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Abstract

In a unified framework, we examine four sources of uncertainty in exchange rate fore-

casting models: (i) random variations in the data, (ii) estimation uncertainty, (iii)

uncertainty about the degree of time-variation in coefficients, and (iv) uncertainty re-

garding the choice of the predictor. We find that models which embed a high-degree

of coefficient variability yield forecast improvements at horizons beyond 1-month. At

the 1-month horizon, and apart from the standard variance implied by unpredictable

fluctuations in the data, the second and third sources of uncertainty listed above are

key obstructions to predictive ability. The uncertainty regarding the choice of the

predictors is negligible.
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1 Introduction

Thirty years on since Meese and Rogoff (1983) identified that exchange rate fluctuations

are difficult to predict using standard economic models, academics and practitioners are

yet to find a definite answer as to whether or not macroeconomic variables have predictive

content. In a thorough survey of the recent literature, Rossi (2013) points out that the

answer is not clear-cut. Decisions regarding the choice of the predictor, forecast horizon,

forecasting model, and methods for forecast evaluation, all exert influence in exchange rate

predictability. Ultimately, the predictive power appears to be specific to some countries in

certain periods, signalling the presence of instability in the models’ forecasting performance

(Rogoff and Stavrakeva, 2008; Rossi, 2013). The issue of instability was also pointed out by

Meese and Rogoff (1983) and is echoed in other recent papers including, Bacchetta and van

Wincoop (2004, 2013), Bacchetta et al. (2010), Sarno and Valente (2009), among others.

However, as Rossi (2013) notes, models that take into account these instabilities, by allowing

for time-variation in the coefficients for instance, do not greatly succeed in outperforming a

random walk benchmark in an out-of-sample forecasting exercise.

In this paper, we employ a framework that allows us to pin down several sources of

instability that might affect the out-of-sample forecasting performance of exchange rate

models. The starting point of our analysis is the exact conjecture by Meese and Rogoff (1983),

that time-variation in parameters may play a significant role in explaining the predictive

power of these models. However, unlike previous attempts to explain this conjecture, we

do not assume ex-ante that coefficients in the forecasting regressions change in the same

fashion over time (e.g., Rossi, 2006). Instead, we allow for a range of possible degrees

of time-variation in coefficients, encompassing moderate to sudden changes, and even no-

change in coefficients. We then use a likelihood-based approach to identify what degree of

time-variation in coefficients is consistent with the data. In this framework we can infer, for

example, whether allowing for sudden changes in coefficients leads to a better forecasting

performance, relative to situations where coefficients change gradually or remain constant

over time.
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In light of the hypotheses advanced in recent papers, not only are coefficients in an

exchange rate model likely to change over time, but the relevant set of exchange rate de-

terminants may also differ at each point in time. See, for example, the scapegoat theory of

exchange rates of Bacchetta and van Wincoop (2004, 2013), as well as the empirical evidence

in Berge (2013), Fratzscher et al. (2015), Markiewicz (2012), and Sarno and Valente (2009).

Hence in our setting, in addition to allowing for varying degrees of coefficient adaptivity over

time, we also entertain the possibility that a different fundamental may be relevant at each

point in time. In this unified framework, we can examine whether models with a certain

configuration, characterized by a specific degree of time-variation in coefficients and choice

of predictor, can forecast well.

Our key contribution in this paper goes much further than merely establishing whether

our models outperform a random walk benchmark. As the evidence on time-varying fore-

casting performance suggests, the possibility that a model with a specific configuration can

forecast well in a certain period and country, and not in another setting, introduces un-

certainty regarding the ex-ante choice of the model. In this context, our unified approach

provides the ideal framework to analyze the sources of exchange rate models’ prediction

uncertainty. Within it, we can distinguish between (i) model uncertainty due to random or

unpredictable fluctuations in the data, (ii) model uncertainty due to errors when estimating

the coefficients, (iii) model uncertainty originating from time-variation in coefficients, and

(iv) model uncertainty due to a time-varying set of exogenous predictors. To the best of our

knowledge, this is the first exchange rate prediction paper that seeks to accomplish these

goals. We investigate, for example, how relevant is the issue of time-variation in coefficients

relative to the choice of fundamentals when forecasting out-of-sample.

We use dynamic linear models of the sort considered in Dangl and Halling (2012) when

examining stock returns, which we also extend to allow for a time-changing volatility. These

models not only allow for a time-varying relationship between exchange rates and fundamen-

tals, but also facilitate assigning posterior probability weights to specifications that differ in

the selected fundamental and in the degree of time-variation in coefficients, in light of the

relevant evidence. We can then find the specification supported by the data at each point in
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time, based on these weights. The methodology is also flexible enough in that it enables us

to decompose the prediction variance of the exchange rate into its constituent components,

highlighting the origins of the prediction uncertainty.

Our predictive regressions employ information sets from classic and the more recently

proposed fundamentals. Engel and West (2005) show that exchange rate models based on

these fundamentals are consistent with the present-value asset pricing framework. Rossi

(2013) surveys the out-of-sample predictive content of several fundamentals-based exchange

rate models, including the Taylor rule-based model and the monetary model. The evidence of

predictability is more apparent with Taylor rule fundamentals at short horizons and monetary

fundamentals at long horizons. Nevertheless, consistent with the idea that the relevant set

of fundamentals may change over time, in Rossi’s (2013) findings predictability appears

momentarily for some currencies and certain forecasting horizons. For example, monetary

fundamentals were better predictors of monthly changes in the Japanese yen/U.S. dollar

exchange rate around 2006-2008 but not before or after this period. At longer horizons,

predictability based on the same fundamentals and for the same currency is never found.

In terms of the empirical design, our dataset consists of monthly data spanning 1977M1

- 2013M5 on eight OECD currency exchange rates relative to the U.S. dollar. We use a

direct method to forecast recursively, the period-ahead change in the exchange rate at 1-, 3-,

and 12-months horizons. The forecasts from our fundamentals-based models are compared

to those of the toughest benchmark – the driftless random walk (RW) (Rossi, 2013). To

evaluate the statistical significance of the differences in the forecasts we use the Diebold and

Mariano (1995) and West (1996) tests. In order to take account of concerns about data-

mining in light of our search over multiple predictors, we employ critical values computed

using a data-mining robust bootstrap technique proposed in Inoue and Kilian (2005), which

we adjust to allow for cross-country correlation. An additional measure of relative forecast

accuracy is based on predictive likelihoods (Geweke and Amisano, 2010).1

1We also examine the ability of our models to generate economic value in a stylized asset portfolio
management setting, following Della Corte et al. (2012) and Li et al. (2015). We compute indicators such as
Sharpe ratios, maximum performance fees, excess premium returns, and break-even transaction costs that
render an investor indifferent between using our models and the RW.
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Apart from the research on the role of instabilities in obstructing model forecasting

performance, our paper is related to the literature on forecast combinations. Among articles

studying the importance of instabilities in an exchange rate setting, we compare our paper

to Rossi and Sekhposyan (2011), Bacchetta et al. (2010), and Giannone (2010). Rossi

and Sekhposyan (2011) decompose measures of out-of-sample forecasting performance into

components of relative predictive ability. Their results point to a lack of predictive content

and time-variation in forecasting performance as the main obstacles to exchange rate models’

forecasting ability. However, while they mention that time-variation in parameters of the

models might cause time-variation in forecasting performance, they do not explicitly examine

the influence of the former upon the latter. Thus, our study complements theirs, as time-

variation in parameters is an integral part of our scrutiny.2

Among papers focusing in pooling exchange rate forecasts, we note contributions by

Wright (2008), Sarno and Valente (2009), Beckmann and Schuessler (2015), and Li et al.

(2015). The main difference with our contribution is their emphasis on finding whether

combined forecasts from several models with a certain configuration are superior to those

from univariate models and to the random walk benchmark. Instead, we extend the analysis

in the above papers to examine the origins of model prediction uncertainty. An additional

difference is our use of a data-mining robust bootstrap procedure when evaluating our models’

forecasting performance.3

To preview our results, we find that models which allow for the relevant set of predictors

to change over time and with varying degrees of coefficients adaptivity forecast well. For

the majority of the currencies we examine, these models generate a lower root mean squared

forecast error than the benchmark at all, but 1-month forecasting horizon. At horizons

greater than 1-month, regressions with a high degree of time-variation in coefficients dom-

2Bacchetta et al. (2010) use a theoretical reduced-form model of exchange rate calibrated to match the
moments of the data to examine whether parameter instability could rationalize the Meese-Rogoff puzzle.
They conclude that it is not time-variation in parameters, but small sample estimation error that explains
the puzzle. However, Giannone (2010) disputes these findings and points out that both, time-variation in
parameters and estimation uncertainty, are important in accounting for the puzzle. As we noted above, we
extend the analysis to consider other sources of instabilities, quantify their relative importance, and our
approach is entirely data-based.

3Sarno and Valente (2009) use a Reality Check procedure to account for data-mining.
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inate regressions with constant and moderately time-varying coefficients. Importantly, we

find that apart from the common uncertainty related to random fluctuations in the data, the

uncertainty in coefficient estimation and the uncertainty regarding the correct level of time-

variation in coefficients are key obstructions to exchange rate prediction. When the models

successfully embed these two sources of uncertainty, they yield a satisfactory out-of-sample

forecasting performance and economic value. The uncertainty about the choice of the pre-

dictors appears to be small. Our findings are therefore consistent with the simulation-based

results of Giannone (2010) and they provide supportive evidence for Rossi and Sekhposyan’s

(2011) conjectures on the causes of time-variation in the models’ predictive ability.

The paper is organized as follows. In the next section we lay out our econometric method-

ology. Section 3 describes the forecasting environment, including the competing models, the

menu of predictors, data, forecasting mechanics, and the criteria for forecast evaluation.

Results are reported in Section 4, followed by robustness checks in Section 5. Section 6

concludes.

2 Econometric Methodology

2.1 Predictive Regression

In line with the majority of the papers in exchange rate forecasting, we model the exchange

rate as a function of its deviation from its fundamental’s implied value.4 As advanced by

Mark (1995), this fits with the notion that in the short-run, exchange rates frequently deviate

from their long-run fundamental’s implied level. More precisely, let et+h − et ≡ ∆et+h be

the h-step-ahead change in the log of the exchange rate, and ft a set of exchange rate

fundamentals. Then, we consider predictive regressions of the following state space form:

∆et+h = Xtθt + vt+h, vt+h ∼ N(0, Vt), (observation equation); (1)

4See, for example, Byrne et al. (2016), Cheung et al. (2005), Engel et al. (2007), Mark (1995), Molodtsova
and Papell (2009), Rossi and Inoue (2012), and Rossi (2013).
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θt = θt−1 +$t, $t ∼ N(0,Wt), (transition equation); (2)

with Xt = [1, zt], where

zt = ft − et. (3)

As equation (3) indicates, zt measures the disequilibrium between the exchange rate’s

spot value and the level of the fundamentals. When the spot exchange rate is higher than

its fundamental’s implied level, then the spot rate is expected to decrease, as long as the

coefficient attached to zt in equation (1) is less than one. In the next section we discuss

the set of fundamentals contained in ft. Here we note that the predictive regression given

by the system of equations (1) and (2) allows the coefficients linked to the disequilibrium

term (zt) and to the constant, to change over time. Equation (2) suggests that we assume

a random walk process for the parameter θt, following Rossi (2006) and Wolff (1987). We

further consider that the disturbance terms, vt+h and $t, are uncorrelated and normally

distributed with mean zero and time-varying matrices Vt and Wt, respectively.

The variance of the error term in the transition equation, Wt, is crucial in determining the

degree of time-variation in the regression’s coefficient. Setting this matrix to zero implies that

the coefficients are constant over time, and therefore equation (1) nests a constant-coefficient

predictive regression. In contrast, if the variance increases, the shocks to the coefficients also

increase. While this renders more flexibility to the model, the increased variability of the

coefficients translates into high prediction variance, which increases the prediction error. In

light of this, a common practice is to impose some structure on Wt; see, for example, Dangl

and Halling (2012), Koop and Korobilis (2012), and West and Harrison (1997, Ch. 4). We

define this structure together with the description of the estimation methodology below.

We use Bayesian methods to estimate the parameters of our dynamic linear model, fol-

lowing Dangl and Halling (2012) and West and Harrison (1997, Ch. 3&4). The estimation

is based on a full conjugate Bayesian analysis, implying that when prior information on the

unknown parameters is combined with the likelihood function, we obtain a posterior with

the same distribution as the prior, hence no simulation algorithms are required. Specifically,
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let the prior for the coefficients vector θt be normally distributed, and the prior for the obser-

vational variance Vt be derived from an inverse-gamma distribution. In a conjugate analysis,

the posteriors are jointly normally/inverse-gamma distributed. In the supplementary ap-

pendix online we provide details on the updating scheme of the system of equations at some

arbitrary time t + 1, given the information available at time t (Dt). This information set

contains the exchange rate variations, the predictors, and the prior parameters at time-zero.

i.e., Dt = [∆et,∆et−1,...,∆e1,, Xt, Xt−1..., X1,Priorst=0]. For the prior parameters at t = 0,

we follow Fernandez et al. (2001) and use a benchmark conjugate g-prior specification:

θ0|D0, V0 ∼ N
(

0, S0 [gX ′X]
−1
)

, (4)

V0|D0 ∼ IG

[
T0
2
,
S0

2

]
, (5)

where S0 = (T − 1)−1∆e′(I −X(X ′X)−1X ′)∆e, and T0 = 1.

The prior for the coefficient vector in equation (4) is a diffuse prior centered around the

null hypothesis of no predictability, with g as the scaling factor that conveys the confidence

assigned to this hypothesis. The coefficients’ variance-covariance matrix is a multiple of the

OLS estimate of the variance in coefficients, S0. The fact that this matrix is multiplied by a

large scalar translates into an uninformative prior, implying that the estimation procedure

adapts quickly to the empirical pattern. This is consistent with our objective of examining

which instabilities are supported by the data. In our empirical exercise, we adopt a common

procedure and set our g-prior based on estimates from the entire sample (see, e.g., Dangl

and Halling, 2012 and Wright, 2008). Following the recommendations in Fernandez et al.

(2001), we set g = 1/T for the main results and examine cases of relatively more informative

prior in the robustness checks.

The other crucial element in the methodology we employ is the predictive density. This

is obtained by integrating the conditional density of ∆et+h over the space spanned by θt

and Vt. West and Harrison (1997, Ch. 4) show that it is a Student t−distribution with nt
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degrees-of-freedom, mean ∆̂et+h, variance Qt+h, evaluated at ∆et+h:

f(∆et+h|Dt) = tnt(∆et+h; ∆̂et+h, Qt+h). (6)

Using this predictive distribution we can recursively forecast ∆et+h; for details, see the

supplementary appendix online.

As we pointed out, the degree of time-variation in the regressions’ coefficients is deter-

mined by the matrix Wt in equation (2). Given that the coefficients are exposed to random

shocks that follow a normal distribution with mean zero and variance Wt, when the variance

is low, the estimation error shrinks towards zero as more data become available. In con-

trast, in periods of high variance the estimation error increases, affecting the prediction. To

capture this direct relationship between the coefficients’ estimation error and the variance,

we follow West and Harrison (1997, Ch. 4) and let Wt be proportional to the estimation

variance of the coefficients at time t:

Wt =
1− δ
δ

StC
∗
t , 0 < δ ≤ 1; (7)

where St is the estimate of the variance of the error term in the observation equation, C∗t is

the estimated conditional covariance matrix of θt in equation (1), and δ is a discount factor

that controls the degree of time-variation in coefficients (see also Dangl and Halling, 2012).

Effectively, setting δ = 1 implies that Wt = 0, and therefore the coefficients are assumed

constant over-time. By contrast, specifying 0 < δ < 1 is consistent with time-varying co-

efficients, with the underlying variability determined by the magnitude of increase in the

variance by a ratio of 1/δ. For instance, with δ = 0.98 the variance increases by 62% within

24 months. Further reducing δ to 0.90, translates into 52% increase in the variance in just

five months, suggesting remarkably abrupt changes in coefficients. The value of δ can alter-

natively be interpreted as implying that observations m periods in the past carry a weight of

δm in the estimation. Based on this interpretation, setting δ to 0.90 means that observations

two years in the past have just 8% as much weight as last period’s observation. Further
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lowering it to 0.80 for example, would imply a weight close to zero for those observations.

In our empirical work we consider δ = [0.90, 0.92, 0.94, 0.96, 0.98, 1.00] as the possible

support points for time-variation in coefficients, which appears to cover all the sensible

values for δ given our monthly frequency data. Beckmann and Schüssler (2015) in an ex-

change rate study, and Dangl and Halling (2012) in a stock returns context consider a

range of [0.96, 0.97, 0.98, 0.99, 1.00]. West and Harrison (1997, Ch. 2) examine cases of

[0.70, 0.80, 0.90, 1.00] for the U.S. dollar/U.K. pound sterling exchange rate and find evidence

of large support from the data for 0.90. They also point out that a lower limit consisting of

0.70 or a smaller value is unreasonable for monthly data, as it implies extremely adaptive

and implausible models.5 From the range of time-variation in coefficients that we consider,

we then examine empirically which support point is consistent with the data in a Bayesian

model averaging approach that we discuss in the next subsection.

