
ar
X

iv
:1

51
1.

04
38

7v
2

 [
cs

.D
S]

 8
 S

ep
 2

01
6

Combining Monte-Carlo and Hyper-heuristic methods for the

Multi-mode Resource-constrained Multi-project Scheduling

Problem

Shahriar Astaa, Daniel Karapetyana,b,∗, Ahmed Kheiria, Ender Özcana,
Andrew J. Parkesa

aUniversity of Nottingham, School of Computer Science
Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK
bUniversity of Essex, Institute for Analytics and Data Science

Wivenhoe Park, Colchester, CO4 3SQ, UK

Abstract

Multi-mode resource and precedence-constrained project scheduling is a well-known
challenging real-world optimisation problem. An important variant of the problem re-
quires scheduling of activities for multiple projects considering availability of local and
global resources while respecting a range of constraints. A critical aspect of the bench-
marks addressed in this paper is that the primary objective is to minimise the sum of the
project completion times, with the usual makespan minimisation as a secondary objective.
We observe that this leads to an expected different overall structure of good solutions
and discuss the effects this has on the algorithm design. This paper presents a carefully
designed hybrid of Monte-Carlo tree search, novel neighbourhood moves, memetic algo-
rithms, and hyper-heuristic methods. The implementation is also engineered to increase
the speed with which iterations are performed, and to exploit the computing power of
multicore machines. Empirical evaluation shows that the resulting information-sharing
multi-component algorithm significantly outperforms other solvers on a set of “hidden”
instances, i.e. instances not available at the algorithm design phase.

Keywords: metaheuristics; hybrid heuristics; hyper-heuristics; Monte Carlo tree search;
permutation based local search; multi-project scheduling

1. Introduction

Project scheduling has been of long-standing interest to academics as well as prac-
titioners. Solving such a problem requires scheduling of interrelated activities (jobs),
potentially each using or sharing scarce resources, subject to a set of constraints, and
with one or several of a variety of objective functions. There are various project schedul-
ing problems and many relevant surveys in the literature, e.g. see [4, 22, 21, 48, 39, 20, 65].
The best-known problem class is the Resource Constrained Project Scheduling Problem

∗Corresponding author

Preprint submitted to Elsevier September 9, 2016

http://arxiv.org/abs/1511.04387v2

(RCPSP) in which activities have fixed usages of the resources, there are fixed prece-
dence constraints between them, and often the objective is simple minimisation of the
makespan (completion time of last activity). These problems have been proven to be
NP-hard [2], and a well-known benchmark suite, PSPLIB, is provided in [29].

A generalisation of the RCPSP is to also consider ‘Multi-mode RCPSP’ (MRCPSP)
in which activities can be undertaken in one of a set of modes, with each mode potentially
using different sets of resources. Furthermore, there are many options besides makespan
for the objective function(s); a typical one is that a weighted sum of completion times
is minimised. As common in optimisation problems, exact methods perform best on
smaller instances and on larger instances heuristics and metaheuristics become necessary.
Recent works on the MRCPSP range from exact approaches, such as, MILP [33], and
branch-and-bound [59], to metaheuristics, such as, differential evolution [11], estimation
of distribution algorithms [61], evolutionary algorithms [14, 55, 17], swarm intelligence
methods [31], and others [8, 60].

This paper presents our winning approach submitted to MISTA 2013 challenge1 on a
further extension called ‘multi-mode resource-constrained multi-project scheduling’ (MR-
CMPSP) and the results on the associated benchmark/competition instances. The full
description of this problem domain can be found on the competition website and in
[62]; however, for completeness we also summarise it in Section 2. The broad aim is to
schedule a set of different and partially interacting projects, with each project consist-
ing of a set of activities. There are no precedence constraints between the activities of
different projects however they can compete for resources. Also, the objective function
is extended to be a mix of a kind of weighted completion time and makespan. The
MRCMPSP is hence interesting in that it has a mix of structures and requirements that
are a step towards modelling the complexity of real-world scheduling problems. The
high real-world relevance of the multi-project version of scheduling is well-known, e.g. a
survey [35] found that “84% of the companies which responded to the survey indicated
that they worked with multiple projects”. However, the majority of scheduling work is
on the single project version, though there is some existing work on the multi-project
case, e.g. see [35, 18, 32, 36].

Our approach searches the space of sequences of activities, from which schedules are
constructed and then the quality of each schedule is evaluated using the objective func-
tion. The search process on the set of sequences operates in two phases in a “construct
and improve” fashion. In the first phase, a heuristic constructor creates initial sequences
of activities. A novel proposal in this paper is to investigate the overall global structure
of the solutions and use this to motivate constructing the initial sequences using a Monte-
Carlo Tree Search (MCTS) method, e.g. see [3]. This construction phase is followed by
an improvement phase which makes use of a large and diverse set of heuristic neighbour-
hood moves. The search process during the improvement phase is carefully controlled
by a combination of methods arising from a standard metaheuristic, namely memetic
algorithm, and also an extension of existing hyper-heuristic components [27, 46].

There is an interesting potential for dual views of the overall problem. It is defined as a
multi-project problem, but it can be also viewed as a single project (multi-mode) RCPSP,
in which the precedence graph has a particular structure, consisting of disjoint clusters.

1http://gent.cs.kuleuven.be/mista2013challenge/

2

http://gent.cs.kuleuven.be/mista2013challenge/

There is a sense in which we work with both views together. Some neighbourhood moves
treat the problem in a single-project fashion and work on the constituent activities; other
neighbourhood operators explicitly consider the multi-project nature of the problem, and
focus on moves of projects. Both views, and kinds of operators, are used and work
together to improve the overall project-level structure as well as the detailed activity
level structure. A discussion and a computational study on both approaches can be
found in [35].

The primary contributions of this paper are:

• Observation and investigation of how the primary objective function being essen-
tially a “sum of project completion times” leads to good solutions having inherently
different structure to those with makespan as the primary objective. In particular,
minimisation of project completion times subject to limited global resource results
in partial ordering of projects; this does somewhat reduce the effective size of the
search space, but also may lead to good solutions being more widely separated. Un-
derstanding of this significantly affected our algorithm design, including an MCTS
construction method aiming to create solutions having such structure.

• Novel neighbourhood moves, including those that are designed specifically for
smoother navigation through the search space of the multi-project extension of
MRCPSP – reflecting our observation of the effect that the main objective func-
tion has on the solution structures.

• An adaptive hybrid hyper-heuristic system to effectively control the usage of the
rich set of neighbourhood moves.

• Evidence of the effectiveness based on successful results on a range of benchmark
problems. This includes winning a competition, in which some problems were
hidden at the algorithm design/tuning phase. We also tested our algorithm on
single-project instances from PSPLIB. Although our algorithm was not designed
to work on single-project instances, it demonstrated good performance in these
tests, and was competitive with the state-of-the-art methods tailored to the single-
project case. Furthermore, it improved 3 best solutions on these PSPLIB instances
during these experiments.

These contributions are directed towards a system that is both robust and flexible;
with the potential to be effective at handling a wide variety of problem requirements
and instances. Arguably, one of the lessons of this paper is that greater complexity and
richness of such scheduling problems needs to be matched with a greater complexity and
richness of the associated algorithms; especially when not all instances are known in
advance, and so algorithms should not over-specialise to a particular data set.

Regarding the structure of the paper; in Section 2 we describe the problem to be
solved. In Section 3 we discuss how we have carefully chosen the appropriate data struc-
tures and implemented algorithms operating with those data structures efficiently in
order to construct the schedule from a given sequence as fast as possible. (To build
an effective system, one has to pay attention to all of its components.) However, most
of the contribution of this paper arises from choosing and combining the effective algo-
rithmic components including the search control algorithm and then (partially) tuning
the relevant parameters within the overall approach. These consist of the MCTS-based

3

constructor given in Section 4, the neighbourhoods given in Section 5, and the improve-
ment phase given in Section 6. The computational experiments and competition results
are presented and analysed in Section 7; including some reports of performance on a
multi-mode, though single project, benchmark set from PSPLIB. Section 8 concludes
the paper.

2. Problem Description

The problem consists of a set P of projects, where each project p ∈ P is composed of
a set of activities, denoted as Ap, a partition from all activities A. Each project p ∈ P
has a release time ep, which is the earliest start time for the activities Ap.

The activities are interrelated by two different types of constraints: the precedence
constraints, which force each activity j ∈ A to be scheduled to start no earlier than
all the immediate predecessor activities in set Pred(j) are completed; and the resource
constraints, in which the processing of the activities is subject to the availability of
resources with limited capacities. There are three different types of the resources: local
renewable, local non-renewable and global renewable. Renewable resources (denoted
using the superscript ρ) have a fixed capacity per time unit. Non-renewable resources
(denoted using the superscript ν) have a fixed capacity for the whole project duration.
Global renewable resources are shared between all the projects while local resources are
specified independently for each project.

Renewable and non-renewable resources are denoted using the superscript ρ and ν,
respectively. Rρ

p is the set of local renewable resources associated with a project p ∈ P ,
and Rρ

pk is the capacity of k ∈ Rρ
p , i.e. the amount of the resource k available at each

time unit. Rν
p is the set of local non-renewable resources associated with a project p ∈ P ,

and Rν
pk is the capacity of k ∈ Rν

p , i.e. the amount of the resource k available for the

whole duration of the project. G ρ is the set of the global renewable resources, and Gρ
k is

the capacity of the resource k ∈ G ρ.
Each activity j ∈ Ap, p ∈ P , has a set of execution modes Mj. Each mode m ∈Mj

determines the duration of the activity djm and the activity resource consumptions. For
a local renewable resource k ∈ Rρ

p , the resource consumption is rρjkm; for a local non-
renewable resource k ∈ Rν

p , the resource consumption is rνjkm; for a global renewable

resources k ∈ G ρ, the resource consumption is gρjkm.
Schedule D = (T,M) is a pair of time and mode vectors, each of size n. For an

activity j ∈ A, values Tj and Mj indicate the start time and the execution mode of j,
respectively. Schedule D = (T,M) is feasible if:

• For each p ∈ P and each j ∈ Ap, the project release time is respected: Tj ≥ ep;

• For each project p ∈ P and each local non-renewable resource k ∈ Rν
p , the total

resource consumption does not exceed its capacity Rν
pk.

• For each project p ∈ P , each time unit t and each local renewable resource k ∈ Rρ
p ,

the total resource consumption at t does not exceed the resource capacity Rρ
pk.

• For each time unit t and each global renewable resource k ∈ G ρ
p , the total resource

consumption at t does not exceed the resource capacity Gρ
k.

4

• For each j ∈ A, the precedence constraints hold: Tj ≥ maxj′∈Prec(j) Tj′ + dj′Mj′
.

The objective of the problem is to find a feasible schedule D = (T,M) such that it
minimises the so-called total project delay (TPD), defined by using the time for total
project completion (TPC)

TPC =
∑

p∈P

Cp (1)

and

TPD ≡ fd(D) = TPC− L =





∑

p∈P

Cp



 − L , (2)

where Cp is the completion time of project p

Cp = max
j∈Ap

(

Tj + djMj

)

. (3)

The constant L is a lower bound calculated as

L =
∑

p∈P

(CPDp + ep) , (4)

with CPDp being a given pre-calculated value. Since L is a constant, then it does not
affect the optimisation (it was presumably introduced in the competition just to make
the output numbers smaller and easier to interpret). Specifically, since L is the lower
bound (though not necessarily a tight bound), fd(D) ≥ 0 for any feasible solution D.

Note that this primary objective is an instance of the standard “weighted completion
time”, usually denoted by “

∑

j wjCj”, but specialised to the case, “
∑

p wpCp”, in which

only the completion times of the projects are used2 (in the case of TPD all the weights
are assigned to be one).

The tie-breaking secondary objective is to minimise the total makespan, (TMS), which
is the finishing time of the last activity (or equivalently of the last project):

TMS ≡ fm(D) = max
j∈A

(

Tj + djMj

)

= max
p∈P

Cp . (5)

In our implementation, we combine the objective functions fd(D) and fm(D) into
one function f(D) that gives the necessary ranking to the solutions:

f(D) = fd(D) + γfm(D) , (6)

where 0 < γ ≪ 1 is a constant selected so that γfm(D) < 1 for any solution D produced
by the algorithm. In fact, we sometimes use γ = 0 to disable the second objective. For
details, see Section 6.1.

Under the conventional “α|β|γ” labelling, it could perhaps be described as “MP+S |
prec | (

∑

p wpCp, Cmax)” using ‘MP+S’ to denote ‘Multi-mode Multi-Project Schedul-
ing’.

