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One of the major goals of sensory neuroscience is to
understand how an organism’s perceptual abilities relate
to the underlying physiology. To this end, we derived
equations to estimate the best possible psychophysical
discrimination performance, given the properties of the
neurons carrying the sensory code. We set up a generic
sensory coding model with neurons characterized by
their tuning function to the stimulus and the random
process that generates spikes. The tuning function was a
Gaussian function or a sigmoid (Naka-Rushton) function.
Spikes were generated using Poisson spiking processes
whose rates were modulated by a multiplicative,
gamma-distributed gain signal that was shared between
neurons. This doubly stochastic process generates
realistic levels of neuronal variability and a realistic
correlation structure within the population. Using Fisher
information as a close approximation of the model’s
decoding precision, we derived equations to predict the
model’s discrimination performance from the neuronal
parameters. We then verified the accuracy of our
equations using Monte Carlo simulations. Our work has
two major benefits. Firstly, we can quickly calculate the
performance of physiologically plausible population-
coding models by evaluating simple equations, which
makes it easy to fit the model to psychophysical data.
Secondly, the equations revealed some remarkably
straightforward relationships between psychophysical
discrimination performance and the parameters of the
neuronal population, giving deep insights into the
relationships between an organism’s perceptual abilities
and the properties of the neurons on which those
abilities depend.

Introduction

The key motivation behind this work is to facilitate
the construction of physiologically plausible models of

psychophysical performance that are mathematically
tractable. Pioneering work in the 1960s and 1970s led to
a standard type of model of early vision consisting of a
bank of independent channels selective for different
stimulus feature values (Graham, 1989). Within each
channel, the signal strength increased (often non-
linearly) with stimulus contrast. Performance was
limited by the addition of (usually Gaussian) noise
somewhere in the model. This kind of model has the
advantage of mathematical simplicity: The relation-
ships between the model’s parameters and its psycho-
physical performance can be described by simple
mathematical expressions, allowing us to (a) easily fit
the model to data and (b) understand why the model
behaves as it does. Unfortunately, it has become
increasingly clear that the connection between real
neurons and the psychophysical channels in this kind of
model is tenuous at best (Goris, Putzeys, Wagemans, &
Wichmann, 2013). Recent modeling work has shown
that more physiologically plausible population-coding
models of early vision can provide a unified account of
many diverse psychophysical phenomena while at the
same time providing a stronger connection to physiol-
ogy than has traditionally been the case (Goris et al.,
2013). However, the complexity of this kind of model
can sometimes obscure the relationships between
properties of the model and characteristics of perfor-
mance, making it difficult to understand the model’s
behavior. In this article, we describe sensory coding
models that have a close connection to physiology but
are nevertheless simple enough to be described by
equations that reveal straightforward relationships
between the neuronal parameters and psychophysical
performance.

We assume a generic sensory coding model in which
the observer monitors a set of spiking neurons and
makes a maximum-likelihood estimate of the stimulus
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from the set of spike counts generated by those
neurons. Thus, we find the best possible decoding
performance that the encoding scheme allows. The
reciprocal of the variance of the estimated stimulus
values is called the precision. The precision determines
the expected performance on perceptual tasks, and so,
if we can estimate the precision from the neuronal
parameters, we can estimate task performance.

For an unbiased maximum-likelihood decoder, the
precision cannot exceed a quantity called the Fisher
information. This limit is known as the Cramér-Rao
bound (Rao, 1945; Cramér, 1946; see Dayan & Abbott,
2001, pp. 120–121). For a reasonable spike rate or
number of neurons, the precision of the generic sensory
coding model that we describe in this article is actually
very close to the Cramér-Rao bound, so we can use the
Fisher information as an approximation of the
decoding precision. The Fisher information is calcu-
lated from the properties of the neurons, and therefore
forms a bridge between the neuronal properties and
perceptual performance.

For each model parameterization that we studied, we
set up a Monte Carlo simulation which showed that the
model’s performance is very close to that predicted
from the Fisher information. We used two measures of
model performance: One was the precision, defined
already, and the other was the discrimination threshold
in a simulated two-alternative forced-choice (2AFC)
discrimination experiment. Both were very well pre-
dicted from the Fisher information.

Our work has two main benefits. One is a practical
one: We can quickly calculate the performance of
realistic population-coding models by evaluating simple
equations rather than using slow and laborious Monte
Carlo simulations, which can be difficult to program.
This allows us to quickly fit the model to data. The
second benefit is that the equations give a deep insight
into the relationships between psychophysical perfor-
mance and the properties of the neurons that carry the
sensory code, showing us why these relationships occur
and how generally they apply.

Our equations give the upper limit on the possible
psychophysical performance level, given the neuronal
parameters. There is plenty of evidence that human
perceptual performance falls far short of the maximum
level that is theoretically possible (Banks, Geisler, &
Bennett, 1987; Geisler, 1989; Pelli, 1990; Pelli & Farell,
1999; Dakin, 2001; Pelli, Burns, Farell, & Moore-Page,
2006; Morgan, Chubb, & Solomon, 2008; Solomon,
2010). Nevertheless, there are several reasons why it is
useful to know this theoretical limit, and we outline
these reasons in remainder of this Introduction.

Firstly, knowing the theoretical maximum perfor-
mance allows us to compare different encoding
schemes. By ‘‘encoding scheme,’’ we mean the popula-
tion of neurons that are used to encode the stimulus. It

is of great interest to know why neurons have the
properties that they do, and a lot of progress has been
made by showing that observed physiological proper-
ties reflect encoding strategies that are optimal in some
way (Laughlin, 1981; Srinivasan, Laughlin, & Dubs,
1982; Atick & Redlich, 1990, 1992; Atick, 1992; Atick,
Li, & Redlich, 1992, 1993; Tadmor & Tolhurst, 2000;
Zhaoping, 2014, chapter 3). Given a particular
encoding scheme, the psychophysical performance will
depend on how appropriate the decoding algorithm is
for that particular encoding scheme (Beck, Ma, Pitkow,
Latham, & Pouget, 2012). A fair way to compare two
encoding schemes is to compare the maximum perfor-
mance that each allows.

A second reason for wanting to know the maximum
performance level that a set of neurons can support is
that this knowledge allows us to perform sequential
ideal-observer analysis. This approach, developed by
Geisler (1989), calculates the efficiency with which the
information at each stage is processed. Roughly
speaking, efficiency is the proportion of the available
information that the observer appears to use. If we
have a sufficiently good model of processing up to a
particular point in the processing stream, we can
construct an ideal observer for processing the infor-
mation known to exist at that point and then compare
the ideal observer’s performance against that of a real
observer. An efficiency of 1 would mean that the real
observer’s performance matched that of the ideal
observer, so no further information was lost beyond
that point in the processing stream. We can proceed
like this from very early stages, e.g., the optics of the
eye, through to later stages, seeing at each stage what
proportion of the available information is lost by later
stages of processing. To perform this kind of analysis,
we need to be able to calculate the best possible
performance allowed by the information at each stage.

Sometimes, it is not necessary to calculate the
absolute efficiency. A third reason why it is useful to
know the maximum performance theoretically possible
is that it can explain patterns of performance. If we
assume that, after a certain point in the processing
stream, efficiency is constant across different stimulus
values, then we can predict the detection or discrimi-
nation threshold up to a multiplicative factor. This
kind of approach has been used to explain observed
patterns of psychophysical performance, such as the
shapes of the contrast sensitivity function and wave-
length discrimination function (Banks et al., 1987;
Geisler, 1989; Zhaoping, Geisler, & May, 2011). If we
know the proportions of neurons of different types at a
particular point in the processing stream, we can
calculate the decoding precision up to a multiplicative
factor; assuming constant efficiency of processing
beyond that point, this gives us the expected variance of
the decoded stimulus values (and hence discrimination
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thresholds) up to a multiplicative factor. As we will
show, the neuronal parameters (or functions of the
neuronal parameters) have multiplicative effects on the
decoding precision and thus will have the same effect
on the ideal decoder’s performance as they will on the
performance of the decoder with constant inefficiency.

Many of the derivations and technical details are
included in appendices in the supplementary material.
Each supplementary appendix is labeled with a letter.
Equations and figures in an appendix are labeled with
the appendix’s letter, followed by a dot, followed by the
equation or figure number within that appendix.
Supplementary Appendix A provides a list of the main
symbols used in the text, and their meanings.

The sensory coding model

Throughout this article, we represent random
variables using uppercase letters and their values on
particular trials1 using corresponding lowercase letters.
Thus X is a random variable representing the stimulus
level, and its value is x. R is a random variable
representing a neuron’s mean number of spikes, and its
value is r(x), the output of the neuron’s tuning
function, which gives the neuron’s mean spike count for
a given stimulus x (note that the tuning function’s
output is often measured in spikes per second, but we
find it more convenient to use units of spikes, without
making assumptions about the time period over which
the neuron’s output is integrated; this is equivalent to
measuring the output in spikes per unit of time using
units of time scaled so that the spike integration period
is one unit). N is a random variable representing the
spike count of a neuron, i.e., the number of spikes
produced by the neuron, and n is its value on a
particular trial. Because we will often be dealing with
populations of neurons, we use bold letters N and n to
represent vectors holding the spike counts of all the
neurons in the population. N is a random variable
representing the population response, and n is its value
on a particular trial.

We assume a generic sensory coding model that has
three elements: (a) a tuning function r(x) for each neuron,
which specifies the neuron’s mean spike count for a given
stimulus x; (b) a random process that generates spikes at
the given rate; and (c) a method of decoding the spike
counts of the neurons to give an estimate of the stimulus.
We now describe each of these processes in turn.

The tuning function

In this article, we consider two different tuning
functions: the Naka-Rushton function and the Gauss-

ian function. Both have parameters r0, rmax, z, q, and b,
which serve the same or analogous purposes in the two
functions.

The Naka-Rushton tuning function

For visual stimulus contrast, the tuning function is
called the contrast-response function. It usually has a
sigmoidal shape that is well described by the Naka-
Rushton function, also known as the hyperbolic ratio
function (Naka & Rushton, 1966; Albrecht & Hamil-
ton, 1982):

N-RrðcÞ ¼
rmaxc

q

c
q
1=2 þ cq

þ r0: ð1Þ

The variable c is the contrast in linear (e.g., Michelson)
units, r0 is the spontaneous firing rate in response to
zero contrast, and rmax is the asymptotic increment
from r0 as contrast increases. The term c1=2, called the
semisaturation contrast, is the contrast for which the
mean response exceeds r0 by rmax/2. We use a left
subscript on r(�) to indicate the form of the tuning
function, in this case ‘‘N-R’’ for Naka-Rushton.

Examples of the Naka-Rushton function are plotted
in Figure 1A. Some readers may not think of the Naka-
Rushton function as a tuning function, but we use the
latter term in its most general sense, to mean the
function that gives the mean response for a particular
stimulus value.

