand is absent with ~14% success at the RMSD of ≤ 0.5 Å and the RMSD of ≤ 1 Å 

thresholds. 

 In Figure 5.3D, for water molecules making fewer than 3 hydrogen bonds, we 

consider the more significant RMSD of ≤ 0.5 Å and RMSD of ≤ 1 Å thresholds, the figure 

simply shows that flexible ‘lone water’ docking results in the top ranked pose being within 

these thresholds more often when the 2 hydrogen bonds are formed, be it for GSCORE, 

CVDW, EMODEL, QM/MM single-point or the QM/MM optimized calculation, than when only 

1 hydrogen bond is formed (where essentially there is no worthwhile docking success rate).  

In brief, the three best results arise in the 2 non water-water hydrogen bond results for 

GSCORE (1st bar, denoted 2H(GS)), CVDW (2nd bar, denoted 2H(CVDW)) and EMODEL (3rd 

bar, denoted 2H(EMOD)) at the RMSD of ≤ 0.5 Å threshold offering ~30%; also ~34%; and 

~34% success respectively.  There is no further success from increasing the threshold to an 

RMSD of ≤ 1Å. 

Overall,  by removing the ligand, the active site becomes less polar and there is a reduction 

in the number of hydrogen bonds that can be formed in the ‘lone water’ molecule’s initial 

experimental minima (by ~1-2), regardless of hydrogen orientation.  This in effect makes the 

lone water ‘unhappy’, making it far more likely to prefer a more energy favourable minima 

(from the newly returned ~15 poses) where more hydrogen bonds can be formed within the 

range of the posing space (Congreve et al., 2011).  This ‘unhappiness’ also extends to the 

situation where the number of non water-water hydrogen bonds are reduced from three, to 
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two, and then to one (where the one is formed with the ligand only) respectively.  While on 

the other hand, reasonable success can be achieved in ‘lone water’ water molecule docking, 

when the water can form at least 3 hydrogen bonds within its initial experimental minima.  

This means it is far more likely to return to its ‘happy’ place, regardless of scoring function 

and result in a lower RMSD to the experimental pose.  So again the best performance in 

flexible ‘lone water’ docking resulting in the top ranked pose being the one with the smallest 

RMSD to the experimental pose (as with the previous section 5.3.7) unsurprisingly comes 

when there are more non water-water hydrogen bond interactions.  
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Figure 5.3 Assessment of ‘Lone Water’ flexible docking success (15 poses) using Glide with QM/MM 

Re-scoring.  In plots A and B, the Water forms 3+ non water-water hydrogen bonds (at least 1 with 

protein and ligand), and LIG indicates the ligand is present; and NOLIG indicates the water is docked 

after the ligand is removed (thus reducing the number of hydrogen bonds accordingly). In plots C and 

D, 2H shows the water forms 2 non water-water hydrogen bonds (1 with protein and ligand); 1H 

refers to the water molecule only forming 1 hydrogen bond with the ligand prior to docking.  In 

General brackets relate to the scoring method where (GS) is scored by GSCORE; (CVDW) is scored by 

CVDW; (EMOD) is scored by EMODEL; (SQM) is scored as lowest single point QM/MM Energy; and 

(OQM) is scored as lowest optimized QM/MM Energy. Plots A, C – Percentage from the 3H+; 2H; and 

1H waters in the 22*; 21; and 30 of the original 74 cases respectively where the highest 

ranked/lowest scoring pose (Grey) is also lowest available pose.  Plots B, D – Percentage over the 

same ranges of cases where the highest ranked/lowest scoring pose is at discrete cut-offs <0.5 Å 

RMSD (Green);<1 Å RMSD (Yellow); <2 Å RMSD (Orange); <4 Å RMSD (Red).   *Omitted docking 1 

of the water molecules from 3H+ waters dataset unintentionally. 

 

5.4 Discussion 

Active site water molecules clearly have an important role in ligand binding and so their 

treatment is an important factor in drug design (De Beer et al., 2010).  Glide does take into 

account water to some extent (Banks et al., 2005, Friesner et al., 2006) but there are clear 

benefits for including explicit waters rather than treating water implicitly, as in Glide or 

continuum methods (Fogolari et al., 2002, Labute, 2008, Loving et al., 2010, Lie et al., 2011). 

The improvement in docking observed through inclusion of specific water molecules, as 

described in this chapter, is far more significant than that obtained through inclusion of 

polarization, as described in Chapter 3. Such observations on the importance of explicit 

water molecules in docking have been recorded by others (Corbeil and Moitessier, 2009, 

Thilagavathi and Mancera, 2010), but we understand this is the first report on the relative 

importance of explicit waters and polarization. Indeed, (Lie et al., 2011, Lemmon and Meiler, 

2013) found improvements from the simultaneous docking of ligand and water, but 

implementation of this approach within our polarization framework would not be 

straightforward. For example, methods that simultaneously dock water and ligand (Verdonk 

et al., 2005) may have penalties for the annihilation of water and this could possibly be 

handled by a fully classical version of our method, but not by the current method that 
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requires QM calculations. The polarization effect introduced in this chapter is swamped by a 

far greater effect of the water, and so the improvement due to polarization, though generally 

present, is not always apparent. It is worth considering why inclusion of specific water 

molecules makes such a profound difference. The most obvious trivial reason is that the 

steric volume of the water reduces the search space, giving the docking process a greater 

chance of success by directing the poses more towards the correct binding site. This is 

particularly true for fragments as the water molecule can significantly increase the small 

number of hydrogen bond contacts between the fragment and its target. In addition, it 

provides a significant electrostatic steer to the docking process. Polarization generally only 

increases the magnitude of the interacting charges (and hence the resultant electrostatic 

energy) by about 10-15%, but the introduction of a polar water molecule has a far greater 

effect due to the large magnitude of the extra charges (qH = 0.417, qO = -0.834 for TIP3P 

water (Mark and Nilsson, 2001)). Since these charges are large, they will enhance the steric 

effect – as long as the water is oriented appropriately. 

The positioning and orientation of water molecules is clearly a major problem since usually 

only a small proportion of the water molecules in a given binding site are visible. Water 

molecules may be absent in low resolution structures, but they might also be absent because 

of their dynamic nature. Moreover, the water pattern for one bound ligand may be different to 

that in other bound ligands. Thus, not all water molecules are the same. We have only 

considered significant water molecules that make at least 3 hydrogen bonds to the ligand 

and or protein, when docking ligands. An alternative approach may be to include water 

molecules that are conserved across a number of structures, since this is an alternative way 

to identify water molecules that can enhance docking success (Thilagavathi and Mancera, 

2010).  Indeed, it may be beneficial to investigate whether the lack of conservation in such 

structures indicates an unhappy water that should be omitted. However, such an 

investigation is outside the scope of this thesis. However, in the growing stage of a fragment-

based drug design program, these water molecules may be under study for replacement. We 
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have shown that the water molecule can be placed with some degree of reliability simply by 

docking when the ligand is present, and the initially good hydrogen bonding conditions are 

met. This may offer a reasonable strategy as the X-ray crystal structure is indeed likely to 

have a ligand present and the generation of X-ray structures is often a key part of a FBDD 

program. The presence of such a water molecule could then enhance virtual screening 

programs for the purpose of finding other good fragment hits. We have shown that docking a 

water molecule in the absence of a ligand is unlikely to be successful. 

Whether polarization helps to improve the docking in the presence of a water molecule is 

open to debate, as improvement is not reported in all cases studied. However, some general 

principles seem to emerge. If the water orientation is optimized by MM methods, then 

polarization of the ligand is generally more successful than polarization of the ligand and the 

protein.  However, if the water orientation is optimized by QM/MM methods then polarization 

of the ligand and the protein is generally more successful. This is in contrast to the work of 

Roberts and Mancera, as they observed that the method of water optimization was not 

significant (Roberts and Mancera, 2008).  One possible conclusion from this is that if the 

water is not correctly orientated then the protein may not be correctly polarized and so 

omission of protein polarization is preferable. It would seem that QM/MM orientation of the 

water molecule is preferable. This raises an important issue with regards to treatment of 

hydration and polarization within binding sites. One of the issues is that polarization in 

protein–ligand – specific water systems may be ligand dependent (Sahai and Biggin, 2011).  