2.2 Dynamic Model Averaging and Selection

While allowing for time-varying coefficients addresses one potential source of instability

in predictive ability, the literature on exchange rate predictability also indicates that the

relevant set of predictors appears to change over time (Bacchetta and van Wincoop, 2004;

Rossi, 2013; and Sarno and Valente, 2009). To address this latter source of instability, we

allow for the possibility that from a set of k potential predictors, one applies at each time

period. If we let d be the number of possible discrete support points for time-variation in

coefficients as defined by each δ, then our range of possible models is d.k.

Selecting one specific model, characterized by a specific choice of predictor and degree of

time-variation in coefficients, and using it to forecast at time t requires a method. Bayesian

model selection is a methodical approach that tests the validity of all d.k models against

the observed data. The approach involves assigning prior probabilities to each candidate

predictor, as well as prior probability to each possible support point for time-variation in

5Koop and Korobilis (2012) consider alternative values of δ = 0.95 or δ = 0.99 when forecasting inflation
with quarterly data. Using similar discounting factor concepts, Longerstaey and Spencer (1996, Ch. 5)
estimate decay factors based on measures of forecast performance from 460 financial series and find 0.94 to
be an optimal value for daily data and 0.97 for monthly data.
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parameters. Then based on the realized likelihood of the model’s prediction, the posterior

probability of each of the d.k models is updated according to Bayes rule. In the supplemen-

tary appendix we provide details on the exact formulae. Note that we set diffuse conditional

prior probability for each model Mi; and equally, an uninformative prior for the range of

support points for the degree of time-variation in coefficients. In notation, the prior proba-

bilities are P (Mi|δj, D0) = 1/k and P (δj|D0) = 1/d, respectively. Hence, at the beginning

of the forecast window, each predictor and model setting has the same chance of becoming

probable.

The overall model’s predictive density is the posterior probability weighted average pre-

dictive density of all d.k models. In this sense, we perform Bayesian Model Averaging (BMA)

in a setting with varying degrees of time-variation in coefficients. The flexibility of the ap-

proach implies, for instance, that we can implement Bayesian Model Selection (BMS), thus

selecting the single model with the highest probability at each point and using it to forecast.

We can further let δ = 1, such that all the models exhibit constant coefficients and then

average over models with this characteristic (BMA excluding time-varying coefficients). We

can alternatively keep δ = 1, but select the best model at each time-period (BMS exclud-

ing time-varying coefficients).6 Furthermore, the approach permits us to track all sources

of uncertainty with respect to the prediction in a variance decomposition framework. We

elaborate on this framework in what follows.

2.3 Variance Decomposition and Sources of Instability

We use the law of total variance to decompose the variance of the random variable (∆et) into

its constituent parts. Following Dangl and Halling (2012), we begin with the decomposition

with respect to different values of δ:

V ar(∆et+h) = Eδj(V ar(∆et|δj)) + V arδj(E(∆et|δj)), (8)

6In fact, as we detail in subsection 3.1, we can analyze several other cases depending on model speci-
fication and choice of degree of time-variation, including cases of BMA over time-varying coefficients with
single predictors.
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where Eδj and V arδj indicate the expected value and the variance with regards to δj. Because

the expected value of the variance of δj is conditional on specific choice of model Mi, it can

be also decomposed as follows:

V ar(∆et|δj) = EMi
(V ar(∆et|Mi, δj)) + V arMi

(E(∆et|Mi, δj)). (9)

Dangl and Halling (2012) show that using equation (9) to substitute for the expected value

of the variance of δj in equation (8), and employing the corresponding expressions of these

variances - see the supplementary appendix online - yields the following decomposition:

V ar(∆et+h) =
∑
j

[∑
i

(St|Mi, δj, Dt)P (Mi|δj, Dt)

]
P (δj|Dt)

+
∑
j

[∑
i

(X ′tRtXt|Mi, δj, Dt)P (Mi|δj, Dt)

]
P (δj|Dt)

+
∑
j

[∑
i

(∆̂e
j

t+h,i − ∆̂e
j

t+h)
2P (Mi|δj, Dt)

]
P (δj|Dt)

+
∑
j

(∆̂e
j

t+h − ∆̂et+h)
2P (δj|Dt). (10)

The four individual terms in equation (10) highlight the sources of uncertainty in the

prediction. The first term is the expected variance of the disturbance term in the observation

equation, with (St|Mi, δj, Dt) measuring the time t estimate of the variance, Vt, given the

choice of the predictor and degree of time-variation in coefficients. This provides a measure of

random fluctuations in the data relative to the predicted trend component. The second term

captures the expected variance from errors in the estimation of the coefficients. It can be

referred to as estimation uncertainty. The third term characterizes model uncertainty with

respect to the choice of the predictor. The last term also characterizes model uncertainty, but

with respect to time-variability of the coefficients. Hence both, the third and fourth term,

capture model uncertainty. Implementing this four-fold variance decomposition represents

an innovation in the exchange rate literature. We now turn to our forecasting environment.
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3 Forecasting Environment

3.1 Competing Models

We first consider alternative model specifications derived from our Bayesian approach, namely:

• BMA including Time-varying Coefficients (BMA incl. Tvar-coeffs): Based on Bayesian

model averaging over individual models and with varying degrees of coefficient adap-

tivity.

• BMA excluding Time-varying Coefficients (BMA excl. Tvar-coeffs): This is a restricted

version of the above, as it is based on BMA over individual models that exclude time-

variation in coefficients. It corresponds to conventional BMA.

• BMS including Time-varying Coefficients (BMS incl. Tvar-coeffs): This is determined

by the individual models that receive the highest posterior probability, among all in-

dividual models and with varying degrees of coefficient variation.

• BMS excluding Time-varying Coefficients (BMS excl. Tvar-coeffs): This specification

is nested in the BMS including Tvar-coeffs model. It includes the individual models

that receive the highest posterior probability, among all individual models excluding

time-variation in coefficients.

• Single Predictor including Time-varying Coefficients (Single Predictor and BMA incl.

Tvar-coeffs): These models consider only a single predictor at a time, but average over

the range of all degrees of time-variation in coefficients.

• Single Predictor excluding Time-varying Coefficients (Single Predictor excl. Tvar-

coeffs): This is a restricted version of the Single Predictor including Tvar-coeffs model.

It includes only one predictor at a time in a setting excluding time-variation in coeffi-

cients.

In addition to these specifications, we look at forecast combination methods based on

frequentist approaches. In this case the forecast combination of ∆et+h made at time t, is
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a weighted average of the k individual models’ forecast based on OLS estimates of simple

linear regressions, excluding time-varying coefficients. That is,

∆̂e
c

t+h =
k∑
i=1

ωi,t∆̂e
i

t+h, (11)

where {ωi,t}ki=1 are the ex-ante combining weights formed at time t. Following Stock and

Watson (2004) and Rapach et al. (2010) we consider the following combination methods:

• Mean Combination: The combined forecasts are obtained by using the following con-

stant weighting scheme: ωi,t = 1/k, for i = 1, ..., k in equation (11).

• Median Combination: The median combination forecasts is the median of {∆̂e
i

t+h}ki=1.

• Trimmed Mean Combination: The combined forecasts are obtained by setting ωi,t = 0

for the smallest and largest individual forecasts, and ωi,t = 1/(k− 2) for the remaining

forecasts in equation (11). As in the median combination and the DMSPE combination

method below, the weights change over time.

• DMSPE Combination: In this method, the weights are related to the historical fore-

casting performance of the individual models in a holdout-out-of-sample period. The

discount mean squared prediction error (DMSPE) method uses the following weights:

ωi,t = Φ−1i,t /
∑k

i=1 Φ−1i,t , where Φi,t =
∑t−1

so ϑt−1−so(∆eso+h − ∆̂e
i

so+h)
2 and so is the end

of the in-sample portion. The parameter ϑ denotes the discount factor applied to the

mean squared prediction error. Based on results in Rapach et al. (2010) and Stock

and Watson (2004), we set its value to 0.9.7 This is consistent with attaching greater

weight to the individual models that performed better in the holdout-out-of-sample

period. We set this holdout-out-of-sample period to five years, implying that for this

combination method, the forecast evaluation period starts five years later relative to

that of the other models.

7In Rapach et al. (2010) and Stock and Watson (2004) the best forecasting performance is achieved with
a discount factor of 0.9, in a set that includes 0.95 and 1.0.
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By examining combined forecasts from models which exclude time-variation in coefficients,

we can further check the sources of differences in performance and better understand the

importance of time-variation in coefficients.

3.2 Menu of Predictors

The range of predictors we consider are derived from the conventional and the more recently

proposed fundamentals-based empirical exchange rate models. Engel and West (2005) show

that the majority of these models fit within the asset-pricing framework, such that the

exchange rate can be expressed as a present-value of a linear combination of fundamentals and

random noise. When combined with rational expectations and a random walk process for the

fundamentals, the spot exchange rate becomes a function of current observable fundamentals

and unexpected noise.

Our first class of predictors is constituted by five observable fundamentals, as follows:

• A symmetric (TRsy) and an asymmetric (TRasy) Taylor rule:

ft,TRsy = 1.5(πt − π∗t ) + 0.5(yt − y∗t ) + et, (12)

ft,TRasy = 1.5(πt − π∗t ) + 0.1(yt − y∗t ) + 0.1(et + p∗t − pt) + et, (13)

where πt is the inflation rate, yt the output gap in the home country, pt is the log of the

domestic price level, and et the log exchange rate. Asterisks denote identical variables

for the foreign country.

• Monetary fundamentals:

ft,MM = (mt −m∗t )− ρ(yt − y∗t ), (14)

where mt is the log of money supply, and yt is the log of income. Following Mark (1995),

we assume an income elasticity parameter of ρ = 1. Note that we do not include other

variants of the monetary model in line with the vast literature that ensued following
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Mark’s (1995) findings that the performance of this model is robust to changes in

the income elasticity parameter from 0 to 1; see also Sarno and Valente (2009) for

congruent findings.

• Fundamentals implied by Purchasing Power Parity (PPP) and Uncovered Interest Rate

Parity (UIRP):

ft,PPP = (pt − p∗t ), (15)

ft,UIRP = (it − i∗t ) + et. (16)

The class of fundamentals described in equations (12-16) is typical in exchange rate studies,

including in Engel et al. (2007, 2015), Molodtsova and Papell (2009), Rossi (2013), Li et al.

(2015), among others.8

The second class of fundamentals is derived from non-observable information embedded

in exchange rates as propounded by Engel et al. (2015). Accordingly, we extract three

factors from the exchange rates in our sample and define our last predictors as:

ft,Factor = l̂1nẑ1t + l̂2nẑ2t + l̂3nẑ3t, (17)

where ẑ1t, ẑ2t, and ẑ3t are factors estimated by principal components analysis, and l̂1n, l̂2n, l̂3n

are the corresponding loadings for the currency n, n = 1, ..., 8. The choice of the number

of factors is guided by the evidence in Engel et al. (2015), who find three factors to be

advantageous in terms of forecasting performance.

8We are aware of the cyclical external imbalances model of Gourinchas and Rey (2007) and the Chen
and Tsang (2013) yield factors-based exchange rate model. We exclude them from our main analysis mainly
because data to construct these fundamentals for the countries we examine are not readily available over the
span of our sample. We consider these fundamentals later, in a robustness analysis, focusing on a smaller
sample and fewer exchange rates.
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3.3 Data and Forecasting Mechanics

This paper uses monthly data from 1977M1 to 2013M5 for eight countries: Australia,

Canada, Euro-area/Germany, Japan, Norway, Sweden, Switzerland, and the United King-

dom (U.K.). Greenaway-McGrevy et al. (2015) note that the currencies of these countries

constitute the top eight, after the U.S. dollar, in terms of average (1998-2013) foreign ex-

change market turnover, allowing us to set the stylized dynamic asset allocation exercise

for a sensible basket of currencies. The home country is taken as the United States. The

data are obtained from the IMF’s International Financial Statistics (IFS), supplemented by

national central banks sources. The exchange rate is defined as the end-of-month value of

the U.S. dollar price of a unit of national currency. We measure the money supply by the

aggregate M1.9

Computation of information sets from Taylor rules requires data on the short-run central

bank nominal interest rate, the inflation rate, and the output gap. We employ the central

bank’s policy rate when available for the entire sample period and, alternatively, the discount

rate or the money market rate. The inflation rate is calculated as the change in the log of

monthly consumer price index (CPI). We use monthly industrial production (IP) as the

proxy for output. Following a common practice in the literature, the output gap is obtained

by applying the Hodrick and Prescott (1997) filter recursively to the output series, with the

standard smoothing parameter for monthly data frequency (i.e., 14400). We equally correct

for the uncertainty about these estimates at our recursive sample end-points by following

Watson’s (2007) method. This entails estimating bivariate VAR(`) models that include

the first difference of inflation and the change in the log IP, with ` determined by Akaike

Information criterion. These VARs are used to forecast and backcast three years of monthly

data-points of IP, and the HP filter is applied to the resulting extended series.10 The data on

money supply, IP, and CPI were seasonally adjusted by taking the mean over twelve months

9In cases where the M1 aggregate is unavailable, we use a broader aggregate - see the supplementary
appendix online for exact details on these aggregates and data sources. Note too that data limitations
prevent us from using real-time data for the countries we consider.

10We have also experimented with estimating an AR(`) model for ∆ ln(IPt) instead of a VAR(`) model.
The resulting output gap series were similar to those based on the VAR forecasts, suggesting small differences
in the forecast precision between the two models.
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following Engel et al. (2015).11

We use a direct, rather than an iterative, method to forecast the h-month-ahead change

in the exchange rate for h = [1, 3, 12]. Wright (2008) notes that both methods lead to

qualitatively similar conclusions. The forecasting exercise is based on a recursive approach

using data available up to the time the forecast is made. For example, a 3-months ahead

forecast of the change in exchange rate for 1995M1 is made using data available up to

1994M10. Our forecasting window begins in 1987M12+h for all regressions, except for the

DMSPE combination method, which requires a holdout out-of-sample period.12

3.4 Criteria for Forecast Evaluation

We first apply statistical measures of forecasting performance. We compute the ratio of the

Root Mean Squared Forecast Error (RMSFE) of our models relative to the RMSFE of the

driftless random walk (RW). Models that perform better than the RW benchmark have a

value of this ratio, also known as the Theil’s U, less than one. According to Rossi (2013),

the RW is the most appropriate benchmark. In the supplementary appendix online we use

economic metrics for forecast evaluation.

To assess the statistical significance of the differences in the forecasts, many papers

employ the Diebold and Mariano (1995) and West (1996) tests (hereafter DMW), and/or the

Clark and West (2006, 2007) test (hereafter CW). The DMW tests whether two competing

forecasts are identical under general conditions (Diebold, 2015). The CW tests whether the

benchmark model is equivalent to the competing model in population. However, Clark and

West (2006) show that when comparing nested models, the DMW test is undersized, hence,

the RMSFE differential should be adjusted by a term that accounts for the bias introduced

by the larger model. On the other hand, Rogoff and Stavrakeva (2008) make the case for

using the bootstrapped DMW test, rather than the CW test, arguing that the latter does

not always test for a minimum mean squared forecast error. Additionally, they recall that

the asymptotics of the CW test are well-defined when forecasting in a rolling, instead of a

11CPI and IP data for Australia are only available at a quarterly frequency. We obtain monthly data via
a quadratic-match-average interpolation method from quartely data, as in Molodtsova and Papell (2009).

12Note that the exchange rate factors are also constructed without using future information.
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recursive framework.

In light of the preceding discussion, we construct bootstrapped critical values for the one-

sided DMW test in the spirit of Rogoff and Stavrakeva (2008). Given our search over multiple

predictors, however, we modify their procedure to account for data-mining, following Inoue

and Kilian (2005) and Rapach and Wohar (2006). We also allow for cross correlation across

countries; see, for example, Della Corte and Tsiakas, (2012). In any event, to examine if

inference based on the standard critical values alters our conclusions, we further employ the

asymptotic DMW. The exact bootstrap steps are described in a supplementary appendix

online.13

4 Empirical Results

We begin by examining the forecasting performance of our competing methods. We then pro-

ceed and study in detail the characteristics of the BMA including time-varying coefficients.