For our purposes, it is convenient to represent the
contrast in units of log Michelson contrast, so the
stimulus value x is given by

x ¼ logbc; ð2Þ
which gives

c ¼ bx: ð3Þ
Using Equation 3 to substitute for c in Equation 1, we
can re-express the Naka-Rushton function as a
function of log contrast x:

N-RrðxÞ ¼
rmaxb

qx

bqz þ bqx
þ r0; ð4Þ

where

z ¼ logbc1=2: ð5Þ

Figure 1B plots the Naka-Rushton function as a
function of log contrast. On the log contrast scale, the
gradient of the Naka-Rushton function peaks at a log
contrast of x¼ z. In what follows, whenever we use the
term ‘‘contrast’’ without specifying the units, we mean
log Michelson contrast. In all our simulations, we used
log to base 10 (i.e., b ¼ 10), but our equations are
derived for any b.
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The Gaussian tuning function

We will use z to represent the stimulus value
corresponding to the center (peak) of the Gaussian
tuning function. This is analogous to the semisatura-
tion contrast z, which is at the center (peak of gradient)
of the Naka-Rushton contrast-response function when
expressed in terms of log contrast. The Gaussian tuning
function is given by

GaussrðxÞ ¼ rmaxexp � qðx� zÞ½ �2
n o

þ r0; ð6Þ

where x is a value along the (unspecified) stimulus
dimension, rmax is the maximum increment from the
spontaneous firing rate r0, and q is a tuning sharpness
parameter, analogous to the exponent q of the Naka-
Rushton function. As before, the left subscript on
r(x)—in this case ‘‘Gauss’’ for Gaussian—indicates the
form of the tuning function. Examples of the Gaussian
tuning function are plotted in Figure 1C.

If rtuning is the standard deviation of the Gaussian
tuning function, then its bandwidth (full width at half
height) w is given by w2¼ (8ln2)r2

tuning. Thus we have

q ¼ 1

rtuning

ffiffiffi
2
p ¼ 2

ffiffiffiffiffiffiffi
ln2
p

w
: ð7Þ

If x is measured in units that are the log to base b of the
physical stimulus units, then w will also be in logb units.
We can convert w to octaves (i.e., log2 units) by
multiplying by log2b (this is because logby · log2b ¼
log2y). If x is the bandwidth in octaves, then

x ¼ wlog2b ¼
wlnb

ln2
: ð8Þ

Using Equation 8 to substitute for w in Equation 7
gives

q ¼ 2lnb

x
ffiffiffiffiffiffiffi
ln2
p : ð9Þ

The random process for spike generation

In our model, the spikes are generated by a model of
neuronal spiking recently proposed by Goris, Mov-
shon, and Simoncelli (2014). Each model neuron has a
Poisson spiking process whose mean spike rate is
modulated by a multiplicative gain mechanism that is
also a random process, so the overall spiking process is
a doubly stochastic Poisson process. Specifically, for
each model neuron, the rate of its Poisson spiking
process is determined by the output of its tuning curve
r(x) multiplied by a gain value that changes randomly
from trial to trial. We let G represent the gain random
variable, and g its value on a particular trial. The
spiking distribution conditioned on the gain is an
ordinary Poisson distribution:

PðN ¼ njR ¼ rðxÞ;G ¼ gÞ ¼ ðgrðxÞÞ
n

n!
expð�grðxÞÞ:

ð10Þ
In the spiking model of Goris et al. (2014), the gain

values are sampled from a gamma distribution with a
mean of 1 and a standard deviation rG that is a free
parameter. The gamma gain distribution and Poisson
spiking distribution combine to produce a gamma-
Poisson mixture distribution that has the form of a

Figure 1. Tuning functions. (A) Three Naka-Rushton functions, with q equal to 1, 2, and 4. Each function has c1/2¼ 0.1. The value of

r(c1/2) falls halfway between r0 and r0 þ rmax. (B) The same three Naka-Rushton functions as in (A), plotted as functions of log10
contrast. The log semisaturation contrast is given by z¼�1. (C) Three Gaussian tuning functions, with z¼�1 and q equal to 1, 2,

and 4.
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negative binomial distribution of spike counts, given by

PðN ¼ njR ¼ rðxÞÞ

¼ Cðnþ 1=r2
GÞ

n!Cð1=r2
GÞ

·
ðr2

GrðxÞÞ
n

ðr2
GrðxÞ þ 1Þðnþ1=r2

G
Þ ;

ð11Þ
where C(�) is the gamma function. The distribution in
Equation 11 fits well to the spike distributions obtained
in physiological recordings (see figure 1c and 1d of
Goris et al., 2014). Because the mean gain is 1, the
mean of the spike distribution in Equation 11 is r(x).

Goris et al. (2014) allowed both the spiking process
and the gain process to be correlated between neurons.
The covariance between the spike counts of neurons i
and j is then given by

cov Ni;Nj

� �
¼ qPij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
riðxÞrjðxÞ

q
þ qGij

rGi
rGj

riðxÞrjðxÞ; ð12Þ

where ri(x) and rj(x) are the outputs of the tuning
functions of neurons i and j given a stimulus x; rGi

and
rGj

are the standard deviations of the two neurons’ gain
processes; qPij

is the Pearson correlation between the
two neurons’ Poisson spiking processes; and qGij

is the
Pearson correlation between the two neurons’ gain
processes. If we let i¼ j in Equation 12, then we obtain
the variance of neuron j:

var Nj

� �
¼ cov Nj;Nj

� �
¼ rjðxÞ þ ðrGj

rjðxÞÞ2: ð13Þ
This can be converted to the neuron’s Fano factor (i.e.,
the ratio of variance to mean) by dividing by the mean
response rj(x):

Fano factor Nj

� �
¼ 1þ r2

Gj
rjðxÞ: ð14Þ

Equation 14 shows that the model neuron’s Fano
factor is an affine (i.e., straight line) function of the
spike rate, with gradient equal to the variance of the
gain process: The Fano factor is around 1 for very low
spike rates and increases linearly with the spike rate.

In order to meet our stated goal of mathematical
simplicity, we imposed three restrictions on the
aforementioned parameters:

1. Each neuron has the same gain standard deviation,
which is set as a model parameter rG.

2. For all i and j, qGij
¼ 1.

3. For all i 6¼ j, qPij
¼ 0.

The second and third restrictions state, respectively,
that each neuron shares the same fluctuating gain signal
and that each neuron’s Poisson spiking process is
independent. This is an extreme version of the model of
Goris et al. (2014), but it seems not too far from the
truth for many pairs of neurons: Very high-quality
electrophysiological recordings indicate that, in awake

monkeys whose only task is to fixate the stimulus, V1
neurons ‘‘show virtually no correlated variability’’
(Ecker et al., 2010, p. 584), suggesting that qPij

is
usually close to zero. Ecker et al. (2014) argue that the
very much higher correlations shown in other circum-
stances, especially under anesthesia, can be accounted
for by a single gain variable that varies from trial to
trial. They showed that a simple model with indepen-
dent Poisson spiking processes and a single random
gain signal shared between all the neurons was able to
capture the dependence of spike-count correlations on
firing rate and tuning similarity shown by real neurons.
Thus, a model very similar to ours, in which qPij

¼0 and
qGij
¼ 1, has been shown to account for real neuronal

data.
These restrictions help us to simplify the analysis of

the model considerably. Firstly, instead of specifying
the entire covariance matrix of the population, we can
just specify the gain standard deviation rG. The
covariance matrix itself still has a complicated structure
because each term in the covariance matrix depends on
rG and the sensitivities of the two neurons to the
stimulus, but all of this complexity can be reduced to a
single scalar random variable G with a single parameter
rG. Secondly, as explained earlier, we aim to calculate
the performance of the decoder that makes best use of
the encoded signals; and the best possible decoder will
have access to the shared gain signal. If qPij

¼ 0, then
although the neurons’ spike counts are correlated due
to the shared gain signal, the conditional spiking
probabilities (conditioned upon the gain signal) are
independent. Thus, a decoder that knows the gain
signal can express the spike distributions as indepen-
dent Poisson distributions, which considerably simpli-
fies both the maximum-likelihood decoding algorithm
and our mathematical analysis of its performance. We
also investigated the performance of two suboptimal
decoders that did not know the gain signal. Loss of
knowledge of the gain signal greatly impaired perfor-
mance with the Naka-Rushton tuning function, but
with the Gaussian tuning function, decoding perfor-
mance was only slightly affected.

With the three restrictions listed, we can rewrite
Equation 12 as

cov Ni;Nj

� �
¼ r2

GriðxÞrjðxÞ: ð15Þ
The Pearson correlation between the two neurons’
spike counts is then given by

qij ¼
cov Ni;Nj

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Ni½ �var Nj

� �q ; ð16Þ

¼ r2
G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
riðxÞrjðxÞ

ð1þ r2
GriðxÞÞð1þ r2

GrjðxÞÞ

s
: ð17Þ
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As noted by Goris et al. (2014), their model elegantly
captures two key physiological findings, which both
follow from their equations: Pair-wise correlations
generally increase with both firing rate (de la Rocha,
Doiron, Shea-Brown, Josic, & Reyes, 2007; Ecker et al.,
2010, 2014; Cohen & Kohn, 2011) and tuning similarity
(van Kan, Scobey, & Gabor, 1985; Zohary, Shadlen, &
Newsome, 1994; Smith & Kohn, 2008; Ecker et al.,
2010, 2014). Supplementary Appendix B confirms that,
for nonzero rG, both of these characteristics emerge
naturally from Equation 17. The dependence of qij on
tuning similarity is particularly noteworthy, since in
our parameterizations of the model we have forced the
Poisson and gain correlations qPij

and qGij
to be

constant across all pairs of neurons, regardless of
tuning similarity.

The decoding method

In our sensory coding model, a stimulus triggers a set
of spike counts n in the neurons being monitored by the
observer: The vector n holds the spike counts of all the
different neurons. We investigated three methods for
decoding these spike counts.

The first is a maximum-likelihood method that uses
knowledge of the gain signal to express the spike
distributions as independent Poisson distributions; in
this case, maximum-likelihood decoding is straightfor-
ward because the likelihood function for the population
response is simply the product of the likelihood
functions for the individual responses. We call this the
Known Gain method.

We were also interested in finding out how well the
spike counts could be decoded without knowledge of the
gain signal, to see how critically the accuracy of our
equations depended on the assumption that the gain
signal is known. If the decoder does not know the gain
signal, then it can only express the spike distributions as
correlated gamma-Poisson mixture distributions. Max-
imum-likelihood decoding in this case would require an
expression for the multivariate gamma-Poisson mixture
distribution, so that we could calculate the likelihood
function for the population response. Unfortunately, a
closed-form expression for this distribution beyond the
bivariate case is not known, so we used two suboptimal
methods, which we refer to collectively as the Unknown
Gain methods. The first of these methods simply ignores
the correlations and decodes the neurons as if they were
independent (an approach also taken by Goris et al.,
2013). This approach is not always suboptimal: Aver-
beck, Latham, and Pouget (2006) showed that even in
cases where correlations cause a large performance
deficit, it can still be optimal to decode the neuronal
responses as if they were independent (see figure 3a of
Averbeck et al., 2006). More generally, however, it is

more informative to take account of the correlations
when decoding a set of correlated neurons. The second
of our Unknown Gain methods uses an analytical form
for the bivariate gamma-Poisson mixture distribution to
decode the population in a way that takes into account
all pair-wise statistical dependencies but not higher order
dependencies. We refer to these two Unknown Gain
methods as the Univariate and Bivariate methods,
respectively. We find that the Bivariate method performs
better than the Univariate method. Surprisingly, when
the tuning function is a Gaussian, both methods are
almost as good as the Known Gain method.