2If there is no unique activity marking the end of a project, then a dummy empty end activity can
always be added, without changing the problem.

5

3. Schedule Generator

Designing an algorithm for solving the multi-mode resource-constrained multi-project
scheduling problem requires an appropriate solution representation. There are two ‘nat-
ural’ solution representations in the scientific literature:

Schedule-based: A direct representation using the assignment times, and also modes,
of activities, i.e. vectors T and M .

Sequence-based: This is based on selecting a total order on all the activities. Given
such a sequence, a time schedule is constructed by taking the activities one at a
time in the order of the sequence and placing each one at the earliest time slot such
that feasibility of the solution would be preserved. This approach is called serial
schedule generation scheme (e.g., see [4]).

The schedule-based representation is perhaps the most natural one for a mathematical
programming approach, but we believe that it could make the search process difficult for
a metaheuristic method, in particular, generating a feasible solution at each step could
become more challenging. As is common for heuristic approaches [62], we preferred the
sequence-based representation, since it provides the ease of producing schedules that are
both feasible and for which no activity can be moved to an earlier time without moving
some other activities (the schedule is then said to be ‘active’).

The sequence-based representation is a pair S = (π,M), where π is a permutation of
all the activities A, and M is a modes vector, same as in the direct representation. The
permutation π has to obey all the precedence relations, i.e., π(j) > π(j′) for each j ∈ A
and j′ ∈ Pred(j). The modes vector is feasible if Mj ∈Mj for each j ∈ A and the local
non-renewable resource constraints are satisfied for each project p ∈ P .

In order to evaluate a solution S, it has to be converted into the direct represen-
tation D. By definition, the sequence-based representation S = (π,M) corresponds to
a schedule produced by consecutive allocation of activities π(1), π(2), . . . , π(n) to the
earliest available slot. The corresponding procedure, which we call schedule generator, is
formalised in Algorithms 1, 2 and 3. Note that the procedure guarantees feasibility of
the resulting schedule as it schedules every activity in such a way that feasibility of the
whole schedule is preserved.

Algorithm 1: Serial schedule generation scheme

1 Let S = (π,M) be the sequence-based solution;
2 for i← 1, 2, . . . , n do

3 Let j ← π(i);
4 Schedule j in mode Mj to the earliest available slot such that feasibility of the

schedule is preserved;
5 end

The worst case time complexity of this implementation is O(n(ζ + Tρd)), where
ζ = maxj∈A |Prec(j)| is the maximum length of the precedence relation list, T is the
makespan, ρ = |G ρ| + maxp∈P |R

ρ
p | is the maximum number of local and global renew-

able resources and d = maxj∈A djMj
is the maximum activity duration. The first term of

6

Algorithm 2: Scheduling an activity to the earliest available slot.

1 Let j be the activity to be scheduled;
2 Let m be the mode associated with j;
3 Let p be an index such that j ∈ Ap;

4 Calculate the earliest start time of j as t0 ← max

{

ep, max
j′∈Prec(j)

(Tj′ + dj′m)

}

;

5 t← TestSlot(j, t0);
6 Allocate activity j at t in mode m and update the remaining capacities;

Algorithm 3: A naive implementation of the TestSlot(j, t) function. The function
returns the earliest time slot at or after t feasible for scheduling activity j.

1 Let m be the mode associated with j;
2 Let p be an index such that j ∈ Ap;
3 for t′ ← t, t+ 1, . . . , t+ djm − 1 do

4 for k ∈ Rρ
p do

5 Let a be the remaining capacity of k at t′;
6 if rρjkm > a then return TestSlot(j, t+ 1)

7 end

8 for k ∈ G ρ do

9 Let a be the remaining capacity of k at t′;
10 if rρjkm > a then return TestSlot(j, t+ 1)

11 end

12 end

13 return t;

the sum corresponds to handling precedence relations, and the second term corresponds
to scanning slots and testing resource availability. Note that ζ < n, and the maximum
number ρ of resources is a constant in our benchmark instances. Also, T is typically
linear in n, and, hence, the time complexity is quadratic. The schedule generator is the
performance bottleneck of our solver (note that most of the local search moves described
in this paper are no worse than linear time complexity). In our experiments, schedule
generation was usually taking over 98% of the CPU time. By introducing several im-
provements (based on information sharing and caching of partial solutions) described
below we reduced the running times of the schedule generator by a factor of around ten
compared to our initial routine implementation. That significantly increased the number
of iterations the higher level algorithm was able to run within a given time.

3.1. Issues in Efficient Implementation

In this section, we briefly discuss algorithmic and implementational issues that do
not directly affect the number of sequence evaluations, but that are designed to increase
the rate that evaluations are performed. This is of importance for application of the
methods to real-world problems. However, it can also be of potential importance to
choices between different heuristics or other algorithmic components.

7

The methods for evaluation and comparison of algorithms are not necessarily clear.
In particular, two aspects that arise with respect to this work, and scheduling in general,
are “hidden instances”, and “termination criteria”. Hidden instances (meaning ones that
are not available until after the implementation is finished) act against the danger that
occurs with open instances of the techniques becoming tailored to the specific instances.
For reliability and verification of results this generally means the implementations must
be finalised before the release of the instances. In practice, this seems to be rarely applied
outside of the context of a competition. In such cases, one might regard competitions
are a way to enforce the scientific good practice of fully finalising the algorithm and
implementation before the testing.

The other aspect is evaluating algorithms’ performance purely in terms of their (wall-
clock) runtimes, or instead using some attempt at implementing independent “counting”
measure of steps taken. The advantages of the former “runtime” method is that it relates
to what real world users would usually care about, and also might be the only real option
when no sensible pure counting methods are available. The advantage of the counting is
that it hides the implementation efficiency and hence allows to compare “pure algorithm
designs”. In some research situations the classes of algorithms are sufficiently similar for
a counting based comparison being viable, and then may well be standard e.g. in genetic
algorithms the number of fitness evaluations is commonly used.

Hence, the counting-based approach encourages/supports rapid explorations of ideas
for new algorithms, however exclusive usage would discourage developing new practical
methods of improving algorithm performance. For example, counting fitness evaluations
can miss the advantages of the incremental evaluation techniques routinely used in meta-
heuristics, and that are vital for their effectiveness. Runtime-based approach on contrary
encourages the researchers to exploit methods that are practical in real circumstances,
taking into account incremental evaluation, parallelism and other considerations crucial
for real-world systems. We note here that the associated added complexity of algorithm
engineering could potentially be partly addressed by hyper-heuristics, as they could pro-
vide feedback to the programmer regarding the extra value of low-level heuristics if their
implementation were improved. This is particularly relevant in the context of a solver
employing multiple neighbourhoods, like the one presented in this paper.

We believe that there is no simple answer to which of these two algorithm evaluation
approaches is best in general and so both of them have their place. However in the context
of the very well studied project scheduling we do believe that engineering questions need
to be accounted for. As an example of the importance of such ‘engineering issues’ we
refer to another well-studied area of solving propositional satisfiability (SAT) problems
and that has been active for many decades3. An important part of development of
SAT solvers was the development of ‘watched literals’ [42]. The technique only directly
affected the standard and routine ‘unit propagation’ procedure in SAT solvers (which
is the CPU-intensive portion, analogous to the schedule generator), but it did so in a
fashion that meant new heuristics were then practical, leading to new algorithm designs.

In real-world usages of scheduling, an important aspect is the software engineering
aspect of the time and cost of implementing and maintaining the software. An initial
implementation of a neighbourhood is often relatively easy; however, the practical prob-
lems can arise when effective use requires that it is implemented in a fashion that uses

3E.g. competitions have been held for many years, see http://www.satcompetition.org/

8

incremental or delta evaluation (so that the objective function does not require a full
re-evaluation). To support the incremental evaluation it is often necessary to implement
appropriate data structures that are more sophisticated, and so harder to implement and
maintain. With serial generation the majority of the CPU time is spent in the generation
of the schedule from the sequence. Hence, we naturally found that significant improve-
ments were achieved by modifying the generator algorithm. Good ‘engineering’ of the
serial generation also has the important advantage that it helps all of the neighbourhoods.
(If all the neighbourhoods were to rely on entirely separate implementations, then there
would be much more pressure, for practical software engineering issues, to reduce to a
smaller set.)

Observe (see Algorithm 2) that the schedule generation algorithm spends most of the
time finding the first available slot for an activity. To speed up this phase, we use a
modification of the Knuth-Morris-Pratt substring search algorithm. By testing resource
availability in the reversed order, we can use early exploration of insufficient resources
to skip several values of t, see Algorithm 4.

Algorithm 4: An improved implementation of the TestSlot(j, t) function. The
function returns the earliest time slot at or after t feasible for scheduling activity j.

1 for t′ ← t+ djm − 1, t+ djm − 2, . . . , t do
2 for k ∈ Rρ

p do

3 Let a be the remaining capacity of k at t′;
4 if rρjkm > a then return TestSlot(j, t′ + 1)

5 end

6 for k ∈ G ρ do

7 Let a be the remaining capacity of k at t′;
8 if rρjkm > a then return TestSlot(j, t′ + 1)

9 end

10 end

11 return t

Another speed-up heuristic is exploiting the nature of the neighbourhood moves; we
noted that any two solutions tested consequently are likely to share a prefix. Let S1 =
(π1,M1) be some solution, S2 = (π2,M2) be its neighbour, andD1 = (T 1,M1) andD2 =
(T 2,M2) be their direct representations. According to our assumption, π1(i) = π2(i) = j
and M1

j = M2
j for i = 1, 2, . . . , x, where x is the prefix length (which is likely to be

significant). Then, by construction, T 1
j = T 2

j for each j = π2(1), π2(2), . . . , π2(x). Hence,

knowing D1, we do not need to calculate the values T 2
j for j = π2(1), π2(2), . . . , π2(x).

For details, see Algorithm 5.
This gives a form of incremental evaluation that has the advantage that it applies to

all the neighbourhoods used. Potentially, this engineering optimisation could have impact
on the design of the improvement algorithm in that the selection of neighbourhood moves
could benefit from exploiting changes at the end of the schedule being faster to evaluate
than those at the beginning. This is something that can potentially be captured by a
hyper-heuristic, as one of the long-term intentions of hyper-heuristics is that they should
monitor the CPU times taken by different moves, and combine this with monitoring of

9

their effects, in order to give better adaptive control of the improvement phase.

Algorithm 5: Serial schedule generation scheme with prefix detection.

1 Let S2 = (π2,M2) be the new solution;
2 Let S1 = (π1,M1) be the previous solution and D1 = (T 1,M1) be the
corresponding direct representation;

3 Let prefix ← true;
4 for i← 1, 2, . . . , n do

5 Let j ← π2(i);
6 if prefix = true and π1(i) = j and M1

j = M2
j then

7 Allocate activity j to T 1
j in mode M2

j and update the remaining capacities;

8 else

9 Schedule j in mode M2
j to the earliest available slot;

10 prefix ← false ;

11 end

12 end

In addition to the algorithmic improvements, we used several standard programming
techniques to optimise the implementation performance, with the primary ones being:

• Incremental maintenance of auxiliary data: Note that the schedule generator
has to maintain the amount of remaining resource for each renewable resource
and each time unit, i.e. T ·

(

|G ρ| +
∑

p∈P |R
ρ
p |
)

values. Since T is not known
in advance, the corresponding auxiliary data structure has to be large enough to
fit a schedule of size Tmax, where Tmax is the upper bound of T . Considering
the initialisation of this auxiliary data structure, the real time complexity of the
algorithm is O(n(ζ + Tρd) + Tmaxρ

′), where ρ′ = |G ρ| +
∑

p∈P |R
ρ
p | = O(ρ|P |).

Usually Tmax ≫ T and ρ′ ≫ 1 and, hence, the last term of the generator complexity
has a major impact on the real performance of the procedure. By reusing the same
auxiliary data structures and only re-initialising the portion that was altered in the
previous run of the generator, we speed up the initialisation phase by a factor of
about Tmax/T .

• Local memory access: Most of the solution evaluations happen in our meta-
heuristic within local search procedures. Each instance of the local search algo-
rithm is assigned a CPU core, and a dedicated copy of the schedule generator is
maintained for it. This is particularly important for the prefix reuse heuristic and
CPU cache efficiency.