In this respect, we analyze the sources of prediction uncertainty, the degree of time-variation

in coefficients consistent with the data, and which macroeconomic fundamentals are highly

informative about exchange rates movements.14

4.1 Out-of-Sample Statistical Evaluation

Table 1 shows in three panels the forecasting results of the predictive regressions that allow

predictors and coefficients to change over time, and all the restricted versions that take

into account multiple predictors. The key findings can be summarized as follows. First,

regressions which allow for time-changing sets of predictors and varying degrees of coefficients

adaptivity yield a smaller Root Mean Squared Forecast Error (RMSFE) than the RW at the

13The Diebold and Mariano (1995) and West (1996) test is computed as: DMW = f
√
P/[sample variance

of f̂t+h − f ]
1/2

; where P is the number of out-of-sample forecasts, f̂t+h = f̂ e
2

1,t+h − f̂ e
2

2,t+h, with f̂ e1,t+h

denoting the h-step-ahead forecast error of the RW, f̂ e2,t+h the corresponding forecast error of the alternative

model, and f is the mean of f̂t+h. Note that in computing the tests, including in our bootstrap, we use
Newey and West (1987) HAC standard errors with a lag truncation parameter of int{Sample0.25}, following
Rossi (2013).

14To preserve space, we report the results for economic evaluation in a supplementary appendix online.
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Table 1: Statistical Evaluation of Bayesian and Forecast Combinations Methods

Panel A: Models that allow predictors and coefficients to change over time

h=1 h=3 h=12 h=1 h=3 h=12
BMA incl. TVar-Coeffs BMS incl. TVar-Coeffs

AUD 1.029 0.893** 0.626***a 1.007 0.886** 0.620**a

CAD 1.031 0.966 0.823* 1.022 0.876**a 0.761**
GBP 1.040 0.977 0.756** 1.001 0.956 0.676**a

JPY 1.040 0.961* 0.825*** 1.019 0.944**b 0.802**a

NOK 1.032 1.008 0.876** 1.018 0.962 0.843**
SEK 1.018 0.962 0.944 1.005 0.955 0.758**
CHF 1.045 0.953 0.754***a 1.033 0.925**b 0.726**b

EUR 1.014 0.935**a 0.817***a 1.008 0.906***c 0.789**b

Panel B: Models that allow predictors to change over time, excl. TVar-Coeffs

BMA excl. TVar-Coeffs BMS excl. TVar-Coeffs

AUD 1.015 1.029 1.005 1.011 1.022 0.985
CAD 1.009 1.014 1.097 1.000 0.995 1.094
GBP 1.018 0.984 0.869* 0.982a 0.977 0.871*
JPY 1.023 1.030 1.058 1.005 1.013 1.043
NOK 1.020 1.021 0.970 1.009 1.001 0.957**
SEK 1.024 1.017 0.937** 1.013 1.012 0.926**
CHF 1.029 1.035 0.935 1.011 1.017 0.919*
EUR 1.005 1.010 0.870*** 1.006 1.000 0.859**

Panel C: Combined forecasts, excl. TVar-Coeffs

OLS-Mean Combination OLS-Median Combination

AUD 1.003 1.008 1.030 1.004 1.007 1.025
CAD 1.002 1.007 1.027 1.003 1.008 1.032
GBP 1.000 1.000 0.986 1.000 1.001 0.986
JPY 1.000 0.999 0.989 0.999 0.998 1.016
NOK 1.003 1.011 1.029 1.004 1.012 1.032
SEK 1.002 1.010 1.009 1.000 1.002 0.993
CHF 1.000 0.997 0.960* 0.998 0.992 0.937**
EUR 0.999 0.998 0.972* 0.997 0.993 0.961*

OLS-Trimmed Mean OLS-DMSPE Combination

AUD 1.003 1.007 1.026 1.001 1.002 0.991
CAD 1.002 1.007 1.029 1.001 1.003 0.992
GBP 0.999 0.998 0.979 0.999 0.994a 0.932**
JPY 1.000 0.999 0.988 1.001 0.996 0.889**b

NOK 1.003 1.011 1.026 1.003 1.007 1.001
SEK 1.001 1.004 0.992 1.002 1.005 0.965**
CHF 0.999 0.995 0.961* 0.999 0.989 0.877**b

EUR 0.998 0.996 0.971 0.999 0.993 0.908**b

Notes: Relative RMSFE of the Bayesian Model Averaging (BMA) and Selection (BMS) including or
excluding Tvar-coeffs and simple forecast combinations methods. For all methods, the driftless Random Walk
(RW) constitutes the benchmark model. Hence, values below one indicate that the method under scrutiny
generates a lower RMSFE than RW. The Table also reports the one-sided DMW test-statistic, with p-values
based on a data-mining robust semi-parametric bootstrap and standard critical values. The superscripts
a for 10%, b for 5%, and c for 1% indicate the level of significance at which the null hypothesis of equal
RMSFE is rejected using the bootstrapped critical values, favouring the alternative that the fundamental-
based method yields a lower RMSFE than the RW. Asterisks (*10%, **5%, ***1%) indicate the rejection
of the same null, using standard critical values. Currency codes denote: AUD - Australian dollar; CAD
- Canadian dollar; GBP - Pound sterling; JPY - Japanese yen; NOK - Norwegian krone; SEK - Swedish
krona; CHF - Swiss franc; EUR - euro. The forecast evaluation period begins in 1987M12+h in all, but the
OLS-DMSPE Combination case (1992M12+h).
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3- and 12-months horizons, but not at the 1-month horizon. In Panel A, BMA including

Tvar-coeffs, for example, generates more accurate forecasts than the RW for seven out of the

eight currencies considered at the 3-months horizon, and all the currencies at the 12-months

horizon. Qualitatively similar findings apply to BMS including Tvar-coeffs, which produces

smaller RMSFE than the RW for all currencies at the two horizons.

Second, the magnitude of the reduction in the RMSFE, and the cases of statistical sig-

nificant differences in the RMSFE relative to the RW increase with the forecasting horizon.

For instance, at the 3-months horizon and under the asymptotic DMW, the magnitude of

significant improvements upon the RW is of at least 5.6% and a maximum of 12.4% in BMS

including Tvar-coeffs. At the 12-months horizon, the gains raise to a minimum of 15.7%

and a maximum of 38.0%. And the differences in the RMSFE are statistically significant

for over 42% of the currencies at the 3-months horizons and 83% at the 12-months when

using the asymptotic DMW test. Instead, if we consider the critical values implied by our

data-mining robust bootstrap, the proportion of significant cases is of at least 50% for BMS

including Tvar-coeffs at the two horizons. This proportion drops to less than 30% for BMA

including Tvar-coeffs.

Third, none of the approaches which exclude time-variation in parameters achieve the

magnitudes of improvements described above at horizons beyond 1-month. At best, in Panel

B and C, methods such as BMA and BMS excluding Tvar-coeffs predominantly outperform

the RW at the longest horizon we consider. And in these cases, the improvement is mostly

for fewer currencies when compared with the Bayesian methods with Tvar-coeffs, and the

reduction in the RMSFE never exceeds 1.6% or 14.1% at the 3- or 12-months horizon,

respectively. Moreover, the differences in RMSFE are rarely significant at the 3-months

horizons, regardless of whether bootstrapped or asymptotic critical values are employed. At

the longest horizon, BMS excluding Tvar-coeffs and the DMSPE combination significantly

outperform the RW for at least half of the currencies when using asymptotic critical values.

But only the results from DMSPE combination method remain robust to using bootstrapped

critical values for three currencies. Finally, we equally note that at the 1-month horizon,

20



these constant-coefficients methods largely fail to outperform the RW benchmark.15

Table 2 presents the results for Bayesian methods based on single predictors including

Tvar-coeffs and excluding Tvar-coeffs. At the 1-month horizon, none of the predictive re-

gressions improves upon the RW. In contrast, at the 3-and 12-months horizons there is at

least one or more predictors that yield a smaller RMSFE than the RW for each currency in

regressions with Tvar-coeffs. This is the case for BMA and BMS including Tvar-coeffs in

panels A and B. Examining the cases of regressions excluding Tvar-coeffs in Panel C and for

similar horizons, there are several currencies for which none of them forecasts better than

the RW. The exchange rates of five currencies, namely the AUD, CAD, JPY, SEK, and

CHF at the 3-months horizon, and the CAD and JPY at the 12-months horizon are a case in

point. And among the cases where these regressions beat the RW, the number of statistically

significant improvements tends to be smaller relative to regressions with Tvar-coeffs. This

applies irrespective of whether standard or bootstrapped critical values are used.

Table 2: Statistical Evaluation of Single-Predictor Models Including or Excluding TVar-Coeffs

Panel A: Single Predictor and Bayesian Model Averaging (BMA) incl.TVar-Coeffs

AUD CAD GBP JPY NOK SEK CHF EUR

h=1

TRsy 1.032 1.030 1.031 1.041 1.025 1.025 1.038 1.014

TRasy 1.019 1.063 1.030 1.029 1.023 1.022 1.041 1.016

PPP 1.039 1.030 1.043 1.038 1.028 1.034 1.041 1.026

UIRP 1.021 1.031 1.028 1.035 1.027 1.009 1.041 1.038

MM 1.014 1.031 1.036 1.040 1.033 1.040 1.050 1.026

F1 1.033 1.016 1.033 1.037 1.025 1.030 1.025 1.029

F2 1.026 1.037 1.074 1.041 1.050 1.068 1.036 1.028

F3 1.040 1.041 1.024 1.043 1.029 1.035 1.033 1.031

h=3

TRsy 1.044 0.959 0.973 0.957**b 0.997 1.001 0.965 0.924**b

TRasy 1.001 0.984 0.988 1.007 0.989 1.007 1.044 0.963

PPP 1.068 0.964 0.994 0.954**b 0.981 1.019 0.939**b 0.949**a

UIRP 0.935 0.972 0.959 0.983 0.963 0.942 0.994 0.977

MM 0.909 0.940* 0.949* 1.014 0.990 1.069 1.003 0.962

F1 1.020 0.961 0.948 0.968 1.011 0.963 0.995 1.024

15Our results on the performance of BMA excluding TVar-Coeffs are coherent with those from Wright
(2008). He finds that in a setting of tighter priors and shrinkage towards the null of no predictability,
BMA excluding TVar-coeffs improves upon the RW, although the improvement in terms of reduction in the
RMSFE is small. However, with loose priors and less shrinkage, it fails to improve upon the RW.
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Table 2 Continued

AUD CAD GBP JPY NOK SEK CHF EUR

F2 0.972 1.075 1.048 0.991 1.131 1.119 1.005 1.011

F3 0.966 1.046 0.992 0.990 1.018 0.991 0.975 0.974

h=12

TRsy 1.008 0.957 1.260 1.295 0.992 0.802** 0.735***c 0.816***c

TRasy 1.052 1.714 1.007 3.210 1.352 1.209 1.051 1.370

PPP 1.033 0.950 1.208 1.203 0.868***a 0.789***b 0.766***b 0.820***c

UIRP 0.897* 0.968 1.108 0.819***b 0.850***b 1.277 1.399 1.710

MM 0.811*** 0.723***a 0.706***a 1.112 1.476 0.873* 0.911**a 0.832***a

F1 0.624*** 1.147 0.704***b 1.383 0.961 0.804***b 1.015 1.079

F2 1.682 1.645 0.872* 1.081 1.027 1.004 0.854**a 0.917

F3 1.000 0.896 1.643 1.184 1.012 0.841** 0.856* 0.884*

Panel B: Single Predictor and Bayesian Model Selection (BMS) incl.TVar-Coeffs

h = 1

AUD CAD GBP JPY NOK SEK CHF EUR

TRsy 1.022 1.033 1.035 1.041 1.024 1.023 1.042 1.015

TRasy 0.982 1.052 1.020 1.010 1.002 1.011 1.039 1.014

PPP 1.034 1.026 1.044 1.039 1.026 1.033 1.042 1.026

UIRP 1.011 1.029 1.028 1.030 1.027 1.012 1.041 1.035

MM 1.010 1.028 1.036 1.039 1.032 1.034 1.051 1.027

F1 1.026 1.015 1.039 1.036 1.021 1.029 1.024 1.023

F2 1.022 1.035 1.064 1.042 1.035 1.067 1.035 1.025

F3 1.021 1.038 1.023 1.043 1.026 1.037 1.034 1.029

h=3

TRsy 1.014 0.957 0.959 0.955**b 0.987 0.972 0.963 0.921**b

TRasy 0.996 0.981 0.980 1.004 0.987 1.008 1.037 0.959*

PPP 1.044 0.964 0.980 0.952**b 0.968 0.998 0.936**b 0.947**a

UIRP 0.934 0.964 0.951 0.981 0.960 0.939 0.992 0.975

MM 0.907 0.939* 0.946* 0.975 0.976 1.036 0.989 0.960

F1 1.003 0.956 0.934 0.966 1.009 0.961 0.994 1.009

F2 0.955 1.018 1.014 0.986 1.064 1.065 0.992 0.993

F3 0.955 1.045 0.992 0.987 0.995 0.976 0.967 0.974

h=12

TRsy 0.982 0.920 0.936 1.284 0.984 0.782***a 0.716***c 0.805***c

TRasy 1.021 1.709 0.997 3.202 1.349 1.202 1.032 1.362

PPP 0.987 0.915 0.978 1.186 0.858***a 0.768***b 0.764***b 0.803***c

UIRP 0.890 0.967 1.094 0.811***b 0.843***b 0.925 1.340 1.624

MM 0.803*** 0.715***a 0.702***a 1.070 1.464 0.854** 0.902**a 0.805***a

F1 0.623*** 1.143 0.699***b 1.371 0.944 0.796***b 0.993 1.052

F2 1.673 1.639 0.867* 1.069 1.019 1.001 0.844**a 0.903

F3 0.981 0.844** 1.622 1.158 1.007 0.817***a 0.848* 0.873*
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Table 2 Continued

AUD CAD GBP JPY NOK SEK CHF EUR

Panel C: Single Predictor excl. TVar-Coeffs

AUD CAD GBP JPY NOK SEK CHF EUR

h=1

TRsy 1.024 1.009 1.023 1.028 1.002 1.019 1.029 1.020

TRasy 1.004 1.010 1.011 1.009 1.006 1.005 1.021 1.007

PPP 1.026 1.009 1.037 1.030 1.010 1.019 1.031 1.024

UIRP 1.011 1.015 1.036 1.020 1.011 1.017 1.021 1.021

MM 1.030 1.019 1.043 1.029 1.038 1.022 1.047 1.022

F1 1.026 1.005 1.052 1.024 1.011 1.014 1.015 1.016

F2 1.026 1.008 1.059 1.034 1.037 1.039 1.014 1.016

F3 1.014 1.008 1.029 1.027 1.013 1.013 1.015 1.018

h=3

TRsy 1.035 1.006 0.981 1.041 0.986 1.012 1.044 1.003

TRasy 1.020 1.031 0.987 1.071 1.001 1.001 1.059 0.990

PPP 1.056 1.009 1.007 1.029 1.018 1.013 1.036 1.013

UIRP 1.017 1.049 1.056 1.025 1.011 1.027 1.023 1.026

MM 1.043 1.023 1.023 1.059 1.175 1.025 1.090 1.017

F1 1.029 1.004 1.013 1.025 1.037 1.017 1.025 1.021

F2 1.043 1.035 1.046 1.075 1.113 1.052 1.013 1.019

F3 1.028 1.017 1.052 1.029 1.022 1.047 1.019 1.016

h=12

TRsy 1.189 1.128 0.857* 1.494 1.120 0.897** 0.950 0.885***c

TRasy 0.945* 1.709 1.010 3.194 1.554 1.229 1.110 1.355

PPP 1.196 1.166 0.850** 1.440 0.956** 0.949 0.964 0.887***b

UIRP 1.040 1.083 1.136 1.019 1.032 0.999 3.121 2.440

MM 1.276 1.922 0.984 1.315 2.005 0.975 0.952* 0.996

F1 1.050 1.041 0.879** 1.633 0.988 0.996 1.036 1.046

F2 1.780 1.884 1.040 1.547 1.036 1.016 1.051 1.123

F3 1.057 1.096 2.068 1.502 1.231 1.266 1.251 1.104

Notes: RMSFE of the single-predictor models including or excluding time-varying coefficients, relative to
the RMSFE of the driftless Random Walk (RW). Values below one indicate that the model under under
scrutiny generates a lower RMSFE than the RW. The description of the predictors is as follows: TRsy and
TRasy correspond to the symmetric and asymmetric Taylor rules, respectively; MM- fundamentals from
the Monetary Model; PPP - Purchasing Power Parity; UIRP- Uncovered Interest Rate Parity; and F1, F2,
F3 the first, second, and third factor respectively. The superscripts a for 10%, b for 5%, and c for 1%
denote the level of significance of the one-sided DMW test based on a semi-parametric bootstrap, for the
null hypothesis of equality in the RMSFE. Asterisks (*10%, **5%, ***1%) indicate the rejection of the same
null, using standard critical values. The forecast evaluation period begins in 1987M12+h.