Our results on the benefit of QM/MM orientation are in conflict with those of Roberts and 

Mancera (Roberts and Mancera, 2008), since they found that the water optimization method 

didn’t have a large effect - but they did not include subtle polarization effects, or ensure the 

initial number of hydrogen bonds formed was at least three (done here by visualization after 

protein preparation steps). We will briefly discuss a number of methods for finding water 

binding sites but none of them rely on quantum mechanics, but it is clearly important to not 

only place the water molecule correctly but also to orientate it correctly. 
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A number of methods for placing water molecules in enzyme binding sites have been 

described. GRID was probably one of the earliest and most successful methods (Goodford, 

1985). GRID is based on a set of molecular mechanics probes that interact with the enzyme 

over a 3D grid, it forms the basis of the waterflap method that is based on a rather 

sophisticated ‘DRY’ water probe (Mason et al., 2013) and has yielded good results on water 

networks (Cappel et al., 2011).  The method can be used to find ‘happy’ and ‘unhappy’ water 

molecules and these can be exploited in drug design. Watermap from Schrödinger is an 

alternative to waterflap, and involves short molecular dynamics simulations to find water 

molecules that have a given residency at particular positions (Wang et al., 2011). Other 

methods based on MD or Monte Carlo methods can also be used (Woods et al., 2011, 

Bodnarchuk et al., 2014). Conservation of water sites across homologous proteins or across 

identical proteins containing different ligands is another approach to finding ligands that are 

significant for both ligand interaction and discrimination between ligands. Such methods offer 

great potential for identifying the small number of key water molecules that can profitably be 

included in docking experiments. 
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6 Addressing the Cross docking problem through MM 

polarization 

6.1 Introduction 

Virtual screening, an integral part of many drug design programmes, is driven by the 

conflicting requirements of being able to dock large databases of compounds in a short time 

while at the same time generating meaningful results; given the constant drive for 

improvements in this field (Yuriev et al., 2015), we have addressed the potential of 

polarization for delivering significant improvements. The docking problem can be broken 

down into one of (a) sampling, in which multiple ligand poses are generated within the 

enzyme or receptor binding site and (b) scoring, in which the poses are ranked. Much 

progress has been made in the quality of these docking programs (Sousa et al., 2013) such 

as GOLD (Jones et al., 1995), Glide (Friesner et al., 2004b), Autodock (Morris et al., 1996), 

FlexX (Kramer et al., 1999) and Dock (Allen et al., 2015) and impressive performances have 

been recorded by the latest versions. Thus, the self-docking problem is solved to some 

degree, with programs usually able to correctly dock a ligand back into its own protein X-ray 

structure reasonably well most of the time (Warren et al., 2006). Indeed, the results of 

Chapter 3 confirm this favourable situation for self-docking. However, the problem of docking 

a ligand back into its own protein where the structure was crystallized in the presence of a 

different ligand (cross-docking) remains considerably more challenging (Sandor et al., 2010, 

Morris et al., 2009, Liu et al., 2013b). This is partly because of the requirement of keeping the 

protein rigid or semi-rigid in order to process a huge number of (flexible) ligands in a short 

time, an approximation that may be ameliorated through the use of soft potentials. Often this 

rigidity can be partially addressed by using an ensemble of structures (Yuriev and Ramsland, 

2013), either from modelling (Rueda et al., 2009, Moroy et al., 2015) or from crystallography 

where docking results can be improved by cross-docking into a range of structures and 

selecting the optimal X-ray structure for each target (Sandor et al., 2010).  However, such 

approaches may be undesirable in a real-life structure-based drug design context (Gleeson 
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and Gleeson, 2009). What is generally not addressed in docking is the rigidity of the 

electronic distribution, though there are exceptions (Illingworth et al., 2008, Cho et al., 2005, 

Gleeson and Gleeson, 2009, Liu et al., 2013a).  Thus, polarization of the ligand and protein is 

usually not included, and this may exacerbate the steric repulsion in cases where there is 

also electrostatic repulsion that cannot be fully alleviated by geometric rearrangements. 

Polarization of the ligand is however included in the quantum polarized docking method (Cho 

et al., 2005), and our approach (Illingworth et al., 2008) extends this by also including 

polarization of the protein. Indeed, in the absence of polarization, electrostatic repulsions 

could be alleviated by inappropriate geometric rearrangements. With this in mind, we have 

addressed the question as to whether inclusion of polarization can give rise to improved 

results in the cross-docking problem, since cross-docking, rather than self-docking, is more 

related to the real-world issue of virtual screening in drug design. This is particularly true in 

cases where resistant mutations can arise (Allen et al., 2015). 

6.2 Methods 

Protein choice. The initial search for proteins of identical or near-identical sequences with 

different ligands was based on the 12 complexes described in (Congreve et al., 2008b) and 

the 58 complexes described in (Favia et al., 2011) (excluding those with pdb codes 1YKI, 

2P10, 2QWX and 3DSX where the binding site resides interfaced between 2 chains). Each 

sequence was BLASTED against the pdb sequence database using default parameters. Hits 

of a given sequence were accepted if there were (a) at least 7, (b) there was a ligand that 

roughly met Lipinski’s rules (Lipinski et al., 2001), and the percentage identity was at least 

99% and the coverage of the sequence was at least 97%.  At the beginning of this 

investigation, drug like properties were not the most pressing consideration, as we looked to 

study a large number of unique proteins.  Consequently, we allowed molecular weight (MW) 

<600 Da instead of <500 Da to increase the number of proteins with at least 7 ligands, this 

produced 196 ligands out of a total of 257 that strictly met Lipinski’s rules of 5, and many of 

the remaining ligands only had one MW Lipinski rule violation (Lipinski et al., 2001), from the 
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initial list of 66 proteins, 17 proteins (15 unique) gave hits that met these criteria. Details on 

these 15 initial proteins are given in Table 6.1 and Appendix Table D.7.  The 15 initial protein 

ligands and their associated hit ligands (from the total 257 proteins) are given in Appendix 

Table D.8. The folds of these proteins are shown in Figure 6.1. 

Table 6.1. Overview of proteins used in cross docking. 

 
Name 

 
Pdb 
code 

 
Group 
size 

 
# cross- 
dockinga 

 
Mean 
resolutionb 

%age of 
proteins 
with 
clashesc 

Mean #  
of C-C 
clashesd 

Herpes simplex 
virus type 1 

1e2i 9 72 2.2 51.4 1.81.2 

Aldose 
reductase 

1pwm 24 552(528) 1.5 55.6 9.46.4 

Progesterone 
receptor 

1sqn 7 42(29) 1.9 66.7 4.44.4 

Isocitrate 
dehydrogenase 

1t0l 8 56 2.6 51.8 8.113.8 

Farnesyl 
diphosphate 
synthase 

1yv5 10 90 1.9 18.9 1.22.8 

methionine 
aminopeptidase 

2gg7 10 90 1.7 63.3 4.43.7 

microurokinase 1fv9 15 210 1.9 32.8 1.80.9 
Oestrogen 
receptor 

1gwq 36 1260 
(1075) 

2.3 53.3 5.25.7 

Dipeptidyl 
peptidase IV 

1n1m 14 182 2.5 37.9 3.33.8 

nitric oxide 
synthase 

1qwc 17 272 2.1 44.1 1.91.0 

Cyclin-
dependent 
kinase 2 

1wcc 34 1122 2.2 73.0 4.63.4 

tRNA-Guanine 
transglycosylase 

1s39 15 210 1.7 16.7 1.21.9 

Thrombin 2c90 8 56 2.0 23.3 2.02.0 
HSP90 2jjc 30 870(866) 1.8 49.2 7.710.0 

-secretase 1 2ohk 20 380 2.2 70.3 6.37.0 

ATP was included as a ligand for farnesyl diphosphate synthase. 

a The number in parenthesis indicates the number of successful dockings in cases where there were 

unsuccessful dockings (226). b All proteins had a resolution of less than 3.0 Å; the majority had a 

resolution under 2.0 Å. c Percentage of proteins with C-C clashes (< 3 Å) between protein A and fitted 

ligand B. d Number of C-C clashes between protein A and fitted ligand B 
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Protein preparation. Commonly occurring cofactors and ions were retained in the 

complexes assessed on a protein by protein basis.  The complexes were processed using 

the protein preparation wizard of Maestro in order to add hydrogens, assign bond orders, cap 

the protein ends with –NCOCH3 and NHCH (except for short peptide ligands) and remove 

waters. Amino acid pKas were determined using PropKa 3.0 (Sondergaard et al., 2011, 

Olsson et al., 2011) at pH=7 and side chains adjusted accordingly. The proteins were then 

minimized using the OPLS 2005 force field (Kaminski et al., 2001, Banks et al., 2005a) 

(restrained to remain with 0.3 Å of the X-ray structure). Each set of the 15 groups of proteins 

were structurally aligned using the Maestro protein structure alignment facility; this enabled 

the coordinates of each ligand to be merged into the coordinates of every other protein 

structure in the set (see below). The initial protein complexes (Table 6.1) and an associated 

(pblast hit) complex, with an ‘average’ ligand is shown in Figure 6.2 and Figure 6.3. This 

‘average’ ligand is identified using the Tanimoto index (Tanimoto, 1957, Bajusz et al., 2015), 

where the similarity of each ligand relative to the others in its subset was individually 

assessed.  The structures forming the associated complexes are selected based on 

proximity to the mean Tanimoto index.   