4. Solution Structures

This section primarily explains why having “Total Project Delay” (TPD) as the
main objective can be expected to lead to the general structure of solutions being very
different to the structure obtained with the more standard makespan (TMS) objective.
Our observations of the TPD-driven structure had an important influence on our design of
the overall algorithm. The structure motivates many of the “project level” moves that are

10

considered in Section 5. In this section, we also propose a heuristic method to construct
the initial solutions which feed into the improvement phase later. As standard in such
“construct and improve” optimisation, the concern was that the desirable structures might
be difficult to achieve by the improvement unless the initial constructor heuristically tried
to get close, by doing an appropriate “heuristically-guided global sampling” of the space
of approximate structures. Accordingly, with the intent to increase the robustness of
the solver, to handle such structures in unseen instances, a specialised MCTS-based
constructor is proposed and developed.

4.1. TPD-driven Solution Structures

(a) Only makespan is minimised (the TPD objective is disabled), that is minimising the latest
completion times of projects. TPC = 925, TMS = 119.

(b) Both objectives are enabled, that is, the primary objective is the TPD – minimising the sum
of completion times of projects. TPC = 654, TMS = 128.

Figure 1: An example of overall project-level structure of good solutions (using instance
B-1). Each horizontal line shows the duration allocated to each project in the schedule.

In this subsection, we report on the investigation of the natural question of what
constitutes a ‘good’ approximate structure. We firstly look at the structure of a high
quality schedule for a benchmark instance, and then we elucidate the observed structures
using some small examples. The critical message is that optimising TPD leads to different
structures of the solutions than when optimising TMS; we believe that algorithm design
needs to take account of this difference.4

In particular, we have observed that in many cases, dominance by the TPD objective
frequently leads to approximate ordering of the projects. A typical example of this is

4Similar effects are also observed in [63].

11

given in Figure 1 using a good solution to instance B-1. Figure 1a shows the structure
obtained when only the standard makespan is minimised, but the structure is very dif-
ferent in Figure 1b with the required TPD-dominated objective. That is, the pattern of
completion times of each project, the Cp of (3), depends on whether they are driven by
TPD, effectively minimising the average of the Cp, or instead driven by the makespan,
reducing the maximum of the Cp. The example shows how, with TPD dominating, there
are time periods in the schedule when the general focus is on relatively few projects and
during the schedule this focus changes between projects.

Hence, the evidence from Figure 1, and other multi-project cases we have looked at,
suggests that the approximate ordering is common. Overall, these structures naturally
arises from the combination of the TPD (2) objective with the limited global resources.
Suppose that some P is the final finishing project, and so its last activity determines the
TMS and P’ is an earlier finishing project. It may well be that P’ can move some of its
activities earlier by delaying activities of P, though without changing the last activity of
P. Such moves will improve the TPD without worsening the TMS.

That is, in contrast to the makespan objective, the TPD objective, together with
limited shared resources, has a natural side-effect of encouraging unfairness between the
finish times of projects, and will drive some projects to finish as early as possible.

To illustrate the way in which an approximate ordering might arise, and TPD-driven
and TMS-driven solutions can be quite different, we give a set of small example instances.
We denote these example instances by “2[x–y–x]”, consisting of two projects. Each
project consists of a precedence-constrained chain of just 3 activities of durations x, y
and x, respectively. There are two (renewable) shared resources with activities 1 and 3
using the resource 2, and activity 2 using resource 1. We focus on values of x and y that
lead to resource 2 being the bottleneck, and so the main driving force of the makespan –
corresponding to the shared global resource in the MISTA benchmarks. Figure 2a shows
four schedules of this parametrised instance, along with their corresponding values of C1

and C2. Solutions S4 and S3 arise from simply swapping the order of the projects in
solutions S1 and S2 respectively.

The solutions S1 and S4 do not interleave the two projects, and so leave gaps in the
bottleneck resource 2. In contrast, solutions S2 and S3 interleave the projects and so lead
to full usage of the bottleneck resource, and are hence automatically the best solutions
for the TMS objective. However, S2 and S3 are not always the best solutions for the
TPD objective. Changing the solution leads to a tradeoff between C1 and C2, and this is
illustrated, in Figure 2b for various choices of x and y. In this figure, the values of x and
y are selected so that we always have 2x+ y = 100; this makes the effect of changing the
relative balance of x and y clearer, and also means that the values can be interpreted as
percentages of the project time.

Before proceeding further, we observe that we can also interpret the project comple-
tion times, Cp, from the point of view of ‘multi-objective optimisation’, by regarding
each of them as separate objectives. In particular, in standard fashion, one can say that
a set of values for Cp dominates another set provided that none of the Cp values are
worse (larger) and at least one is better (smaller). One can hence discuss the cases in
Figure 2b as being the Cp-Pareto Front, of non-dominated sets of Cp. We emphasise this
view is for obtaining insight into the space of solutions, and is not used directly within
our algorithm; we did not perform multi-objective optimisation over the Cp, though be-
lieve it would be worthy of future investigation. Also, note this view is different from

12

(a) Case “2[x–y–x]”. Showing four possible so-
lutions, S1, . . . , S4, and associated project com-
pletion times C1 and C2.

(b) Tradeoff between completion times of
projects. We select a range of different val-
ues for x and y, but with the invariant that
2x + y = 100; so that the effect of varying
the balance between x and y is made clear.

Figure 2: Simple 2-project examples to illustrate concave and convex non-dominated
sets. The notation “2[x–y–x]” means two projects each consisting of a chain of 3 tasks
of durations [x, y, x] with shared resources, and the tasks 1 and 3 in each chain using
resource 2, and task 2 using resource 1.

taking the pair (TPD,TMS) as a bi-objective problem, and having a (TPD,TMS)-Pareto
Front (this would correspond again to a different class of algorithms than we consider
here, but is again worthy of future investigation). Incidentally, there are two distinct
‘multi-objective views’ on the space of solutions:

• Cp-Pareto Front, of dimension p, formed from the p completion times

• (TPD,TMS)-Pareto Front, of dimension 2, and formed from the aggregates (sum
and max) of the Cp

However, it is important to realise that although the Cp and (TPD,TMS) views are
different, they are tightly linked. Both the TPD, arising from

∑

p Cp, and the TMS,
from maxp Cp, are monotone (non-decreasing) with respect to the Cp and so preserve
Pareto dominance. That is, if solution Cp dominates solution C′

p, then the resulting
pair (TPD,TMS) dominates (TPD’,TMS’) – though note that the converse does not

13

apply. Hence, the (TPD,TMS)-Front can be extracted from the Cp-Front. However, this
‘projection’ loses information; the Cp-Front gives more insight into the space of solutions.

Consequently, the “Cp-Pareto Front”, or set of non-dominated Cp values, can give
some insight into the effect of TPD compared to TMS on the structure of the solutions.
Hence, we can regard Figure 2b as showing the effect of the x–y balance on the Cp-Pareto
Front. In particular, we see that for two of the cases, 2[44–12–44] and 2[48–4–48] the
Cp-Pareto Front is concave in terms of the set of feasible Cp values (on the top right).
When the Front is concave then the two solutions minimising the TPD are S1 and S4 and
are at opposite ends of the Cp-Front. In contrast, the solutions S2 and S3 minimising
the TMS are in the middle.

Generally, with a concave Cp-Pareto Front the solutions (locally) minimising
∑

p Cp

are naturally at the ends of the Front, and furthermore solutions at the ends of the Front
will be more likely to have some Cp values small and others large. This matches with the
way that the observed solutions minimising TPD do indeed sequence the projects. That
is, when the projects are roughly equal size, and the Cp Pareto Front is concave, then it
becomes reasonable that the TPD objective prefers the end points, and so the candidate
good solutions are more likely to be widely separated in the search space.

Also, notice that as the fraction of activities using the bottleneck resource 2 (that is
the value of 2x) increases, then the Cp-Pareto Front becomes more concave, and the TPD-
driven solutions become different from the TMS-driven ones. This is consistent with the
our general experience of the properties of MISTA instances; the shared global resource
tends to be a bottleneck, and consequently they show the approximate ordering as seen
in Figure 1. Future work could well use such features related to the tightness of bottle-
neck resources to predict these effects, and so be used to select appropriate algorithm
components. We also remark that the interesting structure of the tradeoff between the
completion times does suggest that future work might well use multi-objective methods,
e.g. see [10], and of course could study the effect of different weights for the completion
times.

The simple example above is atypical in that the two projects are identical. However,
if the projects are similar in size then it is reasonable to expect that the Cp-Pareto Front
may be similar in overall structure but slightly distorted. When the front is concave but
still roughly symmetric with respect to swapping the Cp, then the TPD-driven solutions
are likely to still be towards the ends of the Front and so widely separated. However,
because the front is not totally symmetric the ends are likely to have slightly different
values of TPD. Hence, in such circumstances, it is reasonable to expect that there may
be many widely separated local optima in TPD, and also that the optima correspond to
different (approximate) orderings of the projects.

4.2. MCTS

We have seen above that the TPD objective tends to favour a different solution
structure than standard makespan minimisation, and in particular can drive a partial
orderings of the projects, and there may be many good solutions that are widely sepa-
rated in the solution space. Consequently, our construction method attempts to do a
broad exploration of the solution space and to create initial sequences with a broadly
similar partial order. The reason for including this was simply that we expected the
partial ordering to lead to widely separated local minima in the search space, with large
barriers between them – as swapping the order of two projects might mean going through

14

interleaved intermediate states in which the TPD is worse. We included a method to
sample the space of approximate project orderings, with the intent to avoid starting in
a poor ordering and being trapped.

We expect that only a partial ordering is needed because we can assume that the
subsequent improvement phase can make small or medium size adjustments to the overall
project ordering structure. However, the improvement phase could have more difficulty,
and take more iterations, if the general structure of the project ordering were not close
to the structure expected in best solutions. Consequently, and for simplicity, we decided
that a reasonable approximation would be to use a 3-way partition of the projects taken
to correspond to ‘start’, ‘middle’ and ‘end’ parts of the overall project time. We required
the numbers of projects in each part (of the partition) to be equal – or with a difference
of at most one when the total number of projects is not a multiple of 3.

The problem then is how to quickly select good partition of the projects, and the
method we selected is a version of Monte-Carlo Tree Search (MCTS) methods [3]. The
general idea of MCTS is to search a tree of possibilities, but the evaluation of leaves is
not done using a predefined heuristic, but instead by sampling the space of associated
solutions. The sampling is performed using multiple invocations of a “rollout” which
is designed to be fast and unbiased. It needs to be fast so that multiple samples can
be taken; also rather than trying to produce “best solutions” it is usually designed to
be unbiased – the (now standard) idea being that it should provide reliable branching
decisions in the tree, but is not directly trying to find good solutions.

In our case, the tree search corresponds to decisions about which projects should be
placed in which part of the partition. The rollout is a fast way to sample the feasible
activity sequences consistent with the candidate choice for the partition of the projects.
Specifically, the tree search works in two levels; firstly to select the projects to be placed
in the end part and then to select the partition between the start and middle parts.

The first stage considers5 100 random choices for the partition of the projects, and
then selects between these using 120 samples or the rollout6. The rollout consists of two
main stages:

1. Randomly select a total ordering of the activities consistent with the precedences
and with the candidate partitioning. Specifically, within each partition we effec-
tively consider a dispatch policy that randomly selects between activities that are
available to be scheduled because their preceding activities (if any) are already
scheduled.

2. Randomly select modes for the activities. If the result is not feasible then this can
only be because of the mode selection causing a shortfall in some non-renewable
resources. Hence, it is repaired using a local search on the space of mode selections.
We use moves that randomly flip one mode at a time, and an objective function
that measures the degree of infeasibility by the shortfall in resources. Since the
non-renewable resources are not shared between projects, this search turned out to
be fast and reliable. As a measure of precaution, if the procedure fails to obtain

5The parameters for the MCTS were the result of some mild tuning, and used in the competition
submission, but of course are adjustable.

6The number 120 was selected so that the rollouts could be evenly distributed between 2, 4, 6, 8 or
12 cores of the machine

15

a feasible selection of modes after a certain number of local search iterations, we
restart it with a random selection of modes.

The first stage ends by making a selection of the best partitioning, using the quality of
the 25th percentile of the final solution qualities (the best quartile) of the results of the
rollouts. The ‘end’ part is then fixed to that of the best partition. The decision to fix
the ‘end’ part also arose out of the observation that in good solutions the end projects
are least interleaved. The MCTS proceeds to the second stage, and follows the same
rollout procedure but this time to select the contents of the middle (and hence start)
parts. This entire process usually completes within only a few seconds, and was used
as the construction stage before the much longer improvement phase. We emphasise
that the TPD-structure observed earlier had an important influence of the design of the
neighbourhoods used in the key improvement phase – in particular, the motivation that
some moves should affect the project level structure.