All in all, therefore, our findings suggest that at the 1-month horizon the Meese and

Rogoff’s (1983) exchange rate predictability puzzle prevails, even with an approach as flexible

as the Bayesian method we consider. The approach, however, is beneficial in terms of
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improving the out-of-sample forecasting performance at the 3-and 12-months horizons.16 And

the fact that it still delivers relatively better forecasts than models with constant coefficients

also when using each fundamental in isolation, hints at the view that allowing for a flexible

time-variation in parameters is comparatively more critical than allowing for time-changing

fundamentals. We scrutinize this view and other key characteristics of our flexible Bayesian

method in the next subsection.

4.2 Characterization of BMA Including Time-Varying Coefficients

The results from our flexible Bayesian method emanate from a complex combination of

the performance of multiple individual models. Understanding the method’s underlying

characteristics is therefore useful in explaining the sources of difference in forecasting ability

relative to other competing models and across forecasting horizons. This constitutes a key

contribution of this paper.

4.2.1 Sources of Prediction Uncertainty

We begin by analyzing the sources of prediction uncertainty through a variance decomposi-

tion process. As noted in our methodological section, we decompose the total variance into

observational variance, variance due to errors in the estimation of the coefficients, variance

due to model uncertainty with respect to the choice of the predictor, and variance associ-

ated with model uncertainty with regards to the choice of the degree of time-variation in

coefficients. We plot the recursive decomposition at the 1- and 12-months horizons for a

representative selection of four currencies - CAD, GBP, JPY, and EUR. The plots for the

3-months horizon exhibit patterns of intermediate cases, hence, they are omitted here to

conserve space but shown in the supplementary appendix online. The main characteristic

of the plots at the 3-months horizon is that they resemble the pattern of the ones at the

1-month horizon when BMA with Tvar-Coeffs fails to improve upon the RW, such as for the

NOK, or when the magnitude of improvement is somewhat small - GBP and CAD. When

16The evidence we report in the supplementary appendix online also shows that the approach yield
concrete economic gains at the 3-and 12-months horizons.
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the improvement is significant, the plots are similar to those at the 12-months horizon.

Figures 1 and 2 depict the variance decomposition for the two horizons and countries we

focus on. In both figures, Panel A illustrates the relative weight of each of the components

of prediction variance in the total variance. For all countries and horizons, the predominant

source of uncertainty is observational variance. Dangl and Halling (2012) point out that this

is normal for asset prices, as they frequently fluctuate randomly over their expected values.

These fluctuations are expected to be noticeable for the horizons that we are considering

and to dominate the predicted trend component. In Panel B of the same figures we exclude

the observational variance allowing us to focus upon the relative weights of the remaining

three sources of prediction uncertainty. The variance from errors in the estimation of the

coefficients is now the dominant source of prediction uncertainty at both horizons. Thus,

estimation uncertainty is the second most important source of prediction uncertainty and,

therefore, one of the main factors hindering model forecasting performance.

Between the 1-month and the 12-months horizons, however, there are differences with

respect to the extra two sources of prediction variance in Panel B. At the 1-month horizon,

the uncertainty about which predictor is more informative about changes in exchange rates

and, most notably, the uncertainty regarding the correct degree of time-variation in the

regressions coefficients are detectable throughout the forecasting sample. Taking the case

of the JPY as an example, in various periods, the uncertainty regarding the choice of the

degree of time-variation in the coefficients represents over one tenth of the total variance

excluding observational variance, peaking in certain periods, such as the 2008 financial crisis.

In contrast, at the 12-months horizon the two sources of uncertainty are clustered at the

beginning of the out-of-sample period, which corresponds to the initial data-points in the

expanding window of the forecasting procedure.17 As more evidence is accumulated, they

remain low or episodic for the most part of the forecasting window.

We note, though, that while at the 1-month horizon the uncertainty about the choice of

17Geweke and Amisano (2010) point out that it is customary for the results in a Bayesian analysis to
be sensitive at the beginning of the out-of-sample period, as this reflects sensitiveness to the prior density.
As they emphasize, nonetheless, after a number of observations have been accumulated the results become
invariant to substantial changes in the prior density distribution.
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Figure 1: Sources of Prediction Variance at 1-Month Forecasting Horizon
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Notes: Decomposition of the prediction variance into its constituent parts at the 1-month forecasting horizon.
Panel A shows all sources of prediction variance: (i) the variance caused by random fluctuations in the data
(Obs.var.); (ii) variance due to errors in the estimation of the coefficients (Unc.coef); (iii) variance due to
model uncertainty with respect to the choice of the predictor (Unc.choice of pred); and (iv) variance due
to model uncertainty with respect to the choice of the degree of time-variation in coefficients (Unc.TVar).
The Panel shows relative proportions of these variances. Panel B excludes the variance due to random
fluctuations in the data (Obs.var.) and shows the relative weights of the remaining sources of prediction
variance, and hence also sum to one.
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Figure 2: Sources of Prediction Variance at 12-Months Forecasting Horizon

90 92 95 97 00 02 05 07 10 12 15

0

0.2

0.4

0.6

0.8

1

Panel A: All Sources of Prediction Variance
CAD

 

 

90 92 95 97 00 02 05 07 10 12 15

0

0.2

0.4

0.6

0.8

1

Panel B: Prediction Variance exc. Obs.Var
CAD

 

 

90 92 95 97 00 02 05 07 10 12 15

0

0.2

0.4

0.6

0.8

1

GBP

 

 

90 92 95 97 00 02 05 07 10 12 15

0

0.2

0.4

0.6

0.8

1

GBP

 

 

90 92 95 97 00 02 05 07 10 12 15

0

0.2

0.4

0.6

0.8

1

JPY

 

 

90 92 95 97 00 02 05 07 10 12 15

0

0.2

0.4

0.6

0.8

1

JPY

 

 

90 92 95 97 00 02 05 07 10 12 15

0

0.2

0.4

0.6

0.8

1

EUR

 

 

90 92 95 97 00 02 05 07 10 12 15

0

0.2

0.4

0.6

0.8

1

EUR

 

 

Obs.var. Unc.coef Unc.choice of pred. Unc.TVar

Notes: As in Figure 1, except that here the forecasting horizon is 12-months.
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the relevant predictor is apparently non-negligible in the cases of the GBP and the JPY, this

appears to be less critical than estimation uncertainty and the uncertainty about the level

of time-variation in coefficients in terms of influencing forecasting performance. As we will

illustrate when examining the importance of individual predictors, the reason is that for the

most part of the forecasting window, effectively up to three predictors are selected and used

in the regression. And the switches between these predictors are largely infrequent.

We interpret these findings as suggesting that although estimation uncertainty is a key

obstructing factor at both horizons, at the 1-month horizon our flexible models fail to im-

prove upon the RW because of the additional uncertainty regarding the precise level of

time-variation in coefficients necessary to capture instabilities present in the data. Put dif-

ferently, there is no certainty about the exact degree of time-variation in coefficients to embed

in the model, in order to offset the loss in forecasting performance emanating from estimation

uncertainty. On the contrary, as the forecasting horizon increases our models successfully

embed the level of time-variation in coefficients present in the data. They therefore coun-

terbalance the loss in the precision in the coefficients’ estimation with increased variability

of the coefficients, leading to more accurate forecasts than RW. This means that beyond the

typical uncertainty associated with random fluctuations in the data, both, estimation un-

certainty and coefficient instability obstruct exchange rate models forecasting performance.

And our BMA and BMS including Tvar-coeffs adapt to the pattern in the data at longer

forecasting horizons.

We relate these findings to Bacchetta et al. (2010) and Giannone (2010). Bacchetta et

al. (2010) calibrate a theoretical reduced-form model of the exchange rate on actual data

to examine whether parameter instability rationalizes the Meese and Rogoff (1983) result of

exchange rate unpredictability. They find that estimation uncertainty is the main factor that

hinders exchange rate models forecasting performance and not time-variation in coefficients.

Giannone (2010) disputes these findings and shows that both, estimation uncertainty and

parameter instability, might explain the Meese-Rogoff puzzle.

Giannone (2010) also examines the trade-offs between estimation error and parameter

uncertainty. He observes three stages when forecasting in an expanding window of data.
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The first stage is characterized by a high forecast error with the first few observations of

the forecasting period. In the second stage, the forecast accuracy increases as the estima-

tion window is expanded beyond these few initial observations, signalling reduction in the

coefficients’ estimation error. In the third stage, however, further increasing the estimation

window deteriorates the forecasting performance, as gains from reduced estimation error

are compensated by losses due to the presence of structural instabilities. Accordingly, the

recursive ratio of the relative RMSFE over the forecast window loosely resembles a ∪ shape.

The figures of our recursive relative RMSFE for the BMA excluding Tvar-coeffs and

BMA including Tvar-coeffs are relegated to the supplementary appendix. The noteworthy

fact from the figures is that they elucidate Giannone’s (2010) observations for the first and

second stages, but not the third stage. In our case, further increasing the window does not

lead to a complete deterioration of the forecasting performance relative to the RW. For the

most part of the forecasting period and horizons greater than 1-month the relative RMSFE

is below one, favouring our flexible models. When read in conjunction with the main sources

of instabilities we detect, this reinforces our conclusions that BMA and BMS including TVar-

Coeffs successfully capture the degree of time-variation in parameters necessary to offset the

loss in forecast accuracy due to estimation uncertainty.

To add up to these results, in the supplementary appendix online we focus in another

measure of forecast accuracy that underlies our Bayesian approach, namely the predictive

likelihoods, see Geweke and Amisano (2010). The two main insights from the measure are

as follows. First, the measure confirms that models with time-varying coefficients are empir-

ically plausible, especially as the forecasting horizon increases. Second, observations around

the 2008 financial crisis contribute highly to the evidence in favor of the time-varying coef-

ficients models. Overall, our findings remain invariant to this measure of forecast accuracy

and they further rule out the ∪ pattern reported in Giannone (2010).

4.2.2 Fluctuation Test

In addition to the recursive relative RMSFE and the cumulative log predictive likelihoods, we

formally test for forecasting ability over time in presence of instabilities by implementing the
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Giacomini and Rossi’s (2010) one-sided Fluctuation test (Ft-test). Under the null hypothesis,

the Ft-test gauges whether the local relative forecasting performance (based on DMW test)

of the Fundamentals-based model and the RW is equal at each point in time. The alternative

is that the Fundamentals-based model forecasts better than the RW. Hence, when the Ft-test

statistic is above its critical value at the 10% level of significance, the Fundamental-based

model forecasts significantly better than the RW at that point in time; otherwise, if the Ft-

test is below its critical value, the evidence is consistent with absence of forecasting ability

of the model. To compute the test, we follow the recommendations in Giacomini and Rossi

(2010) and set the size of moving local window to a third of the in-sample observations.18

The Ft-test for the 1-month and 12-months forecasting horizons are reported in Figures

3 and 4. Clearly, at the 1-month horizon, our BMA including or excluding Tvar-coeffs never

display significant forecasting ability, as the Ft-test is always below its critical value. On

the other hand, at 12-months the Ft-test for the BMA including Tvar-coeffs is consistently

above the critical value for all currencies; while for the BMA excluding Tvar-coeffs forecasting

ability shows up in some periods, but not others. Overall, this is a further piece of evidence

regarding the importance of systematically taking into account time-variation in parameters

of the exchange rate models.

4.2.3 Analysis of the Degree of Time-Variation in Coefficients

Our analysis of the sources of prediction uncertainty indicates that the uncertainty regarding

the degree of time-variation in parameters is not trivial at 1-month horizon, while at longer

forecasting horizons it becomes low as more evidence is gathered. But the precise amount of

time-variation was not mentioned. Figure 5 provides this information focusing on the same

representative set of currencies - CAD, GBP, JPY, and EUR. It depicts the total posterior

probability of each of the support points for time-variation in coefficients, δ. At the 1-month

horizon in Panel A, at least three support points for time-variation in coefficients are fairly

18According to Giacomini and Rossi’s (2010) Monte Carlo evidence, the Fluctuation test has good prop-
erties when implemented using a local moving window size that is a small, such as a third of the in-sample
estimation window; see also Rossi (2013). For the critical values of the Fluctuation test, see Table I in
Giacomini and Rossi (2010).
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Figure 3: Fluctuation Test at 1-Month Forecasting Horizon
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Notes: The Figure shows the Giacomini and Rossi’s (2010) one-sided Fluctuation test (Ft-test) based on
DMW-test for the BMA including Tvar-coeffs and the BMA excluding Tvar-coeffs. The benchmark model
is the driftless Random Walk (RW). It also displays the one-sided Ft-test critical value at 10% level of
significance. When the Ft-test statistic is above its critical value, we reject the null of equal local relative
forecasting performance between our methods and the RW, and conclude that the method under scrutiny
forecasts significantly better than the RW at that point in time. When the Ft-test is below its critical
value, the evidence is consistent with absence of forecasting ability of the method under consideration. The
forecasting horizon is h = 1.
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Figure 4: Fluctuation Test at 12-Months Forecasting Horizon
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Notes: As in Figure 3, except that here the forecasting horizon is 12-months.
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Figure 5: Posterior Probabilities of Degrees of Time-variation in Coefficients (δ)
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likely, as reflected in the magnitude of their weights over the out-of-sample window. In the

case of the JPY and the EUR, for example, models with constant and moderate degree of

time-variation in coefficients (δ = [1.00, 0.98]) are, on average, as likely as the ones with

high degree of time-variation (δ = 0.96), both with probability varying around 20%. For the

CAD, the weights are approximately distributed evenly between models with high degree of

time-variation in coefficients (δ = [0.90, 0.92, 0.94, 0.96]). And in all cases, there are frequent

changes in the most likely support point to embed in the model over the forecasting window.

These recurrent changes are reflected in the relatively high uncertainty about the correct

degree of time-variation in coefficients at the 1-month forecasting horizon.

By contrast, at the 12-months horizon in Panel B, up to two very dynamic models - with

δ ranging from 0.90 to 0.96 - attract the largest support from the data. And the switches in

the most likely support points over the forecasting window are occasional, once the influence

of the initial data-points is discounted. As an example, for the JPY, models with δ = 0.92

were empirically plausible up to 2003, while from this period onwards, δ = 0.94 is the most

likely degree of time-variation supported by the data. The preponderance of a certain value

of δ for a prolonged period and with occasional shifts within the forecasting window, is

mirrored in the low uncertainty with respect to the degree of time-variation in coefficients

at this horizon.

Interestingly, Giannone (2010) finds that to match the pattern of exchange rate unpre-

dictability present in the data, a significant amount of time-variation in coefficients were

necessary in his simulations. Beckmann and Schuessler (2015) show in a Monte Carlo Sim-

ulation that a time-varying parameter model like ours, i.e., which allows for gradual to high

degree of time-variation in coefficients, is well suited to recover the patterns in the data. As

well, in an application to equity returns, Dangl and Halling (2012) find that models with

moderate (δ = 0.98) to high (δ = 0.96) degree of time-variation are empirically appropriate.

4.2.4 Analysis of the Importance of Individual Predictors

A final characteristic that we explore in our flexible models is the importance of individual

predictors. Figure 6 shows which predictors accumulate the highest probability at each
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Figure 6: Predictors with the Largest Posterior Probability at Each Period
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Notes: Predictors with the highest probability at each point in time for a representative selection of countries.
Panel A is for 1-month forecasting horizon and Panel B for 12-months. The forecasts from the BMS including
Tvar-coeffs are based on these predictors.
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point in time. For each horizon-currency, there are at most three predictors that are highly

informative about movements in the currency’s exchange rate. But for the same currency

rate, the relevant predictors often change with the forecasting horizon. Focusing on the EUR

as an example, while fundamentals from the asymmetric Taylor rule (TRasy) are dominant

over the entire forecasting period at 1-month horizon, the third exchange rate factor and

PPP fundamentals are more relevant in explaining variations in the USD/EUR rate at the

12-months horizon.

Furthermore, the shifts between the currency-specific fundamentals at each horizon are

largely infrequent after ignoring the effect of the initial observations. The case of the EUR

currency discussed above also exemplifies this point. After the initial swings among several

predictors at the beginning of the forecasting window, the third exchange rate factor attracts

the largest support from the data up to 2004M12. From this point, PPP fundamentals

become the most relevant determinants of variations in the USD/EUR rate at the 12-months

horizon. All in all, the tight number of predictors that are empirically plausible for each

currency-horizon, together with the few or clustered swings across these predictors, translates

into negligible uncertainty with respect to the choice of the predictor.

5 Robustness Checks and Extensions

We verify the robustness of the empirical findings in the previous section in multiple di-

mensions. These include: (1) performing our previous analyses in a setting with additional

predictors; (2) allowing for an autoregressive process in the coefficient’s law of motion; (3)

changing the priors; (4) forecasting in a rolling window approach; (5) examining the fore-

casting performance at the 6- and 24-months forecasting horizons; (6) extending the analyses

to other exchange rates; (7) verifying the sensitiveness of our results to the method used in

the seasonal adjustment; and (8) changing the base currency. In all cases, we focus in the

BMA including Tvar-coeffs and the BMA excluding Tvar-coeffs, and relying exclusively on

statistical metrics for forecast evaluation. Where applicable, statistical significance is based

on the DMW test with asymptotic critical values. Results for the four initial checks are
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reported below, and the remaining robustness are tabulated in the supplementary appendix

online. In essence, our results hold up to a large extent.

