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Abstract

A generalized triangle group is a group that can be presented in the form G =
〈 x, y | xp = yq = w(x, y)r = 1 〉 where p, q, r ≥ 2 and w(x, y) is a cyclically re-
duced word of length at least 2 in the free product Zp∗Zq = 〈 x, y | xp = yq = 1 〉.
Rosenberger has conjectured that every generalized triangle group G satisfies the
Tits alternative. It is known that the conjecture holds except possibly when the
triple (p, q, r) is one of (2, 3, 2), (2, 4, 2), (2, 5, 2), (3, 3, 2), (3, 4, 2), or (3, 5, 2). In
this paper we show that the Tits alternative holds in the case (p, q, r) = (3, 4, 2).
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1 Introduction

A generalized triangle group is a group that can be presented in the form

G = 〈 x, y | xp = yq = w(x, y)r = 1 〉

where p, q, r ≥ 2 and w(x, y) is a cyclically reduced word of length at least 2 in the
free product Zp ∗ Zq = 〈 x, y | xp = yq = 1 〉 that is not a proper power. It was
conjectured by Rosenberger [15] that every generalized triangle group G satisfies the
Tits alternative. That is, G either contains a non-abelian free subgroup or has a
soluble subgroup of finite index.

If 1/p + 1/q + 1/r < 1 then G contains a non-abelian free subgroup [2]; if r ≥ 3
then the Tits alternative holds, and in most cases G contains a non-abelian free
subgroup [8]. (These results are also described in the survey article [9] and in [10].)
The cases r = 2, 1/p+ 1/q + 1/r ≥ 1 have had to be treated on a case by case basis.
The Tits alternative was shown to hold for the cases (3, 6, 2), (4, 4, 2) in [13], and for
the cases (2, q, 2) (q ≥ 6) in [1],[3],[4],[6],[14]. Thus the open cases of the conjecture
are (p, q, r) = (2, 3, 2), (2, 4, 2), (2, 5, 2), (3, 3, 2), (3, 4, 2), and (3, 5, 2). In this paper
show that the conjecture holds for the case (3, 4, 2):
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Main Theorem. Let Γ = 〈 x, y | x3 = y4 = w(x, y)2 = 1 〉 where w(x, y) = xα1yβ1 . . .

xαkyβk , 1 ≤ αi ≤ 2, 1 ≤ βi ≤ 3 for each 1 ≤ i ≤ k where k ≥ 1. Then the Tits
alternative holds for Γ.

Benyash-Krivets and Barkovich [5],[6] have proved this result when k is even, and
for this reason we focus on the case when k is odd.

2 Preliminaries

We first recall some definitions and well-known facts concerning generalized triangle
groups; further details are available in (for example) [9].

Let G = 〈 x, y | x` = ym = w(x, y)2 = 1 〉 where w(x, y) = xα1yβ1 . . . xαkyβk ,
1 ≤ αi < `, 1 ≤ βi < m for each 1 ≤ i ≤ k where k ≥ 1. A homomorphism
ρ : G→ H (for some group H) is said to be essential if ρ(x), ρ(y), ρ(w) are of orders
`,m, 2 respectively. By [2] G admits an essential representation into PSL(2,C).

A projective matrix A ∈ PSL(2,C) is of order n if and only if tr(A) = 2 cos(qπ/n)
for some (q, n) = 1. Note that in PSL(2,C) traces are only defined up to sign. A
subgroup of PSL(2,C) is said to be elementary if it has a soluble subgroup of finite
index, and is said to be non-elementary otherwise.