5. Neighbourhood Operators

In this section, we describe our neighbourhood operators, used by several components
during the improvement phase. The operators (also referred to as low-level heuristics or
simply moves, depending on the algorithm which makes use of them) are categorised into
three groups. This categorisation is mainly based on the common nature of the strategy
the operators employ while manipulating the solution. Some of the moves are similar to
those used by other submissions; see [62], and [16] and [57] for few examples. To make
the paper self-contained, below we provide brief descriptions of all the moves used in our
algorithm.

We guarantee that all of our operators preserve feasibility of the solution. Also, all of
the moves are randomised so that they could be repeatedly used in “simulated annealing”-
like improvement or applied as mutation operators. All the random selections are made
at uniform unless specified otherwise.

5.1. Activity-level Operators

Operators in this category involve basic operations, widely used in the literature, such
as changing the mode of a single activity or swapping the positions of two activities. On
top of that, we implemented a limited first improvement local search procedure for each
of the basic moves.

To describe the moves in this category, we will need additional notations. Let pos(j)
be the position of activity j ∈ A within a given solution. If activity j is shifted to a
different position, we say that the feasible range of its new position is [ℓ(j), u(j)], where
ℓ(j) and u(j) can be computed as follows:

ℓ(j1) =

{

maxj∈Pred(j1) pos(j) + 1 if Pred(j1) 6= ∅,

1 otherwise
(7)

and

ℓ(j1) =

{

minj∈Succ(j1) pos(j)− 1 if Succ(j1) 6= ∅,

n otherwise,
(8)

where Succ(j1) is the set of successors of j1.
16

• Swap activities: swap two activities in the sequence. Select an activity j1 ∈
A randomly. Select another activity j2 6= j1 ∈ A randomly such that ℓ(j1) ≤
pos(j2) ≤ u(j1). If ℓ(j2) ≤ pos(j1) ≤ u(j2) then swap j1 and j2. Otherwise leave
the solution intact.

• Shift: shift an activity to a new location in the sequence. Shift a randomly selected
activity j ∈ A to a new position randomly selected from pos(j) ∈ [ℓ(j), u(j)].

• Change mode: change the mode of a single activity. Select an activity j randomly
at uniform, and if |Mj | = 1 then leave the solution intact. Otherwise select a new
mode m 6= Mj ∈ Mj and, if this does not lead to a violation of non-renewable
resource constraints, update Mj to m.

• FILS swap activities: apply the first improvement local search (FILS) procedure
based on the swap move. The operator has one parameter: the width W > 1 of
the window to be scanned. Select an activity j1 ∈ A randomly. Define the window
[ℓ′, u′] for activity j2 as follows. If u(j) − ℓ(j) < W , let ℓ′ = ℓ(j) and u′ = u(j).
Otherwise select ℓ′ ∈ [ℓ(j), u(j) − W + 1] and set u′ = ℓ′ + W − 1. Then, for
every j2 ∈ A \ {j1} such that ℓ′ ≤ pos(j2) ≤ u, attempt to swap j1 and j2 (see
SwapActivities). If the attempt is successful and it reduces the objective value
of the solution then accept it and stop the search. Otherwise roll back the move
and proceed to the next j2 if any.

• FILS shift: apply the first improvement local search (FILS) procedure based on
the shift move. The operator is implemented very similarly to FILS swapActivi-

ties, i.e. it attempts to shift a randomly selected activity to an new position within
a window of a given size.

• FILS change mode: apply the first improvement local search (FILS) procedure
based on the change mode move (the operator has no parameters). Select an
activity j ∈ A randomly. For m ∈Mj \ {Mj}, produce a new solution by setting
Mj = m. If the resulting solution is feasible and provides an improvement over the
original solution, accept the move and stop the local search. Otherwise proceed to
the next m ∈Mj \ {Mj} if any.

5.2. Ruin & Recreate Operators

The Ruin & Recreate (R&R) operators are widely used in metaheuristics as mutations
or strong local search moves but, to the best of our knowledge, they are relatively new to
serial generation in scheduling. As the name suggests, such operators have two phases:
the “ruin” phase removes some elements of the solution and the “create” phase reshuffles
those elements (for example, randomly) and then inserts them back. The number of
elements to remove and re-insert is a parameter of a R&R operator, which controls its
strength (i.e. the average distance between the original and the resulting solutions).

We implemented three different types of R&R operators, and several strategies to
select activities involved in the move. One can arbitrary combine any type of the R&R
operator with any activity selection strategy.

The move types are Reshuffle Positions, Reshuffle modes and Reshuffle

positions and modes. Reshuffle positions move removes all the selected activities

17

A′ ⊂ A from the solution (leaving |A′| gaps in the sequence) and then re-inserts them in
a random order while respecting the precedence relations. To determine a feasible order,
we compute which activities V i can be placed in each gap i = 1, 2, . . . , |A′| (in terms of
precedence relations between the activities in A′ and activities in A\A′), and also produce
a precedence relations sub-graph induced by A′. Then we apply a backtracking algorithm.
In each iteration, it fills one gap, starting from the earliest gaps in the sequence. For gap
i it randomly selects an activity j ∈ A′ such that there are no incoming arcs to j in the
precedence sub-graph. If such an activity exists, the algorithm removes j from A′ and
from the precedence sub-graph. Otherwise it rolls back to attempt another activity on
the previous level of search. The depth of roll backs is unlimited, i.e., in the worst case,
the algorithm will performs the depth first search of the whole search tree (observe that
there is always at least one feasible arrangement of the activities).

Reshuffle modes move changes the modes of selected activities while keeping their
positions intact. Each of the selected activities j ∈ A′ is assigned a randomly chosen
mode, either equal or not to the previous mode Mj . Observe that the new mode selection
may cause infeasibility in terms of non-renewable resources. Thus, we use the multi-start
metaheuristic, simply repeating the above step until a feasible mode selection is found.

Reshuffle positions and modes combines the above two moves, which is trivial
to implement as modes feasibility is entirely independent of the sequence feasibility.

We implemented several activity selection strategies some of which exploit our knowl-
edge of the problem structure.

• Uniform: as the name suggests, A′ ⊂ A is selected randomly at uniform. The
number of elements in A′ is a parameter of the move.

• Project: the activities A′ are selected within a single project, i.e. A′ ⊂ Ap. The
project p ∈ P is selected randomly.

• Local: the selection of activities is biased to those scheduled near a certain time
slot in the direct representation D. We randomly sample the activities accepting
an activity j with probability

probability(j) =
1

|Tj−τ |
width

+ 1
, (9)

where 0 ≤ τ ≤ fm(D) (see (5)) is the randomly selected time slot (the centre of
the distribution) and width is a parameter defining the spread of the distribution.
The sampling stops when A′ reaches the prescribed cardinality.

• Global resource driven: the selection of activities is biased to the ones sched-
uled to time slots that under-utilise the global resources. The rationale is that
global resources usually present a bottleneck in minimising the project completion
times, and inefficiencies in the global resources consumption should be addressed
when polishing the solution. In this selection strategy, as in Local selection,
we use random sampling, but the acceptance probability for an activity j ∈ A is
defined by

probability (j) =

∑

k∈G ρ remainingk(Tj)
∑

k∈G ρ G
ρ
k

, (10)

18

where remainingk(t) is the remaining (unutilised) capacity of global resource k at
the time slot t.

• Ending biased: the selection of activities is biased to the last activities within
the projects. The rationale is that, in an unpolished solution, the completion of a
project might be improved by careful packing the last activities such that all the
last activities end at roughly the same time, effectively maximising the utilisation
of the local resources and redistributing the global resources between projects. As
in Local selection and Global resource driven selection, we use random
sampling of activities. The probability of accepting an activity j ∈ A is

probability (j) =
project -pos(j)

|Ap|
, (11)

where p is the project of activity j and project -pos(j) is the position of activity j
among the activities of project p.

5.3. Project-level Operators

It was shown in Section 4 that the TPD objective function tends to create a partial
ordering of projects in high-quality solutions. The danger, however, is that the ordering to
which the solution converges might be sub-optimal. Consider two well-polished solutions
S1 and S2 having different project orderings. The distance between S1 and S2 is likely
to be significant with respect to the activity-level and R&R operators as many activities
need to be moved to convert S1 into S2. Moreover, the transitional solutions in such a
conversion will have significantly poorer quality compared to that of S1 and S2. This
indicates that, once the algorithm converges to a certain project ordering, it needs a lot
of effort to leave the corresponding local minimum and change the project ordering.

The project-level operators are designed to overcome such barriers, allowing faster
exploration of the rough landscape of the MRCMPSP. They perform on the project
level and thus one move of any of operators from this category usually results into a
change in the project ordering. That being said, the project-level moves are likely to
corrupt the solution causing many activity-level inefficiencies that need to be treated
with activity-level and R&R moves. Thus, they ought to be used rarely within local
search, but they can serve well as mutation operators.

In some of the project-level moves we use the formal concept of project ordering P (S).
To extract P (S) from a solution S, we compute the “centre of mass” centre(p) for each
project p ∈ P as

centre(p) =
1

|Ap|

∑

j∈Ap

pos(j)

and define the ordered set P (S) of projects according to their centres of mass.

• Swap two projects: swap two randomly selected projects in the sequence. Select
two projects p1 6= p2 ∈ P randomly. Remove all the activities belonging to projects
p1 and p2 from the sequence. Fill the gaps with all the p2 activities and then
all the p1 activities preserving the original order within each of the projects. If,
in the original solution, p1 was located earlier than p2 then the move swaps the
projects (for instance, (1, 1, 1, 2, 1, 2, 2, 2) turns into (2, 2, 2, 2, 1, 1, 1, 1)). Otherwise

19

it simply separates them more clearly (for instance, (2, 2, 2, 1, 2, 1, 1, 1) turns into
(2, 2, 2, 2, 1, 1, 1, 1)).

• Swap neighbour projects: swap two projects adjacent in the project ordering.
Extract the project ordering P (S), randomly select 1 ≤ i < q and set p1 = P (S)i
and p2 = P (S)i+1. Then apply the Swap two projects move.

• Compress project: place all the activities of a project adjacently to a new loca-
tion x in the sequence while preserving their original ordering. Randomly select a
project p ∈ P and remove all the activities j ∈ Pp from the sequence, squeezing the
gaps (the resulting sequence will contain n−|Pp| activities). Insert all the activities
j ∈ Pp consecutively at position ⌈x(n − |Pp|)⌉, where the parameter 0 ≤ x ≤ 1 is
the new relative location of Pp.

• Shift project: shift all the activities of a project by some offset. Randomly select
a project p ∈ P and calculate posmin = minj∈Pp

posj and posmax = maxj∈Pp
posj .

Randomly select an offset −posmin < δn − posmax and shift every activity j ∈ Pp

by δ positions toward the end of the sequence.

• Flush projects: flush the activities of one or several projects to the beginning or
ending of the sequence. Compute the project ordering P (S) and select x consecutive
projects P ′ from P (S), where 1 ≤ x < |P | is a parameter. Flush all the activities
in projects P to either the beginning or the ending of the sequence (defined by an
additional parameter of the move).

6. Improvement Phase

Most of the time our algorithm spends on improving the initial solutions. We use
a multi-threaded implementation of a simple memetic algorithm with a powerful local
search procedure based on a hyper-heuristic which controls moves discussed in the pre-
vious section.

6.1. Memetic Algorithm

A genetic algorithm is a population based metaheuristic combining principles of nat-
ural evolution and genetics for problem solving [54]. A pool of candidate solutions (indi-
viduals) for a given problem is evolved to obtain a high quality solution at the end. A
fitness function is used to measure the quality of each solution. Mate/parent selection,
recombination, mutation and replacement are the main operators of an evolutionary al-
gorithm. However, the usefulness of recombination is still under debate in the research
community [13, 38]. A recent study showed that recombination can be useful at a certain
stage during the search process, if the mutations do not change the quality of resultant
individuals leading to a population containing different individuals with the same fitness
[56]. The choice of the recombination operator can influence the best setting for the rate
of mutation depending on the problem dealt with. Although the study is rigorous, it
is still limited considering that some benchmark functions, such as OneMax are used
for the proofs. A memetic algorithm (MA) hybridises a genetic algorithm with local
search which is commonly applied after mutation on the new individuals [40, 41]. Many
improvements for MAs have been suggested, for example the population sizing [24] and

20

interleaved mode of operation [47]. MAs have been successfully applied to many different
problems ranging from generalised travelling salesman [19] to nurse rostering [44].

The improvement phase of our algorithm is controlled by a simple multi-threaded MA
which manages the solution pool and effectively utilises all the cores of the CPU. Our
MA is based on quantitative adaptation at a local level according to the classification in
[43].