5.1 Inclusion of Additional Set of Predictors

In our baseline analysis the choice of fundamentals is motivated by their preponderance in

the exchange rate literature and data availability. Here we repeat the analysis including four

additional fundamentals, but focusing on a relatively smaller sample and fewer currencies -

CAD, GBP, JPY, and EUR- for which we are able to obtain data.

The first three extra fundamentals are constructed from the Nelson-Siegel (1987) relative

factors, as recently put forward by Chen and Tsang (2013):

ft,LR = LNSt + et, ft,SR = SNSt + et, ft,CR = CNS
t + et,

where LNSt is the relative level factor, SNSt is the relative slope factor, CNS
t is the relative

curvature factor, and et denotes the nominal exchange rate. Also in line with Chen and

Tsang (2013), we obtain the relative factors period by period from OLS estimates of the

following equation:

imt − im∗t = LNSt + SNSt

(
1− e−λm

λm

)
+ CNS

t

(
1− e−λm

λm
− e−λm

)
+ εmt (18)

with imt denoting the continuously compounded zero-coupon nominal domestic yield on an

m-month bond, im∗t is its foreign counterpart, λ is a parameter set to 0.0609 as typical in

the literature, and εmt is an estimation error.

Our use of each relative factor as a regressor, rather than all the factors jointly, is guided

by Chen and Tsang (2013) and Berge (2013), who uncover evidence of distinct predictive

ability of each factor. The relative factors are constructed from zero-coupon bonds yields

for various maturities, typically of 3, 6, 12, 24, 36, 60, 72, 84, 96, 108, and 120 months.

The data are obtained from national central banks, except for Japan where the source is the
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ministry of finance.19

The last additional fundamental is derived from the Gourinchas and Rey’s (2007) external

balance model:

ft,nxa = nxa
(n)
t + et (19)

where nxa
(n)
t is the bilateral measure of cyclical external imbalances between the home and

foreign country n. We first construct nxa
(n)
t using quarterly data from Della Corte et al.

(2012) and also employing their instrumental variable approach.20 We then derive monthly

observations via a quadratic-match-average interpolation method. Adding these regressors

to the eight previous ones, our model space now contains 12 regressors. Because data on

bond yields are available from 1990M1, and the data in Della Corte et al. (2012) extend

up to 2007Q3, our effective sample runs from 1990M1 to 2007M9. We use the first 120

observations for in-sample estimation, leaving the remaining for OOS analysis.

Forecast results for the four currencies are shown in Panel I of Table 3, and variance

decomposition results based on the representative case of the CAD are displayed in Panel I of

Figure 7. Our previous conclusions remain unaltered. Models with time-varying coefficients

deliver larger forecast gains than the RW and the constant-coefficients models at h = 3 and

h = 12. As well, the uncertainty in the coefficient’s estimation and the uncertainty about

the precise degree of coefficients variability to allow in the model at h = 1 remain the key

obstructing factors to forecast improvements.

19The level factor LNS
t has a constant loading in the yield curve and picks up aspects that shift the

relative yield curve (e.g., inflation expectations). The slope factor SNS
t captures the short end of the yield

curve and is connected with dynamics in monetary policy. The curvature factor CNS
t has its largest effect

in the middle of the yield curve, and a zero loading at maturity m = 0 as well as at the extreme maturities
(Berge, 2013)

20The approach in Della Corte et al. (2012) is as follows. First, the global (nxat), rather than the bilateral,
measure of cyclical external imbalances is regressed on a collection of instruments. These instruments include
the nxat of the foreign country and the bilateral detrended net exports between the home and foreign
countries, constructed as a linear combination of the stationary components of log bilateral exports and

imports to wealth ratios. The fitted value from this regression is then the proxy for nxa
(n)
t . See Della Corte

et al. (2012) for extra details.
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Table 3: Statistical Evaluation of Forecasting Performance - Various Robustness Checks

Panel I: Inclusion of Additional Set of Predictors

h=1 h=3 h=12 h=1 h=3 h=12

BMA incl. TVar-Coeffs BMA excl. TVar-Coeffs

CAD 1.021 0.954 0.610*** 1.013 0.974 0.772***

GBP 1.032 0.923* 0.659*** 1.033 1.004 0.841**

JPY 1.066 0.924* 0.884 1.063 0.974 1.009

EUR 1.040 0.966 0.715*** 1.044 1.000 0.789***

Panel II: Change in Coefficient’s Law of Motion to Autoregressive Coefficients

BMA incl. TVar-Coeffs BMA incl. TVar-Coeffs

G=0.95 G=0.90

AUD 1.009 0.899 1.171 1.005 0.875* 0.961

CAD 1.009 0.924*** 0.855** 1.009 0.917*** 0.830***

GBP 1.012 0.924*** 0.797** 1.012 0.916** 0.806***

JPY 1.011 0.954** 0.728*** 1.008 0.948*** 0.739***

NOK 1.007 0.943* 0.920** 1.006 0.933** 0.861***

SEK 1.011 0.986 0.840*** 1.007 0.953 0.809***

CHF 1.016 0.918*** 0.920** 1.013 0.925*** 0.879***

EUR 1.009 0.922*** 0.877*** 1.006 0.920*** 0.853***

G=0.50 G=0.20

AUD 1.001 0.920*** 0.921*** 1.001 0.971 0.976

CAD 1.004 0.944*** 0.884*** 1.002 0.980 0.963

GBP 1.002 0.938*** 0.905*** 1.000 0.984 0.979

JPY 0.999 0.958*** 0.877*** 0.999 0.989 0.961*

NOK 0.999 0.938*** 0.897*** 0.999 0.977 0.977

SEK 0.994 0.925*** 0.899*** 1.000 0.979 0.972

CHF 1.001 0.933*** 0.917*** 0.999 0.978* 0.981*

EUR 1.000 0.937*** 0.902*** 0.999 0.981* 0.982**

Panel III: Change in Priors

BMA incl. TVar-Coeffs BMA excl. TVar-Coeffs

AUD 1.007 0.968 0.819** 0.999 0.994 0.952***

CAD 1.014 0.953 0.942** 1.002 0.998 0.992

GBP 1.007 0.944* 0.837** 1.002 0.998 0.956***

JPY 1.010 0.982 0.966 1.005 1.002 0.948***

NOK 1.007 0.998 0.845*** 1.000 1.003 0.981*

SEK 1.016 0.988 0.912 1.007 0.997 0.998

CHF 1.008 0.949* 0.955 1.002 0.996 1.002

EUR 1.009 0.958* 0.825*** 1.005 0.997 0.966***

Panel IV: Forecasting in a Rolling Window Approach

BMA incl. TVar-Coeffs BMA excl. TVar-Coeffs

AUD 1.017 0.978 0.980 1.008 1.006 0.931**
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Table 3 Continued

h=1 h=3 h=12 h=1 h=3 h=12

CAD 1.024 0.943* 0.975 1.009 0.995 1.024

GBP 1.023 0.964* 0.890* 1.020 0.966* 0.873**

JPY 1.022 0.986 0.944*** 1.017 1.009 0.951

NOK 1.015 1.003 0.857*** 1.010 0.998 0.972

SEK 1.019 0.971 0.863*** 1.018 1.002 1.001

CHF 1.027 0.947* 1.066 1.020 1.008 1.053

EUR 1.019 0.945** 0.874*** 1.018 0.983 0.892***

Notes: The table presents forecasting performance results for various robustness checks. The entries consti-
tute the RMSFE of the specified fundamentals-based method relative to the RMSFE of the driftless Random
Walk (RW). Values below one indicate that the method under scrutiny generates a lower RMSFE than RW.
The Table also reports one-sided DMW test-statistic for the null of equal forecasting performance, based
on asymptotic critical values. Asterisks (*10%, **5%, ***1%) indicate the level of significance at which
the null hypothesis is rejected, favouring the alternative that the fundamental-based method yields a lower
RMSFE than the RW. Currency codes denote: AUD-Australian dollar; CAD - Canadian dollar; GBP -
Pound sterling; JPY - Japanese yen; NOK - Norwegian krone; SEK - Swedish krona; CHF - Swiss franc;
EUR - euro. The forecast evaluation period begins in 1987M12+h in all, but the OLS-DMSPE Combination
case (1992M12+h).

5.2 Autoregressive Coefficients

The coefficients’ law of motion in our state-space system follows a random-walk process.

To verify whether the results are sensitive to this law of motion we experiment with an

autoregressive process. Following Dangl and Halling (2012), we introduce autoregression in

a simple manner by re-writing our transition equation as:

θt = GIθt−1 +$t, 0 < G < 1; (20)

with G denoting a scalar, and I an identity matrix. We fix values of G to several alternatives,

including G = 0.95, 0.90, 0.50, 0.20. As shown in Panel II of Table 3 and Figure 7, our

results remain coherent with our previous findings. With the first three values of G, the

BMA including Tvar-coeffs still yield more precise forecasts than the RW. As the value of G

approximate to zero, our forecasts tend to become indistinguishable from those of the RW as

the parameters estimates are shrunk towards zero. The variance decomposition based on a

model with G = 0.90 as an example, displays the pattern documented in our main findings.
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Figure 7: Sources of Prediction Variance Excl. Observational Variance - Various Robustness Checks
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Notes: Decomposition of the prediction variance excluding observational variance for a representative selec-
tion of currency - the CAD. (ii) variance due to errors in the estimation of the coefficients (Unc.coef); (iii)
variance due to model uncertainty with respect to the choice of the predictor (Unc.choice of pred); and (iv)
variance due to model uncertainty with respect to the choice of the degree of time-variation in coefficients
(Unc.TVar). The Panel shows relative proportions of these variances. Panel B excludes the variance due
to random fluctuations in the data (Obs.var.) and shows the relative weights of the remaining sources of
prediction variance, and hence also sum to one.
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5.3 Change in Priors

Our benchmark priors are sensible and relatively diffuse, as they are set to allow the data

to dominate the prior information. Here we focus on a setting that assigns equal weights

to the prior and the data in the posterior covariance matrix by fixing g = 1 and T0 = 1 in

equation (4), see Koop (2003, Ch. 11). Panel III of Table 3 shows the point forecast results

from models estimated with this prior elicitation setting, and Panel III of Figure 7 the

corresponding prediction variance decomposition for the CAD. The baseline line conclusions

on the forecasting performance of the BMA including Tvar-coeffs and on the sources of

uncertainty hold up to a great extent.

5.4 Rolling Window Forecasting Approach

To examine whether the forecasting scheme drives the findings we obtain, we experiment

with a rolling window estimation approach. In this case, our forecasting models are now

conditioned on sets of information (Dt) constructed in a 10-year moving window, from which

we generate the same number of forecasts as in the recursive forecasting method. We see

in Panel IV of Table 3 that models with time-varying coefficients are still preferable at

h = 3 and h = 12 relative to the RW and to models with constant coefficients. As before,

estimation uncertainty and uncertainty about the degree of time-variation in coefficients,

remain the main factors hindering forecasting ability.

6 Conclusion

The exchange rate literature indicates that the out-of-sample predictive power of the em-

pirical exchange rate models is erratic. Models that forecast well for certain currencies and

periods, often fail when applied to other exchange rates and samples (Rogoff and Stavrakeva,

2008; Rossi, 2013). While this signals the presence of instabilities, attempts to account for

them, for example by considering regressions with time-varying coefficients, have not yet

produced overwhelming results (Rossi, 2013). In this paper we employ a systematic ap-

42



proach to properly account for time-variation in the coefficients of exchange rate forecasting

regressions. The approach also incorporates the idea that the relevant set of regressors may

change at each point in time; as articulated, for example, by Bacchetta and van Wincoop

(2004, 2013), Berge (2013), and Sarno and Valente (2009). Inspired by recent advances in

Bayesian methods, we further employ our framework to investigate all sources of uncertainty

in the predictive models, through a variance decomposition procedure.

What we find is that exchange rate models generate more accurate forecasts than the

driftless random walk benchmark for most currencies at all the forecasting horizons we con-

sider, except at the 1-month horizon. The key to improving upon the benchmark is forecast-

ing with predictive regressions that capture both, the possibly changing set of explanatory

variables, and the appropriate time-varying weights associated with these variables. At hori-

zons beyond 1-month, i.e., h = 3 and h = 12, our regressions successfully embed these

characteristics. Models which allow for switching sets of regressors and sudden, rather than

smooth, changes in the time-varying weights of these regressors are empirically plausible. By

contrast, at 1-month forecasting horizon our predictive regressions fail to successfully capture

the suitable time-varying weights associated with the regressors, yielding poor performance.

We then proceed and track the sources of uncertainty in the regressions, in an effort to pin

down the origins of the weak performance. Here we find that beyond the typical uncertainty

associated with unpredictable fluctuations in the data, the uncertainty in the estimation of

the models’ coefficients and the uncertainty about the level of time-variation in coefficients

to incorporate in the model, are the main factors hindering the models’ predictive ability.

When the uncertainty emanating from these two sources is low or is successfully embedded

in the model, the out-of-sample forecasting performance of the models is satisfactory. In

further characterization of our models, we find that the set of variables that are more in-

formative about exchange rate movements generally differ between forecasting horizons and

between countries. But within a specific country-horizon often few variables matter. As a

consequence, the uncertainty regarding the choice of the predictors appears negligible.

Overall, we view our results as providing direct evidence towards the prevalent conjectures

or simulation based findings that time-variation in parameters of the models might cause
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time-variation in the models’ forecasting performance (Giannone, 2010; Meese and Rogoff,

1983; Rossi, 2013; Rossi and Sekhposyan, 2011).
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other results associated with the BMA including time-varying coefficients at the 3-months

forecasting horizon. Part C contains figures on the sources of prediction uncertainty for four

currencies whose figures were omitted from the main text to conserve space (AUD, NOK,

SEK, and CHF). Part D shows the recursive relative Root Mean Squared Forecast Error

(RMSFE) for the Bayesian model averaging excluding and including time-varying coeffi-

cients. In part E we use predictive likelihoods to measure relative forecasting performance

of the Bayesian model selection (BMS) excluding time-varying coefficients relative to BMS
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A Economic Evaluation of Forecasting Performance

A.1 Criteria for Economic Evaluation

A limitation of the statistical measures of forecasting performance is their inability to convey

the economic gains associated with better forecasting performance. To address this limitation

we follow Della Corte et al. (2012) and Li et al. (2015) and use economic evaluation criteria.

Inspired by these studies, we consider a stylized dynamic asset allocation strategy in which

a US investor rebalances her portfolio by allocating her assets between a US bond and eight

foreign bonds (B8). She can rebalance her portfolio either monthly, in three-months period or

in twelve-months period, which correspond to the horizons for which she generates exchange

rates forecasts (h = 1, 3, 12). At every period, the B8 bonds carry a risk-free return in local

currency but a risky return rt+h in US dollars terms. The yields on the bonds consist of the

interest rates at the respective adjustment periods. When pursuing an investment strategy

in the B8 bonds, she expects a return of rt+h|t = i∗t+ ∆et+h|t, where rt+h|t = Et[rt+h] is the

conditional expectation of rt+h; i
∗
t denotes the nominal interest rate in the corresponding

countries; and ∆et+h|t = Et[∆et+h] is the conditional expectation of ∆et+h. Given that the

interest rate is known at time t, the return that the investor projects from time t to t+ h is

only exposed to the exchange rate risk.

In her dynamic asset allocation process the investor wishes to minimize the foreign ex-

change risk exposure by finding the optimal portfolio weights. At each time period and

rebalancing horizon, she uses our models’ forecasts to rebalance her portfolio by calculating

new optimal weights on each bond, taking into account the portfolio’s mean return and

variance. Essentially, her problem is to find the optimal portfolio weights subject to a target

volatility of the portfolio returns. Della Corte et al. (2012) show that the solution to this

problem implies the following weights to the risky bonds:

wgt =
σ∗p√
Cg
t

Σ−1t+h|t(u
g
t+h|t − ιrf ); (A.1)

where Cg
t = (ugt+h|t − ιrf )

′Σ−1t+h|t(u
g
t+h|t − ιrf ); σ

∗
p is the target volatility; Σt+h|t = [(rt+h −

ugt+h|t)(rt+h−u
g
t+h|t)

′] is the conditional covariance matrix; rt+h is the (B8×1) vector of risky

asset returns; and ugt+h|t = Et[rt+h] defines the conditional expectation of rt+h. The weight

on the risk-free asset is (1− w′tι).
The gross return on the portfolio is given by:

Rp,t+h = 1 + wg′t rt+h + (1− wg′t ι)rf = Rf + wg′t (Rg
t − ιRf ); (A.2)

where Rg
t is the (B8× 1) vector of gross returns on risky bonds and Rf are the gross returns

on the risk-free bond. In line with Della Corte et al. (2012) and Li et al. (2015), the
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investor replaces the unconditional covariance matrix with the conditional one when solving

her portfolio allocation problem: Σt+h|t = Σ. This ensures that the optimal weights will vary

only to the extent of the differences in our models’ forecasting ability.