A docking grid input file was created for each aligned protein structure using its receptor text 

file, as the accompanying grid file template (exported without ligand and renamed from 

Maestro).  An average Cartesian coordinates ligand centroid was determined for the 

structures of each of the 15 protein sets.  These centroids were added to the input files, and 

the grids were generated in a batch (257 grids in total at this initial stage). The same grid 

sizes were used throughout. The inner grid was 14 Å  14 Å  14 Å and the outer grid was 

34 Å   34 Å  34 Å.  The ligands from each of the prepared structurally aligned co-

crystallized (self) protein structures, were exported into a text file folder. For each ligand a 

docking input file was prepared for each of its protein’s using (1) the ligand text file, (2) the 

native/ self ligand text file (for RMSD analysis reference), and (3) the native protein grid.  

This produced 257 self docking input files, and 5238 cross docking input files following a 
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‘<pdb>_in_<pdb>’ naming pattern for the ligand and receptor respectively.  These were 

again run in batch generating report files for the 5495 docking experiments (226 cross docks 

failed from a possible 5721 docking experiments because Glide was not able to find any valid 

poses). 

The merged structures that were used for polarizing the protein and the ligand at a given 

geometry, were generated after the ligands were docked.  The merging took advantage of a 

Schrodinger script pv_convert.py that uses the docking output pose viewer text file from the 

5495 experiments. The script creates a new complex (maestro) text file from the receptor, 

and by default, the first appearing/ top ranking pose (by Gscore).  So, for each of the 5238 

cross receptors and 257 self receptors, a temporary copy of the pose viewer file was created.  

The first ligand poses from each file were substituted (using text place markers e.g, :::) with 

each of its protein’s ligands at the co-ordinates of their co-crystallized position.  In the cross 

receptors, the protein-ligand complexes weren’t primed together in protein preparation 

wizard, and they only shared approximately the same global co-ordinates from the protein 

structural alignment. The native complex structures were successfully tested against the 

maestro complexes for the appropriateness of using this pv_convert.py method.   A 

Needleman Wunsch algorithm was used to compare the sequences of the ligand pockets 

(defined as a residue with at least one atom within 4 Å of the ligand) to check for mutations 

and to check the RMSD of the backbone superpositions of the residues in the ligand binding 

pockets (c.f. Table 6.1).  

Initial Self-docking and cross-docking. The ligands were docked using flexible Glide SP 

(2015) (with a rigid protein) into each relevant protein structure, giving 5238 cross-docked 

structures (from a possible 5464, with 226 docking failures) and 257 self-docked structures. 

By comparison, the previous study by Sandor et al. used 8 complexes and 63 structures 

(Sandor et al., 2010). The OPLS 2005 force field was used for both the ligand and the 

protein, but for atoms with a partial charge smaller than 0.15 the van der Waals radii were 

reduced by 80% to ameliorate the approximation of rigid docking [Virtual Screening workflow, 
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Schrodinger LLC, New York 2007]. For each complex, 15 unique poses were determined, 

which were then minimized within Glide to yield 15 poses (or fewer if Glide was unable to find 

15 poses). The top-scoring pose was then selected using the GLIDE scoring functions, 

namely Gscore, cVDW and Emodel. Gscore is most appropriate for comparing different 

ligands, as in a virtual screen. Emodel is the best model for comparing the same ligand in the 

different poses and is a combination of Gscore, the force field and internal ligand strain 

energy. cVDW is essentially the force field (Banks et al., 2005b). All three rescoring methods 

gave similar results and so only the cVDW results are reported below. 
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Figure 6.1. The folds of the proteins used in cross-docking. 
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Figure 6.2. The initial protein complexes (Table 6.1, green protein with pink ligand) and an associated 

complex with the ‘average’ ligand (average defined by the Tanimoto index, brown protein with blue 

ligand). The initial protein complex pdb codes appear first in the following list of pairs: A. 1e2i and 

1ki6 B. 1sqn and 4oar C. 1yv5 and 4kpj D. 1fv9 and 1w0z E. 1pwm and 3lz5 F. 1t0l and 4l04 G. 2jj7 

and 2p98 H. 1gwq and 4q50  
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Figure 6.3. The initial protein complexes (Table 6.1, green protein with pink ligand) and an associated 

complex with the ‘average’ ligand (average defined by the Tanimoto index, brown protein with blue 

ligand). The initial protein complex pdb codes appear first in the following list of pairs: A. 1n1m and 

3nox B. 1wcc and 2iw6 C. 2c90 and 1jwt D. 2ohk and 2va5 E. 1qwc and 1lzx F. 1s39 and 4gcx G. 2jjc 

and 4b7p 
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Polarized self-docking and polarized cross-docking. The docking was repeated using (a) 

polarized charges for the ligand in conjunction with the unpolarised charges for the enzyme 

and (b) using fully polarized ligand and enzyme charges, as in Chapter 3. Possible double 

counting of polarization effects that are included implicitly in the charges as a result of the 

parameterization process (Winn et al., 1999), were minimized as Glide scoring protocols 

reduce the coulombic term by ~50% on formally charged groups; and the van der Waals 

interaction energy is also scaled on the atoms directly involved during evaluation (Friesner et 

al., 2004a). Basis set superimposition effects are also avoiding using QM/MM methods 

(Gooding et al., 2000b). For each of the 5495 complexes, a QM/MM calculation was 

performed using Gaussian 03 (Frisch et al., 2004), where the ligand was QM and the whole 

protein was included in the MM region, which was modelled using the OPLS 2005 force field 

(Banks et al., 2005a), including OPLS charges (in the case of full polarization, these protein 

OPLS charges were augmented with our induced charges). The scalar isotropic atom 

polarizabilities were taken from (Miller, 1990) and assigned according to atom type (see 

Appendix D, Table D.1), as discussed previously.  The B3LYP DFT method (Becke, 1993, 

Lee et al., 1988) was used with a 6-31G* basis set (Hehre et al., 1972).  The 3-21G* basis 

set was used for a ligand that contained iodine, as the 6-31G* basis set is not available 

(Rassolov et al., 2001, Frisch et al., 2004). The Gaussian 03 QM/MM calculation determines 

the QM potential at each atom in the protein. While the induced dipole at these atoms 

requires determination of the field through the equation = E, the determination of the 

induced charges only requires determination of the potential, as discussed in Chapter 2 

(Ferenczy and Reynolds, 2001); the induced charges are then added to the unpolarised 

charges. The QM/MM calculation is repeated in the presence of the polarized charges and 

the process is repeated to convergence on the charges to 3DP (usually about 3 iterations). 

At the end of the calculation, a distributed multipole analysis (DMA) (Stone, 1981) is derived 

from the Gaussian checkpoint file using GDMA (Stone, 2005) and the potential-derived 

charges determined from this DMA using mulfit (Ferenczy, 1991, Ferenczy et al., 1997, Winn 

et al., 1997). These potential-derived charges are for the ligand in the field of the polarized 
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enzyme and correspond to the polarized charges for the ligand.  The polarised charges for 

the ligand (where only the ligand is polarized) were determined in the same way from a QM 

calculation on the unpolarised enzyme. The protein preparation protocols can have a 

significant effect on docking quality (Sandor et al., 2010). Thus, Allen et al. were able to 

obtain impressive results for cross-docking when each ligand was minimized in each protein 

structure (Allen et al., 2015). Consequently, the same protocols were used for the self-

docking and the cross-docking to ensure that the results provide a fair test of the effects of 

polarization.  

Assessment of docking quality. The RMSD of the top docked pose for each ligand was 

determined against the native structure for self-docking and against the merged ligand 

coordinates for cross-docking. Four thresholds were used, namely 0.5 Å, 1.0 Å, 1.5 Å and 

2.0 Å. In addition, for each pair of structures in a given set, we determined the number of 

instances where correct cross-docking of ligand A into protein B was associated with the 

correct docking of ligand B into protein A. In order assess the difficulty of cross-docking, 

ligand similarity was determined using the Tanimoto (Bajusz et al., 2015)  and Molshacs (de 

Lima and Nascimento, 2013) similarity indices. Drug-like properties of the ligand were 

determined using the molinspiration webserver (molinspiration.com) based on SMILES 

strings exported from Maestro. 

Bootstrapping. To assess statistical variance a Monte Carlo algorithm for bootstrapping 

(random resampling with replacement, implemented in R) was used to estimate the standard 

deviation 𝜎 in the percentage of hits with an RMSD below a given threshold (the test 

statistic). For each protein parent group (original data set), 1000 random samples were taken 

of the same size as the parent group (e.g. 72 for 1e2i); variation in each sample arose by 

permitting a given docking to be included multiple times (replacement). The test statistic was 

computed for each sample, producing a population parameter 𝜃 of 1000 percentages, on 

which to estimate standard deviation (𝜎) (Manly, 2006).  A similar procedure was followed for 

assessing the accuracy of the mutual pair docking. For each method, protocol, and 
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threshold, the test statistic was evaluated with the same random index list, before generating 

a new resample for each n in the 𝜃 series n=1000. The use of pre-set random numbers 

ensured repeatability as required. Appendix D Tables D.4 to D.6 show population parameter 

statistics for the bootstrap in Table 6.2. 