Within the MA, we use a powerful local search procedure that takes a few seconds on
a single core to converge to a good local minimum. (Running the local search for a longer
time still improves the solution but the pace of improvements slows down.) As the local
search procedure has to be applied to every solution of the population in each generation,
and the local search is by far the most intensive time consumer in our algorithm, the
total running time of the algorithm can be estimated as

num-gen · pop-size · ls-time

cores
,

where num-gen is the number of generations, pop-size is the size of the population,
ls-time is the time taken by the local search procedure on one core per solution and
cores is the number of available CPU cores. Our algorithm is designed to converge
within a few minutes. This implies that, to have a sufficient number of generations, the
size of the population ought to be of the same order as the number of cores. On the other
hand, as the memetic algorithm requires a barrier synchronisation at each generation,
and our local search procedure cannot utilise any more than one CPU core, the size of
the population has to be pop-size = cores · i to fully utilise all the cores, where i is a
positive integer. In our implementation, we fixed the running time of the local search
procedure to five seconds, and the size of the population to the number of CPU cores
available to the algorithm.

Because of the small population size and limited number of generations, we decided
to use a simple version of the MA, see Algorithm 6. We denote the population as
S = {S1, S2, . . . , Scores}, and the subroutines used in the algorithm are as follows:

• Construct() returns a new random solution with the initial partial project sequence
obtained during the construction phase (see Section 4).

• Accept(Si) returns true if the solution Si is considered ‘promising’ and false oth-
erwise. The function returns false in two cases: (1) f(Si) > 1.05f(Si′) for some
i′ ∈ {1, 2, . . . , |S|} or (2) the solution was created at least three generations ago and
Si is among the worst three solutions. Ranking of solutions is performed according
to fd(Si) + idle , where idle is the number of consecutive generations that did not
improve the solution Si.

• Select(S) returns a solution from the population chosen with the tournament selec-
tion based on two randomly picked individuals.

• Mutate(X) returns a new solution produced from solution X by applying a mu-
tation operator. The mutation operator to be applied is selected randomly and
uniformly among the available options:

– Apply the Reshuffle positions and modes move with the Local selection
strategy (see Section 5.2). The cardinality of the selection is |A′| = 3. Repeat

21

the procedure 20 times, each time randomly selecting the centre of distribution
1 ≤ τ ≤ fm(D), see (9). The width parameter is taken as width = 0.1fm(D).

– Apply the Swap neighbour projects operator once (see Section 5.3).

– Apply the Flush projects operator with the number of selected projects
being one and flushing to the end of the sequence (see Section 5.3).

– Apply the Flush projects operator with the number of selected projects
being two and flushing to the beginning of the sequence. It was noted that
the project ordering is usually less explicit at the beginning of the sequence
in good solutions, and for that reason we did not use flushing single projects
to the beginning in our mutations.

– Same as the last mutation except that the number of selected projects is three.

It was noted in Section 4 that the components fd(D) and fm(D) of the objective
function f(D) (see (6)) are competing. Indeed, minimisation of the total makespan
favours solutions with projects running in parallel as such solutions are more likely to
achieve higher utilisation of the global resources. At the same time, minimisation of
the TPD favours solutions with the activities grouped by projects. Hence, the second
objective creates a pressure for the local search that pushes the solutions away from the
local minima with regards to the first (main) objective. To avoid this effect, we initially
disable the second objective (γ ← 0, see Section 2) and re-enable it only after 70% of the
given time is elapsed.

The parameters of the memetic algorithm (such as the ones used in the Accept(Si)
function, or the number of solutions in the tournament in Select(S)) have been chosen
using a parameter tuning procedure. It should be noted, however, that the algorithm is
not very sensitive to any of those parameters, which makes it efficient on a wide range
of instances, and this conclusion was supported by our empirical tests, see Section 7.

6.2. A Dominance based Hyper-heuristic Using an Adaptive Threshold Move Acceptance
There is a growing interest towards self-configuring, self-tuning, adaptive and au-

tomated search methodologies. Hyper-heuristics are such high level approaches which
explore the space of heuristics (i.e. move operators) rather than the solutions in problem
solving [5]. There are two common types of hyper-heuristics in the scientific literature
[7]: selection methodologies that choose/mix heuristics from a set of preset low-level
heuristics (which can both improve or worsen the solution) and attempt to control those
heuristics during the search process; and generation methodologies that aim to build new
heuristics from a set of preset components. The main constituents of an iterative selec-
tion hyper-heuristic are heuristic selection and move acceptance methods. At each step,
an input solution is modified using a selected heuristic from a set of low-level heuristics.
Then the move acceptance method is used to decide whether to accept or reject the new
solution. More on different types of hyper-heuristics, their components and application
domains can be found in [5, 6, 53, 45].

In this study, we combine two selection hyper-heuristics under a single point based
iterated local search framework by employing them adaptively in a staged manner. The
approach extends the heuristic selection and move acceptance methods introduced in
[46] and [28], respectively. The pseudocode of our adaptive iterated multi-stage hyper-
heuristic is given in Algorithm 7. lines 5–21 and 22–25 provide the high level design of
the first and second stage hyper-heuristics, respectively.

22

Algorithm 6: Improvement Phase.

1 γ ← 0;
2 for i← 1, 2, . . . , |S| do
3 Si ← Construct();
4 end

5 while elapsed -time ≤ given-time do

6 if elapsed -time ≥ 0.7given-time then

7 γ ← 0.000001 (enable secondary objective function);
8 end

9 for i← 1, 2, . . . , |S| (multi-threaded) do

10 Si ← LocalSearch(Si);
11 end

12 for i← 1, 2, . . . , |S| do
13 if Accept(Si) = false then

14 X ← Select(S);
15 Si ← Mutate(X);

16 end

17 end

18 end

6.2.1. First stage hyper-heuristic

The first stage hyper-heuristic maintains an active pool of low-level heuristics LLH ⊆
LLH all and a score scoreh associated with each heuristic h ∈ LLH . In each iteration,
it randomly selects a low-level heuristic from the active pool with probability of picking
h ∈ LLH being proportional to scoreh (line 5). Then the selected heuristic is applied
to the current solution (line 6). Initially, each heuristic has a score of 1, hence the
selection probability of a heuristic is equally likely. The first stage hyper-heuristic always
maintains the best solution found so far, denoted as Sbest (lines 9–11) and keeps track
of the time since last improvement.

The move acceptance component of this hyper-heuristic (lines 7–17) is an adaptive
threshold acceptance method controlled by a parameter ǫ accepting all improving moves
(lines 7–12) and sometimes non-improving moves (lines 14–16). If the quality of a new
solution S′ is better than (1 + ǫ)f(Sbest) (line 14), even if this is a non-improving move,
S′ gets accepted becoming the current solution S. Whenever Sbest can no longer be
improved for elapsed -time2 (in our implementation elapsed -time2 = 1 sec), the parameter
ǫ gets updated as follows:

ǫ(Sbest) =
⌈log(f(Sbest))⌉+ rand

f(Sbest)
(12)

where 1 ≤ rand ≤ ⌈log(x)⌉ is selected randomly at uniform. Note that 0 is a lower bound
for f(S) (see Section 2) and, hence, the algorithm will terminate if f(Sbest) = 0.

6.2.2. Second stage hyper-heuristic

The second stage hyper-heuristic dynamically starts operating (lines 22–25 of Algo-
rithm 7) whenever there is no improvement in f(Sbest) for elapsed -time3 (in our imple-

23

Algorithm 7: LocalSearch(Si)

1 Let LLH all = {LLH 1,LLH 2, . . . ,LLHM} represent set of all low level heuristics
with each heuristic being associated with a score, initially set to 1;

2 Let Sbest represent the best schedule;
3 S ← Si;Sbest ← Si;LLH ← LLH all; ǫ← ǫ(Sbest);
4 repeat

5 h← SelectLowLevelHeuristic(LLH);
6 S′ ← h(S);
7 if f(S′) < f(S) then
8 S ← S ′;
9 if f(S′) < f(Sbest) then

10 Sbest ← S′;
11 end

12 end

13 else

14 if f(S′) < (1 + ǫ)f(Sbest) then
15 S ← S′;
16 end

17 end

18 if NoImprovement(elapsed -time2) then
19 S ← Sbest;
20 ǫ← ǫ(Sbest);

21 end

22 if NoImprovement(elapsed -time3) then
23 ǫ← ǫ(Sbest);
24 (S,LLH)← SecondStage(Sbest,LLH all, elapsed -time1);

25 end

26 until timeLimitExceeded(elapsed -time1);
27 return Sbest;

24

mentation elapsed -time3 = 3 sec) in line 22. The hyper-heuristic in this stage updates
the active pool LLH of heuristics. LLH ⊆ LLHall is formed based on the idea of a
dominance-based heuristic selection as introduced in [46] reflecting the trade-off between
the objective value achieved by each low-level heuristic and number of steps involved.
The method considers that a low-level heuristic producing a solution with a small im-
provement in a small number of steps has a similar performance to a low level heuristic
generating a large improvement in large number of steps. This hyper-heuristic not only
attempts to reduce the set of low-level heuristics but also assigns a score for each low-
level heuristic in the reduced set, dynamically. Those scores are used as a basis for the
heuristic selection probability of each low level heuristic to be used in the first stage
hyper-heuristic.

In the second stage hyper-heuristic, firstly, ǫ is updated in the same manner as in
the first stage hyper-heuristic and never gets changed during this phase. Then a greedy
strategy is employed using all heuristics in LLH all for a certain number of steps. Each
move in this stage is accepted using the same adaptive threshold acceptance method as
described in Section 6.2.1. LLH all is partitioned into three subsets LLH small, LLHmedium,
LLH large considering the number of activities processed (e.g., number of swaps) by a given
heuristic.
Small: Swap activities, Shift and Change mode.
Medium:

• Reshuffle modes and Reshuffle positions and modes with the Uniform

selection strategy;

• Reshuffle modes and Reshuffle positions and modes with the Local se-
lection strategy;

• Reshuffle positions and modes with the Global resource driven selection
strategy;

• Reshuffle positions and modes with the End biased selection strategy;

• Reshuffle positions and modes with the Project selection strategy;

• FILS swap activities, FILS shift and FILS change mode;

Large:

• Flush projects applied to one project; the direction is picked randomly;

• Swap two projects;

• Compress project;

• Shift project.

At each step, each low-level heuristic is applied to the same input solution for a fixed
number of iterations (5n/q for small, n/q for medium and 1 for large heuristics).7 If

7Similar to the memetic algorithm parameters, this partition of LLH all and the associated numbers
of iterations were selected by intuition and parameter tuning.

25

a low-level heuristic produces a new solution identical to the input, that invocation is
ignored. Otherwise, the objective of the new solution together with the low-level heuristic
which produced that solution gets recorded. Once all heuristics are applied to the same
input and get processed at a given step, the best resultant solution propagates as input
to the next greedy step.

A solution is considered to be a ‘non-dominated’ solution at a given step, if the
quality of the solution is better than the best solution obtained in the previous steps.
The active pool LLH of low-level heuristics is formed using the heuristics achieving the
non-dominated solutions obtained at each step during the greedy phase. The score of
a low-level heuristic is set to the number of non-dominated solutions that it produced.
Note that a non-dominated solution could be generated by multiple low-level heuristics,
in which case, their scores get increased.

Figure 3 illustrates a run of the second stage hyper-heuristic with LLH all = {LLH 1,
LLH 2, LLH 3, LLH 4} for four steps. The plot shows that the set of non-dominated
solutions contains 3 points marked in black. The best solution achieved by LLH 3 in
the last step is ignored, since that solution is dominated by the first three best solutions
obtained in the first three steps. The first, second and third points in the set of non-
dominated solutions are associated with {LLH 1,LLH 2}, {LLH 1} and {LLH 1,LLH 3},
respectively. Hence, LLH becomes {LLH 1, LLH 2, LLH 3}. The scores of LLH 1, LLH 2

and LLH 3 are assigned to 3, 1 and 1, respectively, yielding a heuristic selection probability
of 60%, 20% and 20% for each heuristic. More details on the components of the proposed
hyper-heuristic can be found in [26, 25].

LLH4

LLH3

LLH2

LLH1

LLH3

LLH2

LLH1,

LLH2

LLH3,

LLH4

objective value

steps

LLH1,

LLH3

S'best

input: S'best

LLH4 LLH1

LLH4

LLH2

Figure 3: An illustration of how the second stage greedy hyper-heuristic operates.