We can employ this framework to examine our models’ ability to produce tangible eco-

nomic benefits, compared to a strategy that uses forecasts from the driftless random walk

(RW). We compute the following indicators of economic value:

• Sharpe ratio (SR): Defined as the ratio of the average realized excess portfolio returns

relative to the portfolio returns standard deviation. We compute Sharpe ratios associ-

ated with our models’ forecasts and the forecasts from the RW. Higher Sharpe ratios

are preferred to lower ones. To assess if differences in Sharpe ratios are statistically

significant, we apply the bootstrap method propounded by Ledoit and Wolf (2008).

• Maximum performance fee (pf): Proposed by Fleming et al. (2001), this is the fee that

a risk-averse investor with quadratic utility is willing to pay to use our models rather

than the RW. The measure is founded on the principle that forecasts from a specific

model are superior to those from an alternative one, if investment decisions that rely

on the specific model yield greater average realized utility than the alternative. The

starting point is the assumption that a portfolio based on the RW for example, gener-

ates the same average utility as compared to a portfolio based on an alternative model

that is subject to expenses pf , at h-month(s) horizon. Because the investor would be

neutral between the two strategies, pf is interpreted as the maximum performance fee

that she is ready to pay to swap from the RW to the alternative model. It is often

expressed as a fraction of the wealth invested and obtained by solving:

T−1∑
t=0

{
(R∗p,t+h − pf)− RRA

2(1 +RRA)
(R∗p,t+h − pf)2

}
=

T−1∑
t=0

{
Rp,t+h −

RRA

2(1 +RRA)
R2
p,t+h

}
;

(A.3)

where R∗p,t+h is the gross return from using our models, Rp,t+h is the gross return from

the benchmark RW, and RRA is the investor’s constant degree of relative risk aversion.

Larger values of pf suggest that the investor wishes to pay more to swap from the RW

to our models (we report pf in annualized basis points - bps).

• Excess premium (pr): Based on the manipulation-proof performance measure of Goetz-

mann et al. (2007), this indicator captures the portfolio’s premium return after adjust-

ing for risk. To compute the premium, first obtain the manipulation-proof performance
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measure:

M(Rp) =
1

1−RRA
ln

{
1

T

T−1∑
t=0

(
Rp,t+h

Rf

)1−RRA
}

; (A.4)

where M(Rp) is the risk adjusted portfolio’s premium return from the RW, while a

similar measure for our models is M(R∗p). The excess premium return from our models

relative to the RW is therefore:

pr = M(R∗p)−M(Rp). (A.5)

Higher values of pr are indicative of greater premium returns of our models relative to

the RW after accounting for risk. We equally present pr in annualized bps.

• Break-even transaction costs: These are the proportional transaction costs that elim-

inate any positive performance fee obtained by conditioning on our models. When

the investor reaches this point, she becomes indifferent between using the RW and our

models. To compute the cost, we follow Han (2006) and Della Corte et al. (2012),

and assume that transaction costs constitute a fixed fraction (Tr) of the value traded

in each bond. Therefore, the costs are: Tr |wt − wt−h(Rg
t /Rp)|. In cases where the

investor’s transaction costs are below the break-even transaction cost level, T be, she

will continue to prefer using our models; alternatively she would keep the RW. The

value of T be is reported in monthly bps for h = 1, quarterly bps for h = 3, and annual

bps for h = 12.

A.2 Economic Evaluation Results

As described above, the economic evaluation of our models builds upon the maximum ex-

pected return strategy, which is often used in active currency management (Della Corte et al.,

2012 and Li et al., 2015). We recall that we focus on four measures, namely, the Sharpe ratio

(SR), the performance fee (pf), the excess premium return (pr), and the break-even trans-

action cost (T be). In line with results in Li et al. (2015) our investor targets an annualized

volatility of σ∗p = 10% and her degree of relative risk aversion is RRA = 6.1

Table A.1 presents results from portfolio allocation schemes based on forecasts from each

of the methods we examine and the RW. In general, results are consistent with the findings

from the statistical evaluation. At the 3- and 12-months horizons, strategies conditioning on

forecasts from Bayesian model averaging or selection including Tvar-coeffs yield economic

gains above those accruing from the RW, regardless of the specific economic indicator. The

1We also experiment with different values of σ∗p and RRA, and find that the conclusions are insensitive
to changes in these parameters.
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Table A.1: Economic Evaluation of Bayesian and Forecast Combinations Methods

Exchange rate Rt(%) Vol (%) SR pf(bps) pr(bps) T be(bps)

forecast based on: monthly rebalancing period (i.e., h=1)

Random Walk 14.61 13.02 0.82
BMA incl. TVar-Coeffs 6.61 11.57 0.23 -686 -585 -
BMS incl. TVar-Coeffs 10.14 12.11 0.51 -374 -284 -
BMA excl. TVar-Coeffs 7.67 10.15 0.37 -481 -387 -
BMS excl. TVar-Coeffs 10.44 10.05 0.64 -198 -105 -
OLS-Mean Combination 13.93 12.09 0.83 7 54 2
OLS-Median Combination 14.10 11.79 0.86 46 94 7
OLS-Trimmed Mean 13.94 11.94 0.84 19 60 5
OLS-DMSPE Combination 11.42 13.33 0.62 -55 -105 -

3-months rebalacing period (i.e., h=3)

Random Walk 13.67 14.88 0.65
BMA incl. TVar-Coeffs 20.36 12.29 1.34 928 1411 83
BMS incl. TVar-Coeffs 22.26 12.64 1.45* 1086 1576 95
BMA excl. TVar-Coeffs 7.32 11.63 0.29 -321 108 -
BMS excl. TVar-Coeffs 9.22 11.02 0.48 -82 369 -
OLS-Mean Combination 13.35 13.91 0.68 71 309 34
OLS-Median Combination 12.08 13.50 0.60 -15 285 -
OLS-Trimmed Mean 12.64 13.82 0.63 10 243 5
OLS-DMSPE Combination 12.60 15.37 0.61 -2 105 -

12-months rebalancing period (i.e., h=12)

Random Walk 10.57 16.94 0.40
BMA incl. TVar-Coeffs 22.05 18.24 1.00** 538 1896 274
BMS incl. TVar-Coeffs 22.57 18.34 1.02** 591 577 270
BMA excl. TVar-Coeffs 12.11 21.06 0.39 -455 -2464 -
BMS excl. TVar-Coeffs 12.59 20.74 0.42 -407 -1908 -
OLS-Mean Combination 9.41 17.03 0.33 -143 -565 -
OLS-Median Combination 7.29 16.09 0.21 -131 -1051 -
OLS-Trimmed Mean 8.29 16.03 0.28 -19 -505 -
OLS-DMSPE Combination 13.73 17.67 0.60** 386 470 306

Notes: Economic gains generated by Bayesian Model Averaging (BMA) and Bayesian Model Selection
(BMS) including or excluding time-varying coefficients and simple forecast combinations methods. Using
forecasts from these methods an investor constructs a strategy of maximum expected return, conditional on
portfolio volatility target of Vol = 10%. Every h-month (s) period, she dynamically adjusts her portfolio
investing in US bonds and seven foreign bonds. The Table shows the gains obtained by the investor by
conditioning on the forecasts from each method and the driftless Randow Walk (RW) at every rebalancing
period. The gains are gauged based on: (i) the annualized mean return- Rt (ii) Vol - the annualized volatility,
(iii) SR - annualized Sharpe ratio, (iv) pf , the maximum performance fee a risk-averse investor with quadratic
utility would be willing to pay to use the corresponding method instead of the RW - in annualized bps (v) pr
- the excess premium return (in annualized bps) and (vi) T be - the break-even proportional transation costs
that offset any positive performance fee obtained by using the method under consideration - in h-month(s)
period bps. Asterisk denotes statistically significant differences in the SR in favor of the method in question
relative to the driftless RW at the *10%, **5%, or ***1% level of significance based on the bootstrap
procedure of Ledoit and Wolf (2008). The evaluation period is 1987M12+h to 2013M5.
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Sharpe ratio implied by BMS including Tvar-coeffs is 1.45 at h = 3, significantly higher

than that of the RW at 0.65. As the rebalancing horizon extends to 12-months period,

the gains remain significant, at a Sharpe ratio of 1.02 against 0.40 of the RW benchmark.

Results for BMA including Tvar-coeffs are qualitatively similar. In contrast, nearly all

the constant-coefficients forecasting models are dominated by strategies based on the RW

at these horizons. The exception is the DMSPE combination method which significantly

improves upon the RW at h = 12, but the improvement is still inferior to the gains accruing

from the Bayesian methods with Tvar-coeffs. Note too that like in the statistical evaluation

criteria, at the 1-month rebalancing period, the RW generally delivers the best outcomes.

At this horizon, although simple forecast combination methods based on the mean, median,

and trimmed mean produce a higher Sharpe ratio relative to the RW, the improvement is

statistically insignificant.

Other indicators of economic value also convey the beneficial effects of conditioning on the

more flexible models at longer rebalancing periods. At h = 12, for example, the performance

fee is pf = 591bps when using BMS including Tvar-coeffs, which implies that a risk-averse

investor is ready to pay a fee of 5.91% annually to use this forecasting approach rather than

the RW. He also obtains an excess premium return of 5.77% annually, whilst the break-even

transaction costs are T be = 270bps. If the investor’s proportional transaction costs are higher

than this magnitude of T be, he will continue using the RW. However, as Della Corte et al.

(2012) point out, this is unlikely as transaction costs in the currency markets are low.

B Variance Decomposition and Characterization of the BMA in-

cluding Tvar-Coeffs at 3-Months Horizon

This section presents figures on variance decomposition and other characteristics of our BMA

including time-varying coefficients at the 3-months horizons. These are:

• Figure B.1: Sources of Prediction Variance at 3-Months Forecasting Horizon;

• Figure B.2: Posterior Probabilities of Degrees of Time-variation in Coefficients, h = 3;

• Figure B.3: Predictors with the Largest Posterior Probability at Each Period, h = 3;

• Figure B.4: Fluctuation Test at 3-Months Forecasting Horizon.

The key aspect of these figures is that they represent an intermediate case of the patterns

shown for the figures corresponding to the 1-month and 12-months horizons. For instance,

the plots for the NOK resemble the pattern discussed in the main text for 1-month horizon,

since our flexible Bayesian method yielded poor performance for this currency. For currencies

for which the Bayesian methods including Tvar-coeffs significantly outperformed the RW,
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like the JPY and the EUR, the patterns of the figures are fairly similar to the ones at the

12-months horizon. This characterization is therefore consistent with the finding that when

estimation uncertainty and the uncertainty about the level of time-variation in coefficients

is low or is appropriately captured, the model’s out-of-sample forecasting performance is

satisfactory.

Looking at the weights associated with each degree of time-variation in coefficients in

Figure B.2, models with high degree (δ = 0.90) commonly attract the largest weight. And

for the majority of the currencies, the shifts in the most likely support points across the

forecasting sample are rare if we disregard the initial data-points. The exception is also

the NOK and to some extent the GBP, for which the shifts are noticeable over the entire

forecasting sample. As a consequence of the frequent shifts in the degree of time-variation

supported by the data for these two currencies, the uncertainty with respect to the degree

of time-variation in coefficients is relatively high, impairing the model’s forecasting ability.

From the figure on the predictors with the largest support from the data at the 3-months

horizon - Figure B.3, we can draw the same conclusion reported in the main text. That is,

within a specific country-horizon often few variables matter, and the uncertainty about the

choice of the predictors is mostly small.

In Figure B.4, the Fluctuation test (Ft-test) shows that our BMA including Tvar-coeffs

is preferable to BMA excluding Tvar-coeffs at the 3-months horizon. While models with

constant-coefficients rarely display significant forecasting ability, the ones with time-varying

coefficients exhibit forecasting power for a large proportion of the forecasting window for

several currencies. Examples of these latter cases are vivid for the AUD, SEK, EUR, and

CHF. The major exception is the Ft-test for the GBP, for which predictability is barely

found regardless of whether models with constant or time-varying coefficients are used.
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Figure B.1: Sources of Prediction Variance at 3-Month Forecasting Horizon
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Notes: Decomposition of the prediction variance into its constituent parts at 1-month forecasting horizon.
Panel A shows all sources of prediction variance: (i) the variance caused by random fluctuations in the data
(Obs.var.); (ii) variance due to errors in the estimation of the coefficients (Unc.coef); (iii) variance due to
model uncertainty with respect to the choice of the predictor (Unc.choice of pred); and (iv) variance due
to model uncertainty with respect to the choice of the degree of time-variation in coefficients (Unc.TVar).
The Panel shows relative proportions of these variances. Panel B excludes the variance due to random
fluctuations in the data (Obs.var.) and shows the relative weights of the remaining sources of prediction
variance, and hence also sum to one.
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Figure B.2: Posterior Probabilities of Degrees of Time-variation in Coefficients, h=3
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Notes: Posterior probabilities of values of δ (support points for time-variation in coefficients) at 3-months
forecasting horizon. These are the weights employed to produce the average forecasts in the BMA including
TVar-Coeffs at this horizon.
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Figure B.3: Predictors with the Largest Posterior Probability at Each Period, h=3
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Notes: Predictors with the highest probability at each point in time at 3-months forecasting horizon. The
forecasts from the BMS including TVar-Coeffs at this horizon are based on these predictors.
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Figure B.4: Fluctuation Test at 3-Months Forecasting Horizon
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Notes: The Figure shows the Giacomini and Rossi’s (2010) one-sided Fluctuation test (Ft-test) based on
DMW-test for the BMA including TVar-Coeffs and the BMA excluding TVar-Coeffs. The benchmark model
is the driftless Random Walk (RW). It also displays the one-sided Ft-test critical value at 10% level of
significance. When the Ft-test statistic is above its critical value, we reject the null of equal local relative
forecasting performance between our BMA methods and the RW, and conclude that the method under
scrutiny forecasts significantly better than the RW at that point in time. When the Ft-test is below its
critical value, the RW produces more accurate forecasts than the competing method. The forecasting horizon
is h = 3.
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C Sources of Prediction Uncertainty for Additional Currencies

In the main text, we present figures on the sources of prediction uncertainty for the CAD,

GBP, JPY, and the EUR. This section contains analogous figures for four extra currencies,

namely the AUD, NOK, SEK, and CHF. These are:

• Figure C.1: Sources of Prediction Variance at 1-Month Forecasting Horizon;

• Figure C.2: Sources of Prediction Variance at 3-Months Forecasting Horizon;

• Figure C.3: Sources of Prediction Variance at 12-Months Forecasting Horizon.

Like the results for the representative selection of currencies discussed in the main text,

at the shortest-horizon, estimation uncertainty and uncertainty with respect to the choice

of degree of time-variation in coefficients are noticeable throughout the forecasting period.

As the forecasting horizon increases, see Figure C.3, estimation uncertainty remains the

most prominent source of prediction uncertainty for most currencies, which is successfully

embedded in our flexible BMA approach. The main case apart at the 12-months horizon

is the SEK, for which the uncertainty with respect to the choice of degree of time-variation

in coefficients prevails over the forecasting period. However, note that for this currency the

forecast improvement upon the RW is statistically insignificant using either bootstrapped

or the asymptotic critical values - see the first table in the main text. Note too that the

plots at the 3-months horizon constitute intermediate cases, with currencies like the NOK

displaying patterns similar to the 1-month horizon, and the CHF showing patterns akin to

the 12-months horizon.
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Figure C.1: Sources of Prediction Variance at 1-Month Forecasting Horizon
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Notes: Decomposition of the prediction variance into its constituent parts at 1-month forecasting horizon.
Panel A shows all sources of prediction variance: (i) the variance caused by random fluctuations in the data
(Obs.var.); (ii) variance due to errors in the estimation of the coefficients (Unc.coef); (iii) variance due to
model uncertainty with respect to the choice of the predictor (Unc.choice of pred); and (iv) variance due
to model uncertainty with respect to the choice of the degree of time-variation in coefficients (Unc.TVar).
The Panel shows relative proportions of these variances. Panel B excludes the variance due to random
fluctuations in the data (Obs.var.) and shows the relative weights of the remaining sources of prediction
variance, and hence also sum to one.
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Figure C.2: Sources of Prediction Variance at 3-Months Forecasting Horizon
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Notes: As in Figure C.1, except that here the forecasting horizon is 3-months.
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Figure C.3: Sources of Prediction Variance at 12-Months Forecasting Horizon
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Notes: As in Figure C.1, except that here the forecasting horizon is 12-months.
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D Recursive Root Mean Squared Forecast Error (RMSFE)

This section contains plots of the recursive relative RMSFE for the BMA excluding Tvar-

coeffs and BMA including Tvar-coeffs - Figures D.1 and D.2, respectively. Apart from

examining forecasting performance over time, these figures also allow us to shed light on the ∪
pattern documented in Giannone (2010) - see also the main text. As the figures illustrate, the

pattern documented by Giannone (2010) is clear for the BMA excluding Tvar-coeffs. Taking

the vivid example of the AUD and CAD at the 12-months horizon, the relative forecast

accuracy improves steeply as the forecasting window is extended by few extra observations -

stage two. But just before 1990M12, the performance starts to deteriorate, and by the end of

the forecasting window the gains relative to the RW become small or disappear. In contrast,

for the BMA including Tvar-coeffs we can confirm Giannone’s (2010) observations for the

first and second stages, but not the third stage. As shown in Figure D.2, further increasing

the window does not lead to a complete deterioration of the forecasting performance relative

to the RW. For the most part of the forecasting period and horizons greater than 1-month

the relative RMSFE is below one, favouring our flexible models.
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Figure D.1: Recursive RMSFE of BMA excl. TVar-Coeffs relative to the RMSFE of the RW
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Notes: Recursive RMSFE of Bayesian Model Averaging (BMA) excluding Tvar-coeffs relative to the RMSFE
of the Random Walk (RW). A value of one corresponds to equal forecasting performance; values below one
are in support of the BMA excluding Tvar-coeffs and values above one are in favour of the RW.
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Figure D.2: Recursive RMSFE of BMA incl. TVar-Coeffs relative to the RMSFE of the RW
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Notes: Recursive RMSFE of Bayesian Model Averaging (BMA) including Tvar-coeffs relative to the RMSFE
of the Random Walk (RW). A value of one corresponds to equal forecasting performance; values below one
are in support of models with time-varying coefficients and figures above one are in favour of the RW.
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E Cumulative Predictive Likelihoods

To add up to the results on the forecasting performance over time we focus in another measure

of forecast accuracy that underlies our Bayesian approach, namely the predictive likelihoods,

see Geweke and Amisano (2010). Figure E.1 depicts the cumulative log predictive likelihoods

for models with constant-coefficients relative to the ones with time-varying coefficients. A

value of zero corresponds to equal marginal support for both models; negative values are in

support of models with time-varying coefficients; and positive values are in favour of models

with constant-coefficients.