Properties. Ligand and protein volumes were calculated using Maestro. 

6.3 Results 

6.3.1 Sampling Errors 

The biggest issue in cross-docking is the problem of sampling, since the protein is often held 

rigid and probably adopts a sub-optimum configuration for the ligand under study. Here the 

question under study is whether the various docking experiments are able to generate a 

pose with an RMSD of less than 2.0 Å, regardless of how well the pose is ranked. Figure 

6.4A shows for sampling efficiency, that both polarization treatments give a modest increase 

for self-docking (~5%), and a larger increase for cross-docking (~10%). However, the 

improvement is not uniform across the board, with around a third of the groups e.g. the 1e2i 

group having minimal improvement, a third having modest improvements of about 5-10%, 

e.g. the 1gwq group and a third such as the 1yv5 group having significant improvements of 

10-44%. Figure 6.4B shows that full polarization gives the best sampling for cross docking for 

each of the 15 groups; Ligand polarization does not give better results than full polarization, 

but does give equivalent results in two of the groups. 
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Figure 6.4. (A) A measure of sampling efficiency for self-docking and cross-docking, with 

and without polarization. For each complex family, the percentage of docking experiments 

that yielded a pose with an RMSD < 2 Å is given for both self-docking (denoted self) and 

cross-docking (denoted cross), for no polarization (denoted Glide), ligand polarization 

(denoted ligand) and full polarization (denoted full). (B). Counts of the method that gives (or 

matches) the best sampling. For the cross-docking case, the number of times that no 

polarization (Glide), ligand polarization and full polarization gives the highest percentage in 

Figure 6.4A is given. 

RMSD analysis: self-docking. The basic RMSD results are given in Figure 6.5 for the 257 

self-docking experiments and the 5238 cross-docking experiments. The results clearly show 

that self-docking is almost a solved problem as 95% of ligands docked to within 4.0 Å and 

79% docked to within 2.0 Å in the absence of polarization. The ability to dock ligands to 

within an RMSD 2.0 Å is a standard measure of docking success and indeed similar results, 

of 66 – 91% (mean 768%, Glide 71%) were reported for a recent docking challenge 

involving multiple docking programs (Yuriev et al., 2015), but exact comparison is difficult as 

docking results can be system dependent (Warren et al., 2006, Yuriev et al., 2015). Because 

Glide is so effective in self-docking, the options to improve this process through either ligand 

polarization or full polarization are limited. Nevertheless, full polarization gives an 

improvement of 2%, 7%, 11% and 8% respectively at the 4 thresholds of 0.5 Å, 1.0 Å, 2.0 Å 

and 4.0 Å respectively.  
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Figure 6.5. (A) The self-docking results, showing the percentage of ligands docked to within 0.5 Å 

(cyan), 1.0 Å (green), 2.0 Å (yellow), 4.0 Å (orange) and > 4.0 Å (pink). (B) The cross-docking 

results, colour-coded as for (A). (C). The mutual (pair-based) cross-docking results, colour-coded as 

for (A).  Here we define mutual pairs as a stringent (pair-based) cross docking requirement, that if 

ligand A from protein A docks into protein B, then ligand B from protein B must also dock to protein 

A – both to within the given threshold. 

RMSD analysis: cross-docking. Cross-docking, however, remains a difficult problem, as 

shown by the dramatic reduction in the number of poses docked to within 1.0 Å from 60% for 
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self-docking (Figure 6.5A) to 22% (no polarization), as shown in Figure 6.5B. Under cross-

docking, full polarization gives an improvement of 3%, 7%, 12% and 11% respectively at the 

4 thresholds.  However, this mean improvement of ~8% hides a number of interesting 

features, as can be seen in Table 6,2, which shows that while six families show modest 

improvement less than 10%, four families show greater than 15% improvement in cross-

docking. By way of contrast, Allen et al. obtained a very impressive success rate of 51% at 

2.0 Å for cross-docking, but the enzyme – ligand complexes were pre-primed to accept the 

ligand by minimization so the results (Allen et al., 2015) are not comparable to those 

presented here as we did not minimize the complexes with the ligand prior to docking. 

Table 6.2. Cross-docking performance per group for basic Glide (i.e. no polarization), ligand 
polarization and full polarization. The percentage of poses docked with an RMSD better than 
2 Å is given, along with error bars determined by bootstrapping. The percentage increase in 
performance on including polarization is shown in bold if it is larger than the sum of the two 
error bars. 

       

 
Name 

 
Pdb 
code 

 
Glide 

 
Polar 
ligand 

 
Full 
Polarizn 

%  
increase  
for polar 
ligand 

%  
increase  
for full 
polarizn 

Herpes simplex 
virus type 1 

1e2i 27.87.7 22.26.8 33.37.8 
 

                 
-5.6 

 
5.5 

 
Aldose reductase 1pwm 23.12.6 26.12.8 26.52.8 3.0 

 
3.4 

 
Progesterone 
receptor 

1sqn 50.017.9 50.018.5 62.517.7 0.0 
 

12.5 
 

Isocitrate 
dehydrogenase 

1t0l 7.15.0 14.36.4 25.08.1 
7.2 

 

                 
17.9 

 
Farnesyl 
diphosphate 
synthase 

1yv5 17.85.7 20.05.8 75.66.3 2.2 
 
 

57.8 
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methionine 

aminopeptidase 

2gg7 11.14.7 24.46.3 22.26.3 

13.3 
 

11.1 
 

microurokinase 1fv9 20.03.8 29.54.3 32.44.6 
9.5 12.4 

Oestrogen 

receptor 

1gwq 47.42.3 50.12.3 52.62.3 

2.7 
 

5.2 
 

Dipeptidyl 

peptidase IV 

1n1m 7.72.8 13.23.5 23.14.5 

5.5 
 

15.4 
 

nitric oxide 

synthase 

1qwc 4.41.8 5.11.9 12.52.8 

0.7 
 

8.1 
 

Cyclin-dependent 
kinase 2 

1wcc 3.70.8 5.71.0 6.81.1 2.0 
 

3.1 
 

tRNA-Guanine 
transglycosylase 

1s39 48.64.8 61.94.8 67.64.6 13.3 
 

19.0 
 

Thrombin 2c0- 10.75.8 7.14.7 7.14.9 -3.6 -3.6 
HSP90 2jjc 13.61.6 20.31.9 23.82.0 6.7 10.2 

-secretase 1 2ohk 2.11.0 5.31.6 8.92.0 3.2 6.8 

 

 

RMSD analysis: mutual cross-docking pairs. In Figure 6.5C we examine the more 

stringent requirement that if ligand A from protein A docks into protein B then ligand B from 

protein B must also dock to protein A – both to within the given threshold. Here the cross-

docking success rates dramatically decrease from 49% in Fig. 6.5A for self-docking to 9% for 

cross-docking (Fig. 6.5B) and further down to 3% (Fig. 6.5C) for mutually successful cross-

docking at the 0.5 Å threshold. At the more relevant 2.0 Å threshold, without polarization, the 

success rates decrease from 78% for self-docking to 41% for cross-docking and further down 

to 17% for mutual cross-docking.  When full polarization is included, the corresponding 

success rates are 83%, 52% and 32% respectively. Thus, the improvement with full 

polarization included is 5% for self-docking (as reported above), 11% for cross-docking and 

15% for mutual cross-docking. The error bars computed using bootstrapping (Table 6.2) 

indicate that in the majority of cases these improvements are significant (bootstrapping 

𝜃 ̂statistics for this Table shown in appendix figures D.4 to D.6). 
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We investigated to see if there was a correlation between improved performance with 

polarization and various physical properties. These properties included: ligand charge, 

Number of ligand acceptor groups, Number of ligand donor groups, percentage of receptors 

with steric clashes with ligand (R(C-C) < 3 Å), Molshacs and Tanimoto ligand similarity, 

ligand polar surface area, ligand volume and pocket volume. The only notable observation 

was a weak correlation with formal ligand charge: the improvement is greatest for drug-like 

ligands for farnesyl diphosphate synthase that carry formal charges of -4 and for ligands for 

other targets that carry formal charges of -3. Allen et al. noted that cross-docking was more 

difficult in the presence of high electrostatic fields, and so these may be cases where 

polarization would be most beneficial (Allen et al., 2015). However, overall there were no 

convincing correlations (results not shown). 

The overall success rate is 11%, but given that different enzyme targets behave differently 

for docking (Warren et al., 2006), it is better to average over each family so that results from 

large families do not swamp the results from small families. With this method the overall 

improvement in cross-docking in the presence of full polarization is 13.4%. 