7. Experiments

In this section we report the results of our computational experiments as well as
discuss the MISTA 2013 Challenge and its outcomes. For additional analysis of the
performance of our and other submitted algorithms we refer to [62].

7.1. Test Instances

In our experiments, we used three sets of MRCPSP instances provided by the organis-
ers of the MISTA 2013 Challenge. The first set (set A) was provided at the beginning of
the competition. The second set (set B) was provided after the qualification phase. The

26

third set (set X) was hidden from the participants of the competition until the announce-
ment of the results; it was used to evaluate the performance of the submitted algorithms.
While designing and tuning our algorithm, we had no information on what properties
would the hidden instances have, which drove our decisions towards self-adaptive meth-
ods and rich range of moves.

All the three sets of instances were produced by combining PSPLIB benchmark in-
stances [29] and can be downloaded from allserv.kahosl.be/mista2013challenge. In
Table 1 we provide some properties of all the A, B and X instances.

7.2. Experimental Results

During the competition, the submitted algorithms were tested by running each of
the algorithms on each of the B and X instances 10 times. The results for X (hidden)
instances were used to rank the teams. The detailed discussion of the ranking scheme
and the analysis of the competition results are reported in [62].

To further analyse the performance of our algorithm, we ran it for 5 minutes on each
of the B and X instances 2500 times. We used a machine with similar configuration8 to
that employed by the competition organisers.

The aggregated results of our experiment are reported in Table 2. The average and
best solutions are obtained from our 2500 runs, while the competition (“Comp” column)
result is the best solution found during the final phase of the competition by our or some
other algorithm.

It is worth mentioning here that during the final phase of the competition where the
submitted algorithms were tested on B and X instances, our approach outperformed, on
average, all the other algorithms in 18 out of 20 cases, and produced the best solution
for 17 instances. [62] note the consistency of the performance of our algorithm, and also
provide ranks with several different ranking methodologies, showing that our approach
would win the competition even if the rules of the competition were different.

We conducted an additional experiment to investigate the effect of the runtime on
the ranking results, and so an indication of whether or not the code improvements as
discussed in Section 3.1, might have been the predominant reason, as opposed to the
algorithm itself, of achieving the first rank during the competition. In this experiment,
we ran our algorithm (in the style which was used during the competition) with reduced
time limits. After each run, we determined the rank of our algorithm among all other
competitors (the data required for this ranking was received from competition organisers).
Figure 4 shows the result of the experiment for various time limits ranging from 1 to 25
seconds. For the first two or three seconds the algorithm runs MCTS thus not generating
high quality solutions (recall that the goal of MCTS is to find a high-quality partial
ordering of projects). However, as soon as the memetic algorithm starts, the solution
quality rapidly improves. In fact, our algorithm manages to achieve the first rank after
just 12 seconds. Given that the time limit during the competition was 300 seconds, this
means that the algorithm would have still ranked highest even if it had run 25 times
slower. In contrast the improvements of Section 3.1 did not give that factor of a speed
up. Assuming that the other submissions were reasonably implemented then we conclude
that efficient implementation was not the only factor, but that the algorithm design also
had a major role in the success of the algorithm.

8Intel i7 3.2 GHz CPU, 16 GB of RAM, Microsoft Windows 7 x64 operating system

27

allserv.kahosl.be/mista2013challenge

Instance q n
avg
d

avg
|M |

avg
|Pred |

avg
|Rρ|

avg
|Rν | |G ρ|

avg
Rρ

avg
Cν

avg
Gρ

avg
CPD H

max
height

avg
SP

A-1 2 20 5.53 3 1.20 1 2 1 18.5 51.3 16.0 14.5 167 4 0.33
A-2 2 40 4.63 3 1.70 1 2 1 23.5 117.3 23.0 22.5 303 8 0.34
A-3 2 60 5.51 3 1.73 1 2 1 38.5 154.8 49.0 33.5 498 9 0.26
A-4 5 50 4.37 3 1.20 1 2 1 15.2 44.9 12.0 14.2 409 5 0.40
A-5 5 100 5.43 3 1.70 1 2 1 24.0 92.4 13.0 23.0 844 8 0.32
A-6 5 150 5.13 3 1.73 1 2 1 23.8 175.4 13.0 25.6 1166 9 0.26
A-7 10 100 6.03 3 1.20 0 2 2 0.0 48.4 11.5 16.8 787 6 0.37
A-8 10 200 5.67 3 1.70 0 2 2 0.0 110.8 22.5 24.6 1569 9 0.31
A-9 10 300 5.61 3 1.73 1 2 1 27.5 168.0 27.0 29.6 2353 11 0.27
A-10 10 300 5.53 3 1.73 1 2 1 25.9 158.2 15.0 30.7 2472 10 0.26

B-1 10 100 5.33 3 1.20 1 2 1 17.1 44.8 11.0 12.9 821 5 0.34
B-2 10 200 5.67 3 1.70 0 2 2 0.0 94.0 21.0 23.9 1628 7 0.28
B-3 10 300 5.52 3 1.73 1 2 1 28.5 144.4 28.0 29.5 2391 10 0.26
B-4 15 150 5.03 3 1.20 1 2 1 17.5 52.3 10.0 15.8 1216 6 0.36
B-5 15 300 6.02 3 1.70 1 2 1 20.7 99.6 17.0 22.5 2363 8 0.31
B-6 15 450 4.62 3 1.73 1 2 1 25.0 141.8 34.0 31.1 3582 11 0.26
B-7 20 200 4.87 3 1.20 1 2 1 14.7 49.6 10.0 15.4 1596 5 0.37
B-8 20 400 5.48 3 1.70 0 2 2 0.0 104.7 10.0 23.7 3163 8 0.30
B-9 20 600 5.31 3 1.73 1 2 1 26.6 154.8 10.0 30.1 4825 12 0.26
B-10 20 420 5.28 3 1.66 0 2 2 0.0 115.9 18.0 24.5 3340 12 0.31

X-1 10 100 5.53 3 1.20 0 2 2 0.0 47.6 12.5 14.9 783 5 0.36
X-2 10 200 5.53 3 1.70 1 2 1 24.0 105.6 14.0 23.0 1588 8 0.32
X-3 10 300 4.98 3 1.73 1 2 1 27.9 167.0 33.0 29.9 2404 11 0.27
X-4 15 150 5.70 3 1.20 0 2 2 0.0 54.5 13.5 14.9 1204 5 0.36
X-5 15 300 5.52 3 1.70 1 2 1 19.9 100.1 12.0 23.6 2360 8 0.32
X-6 15 450 5.49 3 1.73 1 2 1 24.6 163.7 20.0 29.9 3597 10 0.26
X-7 20 200 5.03 3 1.20 1 2 1 13.9 53.9 10.0 15.0 1542 5 0.33
X-8 20 400 5.53 3 1.70 1 2 1 22.2 104.5 15.0 24.5 3217 8 0.32
X-9 20 600 5.54 3 1.73 1 2 1 23.9 146.3 11.0 28.9 4699 10 0.26
X-10 20 410 5.30 3 1.65 1 2 1 20.0 101.2 10.0 24.1 3221 9 0.30

Table 1: Characteristics of the instances: q is the number of projects, n is the number of
activities, avg d is the average duration of activities in all possible modes, avg |M | is the
average number of modes for each activity, avg |Pred | is the average number of the prede-
cessor activities for each activity, avg |Rρ| is the average number of the local renewable
resources per project, avg |Rν | is the average number of the local non-renewable resources
per project, |G ρ| is the number of global renewable resources, avg Rρ is the average re-
newable resource capacities, avg Cν is the average non-renewable resource capacities, avg
Gρ is the average global renewable resource capacities, avg CPD is the average CPD per
project, H is the upper bound on the time horizon. The last two columns give an indica-
tion of the properties of the network (precedence graph); max height is the length of the
longest path, e.g. see https://users.soe.ucsc.edu/~manfred/pubs/J2.pdf and avg
SP is a measure of the ‘series vs. parallel’ nature [58].

28

https://users.soe.ucsc.edu/~manfred/pubs/J2.pdf

TPD TMS

Instance Avg Comp Best Avg Comp Best

A-1 1 1 1 23 23 23
A-2 2 2 2 41 41 41
A-3 0 0 0 50 50 50
A-4 65 65 65 42 42 42
A-5 155 153 150 105 105 103
A-6 141 147 133 808 96 99
A-7 605 596 590 201 196 190
A-8 292 302 272 153 155 148
A-9 208 223 197 128 119 122
A-10 880 969 836 313 314 303

B-1 352 349 345 128 127 124
B-2 452 434 431 167 160 158
B-3 554 545 526 210 210 200
B-4 1299 1274 1252 283 289 275
B-5 832 820 807 255 254 245
B-6 950 912 905 232 227 225
B-7 802 792 782 232 228 225
B-8 3323 3176 3048 545 533 523
B-9 4247 4192 4062 754 746 738
B-10 3290 3249 3140 455 456 436

X-1 405 392 386 143 142 137
X-2 356 349 345 164 163 158
X-3 329 324 310 193 192 187
X-4 960 955 907 209 213 201
X-5 1785 1768 1727 373 374 362
X-6 730 719 690 238 232 226
X-7 866 861 831 233 237 220
X-8 1256 1233 1201 288 283 279
X-9 3272 3268 3155 648 643 632
X-10 1613 1600 1573 383 381 373

Table 2: Summary of experimental results. (Note that the results for the A instances
are for the algorithm of the first stage of the competition, and are included only for
completeness.)

To illustrate the performance of our approach in time, two boxplots are provided
in Figures 5a and 5b for instances B-1 and X-10, respectively. These instances have
been chosen to demonstrate the performance of our algorithm on relatively small and
large instances. However, our experiments show that the algorithm behaves in a similar
manner with respect to the other instances. The central dividing line of each box in
each of the figures presents the median objective value obtained by our algorithm. The

29

Figure 4: The rank achieved by our algorithm with various time limits in the assumption
that the other algorithms are given 300 seconds. Given just 12 seconds, our algorithm
would already achieve the rank 1.

edges of each box refer to 25th and 75th percentiles while the whiskers (demonstrated by
a + marker) are the extreme objective values which are not considered as outliers. Also,
the curve which passes through the plot demonstrates the average performance of the
algorithm. Our approach continuously makes improvement indicating that the algorithm
does not prematurely converge.

It would obviously be interesting to link together the performance of the algorithm(s)
with the features of the instances; for example, see [50, 37] and others. There are many
potential features that could be used to characterise the instances, and these have often
been used as part of the process of generating instances, for example [30, 12]. For example,
one can characterise the precedence graph in various ways [52, 23, 15] and associated
measures such as ‘complexity’ and ‘Series-Parallel’ indices could also be included. This
would be far outside the scope of this paper, and warrants a future study. However, we
can make some initial observations by analysing the instance properties in Table 1 and
the results in Table 2, and in more detail in Table 33 of the final competition summary
[64]. In particular, we focus on the property of the number of local renewable resources
in the column “avg |Rρ|”, and that there are none for instances B-2, B-8, B-10, X-1 and
X-4. These seem to correlate with the performance in that the algorithm here only fails
to rank first on instances B-2 and X-1, both of which have no local renewable resources.
We remark that having no local renewables is a rather special case, and so if these
were removed the relative performance would have further improved. However, it seems
reasonably likely that the number of local renewable resources would be good instance
feature for selecting algorithms, or for future studies comparing different algorithms in
more details.

7.3. Results on Single Project (PSPLIB) Instances

The main aim of this work is to develop methods for the MISTA benchmark problems
having multiple projects. However, it is also of interest to study the methods on other
scheduling benchmarks; in particular, the PSPLIB library9 of instances [29] has been
widely used and studied in the academic scheduling community. Unfortunately, despite it
being long known that the majority of real world problems are multi-project [35], it seems

9http://www.om-db.wi.tum.de/psplib/

30

http://www.om-db.wi.tum.de/psplib/

100 200 300

345

350

355

360

365

370

375

380

time (sec)

ob
je

ct
iv

e
va

lu
e

average

(a) B-1

100 200 300

1600

1650

1700

1750

1800

time (sec)

ob
je

ct
iv

e
va

lu
e

average

(b) X-10

Figure 5: Performance dynamics of the proposed approach. The horizontal axis corre-
sponds to the time spent by the algorithm on optimisation and the vertical axis shows
the solution quality. The results are averaged over 2500 runs and represented in the box
plot form.

that much of the work in project scheduling has been on single project instances, and
PSPLIB does not currently contain any multi-project instances. Despite this limitation
of PSPLIB, it has functioned well as a standard set of benchmarks, and so it is likely to
interest how well the methods of this paper perform on these instances. The most relevant
set of instances in PSPLIB is provided by the multi-mode single project instances10. The
study of those instances is also limited considering the number of tasks which goes up
to 30 tasks, whereas the MISTA competition included instances with up to 600 tasks.
(Other PSPLIB instances are either much simpler as they are just single mode, or else
introduce extra constraints of objectives for the timing, and so are outside the scope of
this current paper.) Specifically, we studied the J30 instances from PSPLIB; they all
have precisely 3 modes for each of the 30 tasks, with 2 renewable and 2 non-renewable
resources, and we use the 552 of them that are satisfiable (a feasible solution is known).