The Known Gain decoder

Here, the spike counts of the neurons are decoded
using a maximum-likelihood method in which the gain
signal is known. In maximum-likelihood decoding, we
find the stimulus value x that had the highest
probability of giving rise to the obtained set of spike
counts, i.e., the value of x that maximizes the
probability P(N ¼ njX ¼ x, G ¼ g). Because of the
statistical independence of the spiking distributions
conditioned on the gain signal, we can write

PðN ¼ njX ¼ x;G ¼ gÞ

¼P
K

j¼1
PðNj ¼ njjX ¼ x;G ¼ gÞ; ð18Þ

¼P
K

j¼1
PðNj ¼ njjRj ¼ rjðxÞ;G ¼ gÞ;

ð19Þ
where K is the number of neurons and the neurons are
indexed by j. The second equality (Equation 19) arises
because each rj (x) is a deterministic function of the
stimulus value x. For large populations, the product in
Equation 19 can be too small to represent using
floating-point values on a standard computer, so
instead we calculated the logarithm of this value, which
peaks at the same value of x and is given by

lnPðN ¼ njX ¼ x;G ¼ gÞ ¼
XK
j¼1

lnPðNj ¼ njjRj ¼ rjðxÞ;G ¼ gÞ:

ð20Þ

The probability in each term in Equation 20 is
evaluated using Equation 10, and the decoder uses the
simplex search method (Nelder & Mead, 1965) to find
the stimulus value x that maximizes this sum.

The Univariate (Unknown Gain) decoder

Without knowledge of the gain signal, the spiking
distributions are negative binomial distributions with the
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form given in Equation 11. The Univariate decoder
decodes the spike counts as if theywere independent.Thus
we found the stimulus value x that maximized the sum of

log probabilities
XK
j¼1

lnPðNj ¼ njjRj ¼ rjðxÞÞ, where the

probability in each term is evaluated using Equation 11.
The Univariate decoder is not as good as the

Bivariate decoder (described next), and our principal
motivation for including it was to confirm that the
Bivariate decoder did indeed perform better.

The Bivariate (Unknown Gain) decoder

Arbous and Kerrich (1951) derived an expression for
the bivariate gamma-Poisson mixture distribution,
which gives the joint probability of the spike counts of
any pair of neurons in our restricted parameterizations
of the spiking model of Goris et al. (2014). Substituting
our variables for the corresponding variables or
expressions in Arbous and Kerrich’s equation 5.11, we
obtain

PðNi ¼ ni;Nj ¼ njjX ¼ xÞ ¼
PðNi ¼ ni;Nj ¼ njjRi ¼ riðxÞ;Rj ¼ rjðxÞÞ; ð21Þ

¼ Cðni þ nj þ 1=r2
GÞ

ni!nj!Cð1=r2
GÞ

·
ðr2

GÞ
niþnj riðxÞni rjðxÞnj

ðr2
GðriðxÞ þ rjðxÞÞ þ 1Þniþnjþ1=r2

G

:

ð22Þ
Here we have deliberately expressed Arbous and Kerrich’s
equation in a form that makes explicit the many parallels
between the expressions for the bivariate and univariate
distributions (Equations 22 and 11, respectively).

To decode the neuronal population, we took each
pair-wise combination of neurons and calculated the
likelihood for that pair, using Equation 22. The
estimated stimulus value x was that which maximized
the sum of log likelihoods across all pairs of neurons.
Thus, we decoded the population as if each pair of
neurons were statistically independent from each other
pair. As noted earlier, this decoding method takes
account of pair-wise statistical dependencies but not
higher order dependencies.

Parameterizing the population

In principle, every parameter of every neuron in the
population could vary independently. However, to
maximize the simplicity of the model, we consider two
simpler, more restricted classes of parameterization.

The Constant parameterization

To begin with, we consider a very simple class of
parameterizations, in which rmax, r0, q, and rG are each

constant across different neurons, and the tuning curve
centers z are equally spaced along the x-axis, with
constant spacing dz between values of zmin and zmax.
We define a density parameter h equal to 1/dz. The
model thus has seven parameters: rmax, r0, q, rG, h, zmin,
and zmax. Since each of these parameters is assumed to
be constant across different neurons, we call this the
Constant parameterization.

One important property of the Constant parame-
terization is that if the stimulus value x is the logarithm
of the physical stimulus level n, then the model will
behave according to Weber’s law. The reason for this is
that with all the parameters constant, if we move from
a low stimulus value to a high stimulus value, we are
faced with an identical decoding situation, just shifted
along the x-axis: The tuning functions have the same
shape and density, and the noise properties are the same.
Thus the standard deviation of the decoded value of x
will be constant across stimulus levels. This means that
Dxh, the just-noticeable difference in x, will be constant.
If np is the pedestal stimulus (i.e., the lower of the two
stimuli to be discriminated) expressed in physical units,
and Dnh is the just-noticeable difference in physical units
for a pedestal of np, then Dxh¼ logb(npþDnh)� logb(np).
This can be rearranged to give Dnh/np¼ bDxh � 1, which
is constant for constant Dxh. Thus, the Weber fraction
Dnh/np is constant, which is the definition of Weber’s
law.

The Exponential parameterization

Although Weber’s law has often been found in
suprathreshold discrimination experiments, the Weber
fraction for contrast discrimination generally decreases
with increasing contrast, to give a slope of around 0.6–
0.7 when the threshold difference of Michelson
contrasts is plotted as a function of the pedestal
Michelson contrast on log-log axes (Legge, 1981;
Meese, Georgeson, & Baker, 2006). This is often
referred to as the near-miss to Weber’s law. To capture
this behavior, we used a parameterization in which h,
rmax, and q can increase with the tuning function’s
position along the x-axis. Specifically, we let h, rmax,
and q vary as exponential functions of the tuning
function position z:

h ¼ khexpðmhzÞ; ð23Þ

rmax ¼ krmax
expðmrmax

zÞ; ð24Þ

q ¼ kqexpðmqzÞ: ð25Þ
The parameters kh, krmax

, and kq give the values of h,
rmax, and q when z¼0; mh, mrmax

, and mq are parameters
that determine how rapidly h, rmax, and q change as a
function of z. We call this the Exponential parameter-
ization. It is a generalization of the Constant param-
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eterization: The Constant parameterization is the
Exponential parameterization with mh¼mrmax

¼mq¼ 0.
For simplicity, we will assume that r0/rmax is constant in
the Exponential parameterization. As before, z falls
between zmin and zmax. Supplementary Appendix C
shows how to generate a set of z values when h varies
exponentially across the stimulus axis.

Predicting model performance

As noted in the Introduction, the decoding precision
(i.e., the reciprocal of the variance of the decoded
stimulus value X̂) is closely approximated by the Fisher
information. In this section, we derive expressions for
the Fisher information for decoding the neurons when
the gain is known. On each trial, the tuning function of
each neuron in our model is multiplied by the gain
signal g, so the effective tuning function for neuron j on
that trial is grj (x). If the decoder knows the gain signal,
then it knows the effective tuning functions grj (x) and
it can express the spiking distributions as independent
Poisson distributions. For a set of independent
Poisson-spiking neurons with tuning functions grj (x),
the Fisher information is given by

Jðx; gÞ ¼ g
XK
j¼1

r0jðxÞ
2

rjðxÞ
; ð26Þ

where r 0j(x) is the first derivative with respect to x of
neuron j’s tuning function (see Dayan & Abbott, 2001,
chapter 3). Thus the variance of the estimated stimulus
value X̂ on trials with stimulus x and gain g will be
approximated by

var X̂jG ¼ g
� �

’
1

Jðx; gÞ ¼
1

gJðx; 1Þ : ð27Þ

Over all trials with stimulus x, the variance will be given
by

var X̂
� �

’ mean
1

GJðx; 1Þ

� �
: ð28Þ

¼ mean 1=G½ �
Jðx; 1Þ : ð29Þ

Thus, the precision s(x) for decoding a stimulus with
value x is given by

sðxÞ’ Jðx; 1Þ
mean 1=G½ � : ð30Þ

Supplementary Appendix D shows that, for the
gamma-distributed gain signal in the model of Goris et
al. (2014), mean[1/G] ¼ 1/(1 � r2

G), giving

sðxÞ’ð1� r2
GÞJðx; 1Þ: ð31Þ

From Relation 31, we have s(x) ’ J(x, 1� r2
G).

Interestingly, 1 � r2
G is the value of the gain with the

highest probability density. Thus, the decoding preci-
sion is the modal value of the Fisher information across
trials, not the mean.

In this article, we consider two-alternative forced-
choice discrimination experiments, in which observers
have to discriminate a pedestal stimulus value from a
slightly higher stimulus value. Suppose x is the log to
base b of the physical stimulus value n. If the pedestal
stimulus value is np and the difference in physical
stimulus values at threshold is Dnh, then the Weber
fraction W is defined as

W ¼ Dnh=np: ð32Þ
Supplementary Appendix E shows that, in this case,

the Weber fraction is approximated by

W’ b
ffiffiffiffiffiffiffiffiffiffiffi
2=sðxpÞ
p

U�1ðPhÞ � 1; ð33Þ
where U is the integral of a Gaussian with unit area and
variance and zero mean, and Ph is the proportion of
correct responses that defines the threshold level. We
can then calculate the Weber fraction by using Relation
31 to substitute for s(x) in Relation 33.

In summary, to predict the model’s performance, we
first calculate J(x, 1), the Fisher information that would
occur when the gain is 1. Then we multiply this by 1�
r2
G to give s(x), the overall precision when the gain

varies with standard deviation rG (Relation 31). We
can then calculate the Weber fraction from the
precision using Relation 33. The next two sections
derive various expressions for J(x, 1) for different
model parameterizations. The first of these two sections
derives exact expressions; the second derives compact
approximations of these expressions, which can often
give a better insight into the way that the different
neuronal parameters are related to perceptual perfor-
mance in a population-coding model.

Exact expressions for the Fisher
information

Using the Naka-Rushton function (Equation 4) to
expand rj (x) in Equation 26, we get

N-RJðx; 1Þ ¼
XK
j¼1

rmaxðqlnbÞ2b2qðzþxÞ

ðbqz þ bqxÞ3
�
bqx þ ðr0=rmaxÞðbqz þ bqxÞ

�;
ð34Þ

where the parameters on the right-hand side are the
neuronal parameters of the Naka-Rushton function
from Equation 4, and can vary from neuron to
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neuron (strictly speaking, each parameter should be
indexed by the neuron number j, but we omit these
indices for clarity). The left subscript on N-RJ(x, 1)
indicates the form of the tuning function, in this case
‘‘N-R’’ for Naka-Rushton. When r0 ¼ 0, Equation 34
reduces to

N-RJðx; 1Þ ¼
XK
j¼1

rmaxðqlnbÞ2bqð2zþxÞ

ðbqz þ bqxÞ3
: ð35Þ

Going through a similar process for the Gaussian
tuning function, we obtain

GaussJðx; 1Þ ¼ 4
XK
j¼1

rmax q2ðx� zÞexp
�
� qðx� zÞ½ �2

�n o2

exp
�
� qðx� zÞ½ �2

�
þ r0=rmax

;

ð36Þ

which, when r0 ¼ 0, reduces to

GaussJðx; 1Þ ¼ 4
XK
j¼1

rmaxq
4ðx� zÞ2exp

�
� qðx� zÞ½ �2

�
:

ð37Þ
Equations 34 through 37 are good for fitting the model

to psychophysical data, but each of these equations is a
sum with one term for each neuron, and this complexity
can make it difficult to see how the different neuronal
parameters are related to perceptual performance in a
population-coding model. We therefore derived approx-
imations of these equations by approximating the sum
using an integral. This allowed us to write down the
Fisher information for the whole population in a single
compact expression. We call these expressions integral
approximations. To distinguish them from the true
Fisher information expressions, we use the letter I (for
‘‘integral’’) to represent them rather than J.