RMSD analysis: mean (μ) RMSD 

The mean RMSDs for both self-docking and cross-docking are given in Figure 6.6.  Again, it 

is clear that the RMSDs obtained for self-docking are (a) in line with those of other studies 

(the mean of 1.7 Å compares favourably with those of ~1.6 Å (Sandor et al., 2010) and (b) 

considerably lower than those for cross-docking, where the mean is 3.7 Å. 
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Figure 6.6 The mean (𝜇) RMSD in angstroms (Å) of the docked poses for both self-docking and 

cross-docking, for all 15 groups.  SELF refers to native docks originating from co-crystallized 

structures, CROSS refers to cross docks originating from structures that were not co-crystallized or 

primed for (in silico), OPLS refers to the Glide SP cVDW using IMPACT and OPLS 2005 partial 

charges.  Ligand refers to the polarized ligand only partial charges, and Full refers to the fully 

polarized complex partial charges. 

An alternative way to determine the best approach is to monitor which method generates or 

has equal to the lowest mean RMSD; these results are given in Fig. 6.7, which show that in 

the vast majority of cases, the lowest RMSD is given by full polarization.  Graphical docking 

examples of the situation where full polarization performs well and Glide SP does not are 

shown in Fig. 6.8.  The number of times this happens, and the number of refractory cases 

when Glide SP performs well and full polarization does not are covered by two criteria in 

appendix Figures D.2 and D.3.  
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Figure 6.7. The association between method and the number of best 𝜇 RMSD poses (Å) 

generated, for both self-docking (left) and cross-docking (right). 
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Figure 6.8. Clear improvements from including full polarization. In the four figures A to D, pink 

indicates a ligands x-ray experimental position in its co-crystallised receptor (silver). Blue and green 

indicates the same ligand, crossed docked in a non-native receptor (named below), and shown in the 

above receptor at the pre-docking global co-ordinates from the Maestro protein structural alignment 

tool. Blue is the top ranked pose from a full polarization cross-docking experiment, and Green is the 

same top ranked pose from the Glide SP (cVDW) cross-docking experiment.  The four receptors, and 

their relevant pdb codes of their ligands are (A) Farnesyl diphosphate synthase,1yv5 ligand RIS cross 

docked in 4n9u. (B) -secretase 1, 3bra ligand AEF cross docked in 2ohk (C) methionine 

aminopeptidase, 2gg7 ligand U14 cross docked in 2gg0 (D) Heat shock protein, HSP90, 2ye2 ligand 
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XQI cross docked in 4NH7.  The relative RMSD by colour from the pink ligand are (A) blue 0.5 Å, 

green 10.5 Å, (B) blue 0.6 Å, green 4.2 Å, (C) blue 0.9 Å, green 6.8 Å, (A) blue 0.5 Å, green 10.4 Å.  

The relative occurances of these clear improvements and the refractory cases where Glide SP (cVDW) 

is better without full polarization are shown in appendix Tables D.2 and D.3. 

6.4 Discussion 

Our results have shown that cross-docking is a difficult problem, even when addressed with 

a well-validated docking program such as GLIDE. Cross-docking, however, rather than the 

easier self-docking problem is most closely related to the real-world virtual screening 

problem of trying to find a novel ligand for a drug target crystallized in the presence of a well-

known tool compound. This is not surprising given the known limitations of current docking 

programs. For example, the benchmarks for accuracy in computational chemistry set by 

compute-intensive high level quantum chemical calculations and by long molecular dynamics 

simulations provide a backdrop against which docking calculations can be evaluated. Such 

calculations illustrate the importance of a good description of the electronic configuration, of 

the dynamics of the protein-ligand complex and of the solvent. Against this background, most 

theory/force-field based docking programs are of necessity somewhat deficient because of 

the need to handle large databases of compounds (e.g. ~ 1M) in a reasonably short amount 

of time. Indeed, knowledge-based and machine-learning based approaches implicitly 

recognize the limitations in the physics behind docking programs, and offer elegant 

alternative approaches. However, numerous successes for virtual screening, including 

studies using theory or force field-based methods have been reported and this has inspired 

much research for improving docking methods. Flexible docking can go some way towards 

approximating the dynamics of the protein-ligand complex, but typically this involves a small 

number of the more important flexible residues rather than a fully flexible protein. It is this 

issue of flexibility that creates problems in cross-docking and is also the reason why cross-

docking over multiple targets is used as a surrogate for protein dynamics (Yuriev and 

Ramsland, 2013, Rueda et al., 2009, Moroy et al., 2015, Sandor et al., 2010).   
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Changes in protein conformation are however, not the only way in which proteins respond to 

the approach of a ligand. Polar ligands will generate an electric field at the protein and so the 

electronic distribution in the binding site should change as the ligand docks, and indeed the 

electrons can respond faster that the atoms. The resulting polarization energy is likely to be 

of the order of about 10-15% of the electrostatic energy (Ferenczy and Reynolds, 2001, 

Thompson et al., 1994, Illingworth et al., 2006, Gao, 1997), but more significantly polarization 

may help to alleviate electrostatic clashes (Illingworth et al., 2008, Gooding et al., 2000a) and 

so may alter the docked geometry; this appears to be the origin of the improved success rate 

for cross-docking with full polarization, as reported here. 

 

A number of docking programs and scoring functions, e.g. GOLD (Jones et al., 1995) do not 

include a description of the electronic distribution and nevertheless obtain good results. 

However, with an increased realization that lipophilicity can contribute to drug attrition 

through promiscuous off-target interactions, hence the desire for a reasonably high ligand 

lipophilicity efficiency (Congreve et al., 2008a), there is probably more incentive for docking 

programs to identify high-scoring ligands that are not too lipophilic. This cause will be aided 

by docking programs that have a good treatment of electrostatics. Inclusion of polarization 

should benefit this cause.  
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7 Concluding remarks 
 

In Chapter 3, we have shown that polarization of fragments can offer in the region of a 10-

15% improvement in docking results, as judged by the percentage of poses within a rather 

tight threshold of 0.5 or 1.0 Å RMSD of the experimental structure, where accurate prediction 

of binding interactions are more likely. Clearly, such an improvement could make a 

significant difference to a fragment-based drug design program. These results are most 

apparent when the correct pose is known a priori, as under these circumstances the ligand 

and the protein can be polarized correctly, and polarizing the ligand and the protein gives 

better results than just polarizing the ligand. The improvement is more apparent for the 

CVDW results as these are based on a molecular mechanics force field and so the 

electrostatics (and hence polarization effects) are not scaled down as much and the 

improvement there continues up to the 4 Å threshold.  Analysis of the results that are correct 

to within a given threshold suggests that polarization is more relevant to improving the good 

results (thresholds 0.5 – 1 Å, and possibly 2 Å) than it is for improving the less good results 

(thresholds 4 Å).  

 

In Chapter 4 generally the DMA results were disappointing, despite the potential to include 

important factors such as anisotropic charge distributions and exponential repulsion through 

Orient. Of the methods studied here, the QM/MM results were generally the best, but on 

occasion DMA out-performed the QM/MM calculations in some respects. However, while 

QM/MM has many benefits over classical approaches, Glide was shown in Chapter 3 to 

generally work better (by virtue of its specific parameterization). There was no inclusion of a 

treatment of solvation in Chapter 4. This manifested itself in a rather subtle way, in that the 

results from optimization were not as good as the results for single point calculations – for 

both Orient (DMA) and Jaguar (QM) calculations. The most obvious explanation of this is that 

the ‘gas phase’ optimization moved the structures away from the solution structures, which 

can to some extent be modelled using Glide due to its treatment of solvent effects. Orient 
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was not designed as a drug design tool, meaning that it was not possible to treat the whole 

enzyme, but rather the calculations were restricted to a small shell of residues around the 

active site. Additionally, the exponential terms of the force field were not optimized to be 

included with the anisotropic electrostatics, hence the Lennard-Jones repulsion performed 

better than exponential repulsion.   There are many factors that contribute towards accurate 

docking. The Glide program is designed as a drug design tool and is well optimized and so 

generally gives good results. This makes it difficult to improve these results. Nevertheless, 

there are several deficiencies in the Glide method that arise primarily from the requirement to 

be fast. One of these is the problem of the rigid enzyme/receptor. In Chapter 3, the electronic 

flexibility introduced by polarization was shown to alleviate this problem.  Any improvement 

here through polarization, was probably prevented because the effects are being swamped 

by other errors.  However, the results in this chapter are sufficiently good to suggest that 

these issues should be explored more fully in the future, but ideally a more protein-related 

piece of software should be used.  