For the special case of single project, minimising the TPD objective becomes the same
as minimising the makespan, TMS. Hence, the PSPLIB multi-mode instances can be
regarded as a special single-project case of the MISTA formulation and so our methods
could be directly applied to these instances to minimise the makespan. However, doing
so would be rather inefficient as many portions of our methods are designed to handle
multiple-projects and the associated TPD objective. Hence, we partially specialised our
code in order to handle these simpler PSPLIB instances. In particular, we inactivated
the Monte-Carlo Tree Search as it is only there in order to handle the structures arising
from the TPD objective, replacing it with a simple random generation heuristic. We also
inactivated the neighbourhoods that are specific to working on a specific project. Since
making comparisons to previous work also needed a very limited time period and just
a single thread, we also disabled the memetic component as it was designed to exploit

10http://www.om-db.wi.tum.de/psplib/getdata.cgi?mode=mm

31

http://www.om-db.wi.tum.de/psplib/getdata.cgi?mode=mm

multi-cores and longer runs; to partially compensate for the resulting expected loss in
diversity in the search, we also added a simple restart of the search every 10k generated
schedules.

These instances have been studied in various works. [49] used a Genetic algorithm
and also Forward-Backward Iterations (FBI) [34] along with a simple method to repair
infeasible mode choices. [9] again used FBI along with a more expensive SAT-based
method to ensure that only feasible mode decisions were made (recently, [51] reported
that this was the best method on these instances). In these works, the standard fashion
is to impose a limit on the number of schedules generated. The reported performance
measure is then the gap, averaged over all instances, from either a known lower bound
or else from the current “Best Known Solutions (BKS)”. Often, the number of schedules
permitted is rather small, such a 5–10k, which would take our code less than a second,
and so would not really match the intent of our methods. Hence, in Table 3 we compare
with previous results at 50k and 500k from Table 4 of [9]. We also note that with
500k schedules, and under 2s, our heuristic found the best-known solutions in more
than 85% of instances, and in 99% it was within 1 time unit of the BKS. We also
performed much longer runs to exploit the full power of all the algorithm components:
up to 500M generated schedules within the concurrent memetic, though still only taking
up to about 400 seconds, due to the concurrency, and the more efficient implementations
(see Section 3). We were able to find 3 new best solutions; these have been added to
PSPLIB, and so giving the only improvements to these multi-mode J30 instances since
2011.

Schedules generated: 50k 500k

Gap, % Time, sec Gap, % Time, sec

This work 13.68 0.12 12.84 1.14
Coelho and Vanhoucke (2011) 12.77 25.1 12.41 210.1
Van Peteghem and Vanhoucke (2010) 13.31 2.46 13.09 18.03

Table 3: Summary of experimental results on PSPLIB multi-mode J30 instances for 50k
and 500k generated schedules. Giving the average gap from the lower bound (the lower
the better) and the average running time (the lower the better). Note that the runtimes
are only indicative as the older results will be on machines that might well be 2x slower.

Hence, we conclude that the methods here perform competitively on these multi-mode
instances. We believe this gives evidence of the power and flexibility of the overall ap-
proach. This is particularly noteworthy, as our methods were originally designed for the
more general multi-project case with the extra delay based objective, which has quite
different properties, as already discussed in Section 4; the difference between minimising
TPD and TMS can lead to a significant difference in the nature of the solutions, and
reasonable algorithms. For example, both of the compared approaches [49, 9] used the
successful forward-backward iterations, however our methods for did not include it, be-
cause it is not naturally applicable to the primary objective being TPD. Including it in
our suite of improvement operators, might well improve performance for the special case
of improving makespan.

32

Finally, we remark that recent work on these multi-mode single project instances by
[37] has considered the problem of selecting algorithms. This is perhaps the closest in
spirit to our goals, in that the aim is to take multiple options for algorithms and then to
use intelligent or machine learning techniques in order to make the selection. In contrast
to a more traditional approach in which the exploration of the combinations of many
components is done manually.

8. Conclusions

This paper described the components of a multi-component hybrid approach to the
MRCMPSP. Broadly, our algorithm is built on the serial generation scheme, in which se-
quences of activities are used to construct final schedules for their quality evaluation. We
use a two-phase construct-and-improve method to search the space of activity sequences,
with a variety of novel contributions, including algorithm mechanisms specifically de-
signed to handle the multi-project structure and associated objectives functions.

Firstly, the primary objective is a sum of completion times of the individual projects,
and we give evidence and arguments that this tends to lead to an imbalance in the
completion times; some projects finish much earlier than others. Hence, the nature of
the problem itself is such that an approximate partial ordering of projects occurs in good
solutions, and this is quite different from the structure expected with makespan as the
primary objective. We expect such approximate partial ordering may well be common
in real-world multi-project problems as well. Accordingly, in the construction phase, a
novel Monte-Carlo Tree Search method is given that creates and selects initial solutions
with an approximately-similar structure.

Secondly, in the improvement phase, multiple novel neighbourhoods are included
that are designed to work at the ‘project-level’ and so enable any needed changing of
the approximate partial ordering of the projects. These are complemented with a wide
range of neighbourhood moves also designed to work at lower levels within projects. The
improvement phase itself is organised and controlled using a novel hybrid of a memetic
algorithm and a hyper-heuristic, and in a fashion that furthermore makes effective use
of a multi-core machine when it is available.

Perhaps a distinguishing characteristic of the methods here is that there are far more
neighbourhoods than in other submissions to the competition, or indeed the literature
in general. From Table 6 in [62], other submissions have around 1–4 neighbourhoods
but we have 13–17 (though many neighbourhoods have different variants, and are used
in different stages, and so there is not a single meaningful count). At first this might
seem to be a step towards extra complexity, and that might make the algorithm more
difficult to use in real-world practice. However, in many problem domains there is a
drive towards a larger number of neighbourhoods, for example, in realistic educational
timetabling where 10–15 neighbourhoods is not uncommon (for example [28, and others]).
Having many neighbourhoods is a natural reaction to the increasing complexity of the
structure of the problem. They are designed to work on each level of the roughly hierar-
chical structure of many projects with each project containing many activities. We only
eliminated neighbourhoods in a stage when they clearly never helped; instead preferring
to keep neighbourhoods, with the intention that the diversity would help in robustness
and effectiveness (though admittedly at the cost of ‘neatness’). Also, the objective itself
is a type of weighted completion time and so is sensitive to the internal structure of

33

solutions. Hence, it seems reasonable that many neighbourhoods are needed; and this
seems to be be borne out by the much better performance. Furthermore, in the case
of scheduling using the serial generation there is an advantage and opportunity in that
the neighbourhoods are mostly ‘lightweight’ to implement. They work by modifying the
activity sequence, and when the majority of the runtime is spent on the evaluation of a
sequence, then designing and efficiently implementing many different neighbourhoods is
much less onerous then many other problem domains.

Another significant difference to other submissions to the challenge, and as described
in [62], it seems that many others in the competition used forward-backward iteration
(FBI) methods. We did not use it due to the extra complexity, and also uncertainty of
how to best use it for the TPD (weighted completion time) rather than the standard
makespan. Also, the results in [51] said it did not “distinguish between a good or bad
performing metaheuristic”. However, it would be interesting future work to also include
FBI moves; possibly with appropriate modification for the TPD objective.

The effectiveness of the resulting hybrid algorithm was demonstrated when it convinc-
ingly won the MISTA 2013 challenge, outperforming, on average, the other algorithms
on 18 of the 20 instances [62]. The many-component and many-neighbourhood structure
was a deliberate decision on our part, and was aimed at giving a more robust solver. In
particular, part of the design goal was that the methods would be robust and so work
well on the hidden instances, and it did indeed do particular well on those; ranking first
on 9 out of the 10 hidden instances. We also observed that the performance was weakest
(though still high ranking) on those instances with no local renewable resources. Such
instances are rather special, and arguably less realistic, however, it does suggest that
there is good potential for future work to investigate the links between features of the
instances and the the algorithm performance. Nevertheless, Section 7.3 gives additional
evidence of the robustness of our algorithm as even a much-reduced version performs
well on the simple single-project but multi-mode instances from PSPLIB.

The broader contribution of this work is to give evidence for the general approach
and methodology of investigating algorithms that consist of many components (such as
many neighbourhoods, but also other aspects) and that aims to exploit the potential
benefits of simple, but carefully controlled, interactions between them. It is possible
that the algorithm could be simplified (e.g. by reducing the number of neighbourhood
moves); however, we suspect that doing so is not worth the risk of it only working well
on the seen set of instances, and would lose its robustness and hence performance on
the unseen instances. Hence, we believe that the work gives evidence that individual
components should not be prematurely discarded. Instead, ultimately, the decision as to
which combination works best over a particular suite should be automated; that is, as a
form of algorithm assembly, for example in the style of [1]. Of course, such assembly can
also use a form of algorithm selection for the appropriate scheduling algorithm, based on
the features of instances (e.g. [50, 37]).

Such ‘automated assembly’ work would be outside the scope of this particular paper;
however, by providing a broad range of options and components that have the proven
potential to give a successful and robust solver, this work hence gives a good foundation
for such studies in the MRCMSP, and other variants of project scheduling, and arguably
intelligently-coordinated metaheuristic methods in general.

Acknowledgements This work was supported in part by EPSRC Grants EP/F033214/1
34

and EP/H000968/1.

References

[1] Leonardo C. T. Bezerra, Manuel López-Ibáñez, and Thomas Stützle. Automatic design of evo-
lutionary algorithms for multi-objective combinatorial optimization. In Thomas Bartz-Beielstein,
Jürgen Branke, Bogdan Filipič, and Jim Smith, editors, PPSN 2014, volume 8672 of Lecture Notes
in Computer Science, pages 508–517. Springer, 2014.

[2] J. Blazewicz, J.K. Lenstra, and A.H.G.Rinnooy Kan. Scheduling subject to resource constraints:
classification and complexity. Discrete Applied Mathematics, 5(1):11 – 24, 1983.

[3] C.B. Browne, E. Powley, D. Whitehouse, S.M. Lucas, P.I. Cowling, P. Rohlfshagen, S. Tavener,
D. Perez, S. Samothrakis, and S. Colton. A survey of Monte Carlo tree search methods. Computa-
tional Intelligence and AI in Games, IEEE Transactions on, 4(1):1–43, 2012.

[4] Peter Brucker, Andreas Drexl, Rolf Mohring, Klaus Neumann, and Erwin Pesch. Resource-
constrained project scheduling: Notation, classification, models, and methods. European Journal
of Operational Research, 112(1):3–41, 1999.

[5] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and R. Qu. Hyper-heuristics:
A survey of the state of the art. Journal of the Operational Research Society, 2013.

[6] E. K. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, and S. Schulenburg. Hyper-heuristics:
An emerging direction in modern search technology. In F. Glover and G. Kochenberger, editors,
Handbook of Metaheuristics, pages 457–474. Kluwer, 2003.

[7] Edmund K. Burke, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender Özcan, and John R.
Woodward. A classification of hyper-heuristics approaches. In Michel Gendreau and Jean-Yves
Potvin, editors, Handbook of Metaheuristics, volume 57 of International Series in Operations Re-
search & Management Science, chapter 15, pages 449–468. Springer, 2nd edition, 2010.

[8] Wang Chen, Yan-jun Shi, Hong-fei Teng, Xiao-ping Lan, and Li-chen Hu. An efficient hybrid
algorithm for resource-constrained project scheduling. Information Sciences, 180(6):1031 – 1039,
2010. Special Issue on Modelling Uncertainty.

[9] J. Coelho and M. Vanhoucke. Multi-mode resource-constrained project scheduling using rcpsp and
sat solvers. European Journal of Operational Research, 213(1):73–82, 2011.

[10] Carlos A. Coello Coello. A comprehensive survey of evolutionary-based multiobjective optimization
techniques. Knowledge and Information Systems, 1(3):269–308, 1999.

[11] N. Damak, B. Jarboui, P. Siarry, and T. Loukil. Differential evolution for solving multi-mode
resource-constrained project scheduling problems. Comput. Oper. Res., 36(9):2653–2659, 2009.