These approximations are described in the next
section. We consider three classes of parameterization:
the Constant parameterization with the Naka-Rushton
and the Gaussian tuning functions and the Exponential
parameterization with the Naka-Rushton tuning func-
tion. For each of these, we derive an integral approx-
imation of the Fisher information. These expressions for
Fisher information can be used in place of J(x, 1) in
Relation 31 to predict the decoding precision.

Integral approximations of the
Fisher information

The Constant Naka-Rushton parameterization

The Constant Naka-Rushton parameterization is the
Constant parameterization that uses the Naka-Rushton

tuning function. Since all the parameters except z are
constant, and dz¼ 1/h, we can rearrange the right-hand
side of Equation 34 to give

N-RJðx; 1Þ ¼ rmaxðqlnbÞ2b2qxh

·
X
z

b2qz

ðbqz þ bqxÞ3
�
bqx þ ðr0=rmaxÞðbqz þ bqxÞ

� dz:

ð38Þ

As dz approaches zero, the right-hand side of Equation
38 can be approximated by an integral, which we call
Const

N-RI(x, 1). As long as the stimulus value x is
sufficiently far from the edges of the range of z values,
we can take the limits of z to be 6‘, giving

Const
N-RIðx; 1Þ ¼ rmaxðqlnbÞ2b2qxh

·
Z ‘

�‘

b2qz

ðbqz þ bqxÞ3
�
bqx þ ðr0=rmaxÞðbqz þ bqxÞ

� dz:
ð39Þ

We used Mathematica (Wolfram Research) to solve the
integral and obtained

Const
N-RIðx; 1Þ ¼

lnðbÞ
2

·rmaxqh·Qðr0=rmaxÞ; ð40Þ

where

QðyÞ ¼ 1þ 2y 1� ð1þ yÞlnð1þ 1=yÞ½ �; y. 0
1; y ¼ 0

:

	
ð41Þ

Figure 2 plots Q(r0/rmax) for 0 � r0/rmax � 1, and it can
be seen that Q(r0/rmax) smoothly decreases with
increasing r0/rmax. Thus, as r0 increases from 0,
Const

N-RI(x, 1) undergoes a multiplicative attenuation that
is a function only of the ratio r0/rmax. Because the
attenuation is a function of the ratio r0/rmax rather than
r0 alone, we will often take this ratio, rather than r0, to
be a model parameter. We refer to this ratio as the
relative spontaneous firing rate. When r0¼0, Q(r0/rmax)
¼ 1, and Equation 40 reduces to

Const
N-RIðx; 1Þ ¼

lnðbÞ
2

·rmaxqh: ð42Þ

The ln(b)/2 part of this expression is just a constant that
depends on the arbitrary choice of base of logarithm
that we use to represent contrast (and reduces to 1 for b
¼ e2). The interesting part is rmaxqh: This is the simplest
expression that we could possibly imagine, given that
the Fisher information has to increase with increasing
rmax, q, and h. Equation 42 therefore reveals a
remarkably straightforward relationship between the
Fisher information and the neuronal parameters.

Note that both expressions for Const
N-RI(x, 1) (Equa-

tions 40 and 42) are independent of the stimulus value
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x. From Relation 33, this leads to a constant Weber
fraction, i.e., Weber’s law.

The Constant Gaussian parameterization

The Constant Gaussian parameterization is the
Constant parameterization that uses the Gaussian
tuning function. We begin by assuming that r0 ¼ 0.
Since all the parameters except z are constant, and dz¼
1/h, we can rearrange the right-hand side of Equation
37 to get

GaussJðx; 1Þ ¼ 4rmaxq
4h
X
z

ðx� zÞ2exp � qðx� zÞ½ �2
n o

dz:

ð43Þ

When dz approaches zero, the right-hand side of
Equation 43 can be approximated by an integral, which
we call Const

GaussI(x, 1):

Const
GaussIðx; 1Þ ¼ 4rmaxq

4h

Z ‘

�‘

ðx� zÞ2exp � qðx� zÞ½ �2
n o

dz

if r0 ¼ 0: ð44Þ

The integral in Equation 44 is a standard definite
integral, and Equation 44 reduces to

Const
GaussIðx; 1Þ ¼ 2

ffiffiffi
p
p
·rmaxhq if r0 ¼ 0: ð45Þ

Equation 45 applies only to the case of r0¼0 because
we started with Equation 37. If instead we start with
Equation 36, we obtain an expression that applies to all
r0:

GaussJðx; 1Þ ¼ 4rmaxq
4h
X
z

ðx� zÞ2exp �2 qðx� zÞ½ �2
n o

exp � qðx� zÞ½ �2
n o

þ r0=rmax

dz:

ð46Þ

When dz approaches zero, the right-hand side of
Equation 46 can be approximated by an integral:

GaussJðx; 1Þ’ 4rmaxq
4h·SðqÞ; ð47Þ

where

SðqÞ ¼
Z ‘

�‘

ðx� zÞ2exp �2 qðx� zÞ½ �2
n o

exp � qðx� zÞ½ �2
n o

þ r0=rmax

dz: ð48Þ

In Supplementary Appendix F, we show that

SðqÞ ¼ Sð1Þ
q3

: ð49Þ

Using Equation 49 to substitute for S(q) in Relation 47,
we obtain

GaussJðx; 1Þ’ 4rmaxqh·Sð1Þ: ð50Þ
We can write S(1) as

Sð1Þ ¼
Z ‘

�‘

z2expð�2z2Þ
expð�z2Þ þ r0=rmax

dz: ð51Þ

Note that we were able to drop the x that appears in the
function being integrated, because this just shifts the
function horizontally by a finite amount x along the
z-axis but does not change its integral between infinite
limits; so S(1) is a function of r0/rmax only. Unfortu-
nately, for r0 . 0, we cannot find a closed-form
expression for S(1). However, for the range of relative
spontaneous firing rates likely to occur, we have found
that it can be very closely approximated by

Sð1Þ’
ffiffiffi
p
p

Qðr0=rmaxÞ
2

; ð52Þ

where the function Q is defined in Equation 41.
Supplementary Appendix F shows that, for 0 , r0/rmax

, 0.119, the approximation on the right-hand side of
Relation 52 slightly overestimates S(1) by a factor that
never exceeds 0.7% of the true value; for r0/rmax . 0.120,
the right-hand side of Relation 52 underestimates S(1),
but not by much: Even for r0/rmax as high as 1, the
underestimation is only about 3%, and it is always less
than 6% of S(1). Using Relation 52 to substitute for S(1)
in Relation 50, we obtain our integral approximation
Const
GaussI(x, 1) for any r0:

Const
GaussIðx; 1Þ ¼ 2

ffiffiffi
p
p
·rmaxqh·Qðr0=rmaxÞ: ð53Þ

Note that, apart from having a different multiplica-
tive constant—2

ffiffiffi
p
p

instead of ln(b)/2—Equation 53 is
identical to Equation 40, which gives the corresponding

Figure 2. Attenuation of Fisher information for nonzero r0. The

curve plots Q(r0/rmax) as defined in Equation 41.
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expression for the Naka-Rushton tuning function.
Similarly, Const

GaussI(x, 1) is independent of x, which leads
to Weber’s law.

The Exponential Naka-Rushton
parameterization

The Exponential Naka-Rushton parameterization is
the Exponential parameterization that uses the Naka-
Rushton tuning function.We begin by assuming that r0¼
0, so the Fisher information is given by Equation 35. For
now, let us also assume that q is constant, while h and rmax

vary with z according to Equations 23 and 24. Then we
can rearrange the right-hand side of Equation 35 to get

N-RJðx; 1Þ ¼ ðqlnbÞ2bqx
X
z

rmaxb
2qz

ðbqz þ bqxÞ3
: ð54Þ

Using Equation 24 to substitute for rmax in Equation 54,
we have

N-RJðx; 1Þ ¼ krmax
ðqlnbÞ2bqx

X
z

expðmrmax
zÞb2qz

ðbqz þ bqxÞ3
:

ð55Þ
To convert to an integral, we need to transform the z

values so that the transformed values f are equally
spaced. Supplementary Appendix C shows that an
appropriate transformation is given by

f ¼ emhz

mh
; ð56Þ

giving

z ¼ lnðmhfÞ=mh: ð57Þ
Using Equation 57 to substitute for z in Equation 55,
we obtain

N-RJðx; 1Þ ¼ krmax
ðqlnbÞ2bqx·

X
f

ðmhfÞmrmax=mhb2qlnðmhfÞ=mh�
bqlnðmhfÞ=mh þ bqx

�3
:

ð58Þ

As shown in Supplementary Appendix C, the definition
of f in Equation 56 causes the neurons to be separated
in equal steps of size df¼ 1/kh along the f axis when h
varies exponentially with z according to Equation 23.
Thus we have

N-RJðx; 1Þ ¼ krmax
khðqlnbÞ2bqx·

X
f

ðmhfÞmrmax =mhb2qlnðmhfÞ=mh�
bqlnðmhfÞ=mh þ bqx

�3
df:

ð59Þ

As df approaches zero, the right-hand side of Equation
59 can be approximated by an integral, which we call
Exp
N-RI(x, 1):

Exp
N-RIðx; 1Þ ¼ krmax

khðqlnbÞ2bqx·
Z ‘

0

ðmhfÞmrmax =mhb2qlnðmhfÞ=mh�
bqlnðmhfÞ=mh þ bqx

�3
df:

ð60Þ

The limits of 0 and ‘ on the integral arise because, as
before, we assume that the stimulus value x is far from
the ends of the range of z values, and so the limits of z
are effectively 6‘; from Equation 56, as z approaches
�‘, f approaches zero; and as z approaches ‘, f
approaches ‘. In Supplementary Appendix G, we
derive an expression for the integral in Equation 60.
This integral has a finite solution if qlnb . mhþmrmax

,
in which case the solution is given by Equation G.18.
Using Equation G.18 to substitute for the integral in
Equation 60, and simplifying, we obtain

Exp
N-RIðx; 1Þ ¼

krmax
khpmðm=cþ 1Þemx

2sinðpm=cÞ ; ð61Þ

where

m ¼ mh þmrmax
; ð62Þ

and

c ¼ qlnb; ð63Þ
subject to the restriction that

c .m: ð64Þ
It can be shown that

Exp
N-RI(x, 1) approaches

Const
N-RI(x, 1)

as m approaches zero, which is essential because, if the
m parameters are all zero, then the Exponential
parameterization reduces to the Constant parameteri-
zation.

Equation 61 shows two notable features. Firstly, the
Fisher information is an exponential function of x:
Specifically, when h � exp(mhz) and rmax � exp(mrmax

z),
the Fisher information is proportional to exp[(mh þ
mrmax

)x]. Secondly,
Exp
N-RI(x, 1) is a function of the sum of

mh and mrmax
, regardless of their individual values.

Thus, mh and mrmax
can be exactly traded off against

each other and the Fisher information will not change,
as long as mhþ mrmax

remains constant.
Equation 61 assumes that q is constant (i.e., mq¼ 0).

Allowing q to vary with z greatly complicates the
integral, and we were unable to solve it, so instead we
used an approximation. First, we extend the definition
of c (Equation 63) as follows:

c ¼ kqexpðmqxÞlnb: ð65Þ
Here, q is treated as a function of x, but using the
parameters that define how it varies with z (Equation
25); however, the approximation is good enough,
because the performance for a log contrast of x will be
dominated by the neurons with z close to x. If we then
use Equation 65 instead of Equation 63 to substitute
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Figure 3. Fitting the Constant Gaussian parameterization to data from Mayer and Kim (1986). The black triangles in the bottom panels

show Mayer and Kim’s spatial frequency discrimination data for their subject MJ, condition R 2PFC, transcribed from their figure 7.

