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Abstract 

Feature-points matching is an important concept in binocular stereo vision. The 

procession of multi-scale feature-points matching in classical Harris-SIFT algorithm is 

time-consuming and has high complexity when describing the feature-points. This paper 

proposed a new improved Harris-SIFT algorithm based on rotation-invariant LBP (Local 

binary patterns) operator. Firstly, the Harris operator is used to extract feature points 

from DOG (Difference of Gaussian) scale space. Then, the dominant direction of feature 

point is calculated and 81-dimensional rotation-invariant LBP descriptors are extracted 

when the rotation matching window is coordinated to this direction. At last, 

Best-Bin-First (BBF) algorithm is used to search the matching points between the two sets 

of feature points. Experimental results show that the proposed algorithm is lower 

time-consuming than classical Harris-SIFT algorithm and remains the similar matching 

correct rate. 
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1. Introduction 

Feature-points matching is an important concept in binocular stereo vision. The 

accuracy of matching is closely related to the reliability of the acquired depth information 

about scene. How to extract feature points accurately, choose the reliable feature 

descriptors and reduce the time-consuming of matching operation are the huge 

bottlenecks that feature-point matching algorithms encounter. And lots of improved 

algorithms have been proposed to solve these problems. According to the difference of 

feature points extraction operator, matching algorithms can be divided into Moravec 

operator, Harris operator, SUSAN(Smallest Univalue Segment Assimilating Nucleus) 

operator and so on. Moravec operator has been used successfully to match 3D point sets 

which captured from stereo vision platform [1]. The operator is vulnerable to oblique 

edge because it only considers the variation of per 45 degrees, which does not consider all 

other directions. And its window function is a two-valued function which endows same 

weight to every element. The distance to the center point is not considered. Therefore, 

Moravec operator is easy to be affected by noise and its location is not much accurate. 

Harris operator is proposed in 1988 by C. Harris and M. Stephens. Since it can maintain 

invariant to rotation and affine transformation, it has been widely used in corner detection 

and image matching [2]. The operator has low computational complexity because only the 
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gradients in x and y axis needs to be calculated. SUSAN operator shows well performance 

in noise resistance. Grey value of Feature point and its neighbors are compared and 

gradients calculations are not involved in the procession. It is also has isotropic 

characteristic as Harris operator. As it can detect edge and extract corner points 

accurately, the operator has been used in image feature detection and matching [3-4].  

The SIFT algorithm is a kind of feature matching algorithm which is depend on DOG 

scale space. It has excellent performance in solving rotation, scaling or radiation 

transformation problems of images matching [5]. SIFT algorithm has good characteristics 

in partial feature extraction of feature-points [6] and is widely used in remote sensing 

image matching [7], biological feature recognition [8], and so on. But it also has some 

drawbacks such as too many feature points, too large dimension of the descriptor and too 

high time consuming of computation in matching process. These made the SIFT 

algorithm can’t meet the real-time requirement in the practical application. Some new 

methods have been proposed to improve execution speed of SIFT algorithm such as by 

using GPU on SIFT [9], combining PCA-based local descriptors with SIFT algorithm [10], 

SURF (Speeded Up Robust Features) algorithm [11] and so on. A new Harris-SIFT 

algorithm [12] has been proposed which use Harris corner detection to replace extreme 

point detection of scale space. It has well effect on reducing the amount of calculation in 

feature-points extraction and makes the feature-points have physical characteristics and 

visual characteristics. In order to make the Harris-SIFT algorithm satisfy the real-time 

requirement, some algorithms have been proposed to reduce the dimension of 

feature-points descriptor [13-14]. When calculating the same number of feature-points, 

improved algorithm can outperform SIFI from the perspective of the consuming time, in 

which time-consuming nearly reduces 30%. It is achieved by translating the feature-points 

descriptor with 128-dimension into 32-dimension. Although the running speed of 

improved algorithm has been improved, the accuracy of feature-points description 

decreases at the same time. Reduction of descriptor dimension leads to the difficulty of 

matching. 