Two main results are apparent in Figure E.1. First, it confirms that models with time-

varying coefficients are empirically plausible. The cumulative log predictive likelihoods be-

come negative after a number of out-of-sample data-points have been accumulated.2 These

cumulative predictive likelihoods show a downward trend, consistent with additive evidence

favouring models with time-varying coefficients. Second, observations around the 2008 fi-

nancial crisis, where significant shifts in economic conditions occurred, contribute highly to

the evidence in favor of the time-varying coefficients models. This is especially true at the 3-

and 12-months horizons. Overall, our findings remain invariant to this measure of forecast

accuracy and they further rule out the ∪ pattern reported in Giannone (2010).

2Geweke and Amisano (2010) point out that it is customary for the results to be sensitive at the beginning
of the out-of-sample period, as this reflects sensitiveness to the prior density. As they emphasize, nonetheless,
after a number of observations have been accumulated the results become invariant to substantial changes
in the prior density distribution.
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Figure E.1: Cumulative Log Predictive Likelihoods: BMS excl. TVar-Coeffs/BMS incl. TVar-
Coeffs
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Notes: Cumulative log predictive likelihoods of the Bayesian Model Selection (BMS) excl. Tvar-coeffs
relative to the BMS incl. Tvar-coeffs. A value of zero corresponds to equal marginal support for both
models; negative values are in support of models with time-varying coefficients; and positive values are in
favour of models with constant coefficients.
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F Additional Robustness Checks

This section presents the figures pertaining to the variance decomposition for the model with

an extended set of predictors described in the paper. It further discusses four additional

robustness checks: (i) extension to 6- and 24-months forecasting horizons; (ii) extension to

other exchange rates; (iii) robustness to the seasonal adjustment method; and (iv) change

in the base currency. Unless stated otherwise, in all cases we use the prior setting discussed

in the main text in these checks. We also apply the asymptotic one-sided DMW test for

statistical inference.

F.1 Variance Decomposition with an Extended Set of Predictors

Figures F.1.1, F.1.2, and F.1.3 present the variance decomposition results for all the four

currencies considered when examining the forecasting performance of our methods in a set-

ting with an extended set of predictors. In general, and despite the relatively shorter sample,

our findings remain qualitatively similar to the results from the main text. Excluding obser-

vational variance, the uncertainty in the estimation of the coefficients and the uncertainty

about the true degree of time-variation in coefficients are present over the entire forecasting

path at the 1-month and 3-months horizons. On the other hand, at the 12-months horizon in

Figure F.1.3, estimation uncertainty is the most dominant source of prediction uncertainty

for three of the four currencies, after isolating the influence of initial observations.3

3We caution that one should bear in mind that the data on net foreign asset, which is one of the
regressor included in our set of predictors here, are likely to be noisy. The data were transformed to monthly
observations by interpolation from quartely data, where the quarterly data themselves were also interpolated
from annual data by Della Corte et al. (2012).
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Figure F.1.1: Sources of Prediction Variance at 1-Month Forecasting Horizon
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Notes: Decomposition of the prediction variance into its constituent parts at 1-month forecasting horizon.
Panel A shows all sources of prediction variance: (i) the variance caused by random fluctuations in the data
(Obs.var.); (ii) variance due to errors in the estimation of the coefficients (Unc.coef); (iii) variance due to
model uncertainty with respect to the choice of the predictor (Unc.choice of pred); and (iv) variance due
to model uncertainty with respect to the choice of the degree of time-variation in coefficients (Unc.TVar).
The Panel shows relative proportions of these variances. Panel B excludes the variance due to random
fluctuations in the data (Obs.var.) and shows the relative weights of the remaining sources of prediction
variance, and hence also sum to one.
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Figure F.1.2: Sources of Prediction Variance at 3-Months Forecasting Horizon
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Notes: As in Figure F.1.1, except that here the forecasting horizon is 3-months.
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Figure F.1.3: Sources of Prediction Variance at 12-Months Forecasting Horizon
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Notes: As in Figure F.1.1, except that here the forecasting horizon is 12-months.
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F.2 Extension to 6- and 24-Months Forecasting Horizons

In Table F.2.1 and figures F.2.1-F.2.2 we extend our key analyses to the 6- and 12-months

forecasting horizon. Results confirm that BMA including TVar-Coeffs remains preferable to

BMA with constant coefficients at these horizons. As well, the figures on variance decompo-

sition mostly reveal the pattern we documented: the uncertainty regarding the true degree

of time-variation in the coefficients is episodic or clustered at the initial data-points of the

out-of-sample period. By embedding in the model the most likely degree of time-variation

present in the data, BMA including Tvar-coeffs offsets the loss in forecasting performance

stemming from estimation uncertainty, leading to significant improvements upon the RW.

Table F.2.1: Forecasting Performance at 6- and 24-Months Horizon

BMA incl. TVar-Coeffs BMA excl. TVar-Coeffs
h=6 h=24 h=6 h=24

AUD 0.744*** 0.842* 1.032 1.134
CAD 0.860* 0.568*** 0.967* 1.096
GBP 0.914 0.513*** 0.908* 0.832***
JPY 0.862*** 0.756*** 1.014 0.796***
NOK 0.885 0.662*** 0.977 0.929**
SEK 0.961 0.930 0.989 1.205
CHF 0.935* 0.727*** 1.005 1.113
EUR 0.840*** 0.693*** 1.003 1.020

Notes: RMSFE of the BMA including or excluding time-varying coefficients, relative to the RMSFE of the
driftless Random Walk (RW). Values below one indicate that the method under scrutiny generates a lower
RMSFE than the RW. Asterisks (*10%, **5%, ***1%) denote the level of significance of the one-sided DMW
test based on standard critical values, for the null hypothesis of equality in the RMSFE.
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Figure F.2.1: Sources of Prediction Variance at 6-Months Forecasting Horizon
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Notes: Decomposition of the prediction variance into its constituent parts at 6-months forecasting horizon.
Panel A shows all sources of prediction variance: (i) the variance caused by random fluctuations in the data
(Obs.var.); (ii) variance due to errors in the estimation of the coefficients (Unc.coef); (iii) variance due to
model uncertainty with respect to the choice of the predictor (Unc.choice of pred); and (iv) variance due
to model uncertainty with respect to the choice of the degree of time-variation in coefficients (Unc.TVar).
The Panel shows relative proportions of these variances. Panel B excludes the variance due to random
fluctuations in the data (Obs.var.) and shows the relative weights of the remaining sources of prediction
variance, and hence also sum to one.
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Figure F.2.2: Sources of Prediction Variance at 24-Months Forecasting Horizon
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Notes: As in Figure F.2.1, except that here the forecasting horizon is 24-months.
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F.3 Extension to other Exchange Rates

In Table F.3.1 and figures F.2.1-F.2.2 we examine whether our results apply more generally

to other exchange rates. Specifically we consider U.S. dollar exchange rates for the following

currencies: Danish krone (DKK), Korean won (KRW), Austrian schilling (ATS), Belgium

franc (BEF), French franc (FRF), Spanish peseta (ESP), Italian lira (ITL), and the Finnish

markka (FIM). The forecasting period is 987M12+h to 2013M5 for the DKK and KRW,

while for the countries that adhered to the Euro in 1999, the forecasting period ends in

1998M12. The results suggest that our findings also hold for these currencies.

Table F.3.1: Extension to Other Currencies

BMA incl. TVar-Coeffs BMA excl. TVar-Coeffs
h=1 h=3 h=12 h=1 h=3 h=12

DKK 1.046 0.958 0.903 1.016 0.993 0.970
KRW 1.073 0.948 0.583*** 1.001 1.005 0.991
ATS 1.032 0.989 0.765** 1.025 0.988 0.912
BEF 1.035 0.950 0.803** 1.034 0.996 0.915**
FRF 1.062 0.920 0.906 1.045 0.973 0.955
ESP 1.028 0.926 0.644*** 1.024 0.994 0.867**
ITL 1.058 0.996 0.789* 1.030 0.988 0.895
FIM 1.042 0.990 0.530*** 1.016 1.020 0.752**

Notes: RMSFE of the BMA including or excluding time-varying coefficients, relative to the RMSFE of the
driftless Random Walk (RW). Values below one indicate that the method under scrutiny generates a lower
RMSFE than the RW. Asterisks (*10%, **5%, ***1%) denote the level of significance of the one-sided DMW
test based on standard critical values, for the null hypothesis of equality in the RMSFE. Currency codes
denote: DKK-Danish krone; KRW-Korean won; ATS-Austrian schilling; BEF-Belgium franc; FRF-French
franc; ESP-Spanish peseta; ITL-Italian lira; and FIM-Finnish markka. The forecasting period is 1987M12+h
- 2013M5 for the DKK and KRW, while for the other currencies it ends in 1998M12.
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Figure F.3.1: Sources of Prediction Variance at 1-Month Forecasting Horizon
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Notes: Decomposition of the prediction variance into its constituent parts at 1-month forecasting horizon.
Panel A shows all sources of prediction variance: (i) the variance caused by random fluctuations in the data
(Obs.var.); (ii) variance due to errors in the estimation of the coefficients (Unc.coef); (iii) variance due to
model uncertainty with respect to the choice of the predictor (Unc.choice of pred); and (iv) variance due
to model uncertainty with respect to the choice of the degree of time-variation in coefficients (Unc.TVar).
The Panel shows relative proportions of these variances. Panel B excludes the variance due to random
fluctuations in the data (Obs.var.) and shows the relative weights of the remaining sources of prediction
variance, and hence also sum to one.
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Figure F.3.2: Sources of Prediction Variance at 3-Months Forecasting Horizon
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Notes: As in Figure F.3.1, except that here the forecasting horizon is 3-months.
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Figure F.3.3: Sources of Prediction Variance at 12-Months Forecasting Horizon
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Notes: As in Figure F.3.1, except that here the forecasting horizon is 12-months.
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F.4 Robustness to the Seasonal Adjustment Method

In all our exercises so far we have used data that were seasonally adjusted by taking a

moving average of twelve months. To examine the sensitiveness of our results to the method

used to remove seasonality we apply the X12 decomposition algorithm of the U.S. Census

Bureau. Forecasting results based on these data are reported in Table F.4.1, and variance

decomposition patterns for the same representative selection of currencies examined in the

main text are in Figures F.4.1-F.4.3. Overall, our results remain largely unaffected.

Table F.4.1: Robustness to Seasonal Adjustment Method (use of X12).

BMA incl. TVar-Coeffs BMA excl. TVar-Coeffs
h=1 h=3 h=12 h=1 h=3 h=12

AUD 1.017 0.932 0.624*** 1.024 1.009 1.024
CAD 1.030 0.993 0.988 1.010 1.004 1.086
GBP 1.069 0.967 0.691*** 1.049 1.009 0.891*
JPY 1.034 0.956** 0.819*** 1.027 1.018 1.043
NOK 1.020 0.992 0.912** 1.009 1.007 1.010
SEK 1.029 0.943 1.159 1.012 0.999 0.917***
CHF 1.035 0.955* 0.794*** 1.034 1.020 0.990
EUR 1.033 0.952 0.799*** 1.021 1.021 0.897**

Notes: RMSFE of the BMA including or excluding time-varying coefficients, relative to the RMSFE of the
driftless Random Walk (RW). Values below one indicate that the method under scrutiny generates a lower
RMSFE than the RW. Asterisks (*10%, **5%, ***1%) denote the level of significance of the one-sided DMW
test based on standard critical values, for the null hypothesis of equality in the RMSFE. Currency codes
denote: AUD - Australian dollar; CAD - Canadian dollar; GBP - Pound sterling; JPY - Japanese yen; NOK
- Norwegian krone; SEK - Swedish krona; CHF - Swiss franc; EUR - euro. The forecast evaluation period
begins in 1987M12+h in all, but the OLS-DMSPE Combination case (1992M12+h).
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Figure F.4.1: Sources of Prediction Variance at 1-Month Forecasting Horizon
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Notes: Decomposition of the prediction variance into its constituent parts at 1-month forecasting horizon.
Panel A shows all sources of prediction variance: (i) the variance caused by random fluctuations in the data
(Obs.var.); (ii) variance due to errors in the estimation of the coefficients (Unc.coef); (iii) variance due to
model uncertainty with respect to the choice of the predictor (Unc.choice of pred); and (iv) variance due
to model uncertainty with respect to the choice of the degree of time-variation in coefficients (Unc.TVar).
The Panel shows relative proportions of these variances. Panel B excludes the variance due to random
fluctuations in the data (Obs.var.) and shows the relative weights of the remaining sources of prediction
variance, and hence also sum to one.
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Figure F.4.2: Sources of Prediction Variance at 3-Months Forecasting Horizon
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Notes: As in Figure F.4.1, except that here the forecasting horizon is 3-months.
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Figure F.4.3: Sources of Prediction Variance at 12-Months Forecasting Horizon
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Notes: As in Figure F.4.1, except that here the forecasting horizon is 12-months.
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F.5 Robustness to Change in Base Currency

We also changed the base numeraire (home country) to the GBP (U.K.) following Chen et

al. (2010). Accordingly, we redefined our predictors taking the U.K. as the home coun-

try. Forecasting results in Table F.5.1 remain mostly congruent to our early findings. The

BMA incl. TVar-Coeffs approach is still advantageous when compared to the RW and the

BMA excl. TVar-Coeffs especially at the 12-months horizon. The corresponding analysis

of prediction variance for four representative currencies in Figures F.5.1-F.5.3, also reveals

coherent findings: estimation uncertainty and uncertainty with regards to the exact degree

of time-variation constitute the main obstacles to models forecasting performance.