Mayer and Kim’s data actually show the difference in spatial frequency between the 0.25 point and 0.75 point of the psychometric

function. The pedestal frequency should fall halfway between these points, so we halved their thresholds to obtain Dfh, the difference

between target and pedestal at a threshold performance level of Ph¼0.75. Four of the model’s parameters were fixed as follows: zmin

¼�0.3, zmax¼ 1.7, r0/rmax¼ 0.03, and x¼ 1.5 octaves. The values of rmax and rG were set as indicated above the top of each panel in

the top row. The remaining parameter, h, was fitted to Mayer and Kim’s data; the fitted values are shown in the top panels. Having

fitted this parameter, we carried out Monte Carlo simulations as described in the text and in Supplementary Appendix H. The blue

circles in the top row of panels plot the decoding precision from the Monte Carlo simulations using the Known Gain decoder. These

points show decoding precision for every 30th value along the x-axis that we calculated. The rest are omitted from the figure for

clarity, although the stimulus estimates for these x values were used in the 2AFC simulations, where we needed a fairly fine sampling

of the x-axis to fit the psychometric function and hence find the discrimination threshold. The red lines in the top row of panels plot

the precision predicted from the Fisher information GaussJ(x, 1) (Equation 36), while the thick gray lines plot the precision predicted

from the integral approximation of the Fisher information Const
GaussI(x, 1) (Equation 53); in both cases, we converted x to q using

Equation 9 before applying Equation 36 or 53. The predicted precision is found by multiplying the Fisher information by 1� r2
G (see

Relation 31). In the bottom row, the blue circles plot the thresholds Dfh obtained from the Monte Carlo simulations of the 2AFC

�
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for c in Equation 61, we obtain a very good

approximation of the Fisher information when q varies

as an exponential function of z.

Equation 61 also assumes r0 ¼ 0. We found that

increasing r0 causes an approximately multiplicative

attenuation that is close to the factor Q(r0/rmax)

(Equation 41) derived for the Constant parameteriza-

tion. Thus, even though the Q function was not derived

for the Exponential parameterization, we can borrow it

to approximate the effect of nonzero r0 for this

parameterization:

Exp
N-RIðx; 1Þ ¼

krmax
khpmðm=cþ 1ÞexpðmxÞ

2sinðpm=cÞ ·Qðr0=rmaxÞ;

ð66Þ

where m is given by Equation 62 and c is given by

Equation 65.

Fitting the model to psychophysical
data

In this section, we test the accuracy of our equations
by comparing their predictions against the true
performance of the model, determined from Monte
Carlo simulations. In principle, we could make this
comparison for any set of model parameters. However,
we are most interested in testing the accuracy of our
equations when the model’s performance is close to
human levels. The Cramér–Rao bound given by the
Fisher information can substantially overestimate the
decoding precision when the performance level or
number of neurons is low (Xie, 2002; May & Solomon,
2015); if the Fisher information deviated substantially
from the model’s decoding precision at performance
levels shown by humans, then our equations would be
of little value. It is therefore important to verify that

 
discrimination task with the Known Gain decoder. The red lines in the bottom row plot the thresholds predicted from GaussJ(x, 1) using

Relation 33 with Ph¼ 0.75. The thick gray lines plot the thresholds predicted in the same way, except using Const
GaussI(x, 1) to approximate

the Fisher information. Note that the abscissas in the top row are identical to those on the bottom row, i.e., each position on the

abscissa in the top row represents the same stimulus as the same position on the abscissa in the bottom row. In the top row, we have

marked the abscissas with log units, since the precision is calculated from the values in these units; in the bottom row, we have

marked the abscissas with linear units, to be compatible with the threshold, which is defined as the difference of spatial frequencies.

Figure 4. Fano factors of the neurons in the modeling of Figure 3. Each panel in this figure shows the Fano factors for the

parameterization in the corresponding column of panels in Figure 3. For each model neuron and each stimulus level, we found the

mean and variance of the spike count across the 10,000 repetitions. We divided the variance by the mean to give the Fano factor.

Because of the large number different combinations of neuron and stimulus level (.105 in each panel), there were too many points

to plot as individual dots, so we sorted the points in order of mean spike count and then chunked them into groups of 1,000. The

thick pink lines plot the average mean spike count against the average Fano factor for each group. The black line in each plot is the

predicted relationship between mean and Fano factor given by Equation 14.
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our equations closely predict the model’s decoding
precision for the performance levels shown by observ-
ers in psychophysical tasks. The best way to be sure of
this is to compare the simulations and equations at
human performance levels, i.e., to fit the model to
psychophysical data.

Because the model performance can be estimated so
quickly from the equations, we used the equations to fit
the model to psychophysical data, and then we carried
out Monte Carlo simulations using the fitted parameter
values. This section therefore serves two purposes: As
well as validating our equations for relevant perfor-
mance levels, it provides a demonstration of how our
equations can be used to fit the generic sensory coding
model to psychophysical data.

The parameters were fitted to the psychophysical
data using the simplex algorithm to minimize the sum
of squared differences between predicted and actual log
discrimination thresholds. On each iteration of the
fitting procedure, the population of neurons was set up
as described in Supplementary Appendix C; then the
exact Fisher information for each pedestal level was
found, using Equation 34 or 36 as appropriate, and this
was used to calculate the precision s(x) using Relation
31. The precision was then used to calculate the Weber
fraction W, using Relation 33 with Ph set to the
threshold performance level that had been used in the
psychophysical study. The predicted Weber fraction
was multiplied by the pedestal level to give the
predicted threshold (Dfh in Figure 3, or Dch in Figures 6
and 7). We took the logarithms of these predicted
thresholds and found the sum of squared differences
between the predicted log thresholds and the log

thresholds from the psychophysical data. The simplex
algorithm adjusted the model parameters to minimize
this sum.

Modeling Weber’s law with Gaussian-tuned
neurons: The Constant Gaussian
parameterization

As noted earlier, the Constant parameterizations
give rise to Weber’s law. Mayer and Kim’s (1986) data
on spatial frequency discrimination conform to We-
ber’s law, and spatial frequency tuning functions in
primary visual cortex are approximately Gaussian
functions of log spatial frequency (De Valois, Albrecht,
& Thorell, 1982), so it is appropriate to fit the Constant
Gaussian parameterization to Mayer and Kim’s data.
These data are plotted as black triangles in Figure 3.

In the case of Weber’s law for spatial frequency
discrimination, if the pedestal frequency is fp and the
frequency difference at threshold is Dfh, then the plot of
Dfh against fp on log-log axes will be a straight line of
gradient 1. There is only one degree of freedom in this
plot—the vertical position—so we needed only one free
parameter to fit the data. Our approach was to hold all
the model parameters constant except for the density h,
and to fit h to the psychophysical data.

For the modeling shown in Figure 3, we set the
tuning bandwidth x to 1.5 octaves, which is close to
the median value found physiologically (De Valois et
al., 1982); q was then calculated from x using
Equation 9. We set r0/rmax to 0.03 for all the modeling;
the rationale for this choice was that Geisler and

Figure 5. Spike-count correlations between pairs of neurons in the modeling of Figure 3. Each panel in this figure shows the

correlations for the parameterization in the corresponding column of panels in Figure 3. Because of the large number of pairs of

neurons, we just analyzed the responses to the stimulus level in the middle of the range of stimuli used in the modeling. For each pair

of model neurons, we found the Pearson correlation between the spike counts of the two neurons across the 10,000 repetitions. We

then sorted the data points in order of the predicted correlation given by Equation 17 and chunked them into groups of 1,000. The

thick pink lines plot the mean predicted correlation against the mean actual correlation for each group. The black lines plot the

outcome that would occur if the actual correlation were always exactly equal to the predicted correlation.
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Albrecht (1997) found that the median r0 for a 200-ms
stimulus was 0.17 for monkey V1 neurons, which is
0.03 when expressed as a proportion of median rmax¼
5.7 spikes for neurons tuned to the stimulus. Different
columns of panels in Figure 3 show results for

different combinations of rG and rmax (as indicated
above each panel in the top row). The values of rG ¼
0.2 and 0.4 are close to the mean values obtained by
Goris et al. (2014) for awake and anaesthetized
monkeys, respectively. The lower value of rmax¼ 4 was

Figure 6. Fitting the Constant Naka-Rushton parameterization to data from Bird et al. (2002). The black triangles in the bottom panels

show the contrast discrimination data from Bird et al. (2002) for their subject GBH, for 4.19-c/deg sine-wave gratings, transcribed

from their figure 3b. Four of the model’s parameters were fixed as follows: q¼ 3, r0/rmax¼ 0.03, zmin¼�3, zmax¼ 1 (q¼ 3 is close to

the mean value found physiologically; see table 1 of May & Solomon, 2015). The values of rmax and rG were set as indicated above the

top of each panel in the top row . The remaining parameter, h, was fitted to the data from Bird et al.; the fitted values are shown in

the top panels. Monte Carlo simulations were conducted in a similar way to those in Figure 3, except using the Naka-Rushton tuning

function. All plotting conventions are the same as or analogous to those in Figure 3. The blue circles plot Monte Carlo simulation

results for every 18th value along the x-axis that we calculated (the rest are omitted from the figure for clarity, although the stimulus

estimates for these x values were used for fitting psychometric functions in the 2AFC simulations). The red lines plot performance

predicted from the true Fisher information N-RJ(x, 1) (Equation 34), while the thick gray lines plot performance predicted from the

integral approximation of the Fisher information Const
N-RI(x, 1) (Equation 40). Precision was predicted by multiplying the Fisher

information by 1 � r2
G (see Relation 31). The predicted discrimination threshold was derived from the predicted precision using

Relation 33 with Ph¼ 0.75.
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Figure 7. Fitting the Exponential Naka-Rushton parameterization to data from Meese et al. (2006). The data are plotted as black

triangles in the bottom row of this figure (these data are from the Binocular condition of Meese et al., plotted as squares in their

figure 5, and kindly supplied by Tim Meese). Each column of panels gives the data for one parameterization. In each case, rG¼ 0.2,

r0/rmax¼0.03, zmin¼�3, and zmax¼1.We fitted two parameter values to the data (fitted values are given in the top panel) and chose

reasonable values for the others. One of the fitted parameters was always kh. The other fitted and fixed parameters in the different

parameterizations were as follows. (A) The parameter mh was fitted, so that h varied with z, and we set mrmax
¼mq¼0, krmax

¼5.7, and

kq¼ 3. (B) The parameter mrmax
was fitted, so that rmax varied with z, and we set mh¼mq¼ 0, krmax

¼ 16, and kq¼ 3. (C) The parameter

mq was fitted, so that q varied with z, and we set mh¼mrmax
¼ 0, krmax

¼ 5.7, and kq¼ 7. (D) The parameters mh, mrmax
, and mq were

fitted, subject to the constraint that mh¼mrmax
¼ mq, so that h, rmax, and q varied with z, and we set krmax

¼ 8 and kq¼ 4. Plotting

conventions are the same as in Figure 6. The value of N-RJ(x, 1) was calculated using Equation 34, and
Exp
N-RI(x, 1) was calculated using

Equation 66. Predicted discrimination threshold was predicted from each Fisher information expression using Relation 33 with Ph¼ 1

� 0.5/e ¼ 0.816. . .. Blue circles plot performance for every 18th stimulus level that we evaluated.
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close to the median value (5.7 spikes) reported by
Geisler and Albrecht (1997) for a 200-ms stimulus,
and the purpose of the higher value (rmax¼ 16) was to
show how this affects the size of the neuronal
correlations and Fano factors.