The LBP (Local binary patterns) is a descriptor to describe local texture feature [15]. It 

has low amount of computation and high grey monotone, rotation invariance. It is widely 

used in facial image analysis, texture retrieval and facial recognition [16-18]. CS-LBP 

(center- symmetric local binary pattern) is used as the local feature descriptor in the SIFT 

algorithm and receives great performance in [19]. In order to improve the computation 

speed of SIFT, the rotation-invariant LBP has been used as the feature-descriptor [20-21]. 

The rotation-invariant LBP can be received by doing bitwise right circulation for LBP. 

The speed of rotation-invariant LBP can be improved 2.14 times compared with SIFT 

algorithm. Only simple arithmetical operations are needed in rotation-invariant LBP and it 

has the characteristics of rotational invariance. We use Harris operator to extract 

feature-points in this paper. In order to speed up operation of the algorithm, 

rotation-invariant LBP is used as the feature operator in our proposed algorithm. 

Experimental results show that the proposed algorithm has almost same accuracy 

compared with Harris-SIFT and slightly lower than SIFT. And the proposed algorithm is 

faster than SIFT and it reduces the running time as 28.07% when describing same 

numbers of feature-points.  

The remainders of this paper are organized as follows. The process of Harris feature 

points detection is presented in Section 2. The LBP methods which include classical LBP 

and rotation-invariant LBP are analyzed in Section 3. The proposed algorithm and 

matching process are discussed in Section 4. Experimental results and discussion are 

presented in Section 5. At last, Section 6 reports the conclusion. 
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2. Harris Feature-Points Detection 

In this section, the DOG scale space is described firstly. Then, Harris operator is 

discussed. The feature point orientation assignment is introduced in the end of this 

section. 

 

2.1. DOG Scale Space 

The original image collected by camera is inevitable has different scale even for the 

same object. We have to eliminate the influence of different scale before using descriptor 

to describe feature points. One method is image registration. However, it will change the 

original image. Another method is building several images based on different scale space 

from original image which is proposed by Iijima firstly [22]. The SIFT algorithm chooses 

the latter method. In [23], it is proved that the only possible scale space kernel is Gaussian 

function. And the scale space of image can be defined as  ,, yxL , which is obtained by 

the convolution of a Gaussian function ),,( yxG  
and image ),( yxI  such as 

),(),,(),,( yxIyxGyxL                                                   (1) 

and                        
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where   is convolution operation, and   is the scale of Gaussian function. The scale 

decides the smoothness of the image. Large scale is corresponding to general view of 

image. Oppositely, small scale is corresponding to detail view of image. In order to detect 

feature points locations, the DOG (difference of Gaussian) scale space had been proposed 

by Lowe in 1999. The DOG function can be expressed by  ,, yxD , which is computed 

from subtracting the nearby scales space such as 

     , , ( , , ) ( , , ) ( , , ) ( , , ) ,D x y L x y k L x y G x y k G x y I x y                         (3) 

where k is a constant multiplicative factor and its value has almost no impact. In order to 

contain different scale, a DOG images pyramid has been build as shown in Figure. 1. The 

DOG images pyramid contains several octave and each octave also contains several DOG 

images. It is clear that the more DOG images each octave has, the more accurate this 

pyramid will be. At the same time, the algorithm will get too much computation time. 
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Figure 1. DOG Images Pyramid 
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2.2. Harris Operator 

Harris operator has a lot of advantages in feature-points detection. It takes small 

amount of calculation. The extracted feature-points are evenly distributed. And the 

operator has visual characteristics. The improved version of Harris obtains the best results 

when several interest point detectors are evaluated by two evaluation criteria such as 

repeatability rate and information content [24]. Even though there has low scale change, 

points are geometrically stable under all tested image variations. It is also more 

representative than extreme detection which used in SIFT algorithm. In DOG scale space, 

we use Harris operator to extract feature- points. Matrix M must be constructed before 

Harris operator is used to extract feature- points. Matrix M is calculated as 
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where 
x

I and 
y

I
 
are the GOD scale space gradient in horizontal and vertical direction 

respectively. And we extract feature points by the equation as 

   
22

BAaCDABR                                                  (5) 

where a  is an experienced value between 0.04 and 0.06. We compare R  with some 

threshold value. If R  is great than threshold value, we define the monitoring point is 

feature point. Otherwise, we define the monitoring point is not feature point. Harris 

operator is sensitive to Gaussian scale window. Large scale window is corresponding to 

few feature-points, and small scale window is corresponding to superior feature-points. 