[12] Erik Demeulemeester, Mario Vanhoucke, and Willy Herroelen. RanGen: A random network gener-
ator for activity-on-the-node networks. Journal of Scheduling, 6:17–38, 2003.

[13] Benjamin Doerr, Edda Happ, and Christian Klein. Crossover can provably be useful in evolution-
ary computation. In Proceedings of the 10th Annual Conference on Genetic and Evolutionary
Computation, GECCO ’08, pages 539–546, 2008.

[14] Sonda Elloumi and Philippe Fortemps. A hybrid rank-based evolutionary algorithm applied to
multi-mode resource-constrained project scheduling problem. European Journal of Operational
Research, 205(1):31 – 41, 2010.

[15] Frank Emmert-Streib and Matthias Dehmer. Exploring statistical and population aspects of network
complexity. PLoS One, 7(5), 2012.

[16] Martin Josef Geiger. Iterated variable neighborhood search for the resource constrained multi-mode
multi-project scheduling problem. CoRR, abs/1310.0602, 2013.

[17] Helton Cristiano Gomes, Francisco de Assis das Neves, and Marcone Jamilson Freitas Souza. Multi-
objective metaheuristic algorithms for the resource-constrained project scheduling problem with
precedence relations. Computers & Operations Research, 44:92–104, 2014.

[18] J.F. Gonçalves, J.J.M. Mendes, and M.G.C. Resende. A genetic algorithm for the resource con-
strained multi-project scheduling problem. European Journal of Operational Research, 189(3):1171–
1190, 2008.

[19] Gregory Gutin and Daniel Karapetyan. A memetic algorithm for the generalized traveling salesman
problem. Natural Computing, 9(1):47–60, 2009.

[20] Sönke Hartmann and Dirk Briskorn. A survey of variants and extensions of the resource-constrained
project scheduling problem. European Journal of Operational Research, 207(1):1 – 14, 2010.

[21] Willy Herroelen and Roel Leus. Project scheduling under uncertainty: Survey and research poten-
tials. European Journal of Operational Research, 165(2):289 – 306, 2005.

35

[22] Willy Herroelen, Bert De Reyck, and Erik Demeulemeester. Resource-constrained project schedul-
ing: A survey of recent developments. Computers & Operations Research, 25(4):279 – 302, 1998.

[23] Jerzy Kamburowski, David J. Michael, and Matthias F.M. Stallmann. Minimizing the complexity
of an activity network. Networks, 36(1):47–52, 2000.

[24] Daniel Karapetyan and Gregory Gutin. A new approach to population sizing for memetic algorithms:
a case study for the multidimensional assignment problem. Evolutionary computation, 19(3):345–71,
2011.

[25] Ahmed Kheiri. Multi-stage Hyper-heuristics for Optimisation Problems. PhD thesis, University of
Nottingham, School of Computer Science, 2014.

[26] Ahmed Kheiri and Ender Özcan. An iterated multi-stage selection hyper-heuristic. European
Journal of Operational Research, 250(1):77–90, 2016.

[27] Ahmed Kheiri, Ender Özcan, and Andrew J. Parkes. HySST: Hyper-heuristic search strategies and
timetabling. In Proceedings of the Ninth International Conference on the Practice and Theory of
Automated Timetabling (PATAT 2012), 2012.

[28] Ahmed Kheiri, Ender Özcan, and Andrew J. Parkes. A stochastic local search algorithm with
adaptive acceptance for high-school timetabling. Annals of Operations Research, 239(1):135–151,
2016.

[29] Rainer Kolisch and Arno Sprecher. PSPLIB - a project scheduling problem library : OR software -
ORSEP operations research software exchange program. European Journal of Operational Research,
96(1):205–216, 1997.

[30] Rainer Kolisch, Arno Sprecher, and Andreas Drexl. Characterization and generation of a general
class of resource-constrained project scheduling problems. Management Science, 41(10):1693–1703,
1995.

[31] Georgios Koulinas, Lazaros Kotsikas, and Konstantinos Anagnostopoulos. A particle swarm op-
timization based hyper-heuristic algorithm for the classic resource constrained project scheduling
problem. Information Sciences, 277:680 – 693, 2014.

[32] Doreen Krüger and Armin Scholl. A heuristic solution framework for the resource constrained
(multi-)project scheduling problem with sequence-dependent transfer times. European Journal of
Operational Research, 197(2):492–508, 2009.

[33] Thomas S. Kyriakidis, Georgios M. Kopanos, and Michael C. Georgiadis. MILP formulations for
single- and multi-mode resource-constrained project scheduling problems. Computers & Chemical
Engineering, 36(0):369 – 385, 2012.

[34] K.Y. Li and R.J. Willis. An iterative scheduling technique for resource-constrained project schedul-
ing. European Journal of Operational Research, 56(3):370 – 379, 1992.

[35] Antonio Lova, Concepci??n Maroto, and Pilar Tormos. A multicriteria heuristic method to im-
prove resource allocation in multiproject scheduling. European Journal of Operational Research,
127(2):408–424, 2000.

[36] J.J.M. Mendes, J.F. Gon?alves, and M.G.C. Resende. A random key based genetic algorithm for the
resource constrained project scheduling problem. Computers & Operations Research, 36(1):92–109,
2009.

[37] Tommy Messelis and Patrick De Causmaecker. An automatic algorithm selection approach for
the multi-mode resource-constrained project scheduling problem. European Journal of Operational
Research, 233(3):511–528, 2014.

[38] Melanie Mitchell, John H. Holland, and Stephanie Forrest. When will a genetic algorithm outper-
form hill climbing. In Jack D. Cowan, Gerald Tesauro, and Joshua Alspector, editors, NIPS, pages
51–58. Morgan Kaufmann, 1993.

[39] Rolf H. Möhring, Andreas S. Schulz, Frederik Stork, and Marc Uetz. Solving project scheduling
problems by minimum cut computations. Management Science, 49(3):330–350, 2003.

[40] Pablo Moscato. On evolution, search, optimization, genetic algorithms and martial arts: Towards
memetic algorithms. Caltech concurrent computation program, C3P Report, 826:1989, 1989.

[41] Pablo Moscato and Michael G Norman. A memetic approach for the traveling salesman prob-
lem implementation of a computational ecology for combinatorial optimization on message-passing
systems. Parallel Computing and Transputer Applications, 1:177–186, 1992.

[42] M.W. Moskewicz, C.F. Madigan, Ying Zhao, Lintao Zhang, and S. Malik. Chaff: engineering an
efficient sat solver. In Design Automation Conference, 2001. Proceedings, pages 530–535, 2001.

[43] Yew-Soon Ong, Meng-Hiot Lim, Ning Zhu, and Kok-Wai Wong. Classification of adaptive memetic
algorithms: A comparative study. Trans. Sys. Man Cyber. Part B, 36(1):141–152, 2006.

[44] Ender Özcan. Memes, self-generation and nurse rostering. In Edmund K. Burke and Hana Rudova,
editors, Practice and Theory of Automated Timetabling VI, volume 3867 of Lecture Notes in Com-

36

puter Science, pages 85–104. Springer Berlin Heidelberg, 2007.
[45] Ender Özcan, Burak Bilgin, and Emin Erkan Korkmaz. A comprehensive analysis of hyper-

heuristics. Intelligent Data Analysis, 12(1):3–23, 2008.
[46] Ender Özcan and Ahmed Kheiri. A hyper-heuristic based on random gradient, greedy and domi-

nance. In Erol Gelenbe, Ricardo Lent, and Georgia Sakellari, editors, Computer and Information
Sciences II, pages 557–563. Springer London, 2012.

[47] Ender Özcan, Andrew J. Parkes, and Alpay Alkan. The interleaved constructive memetic algorithm
and its application to timetabling. Comput. Oper. Res., 39(10):2310–2322, October 2012.

[48] Linet Özdamar and Gündüz Ulusoy. A survey on the resource-constrained project scheduling prob-
lem. IIE Transactions, 27(5):574–586, 1995.

[49] Vincent Van Peteghem and Mario Vanhoucke. A genetic algorithm for the preemptive and non-
preemptive multi-mode resource-constrained project scheduling problem. European Journal of Op-
erational Research, 201(2):409 – 418, 2010.

[50] Vincent Van Peteghem and Mario Vanhoucke. Using resource scarceness characteristics to solve the
multi-mode resource-constrained project scheduling problem. Journal of Heuristics, 17(6):705–728,
2011.

[51] Vincent Van Peteghem and Mario Vanhoucke. An experimental investigation of metaheuristics for
the multi-mode resource-constrained project scheduling problem on new dataset instances. European
Journal of Operational Research, 235(1):62–72, 2014.

[52] Bert De Reyck and Willy Herroelen. On the use of the complexity index as a measure of complexity
in activity networks. European Journal of Operational Research, 91(2):347–366, 1996.

[53] P. Ross. Hyper-heuristics. In E. K. Burke and G. Kendall, editors, Search Methodologies: Intro-
ductory Tutorials in Optimization and Decision Support Techniques, chapter 17, pages 529–556.
Springer, 2005.

[54] Kumara Sastry, David E. Goldberg, and Graham Kendall. Genetic algorithms. In Edmund K.
Burke and Graham Kendall, editors, Search Methodologies, pages 93–118. Springer US, 2014.

[55] M H Sebt, Y Alipouri, and Y Alipouri. Solving resource-constrained project scheduling problem
with evolutionary programming. Journal of the Operational Research Society, 64:1327–1335, 2013.

[56] Dirk Sudholt. Crossover speeds up building-block assembly. In Proceedings of the 14th Annual
Conference on Genetic and Evolutionary Computation, GECCO ’12, pages 689–702, New York,
NY, USA, 2012. ACM.

[57] Túlio Toffolo, Haroldo Santos, Marco Carvalho, Janniele Soares, Tony Wauters, and Greet Van-
den Berghe. An integer programming approach to a generalized project scheduling problem. In
Matheuristics. Hamburg, 11-13 June 2014, 2014.

[58] Mario Vanhoucke. An overview of recent research results and future research avenues using simula-
tion studies in project management. ISRN Computational Mathematics, 2013, 2013.

[59] Mario Vanhoucke, Erik Demeulemeester, and Willy Herroelen. An exact procedure for the resource-
constrained weighted earliness?tardiness project scheduling problem. Annals of Operations Re-
search, 102:179–196, 2001.

[60] Ling Wang and Chen Fang. An effective shuffled frog-leaping algorithm for multi-mode resource-
constrained project scheduling problem. Information Sciences, 181(20):4804 – 4822, 2011. Special
Issue on Interpretable Fuzzy Systems.

[61] Ling Wang and Chen Fang. An effective estimation of distribution algorithm for the multi-mode
resource-constrained project scheduling problem. Computers & Operations Research, 39(2):449 –
460, 2012.

[62] Tony Wauters, Joris Kinable, Pieter Smet, Wim Vancroonenburg, Greet Vanden Berghe, and Jannes
Verstichel. The multi-mode resource-constrained multi-project scheduling problem. Journal of
Scheduling, 19(3):271–283, 2016.

[63] Tony Wauters, Katja Verbeeck, Patrick De Causmaecker, and Greet Vanden Berghe. A learning-
based optimization approach to multi-project scheduling. Journal of Scheduling, 18(1):61–74, 2015.

[64] Tony Wauters, Jannes Verstichel, Katja Verbeeck, and Greet Vanden Berghe. A learning meta-
heuristic for the multi mode resource constrained project scheduling problem. In Learning and
Intelligent OptimizatioN (LION 2009): Trento, 2009.

[65] Jan Weglarz, Joanna Józefowska, Marek Mika, and Grzegorz Waligóra. Project scheduling with
finite or infinite number of activity processing modes - a survey. European Journal of Operational
Research, 208(3):177–205, 2011.

37

	1 Introduction
	2 Problem Description
	3 Schedule Generator
	3.1 Issues in Efficient Implementation

	4 Solution Structures
	4.1 TPD-driven Solution Structures
	4.2 MCTS

	5 Neighbourhood Operators
	5.1 Activity-level Operators
	5.2 Ruin & Recreate Operators
	5.3 Project-level Operators

	6 Improvement Phase
	6.1 Memetic Algorithm
	6.2 A Dominance based Hyper-heuristic Using an Adaptive Threshold Move Acceptance
	6.2.1 First stage hyper-heuristic
	6.2.2 Second stage hyper-heuristic

	7 Experiments
	7.1 Test Instances
	7.2 Experimental Results
	7.3 Results on Single Project (PSPLIB) Instances

	8 Conclusions