 

In chapter 5, the improvement in docking observed through inclusion of specific water 

molecules, is far more significant than that obtained through inclusion of polarization. The 

active site water molecules clearly have an important role in ligand binding and so their 

treatment is an important factor in drug design. Polarization generally only increases the 

magnitude of the interacting charges (and hence the resultant electrostatic energy) by about 

10-15%, but the introduction of a polar water molecule has a far greater effect due to the 

large magnitude of the extra charges (qH = 0.417, qO = -0.834 for TIP3P water). For this 

reason, the polarization effect introduced in this chapter is swamped for a far greater effect 

and so the improvement due to polarization, though generally present, is not always 

apparent. Since these charges are large, they will enhance the steric effect – as long as the 

water is oriented appropriately.  Glide does no fully take into account explicit water, but rather 

approximates them as isoelectronic 2.8 Å spheres.  When polarization helps to improve the 
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docking in the presence of a water molecule, some general principles seem to emerge. If the 

water orientation is optimized by MM methods, then polarization of the ligand is generally 

more successful than polarization of the ligand and the protein.  However, if the water 

orientation is optimized by QM/MM methods then polarization of the ligand and the protein is 

generally more successful.  One possible conclusion from this is that if the water is not 

correctly orientated then the protein may not be correctly polarized and so omission of 

protein polarization is preferable. It would seem that QM/MM orientation of the water 

molecule is preferable. This raises an important issue with regards to treatment of hydration 

and polarization within binding sites. One of the issues is that polarization in protein– ligand –

specific water systems may be ligand dependent.  Water molecules may be absent in low 

resolution structures, but they might also be absent because of their dynamic nature. 

Moreover, the water pattern for one bound ligand may be different to that in other bound 

ligands. Thus, not all water molecules are the same. We have shown that the water molecule 

can be placed with some degree of reliability simply by docking when the ligand is present, 

and the initially good hydrogen bonding conditions are met. The presence of such a water 

molecule could then enhance virtual screening programs for the purpose of finding other 

good fragment hits. We have shown that docking a water molecule in the absence of a ligand 

is unlikely to be successful. There is much scope for studies on the conservation of water 

molecules in different X-ray crystal structures of the same enzyme to see whether the 

absence of conservation at particular positions in indicative of an ‘unhappy’ water molecule. 

In Chapter 6, we investigated cross-docking by determining a set of 15 family members that 

had at least seven protein-ligand complexes. The self-docking success to these 257 proteins 

and the improvement arising from the inclusion of polarization was similar to that seen in 

Chapter 3. However, there was a more marked success in cross-docking and this was 

particularly evident in the cross-docking of mutual pairs, i.e. if ligand A from its complex with 

protein A can dock into protein B, then ligand B should also dock into protein A. The success 

in cross-docking was not uniform, but rather was more marked for highly charged ligands. 
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Future Work 

We have largely concentrated on the effects of improvements to docking in reproducing the 

experimental pose since this is not a trivial problem. However, a similar but related and more 

difficult problem is that of cross-docking, since docking a ligand taken from one structure into 

another structural form of the same enzyme, typically crystallized with a different ligand, is 

not trivial, as shown in Chapter 6. The initial success in cross-docking is encouraging but 

further work is required, e.g. by including a more thorough treatment of hydration. We are 

hopeful that the method will show some improvement as the effect of polarization should be 

to reduce electrostatic repulsion, thus alleviating the need for quite so much receptor 

structural flexibility. It would also be interesting to test the methods for recovering the 

experimental pose or a set of known binders from a fragment database seeded with decoys. 

Improved methods for placing water molecules are required. In keeping with the current 

work, a molecular dynamics approach which incorporates a polarizable water model, could 

be developed using a modified version of the tinker program, since this has been developed 

within the group. Such an approach could be consistent with methods for including 

distributed multipoles and softer repulsion since these are also included in Tinker. 
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APPENDIX A 
 

Glide XP and alternate protocols with (200 pose requests) 
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Figure A.1 Assessment of Initial docking settings and Polarization of the Ligand/Complex and the 

initial Polarized Geometry on Flexible re-docking success (200 Poses). Methods: Glide SP (Standard 
Precision), Glide XP (Extra Precision). Re-Docked with Polarized Ligand partial charges (L) or Complex 

partial charges (C); Then the Methods apply to the initial (L)/(C) Pose used for Flexible Re-Docking 
with Glide SP where: POSE is Polarized by the Highest Ranking Glide GSCORE (Also referred to as at 

@MM and if the pose is QSITE Jaguar QM/ Impact MM optimized before polarization given the suffix 

@QM); XPOSE, GLIDE SPX, (and GLIDE XPX) are re-runs with extended sampling option set. (CVDW), 
(EMODEL), (GSCORE) are the partitioned scoring function used by Glide. Plots A, C, E – Percentage 

over 74 molecules where highest ranked/lowest scoring Pose (Grey), Pose cluster (White*) is also 
lowest available pose.  Plots B, D, F – Percentage over 74 molecules where highest ranked/lowest 

scoring pose is at discrete cut-offs <0.5 RMSD (Green);<1 RMSD (Yellow); <2 RMSD (Orange); <4 

RMSD (Red). All Root Mean Square Deviation(s) (RMSD) are given in the unit Angstroms (Å). 
*Clustering parameters set at <1.1 kcal/mol and <1 RMSD.  Initial Docking request was to keep 200 

poses. 
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Figure A.2 Rough (<2 RMSD) Assessment of Additional Clustering on (200 pose) Docking Success (as 

Figure A.1) using Glide SP (Standard Precision), Re-scored with Polarized Ligand partial charges (L) or 
Complex partial charges (C); The Methods – Apply to the initial (L)/(C) Pose used for Re-Docking and 

Re-Scoring. Methods: Glide SP (Standard Precision), Glide XP (Extra Precision). Re-Docked with 
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Polarized Ligand partial charges (L) or Complex partial charges (C); Then the Methods apply to the 

initial (L)/(C) Pose used for Flexible* Re-Docking with Glide SP where: POSE is Polarized by the 
Highest Ranking Glide GSCORE (Also referred to as at @MM and if the pose is QSITE Jaguar QM/ 

Impact MM optimized before polarization given the suffix @QM); XPOSE, GLIDE SPX, (and GLIDE XPX) 
are re-runs with extended sampling option set. (CVDW), (EMODEL), (GSCORE) are the partitioned 

scoring function used by Glide.  Plots G, I, K – The percentage over 74 molecules where the highest 

ranking/lowest scoring pose cluster (Grey) is a successful (below 2 RMSD). Then % increase when 
additionally accounting for 2nd Pose cluster (White*) <2 RMSD when 1st pose is not.  Plots H, J – 

Given Boltzmann probabilty (%) averaged over 74 molecules of the Pose Population adopting the 
highest ranked/lowest scoring pose minima (Grey) and of adopting the 2nd Pose Cluster minima when 

the first isn’t <2 RMSD (Dark Blue). 
*Clustering parameters set at <1.1 kcal/mol and <1 RMSD. Initial Docking request was to keep 200 

poses. 
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Glide SP Poses polarized at 1st Ranked Glide Scoring Function Geometries and 
QM/MM optimized Glide Pose 
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Figure A.3 Assessment of Polarization of the Ligand/Complex and the initial Polarized Geometry on 

Flexible* re-docking success (15 poses) using Glide SP (Standard Precision), Re-Docked with Polarized 
Ligand partial charges (L) or Complex partial charges (C); Then the Methods apply to the initial (L)/(C) 

Pose used for Flexible* Re-Docking where: POSE - Highest Ranking Glide GSCORE pose; CVDW - 
Highest Ranking Glide CVDW pose; POSE - Highest Ranking Glide EMODEL pose. (Also referred to as 

at @MM and if the pose is QSITE Jaguar QM/ Impact MM optimized before polarization given the 

suffix @QM e.g. JUST POSE here); (CVDW), (EMODEL), (GSCORE) in headings are the partitioned 
scoring function used by Glide. Plots A, C, E – Percentage over 74 molecules where highest 

ranked/lowest scoring Pose (Grey), Pose cluster (White**) is also lowest available pose.  Plots B, D, F 
– Percentage over 74 molecules where highest ranked/lowest scoring pose is at discrete cut-offs <0.5 

RMSD (Green);<1 RMSD (Yellow); <2 RMSD (Orange); <4 RMSD (Red). All Root Mean Square 

Deviation(s) (RMSD) are given in the unit Angstroms (Å). *INDIV - Re-scored using Glide Score in 

Place (Gives CVDW and GSCORE only). **Clustering parameters set at <1.1 kcal/mol and <1 RMSD. 

Initial Docking request was to keep 15 poses. 
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Figure A.4 Rough (<2 RMSD) Assessment of Additional Clustering on (15 pose) Docking Success (as 

Figure A.3) using Glide SP (Standard Precision), Re-Docked with Polarized Ligand partial charges (L) 
or Complex partial charges (C); Then the Methods apply to the initial (L)/(C) Pose used for Flexible 

Re-Docking where: POSE - Highest Ranking Glide GSCORE pose; CVDW - Highest Ranking Glide 

CVDW pose; POSE - Highest Ranking Glide EMODEL pose. (Also referred to as at @MM and if the pose 
is QSITE Jaguar QM/ Impact MM optimized before polarization given the suffix @QM e.g. JUST POSE 

here); (CVDW), (EMODEL), (GSCORE) in headings are the partitioned scoring function used by Glide.  
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Plots G, I, K – The percentage over 74 molecules where the highest ranking/lowest scoring pose 

cluster (Grey) is a successful (below 2 RMSD). Then % increase when additionally accounting for 2nd 
Pose cluster (White) <2 RMSD when 1st pose is not.  Plots H, J – Given Boltzmann probabilty (%) 

averaged over 74 molecules of the Pose Population adopting the highest ranked/lowest scoring pose 
minima (Grey) and of adopting the 2nd Pose Cluster minima when the first isn’t <2 RMSD (Dark Blue). 