Harris operator is translation- invariant and rotation-invariant because it is just related 

with gradient operation. 
 

2.3. Orientation Assignment 

In order to reduce matching difficulty of rotation image, orientation assignment is a 

necessary step in feature-points description. Gradient magnitude ),( yxm  and orientation 

),( yx  of every element in neighborhood of feature-points are calculated as 

           
22

1,1,,1,1,  yxLyxLyxLyxLyxm                        (6) 
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

                       (7) 

Orientation histogram is formulated and it has 36 bins, which established ten degree for 

each interval. Each gradient magnitude and orientation values are added to the histogram 

after being weighted by Gaussian filter. The highest peak is considered to be the dominant 

orientation. And other peaks which are within 80% of highest peak are considered to be 

the auxiliary orientation of feature-points for the sake of improving the robustness. In 

order to get better accuracy, parabolic curve is used for every orientation which has 

detected. Before describing feature-points, the coordination should be rotated to its 

dominant orientation and auxiliary orientation. 
 

3. LBP Feature Operator 

Classical LBP operator, Rotation-invariant LBP operator and rotation-invariant 

LBP operator are discussed separately in this section. 
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3.1. Classical LBP Operator 

LBP is a kind of texture description operator. It is used in supporting local contrast of 

image and measuring and extracting the image local texture information. It is invariant to 

illumination because threshold processing is used. For a pixel at ),(
oo

yx , its pixel value 

will be compared with its 8 neighbors in a 33   neighborhood by subtraction. If the 

result is negative, it will be assigned with value of 0, the others with 1. Then all these 

binary values can be encoded to a binary number in a clockwise direction and starting 

point is the pixel )1,1( 
oo

yx . LBP can be obtained by converting the binary number to 

its decimal form as 

  i

i

ioo
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                                                   (8) 

where 
i

l  and 
o

l  are the values of surrounding pixels and central pixel respectively. The 

function )( xs
 

is defined as 
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Figure 2 shows an example.  
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Figure 2. Example of Classical LBP Operator 

It is clear in Figure 2 that the values of 8 neighbor pixels are compared with the value 

of centre pixel and the compared results are assigned with binary value by Eq.(9). Then 

all binary values are encoded as a binary number. At last we use Eq.(8) to get final LBP 

value, which is equal to 171. 
 

3.2. Rotation-Invariant LBP Operator 

Since the basic LBP operator cannot meet the need of feature-points matching in a pair 

of rotate images, rotation-invariant LBP operator with radius and several numbers of 

sampling points will be used. Rotation-invariant LBP operator can be defined as 

),(
, oo

ri

RP
yxLBP , where P  is the number of sampling points, R  is the radius of sampling 

circle. As the values of P and R can be adjusted to satisfy practical application, several 

classical rotation-invariant LBP operator are shown in Figure 3. 

 

 

Figure 3. Several Classical Rotation-Invariant LBP Operator 
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The binary number of LBP is required to bitwise right circulation and each binary 

number is convert to its decimal form. Here we can select the minimum value as the 

rotation-invariant LBP operation as 

}1,1,0),(min{),(
,,00,

 PiiLBPRORyxLBP
RP

ri

RP
                             (10) 

where ROR  is performed as circular bitwise right circulation, i  performs how many 

times bitwise right circulation is done, and ),(
, oo

ri

RP
yxLBP

 
is the minimum value of all 

the P  different binary numbers. So it is rotation-invariant. For the example shown in 

Figure 2, all its 8 binary numbers are described in Figure 4.  