Table F.5.1: Robustness to Change in Base Currency to the GBP

BMA incl. TVar-Coeffs BMA excl. TVar-Coeffs
h=1 h=3 h=12 h=1 h=3 h=12

AUD 1.038 0.953* 0.885** 1.021 0.991 0.930**
CAD 1.038 1.044 0.824** 1.039 1.055 0.979
GBP 1.039 0.973 0.781** 1.017 0.984 0.864*
JPY 1.038 1.009 0.715*** 1.015 0.984 1.001
NOK 1.044 1.017 0.960 1.014 1.001 0.994
SEK 1.012 1.020 0.913 1.001 1.006 0.969
CHF 1.053 0.919** 0.556*** 1.023 0.963* 0.840**
EUR 1.025 0.965 0.780* 1.011 1.018 0.961

Notes: RMSFE of the BMA including or excluding time-varying coefficients, relative to the RMSFE of the
driftless Random Walk (RW). Values below one indicate that the method under scrutiny generates a lower
RMSFE than the RW. Asterisks (*10%, **5%, ***1%) denote the level of significance of the one-sided DMW
test based on standard critical values, for the null hypothesis of equality in the RMSFE. Currency codes
denote: AUD - Australian dollar; CAD - Canadian dollar; GBP - Pound sterling; JPY - Japanese yen; NOK
- Norwegian krone; SEK - Swedish krona; CHF - Swiss franc; EUR - euro. The forecast evaluation period
begins in 1987M12+h in all, but the OLS-DMSPE Combination case (1992M12+h).
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Figure F.5.1: Sources of Prediction Variance at 1-Month Forecasting Horizon
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Notes: Decomposition of the prediction variance into its constituent parts at 1-month forecasting horizon.
Panel A shows all sources of prediction variance: (i) the variance caused by random fluctuations in the data
(Obs.var.); (ii) variance due to errors in the estimation of the coefficients (Unc.coef); (iii) variance due to
model uncertainty with respect to the choice of the predictor (Unc.choice of pred); and (iv) variance due
to model uncertainty with respect to the choice of the degree of time-variation in coefficients (Unc.TVar).
The Panel shows relative proportions of these variances. Panel B excludes the variance due to random
fluctuations in the data (Obs.var.) and shows the relative weights of the remaining sources of prediction
variance, and hence also sum to one.
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Figure F.5.2: Sources of Prediction Variance at 3-Months Forecasting Horizon
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Notes: As in Figure F.5.1, except that here the forecasting horizon is 3-months.
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Figure F.5.3: Sources of Prediction Variance at 12-Months Forecasting Horizon
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Notes: As in Figure F.5.1, except that here the forecasting horizon is 12-months.
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G Forecasting and Averaging in a Bayesian Framework

This Appendix provides details on the methods used to forecast with the dynamic linear

model defined in the methodological section of the main text, as well as the averaging

approach. We draw mainly from expositions in Dangl and Halling (2012) and West and

Harrison (1997, Ch. 3&4).

G.1 Bayesian Estimation of the Parameters of the Predictive Re-

gression

For convenience we begin by transcribing the predictive regression from the methodological

section in our main text:

∆et+h = Xtθt + vt+h, vt+h ∼ N(0, Vt), (observation equation); (G.1.1)

θt = θt−1 +$t, $t ∼ N(0,Wt), (transition equation); (G.1.2)

The essential components of the Bayesian approach we employ are the priors for Vt and θt,

along with a method to estimate Wt; the joint or conditional posterior distribution of Vt and

θt; and in the context of our predictive regression, the predictive density. Finally, we also

require an updating scheme for the priors after observing the data.

The approach involves a full conjugate Bayesian analysis. The starting point is the

natural conjugate g−prior specification set at t = 0:

V0|D0 ∼ IG

[
1

2
,
1

2
S0

]
, (G.1.3)

θ0|D0, V0 ∼ N [0, S0(gX
′X)−1], (G.1.4)

where

S0 =
1

N − 1
∆e′(I −X(X ′X)−1X ′)∆e, (G.1.5)

and D0 indicates the conditioning information at t = 0. In general, at any subsequent period,

Dt = [∆et,∆et−1,...,∆e1,, Xt, Xt−1..., X1,Priorst=0]. That is, Dt contains the exchange rate

variations, the predictors, and the prior parameters. At this t period, we can form a posterior

belief about the unobservable coefficient θt|Dt, and the variance of the observation equation

error term (observational variance Vt|Dt). The use of a natural conjugate prior implies that

the posterior distributions are from the same family as the priors. Specifically, the posteriors
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are also jointly normally-inverse gamma distributed:

Vt|Dt ∼ IG

[
nt
2
,
ntSt

2

]
, (G.1.6)

θt|Dt, Vt ∼ N(mt, VtC
∗
t ), (G.1.7)

where St is the estimate of the observational variance, with nt as the corresponding number

of degrees-of-freedom; mt is the estimate of coefficient vector (θt) conditional on Dt and Vt;

and C∗t corresponds to the conditional variance matrix of θt, normalized by the observational

variance. Integrating out the distribution given by (G.1.7) with respect to Vt, yields a

multivariate t−distribution for the coefficients’ posterior:

θt|Dt ∼ Tnt(mt, StC
∗
t ). (G.1.8)

When updating the coefficients vector conditional on information available up to the

previous period, the preceding point estimates do not directly become the prior because

according to the transition process, the coefficients are exposed to normally distributed

random shocks, which widens the variance but maintains the mean. Hence:

θt|Dt−h ∼ Tnt(mt, StC
∗
t +Wt). (G.1.9)

The predictive density of the h−step-ahead change in the exchange rate is obtained by

integrating the conditional density of ∆et+h over the space spanned by θt and Vt. This yields:

f(∆et+h|Dt) = tnt(∆̂et+h, Qt+h), (G.1.10)

where t(∆̂et+h, Qt+h) denotes a t−distribution density with nt degrees-of-freedom, mean

∆̂et+h, variance Qt+h, evaluated at ∆et+h. The mean of the predictive distribution is com-

puted as:

∆̂et+h = X ′tmt, (G.1.11)

and the total unconditional variance of the same distribution is given by:

Qt+h = X ′tRtXt + St, (G.1.12)

with

Rt = StC
∗
t +Wt, (G.1.13)

where Rt is the unconditional variance of the coefficient vector θt at time t. The first term
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in equation (G.1.12) captures the variance arising from uncertainty in the estimation of the

coefficient vector θt. The last term St denotes the estimate of the variance of the disturbance

term of the observation equation.

The key components to update the priors on θt and Vt are described in equations (G.1.14)-

(G.1.18) below. The first element, is the prediction error,

εt+h = ∆et+h − ∆̂et+h, (prediction error), (G.1.14)

which is useful in the estimate of the observational variance:4

St+h = κSt + (1− κ)ε2t+h, (estimator of observational variance). (G.1.15)

where κ (0 < κ < 1) is a (decay) factor that governs the responsiveness of the estimator to the

most recent data. Setting κ = 1 implies that all the observations receive the same weight

in the estimate and, in fact, the estimate of the observational variance remains constant.

Smaller values of κ induce more variability of the estimate and hence in the coefficients. We

set κ = 0.99 following the study of Koop and Korobilis (2012).

An additional element that induces changes in the coefficients is the adaptive vector:

At+h =
RtXt

Qt+h

, (adaptive vector). (G.1.16)

It characterizes the degree to which the posterior of the coefficient vector θt changes to new

observation. The numerator of equation (G.1.16) conveys the information content of the

current observation, and the denominator measures the precision of the estimated coeffi-

cients. With the above elements, we can update the coefficients’ point estimate mt and the

covariance matrix C∗t :

mt+h = mt + At+hεt+h, (expected coeff. vector estimator), (G.1.17)

C∗t+h =
1

St

(
Rt − At+hA′t+hQt+h

)
, (variance of the coeff. vector estimator). (G.1.18)

The exposition so far does not include a method to estimate Wt. As described in the main

text, to capture the relationship between the coefficients’ estimation error and the variance,

we let Wt be proportional to the estimation variance StC
∗
t of the coefficients θt|Dt. Formally,

Wt =
1− δ
δ

StC
∗
t , δ ∈ {δ1, δ2, ..., δd}, 0 < δj ≤ 1. (G.1.19)

Therefore, the variance of the predicted coefficient vector expressed in equation (G.1.13)

4This estimator is known as the Exponentially Weighted Moving Average (EWMA), frequently used to
model stochastic volatility in financial aplications.
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simplifies to:

Rt = StC
∗
t +

1− δ
δ

StC
∗
t =

1

δ
StC

∗
t . (G.1.20)

This completes the requisites for forecasting with one model. The approach we pursue,

however, allows for k candidate predictors and d possible support points for time-variation

in coefficients, and therefore, k.d models. We deal with these possibilities in a Bayesian

model selection and averaging approach that we outline next.

G.2 Bayesian Dynamic Averaging Over Models and Forgetting

Factors

Let Mi constitute a specific selection of a predictor from a set of k candidates, and δj a

specific choice of degree of time-variation in coefficients from the space {δ1, δ2, ..., δd}. The

mean of the predictive distribution computed above (see equation (G.1.11)) is influenced by

these specific choices. Hence, the point estimate of ∆et+h also becomes conditional on Mi

and δj:

∆̂e
j

t+h,i = E(∆et+h|Mi, δj, Dt) = X ′tmt|Mi, δj, Dt. (G.2.1)

The starting point in examining which model setting turns out to be important empiri-

cally, is to assign prior weights to each individual predictor Mi and each support point δj.

We begin with a prior that allows each predictor and each support point to have the same

chance of becoming probable. That is, for each Mi and δj we set uninformative priors:

P (Mi|δj, D0) = 1/k, (G.2.2)

P (δj|D0) = 1/d. (G.2.3)

At time t, the posterior probabilities are updated using Bayes’s rule. We first update the

posterior probability of a certain model, given a value of δj:

P (Mi|δj, Dt) =
f(∆et|Mi, δj, Dt−h)P (Mi|δj, Dt−h)

f(∆et|δj, Dt−h)
, (G.2.4)

where

f(∆et|δj, Dt−h) =
∑
M

f(∆et|Mi, δj, Dt−h)P (Mi|δj, Dt−h). (G.2.5)
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The key ingredient is the conditional density:

f(∆et|Mi, δj, Dt−h) ∼
1√
Qj
t,i

tnt−1

∆et −∆ejt,i√
Qj
t,i

 , (G.2.6)

where tnt−1 is the density of a Student−t−distribution and ∆ejt,i and Qj
t,i are the correspond-

ing point estimates and variance of the predictive distribution of model Mi, given δ = δj

(refer to equation (G.1.10)). The prediction of the average model for each of the specific

value of δ = δj is given by:

∆̂e
j

t+h =
k∑
i=1

P (Mi|δj, Dt)∆̂e
j

t+h,i. (G.2.7)

Essentially, for each specific δ, it is the sum of the forecasts of each of the k models weighted

by their posterior probability. If there were only one support point for time-variation in

coefficients, such that d = 1, then equation (G.2.7) would complete the averaging approach.

However, because we are considering several possibilities for δ, we also perform Bayesian

averaging over these values.

Starting with the prior probability in equation (G.2.3), the posterior probability of a

specific δ is:

P (δj|Dt) =
f(∆et|δj, Dt−h)P (δj|Dt−h)∑
δ f(∆et|δ,Dt−h)P (δ|Dt−h)

. (G.2.8)

We note that using this probability, we can infer the degree of time-variation in coefficients

supported by the data.

We can now find the total posterior probability of a model determined by a specific

selection of predictor Mi and degree of coefficient variation δj,

P (Mi, δj|Dt) = P (Mi|δj, Dt)P (δj|Dt), (G.2.9)

and the unconditional average prediction of the average model,

∆̂et+h =
d∑
j=1

P (δj|Dt)∆̂e
j

t+h. (G.2.10)

Thus, ∆̂et+h is obtained by averaging over the average models’ prediction, over degrees of

time-variation in coefficients.
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H Data Appendix

This Appendix describes the data used in our analyses. The sample period is 1979M1:2013M5,

for nine countries - Table H.0.1. For each country in the first column, the Table indicates

the source of information for each variable in the subsequent columns.

Table H.0.1: Data Sources

Country
Nominal exchange
rate (USD per
National currency)

Industrial prod.
index, NSA,
2005=100

Money supply,
NSA, National
currency (10ˆ9)

Australia IFS,193..AE-ZF IFS, 19366..CZFa M1, OECD, MEI
Canada IFS, 156..AE.ZF IFS, 15666..CZF M1, OECD, MEI
Germany/Eur IFS, 134..AE.ZF IFS, 13466..CZF M1; Bundesbank
Japan IFS, 158..AE.ZF IFS, 15866..CZF M1, OECD, MEI
Norway IFS, 142..AE.ZF IFS, 14266..CZF M2, OECD, MEI
Sweden IFS, 144..AE.ZF OECD MEI M3, OECD, MEI
Switzerland IFS, 146..AE.ZF IFS, 14666..BZF M1, OECD, MEI
UK IFS, 112..AE.ZF IFS, 11266..CZF M4, Bank of England
US IFS, 11166..CZF M1, FED

Short-term nominal
interest rate (%)

Consumer price
index NSA,
2005=100

Australia IFS, 19360B..ZF OECD, MEIa

Canada IFS, 15660B..ZF IFS, 15664...ZF
Germany/Eur IFS, 13460B..ZF Bundesbank
Japan IFS, 15860B..ZF IFS, 15864...ZF
Norway IFS, 14260...ZF IFS, 14264...ZF
Sweden IFS, 14460B..ZF IFS, 14464...ZF
Switzerland IFS, 14660...ZF IFS, 14664...ZF
UK IFS, 11260...ZF IFS, 11264B..ZF
US IFS, 11160B..ZF IFS, 11164...ZF

Notes: The exchange rate is defined as the end-of-month value of the U.S. dollar (USD) price of a unit
of national currency. IFS denotes International Financial Statistics as published by the IMF. OECD, MEI
denotes the OECD’s Main Economic Indicators database. NSA stands for non-seasonally adjusted and and
the superscript (a) denotes monthly data obtained via quadratic-match-average interpolation method from
quartely data.
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I The Bootstrap

The bootstrap is primarily based on Kilian (1999) and Rogoff and Stavrakeva (2008); but

tailored to account for possible data-mining as proposed by Inoue and Kilian (2005). We use

a semi-parametric bootstrap with the data generating process (DGP) for the fundamentals

specified in an error correction form. Following Rogoff and Stavrakeva (2008) and Byrne et

al. (2016), we also assume cointegration between the exchange rate and fundamentals. For

each country we postulate the following DGP under the null of no predictability:

∆eit = veit, (I.0.1)

∆zit = ci0 + t+ Υizit−1 +
`e∑
`=1

Be
i`∆eit−` +

`z∑
`=1

Bz
i`∆zit−` + vzit, (I.0.2)

where ∆eit = eit−eit−1; ∆zit = zit−zit−1; ci0 is a constant, t is a trend, i = 1, 2, ..., N , denotes

the country subscript, and veit and vzit are i.i.d error terms. We first estimate equations (I.0.1)

and (I.0.2) via OLS, with lag orders `e and `z selected using Akaike’s Information Criterion

(AIC). The AIC also allows us to determine the inclusion or exclusion of the constant,

the trend or both.5 Subsequently, to preserve the contemporaneous correlation and cross-

sectional dependence from the original data, we re-sample with replacement the residuals

matrix ([ve1t, v
e
2t, ..., v

e
Nt], [v

z
1t, v

z
2t, ..., v

z
Nt]), in tandem, and in non-overlapping blocks consisting

of 12 consecutive observations each. The choice of the block size is guided by Rogoff and

Stavrakeva (2008), who also find that results are invariant to a row by row sampling. We

have experimented with a block of size one and a block size equal to the length of forecasting

horizon h, and results remain qualitatively similar.

In the next step, we use the re-sampled residuals to recursively generate pseudo-samples

of eit and zit. The first 100 observations are discarded to avoid potential bias due to using the

sample averages as initial values for the recursions. We then employ each of the predictive

model (Single Predictor including or excluding TVar-Coeffs, Mean Combination, Median

Combination, Trimmed Mean Combination, and DMSPE Combination) to forecast using the

pseudo-samples, and calculate the DMW test statistic. We repeat this process 1000 times,

providing us with an empirical distribution of the statistic. The p-value is the proportion of

the bootstrap statistics that are above the test-statistic calculated using observed data.

The bootstrap procedure just described assumes that each predictor is analyzed in isola-

tion, but our flexible Bayesian approach allows for a search over several potential predictors.

To take into account concerns about data-mining we suitably adjust the procedure above

following Inoue and Kilian (2005).6 The adjustment involves assuming that under the null

5In equation (I.0.2) the sum of the coefficients of the lags of ∆zt is restricted to one to avoid exploding
simulated pseudo data (Rogoff and Stavrakeva, 2008).

6See also Rapach and Wohar (2006) for an application to stock returns.
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of no predictability the DGP comprises:

∆eit = veit, (I.0.3)

∆z1,it = c1,i0 + t+ Υ1iz1,it−1 +
`e∑
`=1

Be
1,i`∆eit−` +

`z∑
`=1

Bz
1,`∆z1,it−` + vz1,it (I.0.4)

...

∆zk,it = ck,i0 + t+ Υkizk,it−1 +
`e∑
`=1

Be
k,i`∆eit−` +

`z∑
`=1

Bz
k,i`∆zk,it−` + vzk,it

where veit, v
z
1,it,..., v

z
k,it, are fitting errors. As the system of equations suggests, we are now

considering 1, 2, ..., k candidate predictors for every i country. Each of the equation is also

estimated via OLS. We again collect all the residuals in the same matrix in tandem, and

follow the same steps as in the bootstrap procedure above, except that for each bootstrap we

store the maximal DMW statistic over the k predictors. This provide us with an empirical

distribution of the maximal statistic for each country and from which, after ordering, the

900th, 950th, and 990th values constitute the 10%, 5% and 1% critical values, respectively.

The forecasting performance of the BMA (BMS) including or excluding TVar-Coeffs are

evaluated using critical values constructed in this manner.7

7Note that a similar procedure can also be applied to construct bootstrapped critical values and p-values
for the Clark and West (2006, 2007) test statistic, and the Theil’s U-statistic.
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