**Clustering parameters set at <1.1 kcal/mol and <1 RMSD. Initial Docking request was to keep 15 

poses. 
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Appendix B 

 ‘Lone Water’ Ligand Docking results when only 2 non water-water Hydrogen 

bonds formed (1 Protein; 1 Ligand) – Dataset reduced to 21 molecules below. 

 

Table B.1 Dataset structures containing a bridged interaction ‘lone water’ molecule.  Here 

(brackets) indicate ligand molecule used where more than one, also 3IME B refers to chain B. 

PDB NAME WATER ID NO H-BONDS PDB NAME WATER ID NO H-BONDS 

1M2X 985 2 1MLW 506 2 
1MLW 601 2 1TKU 803 2 
1TKU 915 2 1YNH 2010 2 
1F5F 307 2 1PWM 1552 2 
1UWC 2335 2 2BKX 2364 2 
2BRT 2085 2 2BRT 2128 2 
1YV5 1010 2 2HDQ (501) 596 2 
2ZVJ 309 2 3C0Z 1010 2 
1N1M 1230 2 1WCC 2282 2 
2C90 2188 2 2JJC 2292 2 
3IME B 1032 2    
      

 



238 
 

 

Figure B.1 Assessment of Polarization of the Ligand/Complex and the a Ligand attached water  

Flexible re-docking success (15 poses) using Glide where (21) refers to number of molecules from 
original dataset without single water molecule, (2H) refers to the number of protein/ligand hydrogen 

bonds formed namely 2,  (L) is Re-Docked with Polarized Ligand partial charges or (C) is Complex 
partial charges (C); (2HO) is the same as (2H) only the single water molecule hydrogens have been 

orientated by QM/MM calculation, before commencing a docking run.  Then POSE – is polarized at the 
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Highest Ranking Glide GSCORE pose geometry. (CVDW), (EMODEL), (GSCORE) are the partitioned 

scoring function used by Glide. Plots A, C, E – Percentage over 21 of the 74 molecules where highest 
ranked/lowest scoring Pose (Grey), Pose cluster (White*) is also lowest available pose.  Plots B, D, F – 

Percentage over 21 of the 74 molecules where highest ranked/lowest scoring pose is at discrete cut-
offs <0.5 RMSD (Green);<1 RMSD (Yellow); <2 RMSD (Orange); <4 RMSD (Red). All Root Mean 

Square Deviation(s) (RMSD) are given in the unit Angstroms (Å). *Clustering parameters set at <1.1 

kcal/mol and <1 RMSD. Initial Docking request was to keep 15 poses. 
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Figure B.2 A Rough (<2 RMSD) Assessment of Additional Clustering on (15 pose) Docking Success 

(as Figure B.1) using Glide Standard Precision -GLIDE, where (21) refers to number of molecules from 

original dataset without single water molecule, (2H) refers to the number of protein/ligand hydrogen 
bonds formed namely 2,  (L) is Re-Docked with Polarized Ligand partial charges or (C) is Complex 

partial charges (C); (2HO) is the same as (2H) only the single water molecule hydrogens have been 
orientated by QM/MM calculation, before commencing a docking run.  Then POSE – is polarized at the 
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Highest Ranking Glide GSCORE pose geometry. (CVDW), (EMODEL), (GSCORE) are the partitioned 

scoring function used by Glide. Plots G, I, K – The percentage over 21 of 74 molecules where the 
highest ranking/lowest scoring pose cluster (Grey) is a successful (below 2 RMSD). Then % increase 

when additionally accounting for 2nd Pose cluster (White) <2 RMSD when 1st pose is not.  Plots H, J, L 
– The percentage over 21 of 74 molecules where a pose exists below 2 RMSD and the highest 

ranking/lowest scoring pose is a successful (below 2 RMSD - orange). *Clustering parameters set at 

<1.1 kcal/mol and <1 RMSD. Initial Docking request was to keep 15 poses. 
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Appendix C 

0.5 angstrom class binned probability plots 

Figure C.1 Based on the probability that a pose is within a discrete 0.5 angstrom class bin, for a given 

value of x. The probability is calculated using variables for RMSD from the top-ranked CVDW poses. 



243 
 

 

Figure C.2. RMSD across the 74 molecules top-ranked poses as a 0.5 angstrom binned probability 

plot (decimal) for DMA/Orient-based methods. 
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Figure C.3. RMSD across the 74 molecules top-ranked poses as a 0.5 angstrom binned probability 

plot(decimal) for Jaguar QM/MM and DMA/Orient-based methods and Glide score in place.  WILL 

DMA includes exponential-6 repulsion.  
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Appendix D 

Chapter 6 Supporting Info 

Table D.1 Atomic Polarizabilities (𝛼) 

Atom type 𝛼 (Å3) Atom type 𝛼 (Å3) Atom type 𝛼 (Å3) 

C 1.433 H 0.387 Zn 0.387 

CM 1.352 HW 0.387 Mg 0.387 

CT 1.061 HC 0.387 S 3 

NA 1.09 HA 0.387 P 1.538 

O 0.569 Fe 0.387 Cl 2.315 

OW 0.637 Co 0.387 Fl 2.315 

OH 0.637 Ni 0.387 DM 0.001 

Atom typing key: Carbons: C sp3 tetrahedral, CM sp2 aromatic, CT sp2 trigonal. Nitrogen: NA 

default.  Oxygens: O non-hydroxyl, OW and OH hydroxyl. Hydrogens (Atom type red highlight). 

Metals Default (Atom type purple highlight). 

 

Table D.2 Mean (𝝁) RMSD (Å) to X-ray experiment result half of other method, Full 

polarization vs No polarization. 

 

pdb  

 

Structures 

 
Polarization 

 

(%) 

 

OPLS 

  

(%) 

 BETTER 

Polar 𝝁 

 

Opls 𝝁 

WORSE 

Polar 𝝁 

 

Opls 𝝁 

1e2i 72 3 4.2 4  5.6  1.5 4 2.7 0.8 

1pwm 528 64 12.1 24  4.5  1.4 5.6 5.7 1.3 

1sqn 29 2 6.9 1  3.4  1.1 6.9 2.5 0.7 

1t0l 56 9 16.1 1  1.8  1.7 4.8 1.1 0.5 

1yv5 90 42 46.7 1  1.1  1.1 9.2 0.9 0.4 

2gg7 90 17 18.9 3  3.3  1.4 5.2 5.9 2.2 

1fv9 210 32 15.2 16  7.6  1.6 5.8 6.9 2.2 

1gwq 1075 99 9.2 36  3.3  1 4.5 3.4 1.2 

1n1m 182 55 30.2 4  2.2  1.5 6 7.8 2.5 

1qwc 272 44 16.2 4  1.5  1.5 5.8 6.8 2.5 

1w cc 1122 240 21.4 23  2  2.9 8.9 7.5 2.6 

1s39 210 39 18.6 6  2.9  0.7 3.9 6 1.6 

2c90 56 7 12.5 5  8.9  1.4 6.8 6 1.9 

2jjc 866 132 15.2 29  3.3  1.2 5.4 4.4 1.1 

2ohk 380 55 14.5 10  2.6  1.8 5.8 6.1 1.9 

Mean 

Total 

5238 840 17.2 167  3.6  1.5 5.9 4.9 1.6 

Key: 3rd and 5th Column compare the number of structures from column 2 that half the rmsd of the 

other method, in these columns black bold indicates polarization is better, red bold indicates a 

refractory situation where polarization is worse. The last four columns report the mean rmsd (both 

methods) when polarization is better and worse RMSD (Å).  Black bold and red bold indicate mean 

within 2 RMSD, for better or worse respectively. Last row: column means are in black, Totals in 

purple. 
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Table D.3 Evaluation of criteria  RMSD to X-ray experiment result <2 Å for one method and >4 

Å  for the other method, Full polarization vs No polarization. 

pdb source Structures Polarization (%) OPLS (%) BETTER 

Polar 𝝁 

 

OPLS 𝝁 

WORSE 

Polar 𝝁 

 

OPLS μ 

1e2i 72 0 0 0 0 - - - - 

1pwm 528 33 6.2 8 1.5 1.2 6.7 8.9 1.2 

1sqn 29 2 6.9 0 0 1.1 6.9 0 0 

1t0l 56 7 12.5 0 0 1.6 4.8 0 0 

1yv5 90 35 38.9 0 0 0.9 9.7 0 0 

2gg7 90 5 5.6 1 1.1 1.3 6.4 5.7 1.3 

1fv9 210 15 7.1 5 2.4 1.4 6.4 6 1.2 

1gwq 1075 45 4.2 4 0.4 1 6 5.7 1.4 

1n1m 182 27 14.8 0 0 1 6.4 0 0 

1qwc 272 21 7.7 0 0 1.3 6.2 0 0 

1w cc 1122 68 6.1 3 0.3 1.4 6.5 8.3 1.3 

1s39 210 16 7.6 3 1.4 0.6 4.5 7.2 1.7 

2c90 56 3 5.4 2 3.6 0.7 7.2 6.4 1.7 

2jjc 866 62 7.2 10 1.2 1 6.8 6.8 1.4 

2ohk 380 20 5.3 3 0.8 1.3 5.8 7.4 1.2 

Mean 

Total 

5238 359 9.0 39 0.8 1.1 6.0 4.2 0.8 

Key: 3rd and 5th Column compare the number of structures from column 2 that have RMSD <2 Å  for one 

method and RMSD >4 Å for the other method in relation to X-ray experiment result, in these columns black 

bold indicates polarization is better, red bold indicates a refractory situation where polarization is worse e.g., no 

overall refractory cases. The last four columns report the mean (𝜇) RMSD (both methods) when polarization is 

better and worse RMSD (Å).  Black bold and red bold indicate mean within 2 RMSD, for better or worse 

respectively. Last row: column means are in black, Totals in purple. 