As shown in Figure 4, 87 is the minimum value. So all the 8 rotation-invariant LBP 

operator is equal to 87 such as 87
1,8


ri
LBP . It is well known that 8-bit binary number can 

represent 256 decimal numbers. All ri

R
LBP

,8  
have 36 values, which are shown as in [21].  

186

213 234171 117

93 184 87

 

Figure 4. Eight Binary Numbers of Example in Figure 2 

3.3. Rotation-Invariant LBP Feature Operator 

Because feature-points marching need to describe enough information, all the pixels in 

99   neighborhood of feature-points must extract their rotation-invariant LBP operators. 

The 81 result operators can be arranged as vector ）（
8121

, hhhH  , where 
i

h  
denotes 

operator of th
i  pixel. To eliminate the light influence, we normalize the vector H as 

H

H
H 1                                                              (11) 

The vector 1H also contains the influence of camera saturation change. We set a 

threshold to cut off the beyond elements and then do the nest normalization processing 

until it is convergent. The final vector will be used in matching process as feature 

descriptor. 
 

4. The Proposed Algorithm 

By using the classical Harris-SIFT, we proposed an improved algorithm based on 

rotation-invariant LBP operator. Firstly, the DOG scale spaces of match image are 

established. The more Gaussian scales are used, the DOG scale space will show 

more detailed. Because extreme point detection does not have visual and physical 

characteristics, Harris operator is used to extract feature-points in Harris-SIFT 

algorithm. In our algorithm, 81-dimensional vector is used to construct the 

rotation-invariant LBP operator for every feature-point. This will make the 

algorithm has low computational complexity. And the matching algorithm of Best 

Bin First (BBF) is used. After getting the descriptor vectors of two images, we use 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 9, No. 6 (2016) 

 

 

Copyright ⓒ 2016 SERSC  165 

the Euclidean distance of vectors to measure the similarity of different 

feature-points. Firstly, we select a description vector (corresponding to the feature 

point A) in image 1 and calculate Euclidean distances between it and all description 

vectors in image 2, then sort all the distance values and choose the minimum value  

(corresponding to the feature point B), second-minimum value(corresponding to 

feature point C). At last, we compute the ratio of minimum value and 

second-minimum value. If the ratio is less than a threshold value, we determine that 

feature point A has matching feature point B successfully, which is shown as  

||||

||||

CA

BA

HH

HH
t




                                                         (12) 

The procedure of the proposed algorithm can be summarized as following six steps: 

Step 1: Get the images to be matched. 

Step 2: Structure the DOG scale space of images with different Gaussian scale. 

Step 3: Use Harris operator to extract feature points on DOG scale space. 

Step 4: Compute dominant orientation of feature-points and rotate axis to this dominant 

orientation. 

Step 5: Use rotation-invariance LBP operator to describe the pixels in neighborhood of 

feature points and arrange to 81-dimensional vector. 

Step 6: Matching feature points by comparing the ratio of minimum and 

second-minimum Euclidean distance with a threshold value.  

 

5. Experimental Results and Discussion 

In this section, several groups of matching experiments for standard images Cones 

and Tsukuba and our captured images are performed by using SIFT algorithm, 

classical Harris-SIFT algorithm and the proposed algorithm in MATLAB 7.0. 

Experimental results are presented and discussed. 

 

5.1. Experiment on the Benchmark Images 

Experimental results of image Cones are shown as Figure. 5. Figure 5(a) and (b) 

are the test images cones, Figure (c-e) illustrate the matching results of SIFT 

algorithm, classical Harris-SIFT algorithm and the proposed algorithm respectively. 

The cyan lines denote the correct matching points and red lines are the error 

matching points. The marching results of numerical comparing are shown in Table 1. 
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(a) Original Left Image.          (b) Original Right Image 

 

 

 

 

 

 

(c) Result of SIFT   (d) Result of classical Harris-SIFT   (e) Result of the proposed  
                                                    algorithm 

Figure 5. Experimental Results of Cones  

Experimental results of image Tsukuba are shown as Figure 6. Figure 6.(a) and (b) are 

the test images, figure (c-e) are the matching results of SIFT algorithm, classical 

Harris-SIFT algorithm and our proposed algorithm respectively. 