Having fitted h, we constructed a set of model
neurons with z equally spaced along the log spatial
frequency axis between zmin ¼�0.3 and zmax ¼ 1.7 at
spacing dz ¼ 1/h. Then we performed Monte Carlo
simulations. The full details of the Monte Carlo
simulations are given in Supplementary Appendix H,
but briefly, they were carried out as follows. First, we
sampled a large number of points along the stimulus
(x) axis. For each stimulus value x, we used the
stochastic spiking model to generate 10,000 sets of
spike counts and decoded each set of spike counts to
give 10,000 estimated stimulus levels. The decoding
precision was then calculated as the reciprocal of the
variance of the stimulus estimates (decoding precision
for the Known Gain decoder is plotted as blue circles
in the top row of panels in Figure 3). The stimulus
estimates were also used to simulate a 2AFC
discrimination task (described in detail in
Supplementary Appendix H). 2AFC trials consisted of
two stimulus presentations, each with a different
randomly generated gain value g. The lower stimulus
value was the pedestal, and the higher value was the
target. On each 2AFC trial, the model selected as the
target the stimulus with the highest estimated value,
and we found the proportion of correct responses for
each combination of pedestal and target. For each
pedestal, we fitted a Weibull psychometric function
(May & Solomon, 2013) to the model’s proportion-
correct data and obtained a discrimination threshold
from the fitted function as described in Supplementary
Appendix H. The discrimination thresholds for the
Known Gain decoder are plotted as blue circles in the
bottom row of panels in Figure 3.

The red lines in the top row of panels give the
predicted decoding precision, calculated from the

Fisher information GaussJ(x, 1) using Relation 31 and
Equation 36. Table 1 shows that the true decoding
precision obtained from the Monte Carlo simulations
with known gain differs from the predicted value by
less than 0.5%. This close match confirms that the
Fisher information gives a sufficiently close approxi-
mation of decoding precision to allow us to calculate
model performance and gain insights into the rela-
tionships between physiology and behavior.

The red lines in the bottom row of panels show the
discrimination thresholds predicted from GaussJ(x, 1)
using Relation 33 with Ph ¼ 0.75. It was these
predicted thresholds that were used to fit the model to
Mayer and Kim’s (1986) data in the first place, so it is
no surprise that they fit well to Mayer and Kim’s data.
What is more important is how accurately the
thresholds predicted from the Fisher information
match those obtained from the Monte Carlo simula-
tions with the Known Gain decoder (compare the red
lines against the blue circles in the bottom row of
Figure 6).

The thick gray lines in the top row of Figure 3 plot
the precision predicted from the integral approximation
of the Fisher information Const

GaussI(x, 1), as defined in
Equation 53. The thick gray lines in the bottom row
plot the thresholds predicted from Const

GaussI(x, 1). The
integral approximation of the Fisher information
differs from the true Fisher information by less than 1%
(see Table 1) and provides a better insight into the
relationship between psychophysical performance and
the neuronal parameters than we get from GaussJ(x, 1),
which is a sum with one term for each neuron.

In the Monte Carlo simulations described so far, the
decoder knew the gain on each stimulus presentation.
We also carried out analogous simulations using the
Univariate and Bivariate decoders, which did not know
the gain signal. These decoders were applied to the
same simulated spike data as the Known Gain
decoder—it was just the decoding algorithm that
differed. Table 1 shows that, for three of the four

rG ¼ 0.2, rmax ¼ 4 rG ¼ 0.2, rmax ¼ 16 rG ¼ 0.4, rmax ¼ 4 rG ¼ 0.4, rmax ¼ 16

ð1� r2
GÞ· Const

GaussIðx; 1Þ 1.0067 1.0067 1.0067 1.0067

Known Gain 0.9957 0.9983 0.9983 0.9996

Bivariate 0.9973 0.9863 0.9883 0.9447

Univariate 0.9944 0.9833 0.9833 0.9100

Table 1. Precision scores expressed as a proportion of the precision predicted from GaussJ(x, 1) for the Constant Gaussian
parameterizations of Figure 3. For each of the 104 stimulus levels x between 0.6 and 0.8, we expressed the precision for each decoder
as a proportion of that predicted from GaussJ(x, 1). The table shows the mean value of this proportion for each condition and decoder.
The top row shows the precision predicted from Const

GaussI(x, 1), expressed as a proportion in the same way. Each value in the table is the
mean of 104 ratios. For each ratio, the precisions were calculated from 10,000 trials, except for the Bivariate decoder on the two
conditions with rmax¼ 4. These conditions had a very large number of neurons, so the Bivariate decoding algorithm, which calculated
a likelihood for every pair of neurons, was very slow. Due to time constraints, we were only able to decode 4,200 of the 10,000 trials
for rG¼ 0.2, rmax¼ 4, and 3,500 of the 10,000 trials for rG¼ 0.4, rmax¼ 4. The slightly higher precision score for the Bivariate over the
Known Gain decoder for rG ¼ 0.2, rmax ¼ 4 is a result of sampling error due to an insufficient number of trials.
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conditions, the precision of the Bivariate decoder was
within 2% of the value predicted from the Fisher
information. For the most physiologically plausible
condition (rG ¼ 0.2, rmax ¼ 4), the Bivariate decoder’s
performance was almost identical to the predicted
value; even on the Bivariate decoder’s worst condition
(rG¼ 0.4, rmax¼ 16), its precision was within 6% of the
value predicted from the Fisher information. This is
remarkably close, considering that the estimate based
on the Fisher information assumes that the decoder
knows the gain signal on each trial and is performing
maximum-likelihood estimation; in reality, the Bivari-
ate decoder does not know the gain signal and is not a
maximum-likelihood decoder, as it can only take
account of pair-wise statistical dependencies. The true
maximum-likelihood decoder for the Unknown Gain
situation would almost certainly yield a precision even
closer to the predicted value.

Why should knowledge of the gain signal yield so
little benefit? For a Gaussian-tuned neuron, increasing
the gain has a similar effect to moving the stimulus
value toward the peak of the neuron’s function curve.
In response to an unknown change of gain, neurons
with tuning peaks on either side of the true stimulus
value will tend to pull the decoded stimulus value in
opposite directions, so the effects largely cancel out,
and gain fluctuations have little effect on the decoded
stimulus values even when the gain value is unknown to
the decoder. Because the gain signal conveys so little
extra information, we can relax the assumption that the
gain signal is known, and our equations still predict
performance closely.

The closeness of the Bivariate and Univariate
decoders’ precision values shows that it is not even
particularly important for the decoder to take into
account pair-wise statistical dependencies. The Uni-
variate decoder decodes the neuronal responses as if
they were entirely independent of one another, yet for
three of the four conditions, the precision of the
Univariate decoder was within 1% or 2% of the value
predicted from the Fisher information.

We also analyzed the spike counts generated by the
model to check that they showed the expected Fano
factors and spike-count correlations. As already
noted, the Fano factor of these model neurons
depends on the mean spike count and the standard
deviation of the gain: Equation 14 shows that the plot
of Fano factor against mean spike count should be a
straight line, with gradient r2

G, passing through the
point (0, 1). Figure 4 confirms that our model neurons
do show this relationship. Figure 5 confirms that the
spike-count correlations between pairs of model
neurons follow the pattern predicted by Equation 17.
The ranges covered by the thick pink lines in Figures 4
and 5 approximately indicate the ranges of Fano

factors and correlations that occur in each parame-
terization.

Modeling Weber’s law for suprathreshold
contrast discrimination: The Constant Naka-
Rushton parameterization

The Constant parameterization yields Weber’s law,
and the Naka-Rushton function is the tuning function
for contrast. Thus, it is appropriate to fit the Constant
Naka-Rushton parameterization to the data from a
contrast discrimination experiment that gave rise to
Weber’s law. Although contrast discrimination gener-
ally shows a near-miss to Weber’s law (Legge, 1981;
Meese et al., 2006), there have been some reports of
Weber’s law for this task (Swift & Smith, 1983; Bird,
Henning, & Wichmann, 2002). We fitted the model to
some of the data from Bird et al. (plotted as black
triangles in Figure 6) and carried out simulations
analogous to those in Figure 3, but using the Naka-
Rushton tuning function instead of the Gaussian. The
model parameters are given in the caption of Figure 6.
In this simulation, we only considered psychophysical
data from pedestals that were clearly suprathreshold:
Very low contrasts would fall below the range of
semisaturation contrasts found physiologically and
would not stimulate many neurons, and in these
circumstances, the Fisher information is unlikely to be
close to the decoding precision, and cannot be used for
estimating the model’s psychophysical performance.

The blue circles in Figure 6 show the Known Gain
decoder’s decoding precision and discrimination
thresholds; these are very well predicted from both the
true Fisher information expressions (thin red lines in
Figure 6) and the integral approximations (thick gray
lines). Table 2 shows that, in each case, the true
decoding precision is within 2% or 3% of that predicted
from the Fisher information. The integral approxima-
tion of the Fisher information is exceptionally close to
the true Fisher information.

Table 2 shows that, unlike with Gaussian tuning
functions, both Unknown Gain decoders were much
worse than the Known Gain decoder. The Bivariate
decoder does better than the Univariate decoder, but in
both cases, the gain fluctuations have a catastrophic
effect on decoding precision. It is easy to see why this
happens. For any Naka-Rushton-tuned neuron, an
increase in gain has the same effect as an increase in
contrast, so if the gain is unknown, then random gain
fluctuations will be interpreted as fluctuations in
contrast, and on each stimulus presentation, the
decoded contrast will be biased in the direction of the
gain value on that stimulus presentation, leading to
inaccurate estimation.
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Modeling the near-miss to Weber’s law for
contrast discrimination: The Exponential Naka-
Rushton parameterization

The black triangles in the bottom row of Figure 7
show human contrast discrimination data from Meese
et al. (2006). The log-log slope is clearly shallower than
that obtained by Bird et al. (2002), plotted in Figure 6.
We fitted the Exponential Naka-Rushton parameteri-
zation to the data of Meese et al. by using the Fisher
information to predict the model’s thresholds, as
described earlier, and performed similar Monte Carlo
simulations (see Supplementary Appendix H). The
psychophysical data have two degrees of freedom: the
height and slope of the log-log plot of threshold against
pedestal. Thus, we now needed two degrees of freedom
in our model fit. In all the parameterizations in Figure
7, we fitted the parameter kh, which gives the density for
a stimulus value of x¼ 0. Each column of Figure 7 uses
a different choice of which other parameter(s) to fit. In
column A, we fitted mh, so that h varied with z, and set
the other m parameters (mrmax

and mq) to zero so that
rmax and q were constant across the neurons (equal to
krmax

and kq, respectively). In column B, we fitted mrmax
,

so that rmax varied with z, and set the other m
parameters (mh and mq) to zero. In column C, we fitted
mq, so that q varied with z, and set the other m
parameters (mh and mrmax

) to zero. In column D, we
fitted all three m parameters, subject to the constraint
that mh¼ mrmax

¼ mq; thus, there were still only two
degrees of freedom in the fit, but h, rmax, and q all
varied with z. In each parameterization, all the
parameters that were not fitted were set to reasonable
values (see the caption of Figure 7 for these values).