Table D.4 Bootstrapping population parameter (𝛉̂) statistics for Table 6.2 Glide cross docking, 

where n=1000, for the mutual pairs cross docking <2 Å RMSD.   

Name pdb  Parent 

(%) 
𝝁𝜽̂ 𝝈 bias 𝝈 SE 

Herpes simplex virus type 1 1e2i 27.778 27.547 0.231 7.231 0.448 

Aldose reductase 1pwm 23.106 23.167 0.061 2.575 0.16 

Progesterone receptor 1sqn 50 50.6 0.6 17.94 1.112 

Isocitrate dehydrogenase 1t0l 7.143 6.989 0.154 4.976 0.308 

Farnesyl diphosphate synthase 1yv5 17.778 17.351 0.427 5.705 0.354 

methionine aminopeptidase 2gg7 11.111 11.138 0.027 4.655 0.289 

microurokinase 1fv9 20 19.81 0.19 3.816 0.237 

Oestrogen receptor 1gwq 47.416 47.39 0.026 2.259 0.14 

Dipeptidyl peptidase IV 1n1m 7.692 7.804 0.112 2.798 0.173 

nitric oxide synthase 1qwc 4.412 4.451 0.039 1.757 0.109 

Cyclin-dependent kinase 2 1w cc 3.743 3.725 0.018 0.8 0.05 

tRNA-Guanine transglycosylase 1s39 48.571 48.281 0.29 4.795 0.297 

Thrombin 2c90 10.714 10.461 0.254 5.786 0.359 

HSP90 2jjc 13.626 13.732 0.106 1.636 0.101 

secretase 2ohk 2.105 2.128 0.023 1.045 0.065 
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Key: Here, 𝝈 bias is the difference between the parent group success and the population parameter mean  

𝜇𝜃̂,  𝜎 is the estimated standard deviation from 𝜇𝜃̂, SE is the standard error in the population parameter 𝜃̂ at 

n=1000. 

Table D.5 Bootstrapping population parameter pi statistics for Table 6.2 Ligand cross docking, 

where n=1000, for the mutual pairs cross docking <2 A RMSD.   

Name pdb  Parent 

(%) 
𝝁𝜽̂ 𝝈 bias 𝝈 SE 

Herpes simplex virus type 1 1e2i 22.222 21.897 0.325 6.824 0.423 

Aldose reductase 1pwm 26.136 26.176 0.04 2.789 0.173 

Progesterone receptor 1sqn 50 50.288 0.288 18.501 1.147 

Isocitrate dehydrogenase 1t0l 14.286 14.286 0 6.364 0.394 

Farnesyl diphosphate synthase 1yv5 20 19.651 0.349 5.827 0.361 

methionine aminopeptidase 2gg7 24.444 24.573 0.129 6.287 0.39 

microurokinase 1fv9 29.524 29.32 0.204 4.315 0.267 

Oestrogen receptor 1gwq 50.112 50.079 0.033 2.311 0.143 

Dipeptidyl peptidase IV 1n1m 13.187 13.286 0.099 3.527 0.219 

nitric oxide synthase 1qwc 5.147 5.188 0.04 1.88 0.117 

Cyclin-dependent kinase 2 1w cc 5.704 5.704 0 0.978 0.061 

tRNA-Guanine transglycosylase 1s39 61.905 61.868 0.037 4.788 0.297 

Thrombin 2c90 7.143 6.875 0.268 4.726 0.293 

HSP90 2jjc 20.323 20.47 0.147 1.933 0.12 

secretase 2ohk 5.263 5.373 0.11 1.619 0.1 

Key: Here, 𝝈 bias is the difference between the parent group success and the population parameter mean  

𝜇𝜃̂,  𝜎 is the estimated standard deviation from 𝜇𝜃̂, SE is the standard error in the population parameter 𝜃̂ at 

n=1000. 

Table D.6 Bootstrapping population parameter pi statistics for Table 6.2 Full cross docking, 

where n=1000, for the mutual pairs cross docking <2 A RMSD.   

Name pdb  Parent 

(%) 
𝝁𝜽̂ 𝝈 bias 𝝈 SE 

Herpes simplex virus type 1 1e2i 33.333 33.117 0.217 7.755 0.481 

Aldose reductase 1pwm 26.515 26.524 0.009 2.798 0.173 

Progesterone receptor 1sqn 62.5 63.1 0.6 17.729 1.099 

Isocitrate dehydrogenase 1t0l 25 24.986 0.014 8.057 0.499 

Farnesyl diphosphate synthase 1yv5 75.556 75.456 0.1 6.314 0.391 

methionine aminopeptidase 2gg7 22.222 22.302 0.08 6.254 0.388 

microurokinase 1fv9 32.381 32.318 0.063 4.551 0.282 

Oestrogen receptor 1gwq 52.584 52.599 0.015 2.324 0.144 

Dipeptidyl peptidase IV 1n1m 23.077 23.195 0.118 4.537 0.281 

nitric oxide synthase 1qwc 12.5 12.576 0.076 2.84 0.176 

Cyclin-dependent kinase 2 1w cc 6.774 6.793 0.019 1.061 0.066 

tRNA-Guanine transglycosylase 1s39 67.619 67.489 0.13 4.642 0.288 

Thrombin 2c90 7.143 7.075 0.068 4.926 0.305 

HSP90 2jjc 23.788 23.895 0.108 2.048 0.127 

secretase 2ohk 8.947 8.933 0.015 2.005 0.124 
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Key: Here, 𝝈 bias is the difference between the parent group success and the population parameter mean  

𝜇𝜃̂,  𝜎 is the estimated standard deviation from 𝜇𝜃̂, SE is the standard error in the population parameter 𝜃̂ at 

n=1000. 

Table D.7 Initial proteins from fragment validation set that met protein selection criteria  

PDB  Recepter Ligand Name or Synonym www.drugbank.ca 

1e2i Herpes simplex virus 

type 1 
APS 9-Hydroxypropyladenine,S-Isomer  

1pwm Aldose reductase FID Fidarestat  

1sqn Progesterone receptor NDR Norethisterone Approved 

1t0l Isocitrate 

dehydrogenase 
ICT Isocitric Acid  

1yv5 Farnesyl diphosphate 

synthase 
RIS Risedronate Approved 

2gg7 methionine 

aminopeptidase 
U14 3-(5-amino-3-imino-3H-pyrazol-4-

ylazo)-benzoic acid 

Experimental 

1fv9 microurokinase 172 2-amino-5-hydroxy-benzidazole  

1gwq Oestrogen receptor ZTW Raloxifene Core Experimental 

1n1m Dipeptidyl peptidase 

IV 
A3M 2-Amino-3-Methyl-1-Pyrrolidin-1-Yl-

Butan-1-One 

Experimental 

1qwc nitric oxide synthase 14W N-(3-(Aminomethyl)Benzyl) 

Acetamidine 

Experimental 

1wcc Cyclin-dependent 

kinase 2 
CIG 2-Amino-6-Chloropyrazine Experimental 

1s39 tRNA-Guanine 

transglycosylase 
AQO 2-Aminoquinazolin-4(3h)-One Experimental 

2c90 Thrombin C1M 1-(4-chlorophenyl)-1H-tetrazole  

2jjc HSP90 LGA Pyramidine-2-Amine  

2ohk secretase  1SQ 1-Amino-Isoquinoline   

Unique |Initial proteins from Fragment validation set, 1e2i, 1pwm, 1sqn, 1t0l, 1yv5, 2gg7 originate 

from SERAPhiC (Favia et al., 2009). The rest are representative fragment complexes largely from the 

generations of leads or retrospective decomposition of leads (Congreve et al., 2008). 
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Table D.8 The 257 ligands used in the cross docking experiments.  
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Titles show pdb code and ligand id separated by underscore. 

 

 