 

  
(a) Original Left Image.           (b) Original Right Image 

 
 
 
 
 
 
 
 

     
  (c)Result of SIFT       (d) Result of classical Harris-SIFT  (e) Result of the proposed 

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaalgorithm 

Figure 6. Experimental Results of Tsukuba  

Table 1 gives the numerical comparing results of SIFT algorithm, classical Harris-SIFT 

algorithm and our proposed algorithm.  
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Table 1. Matching Results of Benchmark Images 

Algorithm 
Matching number Error matching number Matching rate(%) 

Cones Tsukuba Cones Tsukuba Cones Tsukuba 

SIFT 400 344 3 2 99.25 99.42 

Harris-SIFT 255 204 10 4 96.08 98.04 

The proposed method 256 262 9 5 96.48 98.09 

 

5.2. Experiment on Our Captured Images 

In this subsection, experimental results of our captured images by us are reported. 

Figure. 7 shows the experimental results. Figure 7.(a) and (b) are a pair of captured 

images, Figure (c-e) are the matching results of SIFT algorithm, classical 

Harris-SIFT algorithm and our proposed algorithm respectively. In Figure 7. (c-e), 

the cyan lines denote the correct matching points and red lines are the error matching 

points. The numerical comparing results are shown in Table 2. From Table 2, we see 

that the matching rate of our proposed algorithm is very close to Harris-SIFT and 

slightly lower than SIFT. This means that our algorithm has relative high precision. 
 

  
                   (a)Original Left Image.        (b)Original Right Image 

   
(c)Result of SIFT      (d)Result of classical Harris-SIFT  (e) Result of the proposed                          

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaalgorithm 

Figure 7. Experimental Results of Our Captured Images. 

Table 2. Matching Results of our Captured Images 

Algorithm Matching number Error matching number Matching rate(%) 

SIFT 191 2 98.95 

Harris-SIFT 158 2 98.73 

The proposed method 149 3 97.99 

 

As we know, the most time-consuming part in marching algorithm is in the process of 

describing feature-points. In order to compare time-consuming of feature-points 

description in classical Harris-SIFT algorithm and the proposed algorithm, we use these 

two algorithms to describe 100 feature points respectively. The results of time-consuming 

are shown in Table 3. We see that the classical Harris-SIFT algorithm used 114ms to 

describe 100 feature points and our proposed algorithm consumed 82ms. The 

time-consuming is reduced by 28.07%. We also notice that two factors speed up the 
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algorithm. The first one is descriptor vector. In classical Harris-SIFT algorithm, the 

descriptor vector is 128-dimension. However, our proposed algorithm just needs 

81-dimension. Short vector is corresponding to low time complexity. The second factor is 

that the gradient magnitude and orientation of pixels are used to determine descriptor 

vector in classical Harris-SIFT algorithm. Several square root and anti-tangent operation 

are needed in the procession of computation. All these are more complex than our 

proposed algorithm which just use comparing and bitwise circulate operation.  

Table 3. Time-Consuming Comparing Results 

Algorithm Matching number Time-consuming(ms) 

Harris-SIFT 100 114 

The proposed method 100 82 

 

6. Conclusion 

In this paper, we have proposed an improved Harris-SIFT algorithm based on 

rotation- invariant LBP operator. The feature-points in classical Harris-SIFT 

algorithm are visual corners. The rotation-invariant LBP operator has advantages of 

multi-scale, low computing time-complexity. In our method, the Harris operator is 

used to extract feature-points from DOG (Difference of Gaussian) scale space, and 

81-dimensional rotation-invariant LBP descriptors are used. Best-Bin-First (BBF) 

algorithm is also used to search the matching points between the two sets of 

feature-points. In order to evaluate the performance of the proposed algorithm, 

experiments on Cones and Tsukuba are performed. Experimental results show that 

the proposed algorithm is lower time- consuming than that of classical Harris-SIFT 

algorithm. And the proposed algorithm has similar matching rate compared with 

classical Harris-SIFT algorithm.  
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