Note that the individual fitted m parameter values in
column D are approximately one third of the values
obtained when only one of the three parameters was
fitted, indicating that the contribution of all three of
these parameters to the Fisher information is additive.
The precise additivity of mh and mrmax

was proved
analytically earlier, and the fitting results in column D
suggest that this additivity also applies to mq, at least
approximately.

The plotting conventions in Figure 7 are the same
as in Figure 6. The top row shows predicted and
actual precision, while the bottom row shows 2AFC
discrimination thresholds. Blue circles show the
precision and thresholds from the Monte Carlo
simulations with the Known Gain decoder; thin red
curves show the precision and thresholds predicted
from the true Fisher information N-RJ(x, 1) (Equation
34); thick gray curves show the precision and
thresholds predicted from the integral approximation
of the Fisher information

Exp
N-RI(x, 1) (Equation 66).

Thresholds were predicted from the Fisher informa-
tion using Relation 33 with Ph¼ 1 � 0.5/e ¼ 0.816. . .,
which was the performance level that defined the
threshold in the study by Meese et al. (2006). These
threshold predictions map out almost straight lines on
the log-log plots, which fit well to the data from Meese
et al.

Recall that the derivation of Exp
N-RI(x, 1) was

exactly correct only when r0 ¼ mq ¼ 0 (i.e., zero
spontaneous firing rate, and q constant with respect
to z). When either r0 6¼ 0 or mq 6¼ 0 (as is the case in
each panel of Figure 7), the integral was intractable,
so we used work-arounds to give an approximate
expression. Nevertheless, Table 3 shows that the
precision predicted from the integral approximations
of the Fisher information never differed by more
than about 6% from that predicted from the true
Fisher information. Meanwhile, the actual precision
from the Known Gain decoder was never more than
6% lower than that predicted from the Fisher
information. As with our other simulations of
contrast discrimination, the performance of the
Unknown Gain decoders was much worse than that
of the Known Gain decoder.

Discussion

The purpose of this study was to construct psycho-
physical models whose performance could easily be
connected to the parameters of the neurons that encode

rG ¼ 0.2, rmax ¼ 4 rG ¼ 0.2, rmax ¼ 16 rG ¼ 0.2, rmax ¼ 4 rG ¼ 0.2, rmax ¼ 16

ð1� r2
GÞ· Const

N-RIðx; 1Þ 1.000002 1.000002 1.000002 1.000003

Known Gain 0.9804 0.9782 0.9738 0.9736

Bivariate 0.3897 0.4852 0.09312 0.2162

Univariate 0.3574 0.3776 0.06974 0.09887

Table 2. Precision scores expressed as a proportion of the precision predicted from N-RJ(x, 1) for the Constant Naka-Rushton
parameterizations of Figure 6. For each of the 139 stimulus levels x between �1.5 and �0.5, we expressed the precision for each
decoder as a proportion of that predicted from N-RJ(x, 1). The table shows the mean value of this proportion for each condition and
decoder. The top row shows the precision predicted from Const

N-RI(x, 1), expressed as a proportion in the same way. Each value in the
table is the mean of 139 ratios. For each ratio, the precisions were calculated from 10,000 trials.
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the stimulus. We used a restricted parameterization of
the model of neuronal spiking from Goris et al. (2014),
in which each neuron has an independent Poisson
spiking process and the spike rate of each neuron is
modulated by a multiplicative, gamma-distributed gain
signal that is shared between all the neurons. The
individual neurons were characterized by the parame-
ters of their tuning function: r0 (spontaneous spike
rate), rmax (maximum increment in spike rate from r0),
q (tuning sharpness), and z (position along the stimulus
axis). Tuning functions could be sigmoidal (Naka-
Rushton) or Gaussian. The population of neurons was
characterized by the density h of neurons along the
stimulus axis. The gain fluctuations (parameterized by
the standard deviation rG) had both neuron-specific
and population-wide effects. The neuron-specific effects
of the gain fluctuations were the Fano factors (Figure
4), and the population-wide effects were the spike-
count correlations that resulted from having the
neurons share the same gain signal (Figure 5); both
effects arise from Equation 12, which describes the
covariance matrix for a population of model neurons of
this kind.

Model performance was calculated analytically by
using the neuronal parameters to calculate the Fisher
information, from which we can estimate the decoding
precision. Although one can always find the perfor-
mance level by setting up a Monte Carlo simulation
(Chirimuuta, Clatworthy, & Tolhurst, 2003; Clatwor-
thy, Chirimuuta, Lauritzen, & Tolhurst, 2003; Chir-
imuuta & Tolhurst, 2005), the long time required to
complete the simulations for a single parameter set
makes it difficult to fit the model to data (Chirimuuta &
Tolhurst, 2005), and this method provides little insight
into why the observed patterns of results were obtained
or whether the results generalize to other parameteri-
zations of the model. Our work solves all of these
problems by providing fairly simple equations that can
be evaluated to give a close approximation of the
decoding precision and thus the discrimination thresh-
old.

Our expressions for the decoding precision were
derived assuming that the decoder knows the gain
signal g. In this case, we can derive the Fisher

information as if the neurons were statistically inde-
pendent; we then take the Fisher information for the
case of g ¼ 1 and multiply it by 1� r2

G to obtain the
predicted decoding precision (Relation 31). This
predicted decoding precision is the modal value of the
Fisher information across all stimulus presentations.
With Gaussian tuning functions, we can relax the
assumption that the decoder knows the gain signal and
our equations still provide an accurate prediction of the
model’s performance.

We derived two kinds of expression for the Fisher
information. One was an exact expression (represented
by the letter J), which consists of a sum with one term
for each neuron. The other kind of expression
(represented by the letter I) approximates this sum
using an integral. These integral approximations are
much more compact and can help to shed light on the
relationships between psychophysical performance and
the neuronal parameters.

We outlined two basic types of parameterization of
the generic sensory coding model: the Constant and
Exponential parameterizations. In the Constant pa-
rameterization, all the neuronal parameters are con-
stant with respect to z, and z is distributed with
constant density along the stimulus axis. Our integral
approximations revealed some particularly simple
relationships between Fisher information and the
neuronal parameters for the Constant parameteriza-
tion. For both Naka-Rushton and Gaussian tuning
functions, if r0/rmax is held constant, the Fisher
information is proportional to rmaxqh (see Equation 40
for the Naka-Rushton function and Relation 50 for the
Gaussian tuning function). For the Naka-Rushton
tuning function, the Fisher information is proportional
to a decreasing function of the relative spontaneous
firing rate r0/rmax, which we call Q (see Equation 41 and
Figure 2); as r0 increases, the Fisher information
undergoes a multiplicative attenuation that is a
function only of the ratio r0/rmax. The same effect holds
to a very close approximation for the Gaussian tuning
function (see Supplementary Appendix F). Another
feature of the Constant parameterization is that the
Fisher information is approximately constant across
the stimulus axis (i.e., it is independent of x). Because of

h varied rmax varied q varied h, rmax, and q varied

ð1� r2
GÞ·

Exp
N-RIðx; 1Þ 1.0602 1.0606 0.9848 1.0558

Known Gain 0.9407 0.9416 0.9544 0.9509

Bivariate 0.4605 0.4575 0.3623 0.4538

Univariate 0.4510 0.4385 0.3302 0.4334

Table 3. Precision scores expressed as a proportion of the precision predicted from N-RJ(x, 1) for the Exponential Naka-Rushton
parameterizations of Figure 7. For each of the 191 stimulus levels x between �1.5 and �0.5, we expressed the precision for each
decoder as a proportion of that predicted from N-RJ(x, 1). The table shows the mean value of this proportion for each condition and
decoder. The top row shows the precision predicted from

Exp
N-RI(x, 1), expressed as a proportion in the same way. Each value in the

table is the mean of 191 ratios. For each ratio, the precisions were calculated from 10,000 trials.
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this, if x is the logarithm of the physical stimulus value,
then the performance of the Constant parameterization
will obey Weber’s law (discrimination threshold pro-
portional to pedestal). We used the exact Fisher
information expressions to fit the Constant parame-
terizations of the model to real psychophysical data
that conformed to Weber’s law: Mayer and Kim’s
(1986) spatial frequency discrimination data (Figure 3)
and the suprathreshold contrast discrimination data
(Figure 6) of Bird et al. (2002). In all cases, the
thresholds predicted from the Fisher information
expressions gave excellent matches to the thresholds
obtained from Monte Carlo simulations.

Many studies of suprathreshold contrast discrimi-
nation have found a near-miss to Weber’s law, where
the plot of threshold against pedestal is a straight line
with a slope of about 0.6–0.7 on a log-log plot. We
showed that this could be accounted for by allowing
rmax, q, or h to vary exponentially with z. The rates of
increase were determined by parameters mrmax

, mq, and
mh, respectively. We call this the Exponential param-
eterization, and it is a generalization of the Constant
parameterization (the Constant parameterization is
the Exponential parameterization with mrmax

¼mq¼mh

¼ 0). The integral approximation of the Fisher
information (Equation 66) revealed two features that
were not explicit in the exact expressions. Firstly, the
Fisher information for the Exponential parameteri-
zation is an exponential function of the stimulus level:
It is proportional to exp(mx), where m ¼ mh þmrmax

.
Secondly, the Fisher information is a function of the
sum of mrmax

and mh, regardless of their individual
values. We also found that, as with the Constant
parameterizations, we could closely model the effect of
r0 by multiplying the Fisher information by Q(r0/rmax)
as defined in Equation 41. We used the exact Fisher
information expressions to fit the Exponential Naka-
Rushton parameterization to the contrast discrimina-
tion data of Meese et al. (2006). The thresholds
predicted from the Fisher information expressions
gave a good match to the thresholds obtained from
Monte Carlo simulations.

The fact that we needed an exponential increase in at
least one neuronal parameter with increasing semi-
saturation contrast shows that the physiological
constraints imposed by the near-miss to Weber’s law
are quite different from those imposed by the true
Weber’s law, which results if all the neuronal param-
eters are constant. This fact seems not to have been
widely appreciated, because contrast discrimination
performance is usually modeled using transducer
models with additive noise (e.g., Wilson, 1980; Legge &
Foley, 1980; Meese et al., 2006), and the transducer
only needs a slight tweak to alter its predictions from
Weber’s law to the near-miss.

Implicit decorrelation when the gain is known

In our model, if the decoder knows the gain signal, it
can express the neuronal spike distributions as inde-
pendent Poisson distributions. This is a form of
decorrelation, but the neurons’ responses are not
changed and are therefore not explicitly decorrelated.
The neuronal responses are correlated across all trials
but are uncorrelated within each subset of trials that
share the same gain signal. The decoder’s knowledge of
the gain signal allows it to identify which uncorrelated
subset of trials the current trial belongs to, so the
neuronal spiking distributions, conditioned on this
knowledge, are statistically independent. The neurons
have thus been decorrelated implicitly by virtue of the
decoder’s knowledge of what caused the correlations.
Given the finding that a large proportion of neuronal
variability is explained by fluctuating internal gain
signals that can be shared between neurons (Ecker et
al., 2014; Goris et al., 2014), it could be that many
apparently correlated populations of neurons are
implicitly uncorrelated to a large extent.

Effect of correlations when the gain is unknown

Although knowledge of the gain signal can result in
an implicit decorrelation of the neuronal responses, our
simulations with the Gaussian tuning function show
that it is not always necessary to know the gain in order
to achieve near-optimal performance. The Bivariate
decoder does not know the gain signal and expresses
each pair of neuronal responses as a correlated gamma-
Poisson mixture distribution. Nevertheless, its decoding
performance is nearly as good as that of the Known
Gain decoder. Furthermore, performance was not
much worse with the Univariate decoder, which knows
nothing whatever about the correlation structure of the
population. This is highly convenient, as it means that
for Gaussian tuning functions, our analytical expres-
sions for the model’s performance are not restricted to
the class of models for which the decoder knows the
gain signal or even knows about the pair-wise
correlations.

With the Naka-Rushton tuning function, a decoder
that does not know the gain signal cannot distinguish
changes in gain from changes in stimulus contrast, so
the gain fluctuations greatly impair performance.
Because of this, for Naka-Rushton tuning functions,
our analytical expressions for the model’s decoding
performance apply only to the Known Gain decoder.

So far, we have explained this difference between
Gaussian and Naka-Rushton tuning functions intui-
tively: For the Naka-Rushton function, a change of
gain will bias all the neurons’ likelihood functions in
the same direction, leading to inaccurate decoding,
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whereas for the Gaussian tuning function, neurons with
tuning peaks on either side of the true stimulus value
will have their likelihood functions biased in opposite
directions, so the effect of a gain fluctuation cancels out
and the stimulus estimate is largely unaffected. We can
gain a more formal insight into this difference between
the Gaussian and Naka-Rushton tuning functions by
considering the Fisher information for decoding a pair
of our model neurons that share a gain signal unknown
to the decoder. In this two-neuron system, the
likelihood function is given by Equation 22.
Supplementary Appendix I shows that the Fisher
information for decoding a stimulus of value x in this
case is given by

J ¼ ðr
0
1ðxÞÞ

2

r1ðxÞ
þ ðr

0
2ðxÞÞ

2

r2ðxÞ
� ðr01ðxÞ þ r02ðxÞÞ

2

r1ðxÞ þ r2ðxÞ þ 1=r2
G

;

ð67Þ
where r1(x) and r2(x) are the tuning functions of the
two neurons, and r01(x) and r02(x) are their first
derivatives. If the tuning functions are Gaussian, then
the slopes r01(x) and r02(x) will often be opposite in sign
and will partially or completely cancel out in the third
(subtractive) term of Equation 67. When x falls exactly
midway between the peaks of two identically shaped
Gaussian tuning functions, the third term is zero and
the Fisher information is the same as for two
independent Poisson-spiking neurons (i.e., equivalent
to rG ¼ 0); this gives an insight into why gain
fluctuations have so little effect on decoding Gaussian-
tuned neurons, even when the gain signal is unknown.
On the other hand, the slopes of the Naka-Rushton
functions are always positive and so they never cancel
out in this way, so the third term of Equation 67
generally subtracts more from the Fisher information
for Naka-Rushton-tuned neurons than it does for
Gaussian-tuned neurons.

It is important not to read too much into this
analysis, because the Fisher information can be a poor
estimator of decoding precision when the number of
neurons is small (Xie, 2002; May & Solomon, 2015;
also see the discussion of this issue in Supplementary
Appendix I). The key point is that, for Gaussian tuning
functions, the Cramér-Rao upper bound on the
decoding precision can be independent of the gain
variance, whereas for Naka-Rushton tuning functions,
the upper bound on the precision will always decrease
with increasing gain variance.

Comparisons with other studies

Sanborn and Dayan (2011) argued that the central
puzzle for contrast discrimination at high contrast is

that the near-miss to Weber’s law for contrast
discrimination is difficult to reconcile with neuronal
noise. They explained the near-miss to Weber’s law
using a model in which the neuronal noise was
Gaussian with response variance that was nearly
constant for low mean response levels and nearly
proportional to the mean response for high mean
response levels; they called this the ‘‘hinge noise’’
model. They set up a model in which the stimulus was
encoded by a population of neurons with this form of
noise. Each neuron had a linear contrast-response
function, and the neurons differed from each other in
their sensitivity to the stimulus orientation. Sanborn
and Dayan showed that optimal decoding of this
population gave rise to a contrast discrimination
function with a log-log slope of 0.84 at high contrasts,
i.e., a near-miss to Weber’s law.

A weakness of Sanborn and Dayan’s model is that
although it attempts to reconcile psychophysical and
physiological findings, none of the key elements of the
model are physiologically plausible. Firstly, the
function mapping mean response to variance in their
hinge noise model is quite unlike neuronal noise,
which is proportional to the mean for low responses
and proportional to the square of the mean for high
responses—a relationship that is well captured by the
gamma-Poisson mixture distribution that we used (see
Goris et al., 2014). Secondly, Sanborn and Dayan’s
linear contrast-response function is quite different
from those of real neurons, which are well described
by the Naka-Rushton function (Albrecht & Hamilton,
1982). Thirdly, although Sanborn and Dayan’s model
has a range of orientation channels, it has only one
contrast channel. In the visual cortex, neurons tend to
be sensitive to changes in contrast over a relatively
narrow contrast range, which suggests that the
contrast code is distributed across a population of
neurons with different semisaturation contrasts (Teo
& Heeger, 1994; Chirimuuta et al., 2003; Clatworthy
et al., 2003). Our work shows that, if we adopt this
more physiologically plausible notion, then the
‘‘central puzzle’’ raised by Sanborn and Dayan
disappears: The effect of the pedestal on threshold
depends not just on the form of noise, but also on the
distribution of the contrast-response functions along
the contrast axis.

Our approach of coding contrast across a range of
model neurons with different semisaturation contrasts
was used by Chirimuuta and Tolhurst (2005) to model
contrast discrimination, and indeed our work was
originally inspired by theirs. However, Chirimuuta and
Tolhurst lacked an analytical description of their
model’s performance. This seriously hampered their
attempts to fit their model to psychophysical data, as
they were only able to try a small number of model
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parameter sets, due to the slowness of the Monte Carlo
simulations. In their figure 9A, they used a model with
eight Naka-Rushton-tuned neurons. Each neuron had
q¼ 2, and there was additionally a threshold applied to
the output of the Naka-Rushton function. For each of
the eight neurons, rmax and z were free parameters, and
Chirimuuta and Tolhurst adjusted these 16 parameters
by hand to fit their psychophysical data. Our analytical
approach allows us to reduce the parameter set and,
more importantly, to understand exactly what contri-
bution each parameter makes to the decoding preci-
sion. We can then fix most parameters to
physiologically plausible values and adjust no more
parameters than we need to fit the data (i.e., one
parameter for fitting Weber’s law and two parameters
for fitting the near-miss to Weber’s law).

Our general approach to modeling psychophysical
performance also has much in common with those of
Goris et al. (2013) and Itti, Koch, and Braun (2000).
In both cases, the stimulus was encoded over a
population of model neurons which were assumed to
be decoded in a way that was optimal (or quasiopti-
mal) for the psychophysical task. The emphasis in
both of those studies was to explain a large set of data
using a single model. The emphasis in our study has
been to derive mathematical relationships between the
neuronal response properties and characteristics of
performance.

The distribution of neurons along the stimulus
axis

Although our Constant and Exponential parame-
terizations of the model with Naka-Rushton tuning
functions are successful in giving rise to, respectively,
Weber’s law and the near-miss to it, one might object
that these models cannot be right, because the semi-
saturation contrasts measured in physiological experi-
ments have neither a constant nor an exponential
distribution on the log-contrast axis—the distribution
is close to Gaussian (see figure 6 of Clatworthy et al.,
2003, and supplementary appendix I of May &
Solomon, 2015). However, it is difficult to know which
neurons are being used for a particular task; the
distribution of Clatworthy et al. may include many
neurons that do not contribute to contrast discrimina-
tion performance. In addition, it should be noted that
their empirical distribution was compiled by pooling a
large group of neurons, regardless of the neurons’
stimulus preferences. Psychophysical contrast sensitiv-
ity (the reciprocal of detection threshold) varies greatly
across spatial and temporal frequency (Robson, 1966),
suggesting that the lowest semisaturation contrast
(zmin) would vary greatly between different subpopu-

lations tuned to different spatiotemporal frequency
combinations. Even if the distribution of z were flat,
say, between zmin and zmax for each subpopulation, by
pooling the subpopulations we would be adding
together distributions with different lower limits,
creating the graded drop-off that we see in the full
population. A similar argument could be made
regarding the upper end of the distribution.

Different kinds of noise

In most psychophysical models, the noise is a
random variable added to the model’s deterministic
response, and so the variance of the noise is the
variance of the model’s output signal. In our model, the
output signal is the estimated stimulus value, and the
variance on this output signal does not necessarily
show the same characteristics as the noise on the
neurons itself. For example, in our model, the variance
of the noise on a single neuron increases with the mean
response according to Equation 13: Variance is
approximately proportional to the mean for low firing
rates and approximately proportional to the square of
the mean for high firing rates. However, for the
Constant parameterization, the variance of the esti-
mated log contrast is constant with respect to the
stimulus level. Similarly, Sanborn and Dayan (2011)
showed that in their model, with a linear transducer
and Gaussian noise with variance proportional to
contrast, the variance of the stimulus estimate was
proportional to contrast only at very high contrasts: At
low contrasts, the variance of the stimulus estimate was
proportional to the square of the contrast. In summary,
with a population coding model, the characteristics of
the noise on the model’s output are not necessarily
similar to the characteristics of the noise shown by
individual neurons.

Physiological plausibility versus mathematical
tractability

In any attempt to model brain processes, there is a
trade-off between physiological plausibility and math-
ematical tractability. As we make the model more and
more realistic from a biological point of view, it
becomes harder and harder to understand the model’s
psychophysical behavior. Thus in modeling psycho-
physical behavior, it is not always desirable for the
mechanisms of the model to be as realistic and complex
as when we are modeling the behavior of individual
neurons.

Traditionally, psychophysical performance has usu-
ally been modeled using very simple models, in which
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real-valued signals are sent through a deterministic
transducer and (usually Gaussian) noise is added to the
transducer’s output (e.g., Legge & Foley, 1980; Wilson,
1980; Meese et al., 2006). This kind of model is
straightforward to understand mathematically and can
provide a useful functional description of the system,
because the relationships between model characteristics
and performance characteristics are well understood
(May & Solomon, 2013). However, the transducer
model is such a simplification of the biological reality
that it may shed little light on the connection between
psychophysical performance and the properties of the
neurons.

In the work presented here, we have attempted to
push our psychophysical modeling much closer to-
wards physiological plausibility without losing the
mathematical tractability that traditional models ben-
efit from. To allow mathematical analysis of our model,
we had to make some simplifying assumptions.
Nevertheless, our model has realistic tuning functions
or contrast-response functions, and responds with
discrete, integer spike counts that are generated by a
promising new model of neuronal variability (Goris et
al., 2014), which gives rise to a realistic correlation
structure in which correlations increase with spike rate
and tuning similarity. We derived equations that
accurately predict the model’s performance and reveal
surprisingly simple relationships between psychophys-
ical performance and the neuronal parameters.

Keywords: Fisher information, decoding, discrimina-
tion, neuron, Weber’s law
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Footnote

1 In this article, we use the word ‘‘trial’’ in two ways.
Firstly, we use it in the way a physiologist would, to

mean a stimulus presentation. Secondly, we use it to
mean a trial on a two-alternative forced-choice
psychophysical experiment, in which the observer is
presented with two stimuli and has to make a response.
To distinguish these two meanings, we always refer to
the latter type of trial as a ‘‘2AFC trial.’’
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