Let ρ : 〈 x, y | x` = ym = 1 〉 → PSL(2,C) be given by x 7→ X, y 7→ Y where X,Y
have orders `,m, respectively. Then w(x, y) 7→ w(X,Y ). By Horowitz [12] trw(X,Y )
is a polynomial with integer coefficients in trX, trY, trXY , of degree k in trXY .
Since X,Y have orders `,m, respectively, we may assume (by composing ρ with an
automorphism of 〈 x, y | x` = ym = 1 〉, if necessary), that trX = 2 cos(π/`), trY =
2 cos(π/m). Moreover (again by [12])X and Y can be any elements of PSL(2,C) with
these traces. We refer to trw(X,Y ) as the trace polynomial of G. The representation
ρ induces an essential representation G → PSL(2,C) if and only if trρ(w) = 0; that
is, if and only if trXY is a root of trw(X,Y ). By [12] the leading coefficient of
trw(X,Y ) is given by

c =
k∏

i=1

sin(αiπ/`) sin(βiπ/m)
sin(π/`) sin(π/m)

. (1)

Now if X,Y generate a non-elementary subgroup of PSL(2,C) then ρ(G) (and
hence G) contains a non-abelian free subgroup. Thus in proving that G contains a
non-abelian free subgroup we may assume thatX,Y generate an elementary subgroup
of PSL(2,C). By Corollary 2.4 of [15] there are then three possibilities: (i) X,Y
generate a finite subgroup of PSL(2,C); (ii) tr[X,Y ] = 2; or (iii) trXY = 0. The
finite subgroups of PSL(2,C) are the alternating groups A4 and A5, the symmetric
group S4, cyclic and dihedral groups (see for example [7]). The Fricke identity

tr[X,Y ] = (trX)2 + (trY )2 + (trXY )2 − (trX)(trY )(trXY )− 2

implies that (ii) is equivalent to trXY = 2 cos(π/` ± π/m). These values occur as
roots of trw(X,Y ) if and only if G admits an essential cyclic representation. Such a
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representation can be realized as x 7→ A, y 7→ B where

A =

(
eiπ/` 0

0 e−iπ/`

)
, B =

(
e±iπ/m 0

0 e∓iπ/m

)
.

We summarize the above as

Lemma 1 Let G = 〈 x, y | x` = ym = w(x, y)2 = 1 〉. Suppose G → PSL(2,C) is
an essential representation given by x 7→ X, y 7→ Y , where trX = 2 cos(π/`), trY =
2 cos(π/m). If G does not contain a non-abelian free subgroup then one of the follow-
ing occurs:

1. X,Y generate A4, S4, A5 or a finite dihedral group;

2. trXY = 2 cos(π/`± π/m);

3. trXY = 0.

Case (2) occurs if and only if G admits an essential cyclic representation.

3 Proof of Main Theorem

Throughout this section Γ will be the group defined in the Main Theorem.

Lemma 2 If Γ admits an essential cyclic representation then Γ contains a non-
abelian free subgroup.

Proof
Let ρ : Γ → Z12 be an essential representation. Then K = kerρ has a deficiency zero
presentation with generators

a1 = yxy−1x−1, a2 = y2xy−2x−1, a3 = y3xy−3x−1,

a4 = xyxy−1x−2, a5 = xy2xy−2x−2, a6 = xy3xy−3x−2,

and with relators

W ′(ai, . . . , a6, a1, . . . , ai−1)W ′(y2aiy
2, . . . , y2a6y

2, y2a1y
2, . . . , y2ai−1y

2) (1 ≤ i ≤ 6)

where W ′ is a rewrite of W .
Let S = { [ai, aj ], ai(y2aiy

2) (1 ≤ i, j ≤ 6) }, and let L,N respectively be the
normal closures of S and S ∪ {a6} in K. Noting that

y2a1y
2 = a3a

−1
2 , y2a2y

2 = a−1
2 , y2a3y

2 = a1a
−1
2 ,

y2a4y
2 = a2a6a

−1
5 a−1

2 , y2a5y
2 = a2a

−1
5 a−1

2 , y2a6y
2 = a2a4a

−1
5 a−1

2 ,

we have that K/L ∼= Z4 and K/N ∼= Z3, and hence that N/N ′ 6= 0.
Let φ : K → K be given by ai 7→ y2aiy

2 (1 ≤ i ≤ 6). It is clear from the
presentation of K that φ is an automorphism of K; furthermore φ(N) = N . In the
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abelian group K/N , φ(ai) = y2aiy
2 = a−1

i (1 ≤ i ≤ 6). That is, φ induces the
antipodal automorphism α 7→ −α on K/N . By Corollary 3.2 of [13], K contains a
non-abelian free subgroup. �

We will write the trace polynomial of Γ as τ(λ) = trw(X,Y ), where tr(X) = 1,
tr(Y ) =

√
2, λ = tr(XY ). By Lemmas 1 and 2 we may assume that trXY = 0 or

X,Y generate A4, S4, or A5. But Y has order 4 so X,Y cannot generate A4 or A5. If
X,Y generate S4 then the product XY has order 2 or 4 so trXY = 0,±

√
2. Suppose

trXY = −
√

2. It follows from the identity

trXY + trX−1Y = (trX)(trY )

that trX−1Y = 2
√

2. Replacing X by X−1 in Lemma 1 shows that Γ contains a
non-abelian free subgroup. Thus we may assume that the only roots λ = trXY of τ
are λ = 0,

√
2. Using (1) the leading coefficient of τ is given by c = ±(

√
2)κ where κ

denotes the number of values of i for which βi = 2. Hence τ(λ) takes the form

τ(λ) = (
√

2)κλs(λ−
√

2)k−s (2)

where s ≥ 0. Moreover, Theorem 2 of [6] implies that the Main Theorem holds when
k is even, so we may assume that k is odd.

Let

A =

(
eiπ/3 0

1 e−iπ/3

)
, B =

(
eiπ/4 z

0 e−iπ/4

)
.

Then trA = 1, trB =
√

2, trAB = z − (
√

6 −
√

2)/2. Consider the represen-
tation ρ : 〈 x, y | x3 = y4 = 1 〉 → PSL(2,C) given by x 7→ A, y 7→ B. Then
trρ(xα1yβ1 . . . xαkyβk) = τ(z − (

√
6−

√
2)/2) whose constant term (by (2)) is

±(
√

2)κ((
√

6−
√

2)/2)s((
√

6 +
√

2)/2)k−s

which simplifies to
±(
√

2)κ((
√

6 +
√

2)/2)k−2s.

Now the constant term in tr(Aα1Bβ1 . . . AαkBβk) is equal to

2 cos

(
(4
∑k

i=1 αi + 3
∑k

i=1 βi)π
12

)
.

Thus (
√

2)κ((
√

6+
√

2)/2))k−2s = 2 cos
(

(4
∑k

i=1 αi+3
∑k

i=1 βi)π
12

)
and since k is odd, this

only happens if κ = 0 and k − 2s = ±1. It follows that

4
k∑

i=1

αi + 3
k∑

i=1

βi = 1, 5, 7, 11 mod 12. (3)

Since κ = 0 there is no value of i for which βi = 2 and hence Γ maps homomor-
phically onto the group

Γ̄ = 〈 x, y | x3 = y2 = w̄(x, y)2 = 1 〉 (4)
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where w̄(x, y) = xα1y . . . xαky. If w̄ is a proper power then Γ̄ contains a non-abelian
free subgroup by [2]. Thus we may assume that w̄ is not a proper power, and so (4)
is a presentation of Γ̄ as a generalized triangle group.

We will write the trace polynomial of Γ̄ as σ(µ) = trw̄(X̄, Ȳ ), where tr(X̄) = 1,
tr(Ȳ ) = 0, µ = tr(X̄Ȳ ). It follows from (3) that

∑k
i=1 αi 6= 0 mod 3 so Γ̄ admits

no essential cyclic representation. By Lemma 1 we may assume that µ = 0 or X̄, Ȳ
generate A4, S4, A5 or a finite dihedral group, in which case X̄Ȳ has order 2, 3, 4, or
5 and hence µ = 0,±1,±

√
2, (±1 ±

√
5)/2. Moreover X̄ is of order 4 in SL(2,C)

so X̄−1 = −X̄ and thus tr(X̄−1Ȳ ) = −µ and trw̄(X̄, Ȳ ) = (−1)ktrw̄(X̄−1, Ȳ ), so
σw(µ) = ±σw(−µ). Thus µ and −µ occur as roots of σ with equal multiplicity.
By (1) the leading coefficient of σ is ±1 so

σ(µ) = ±µu1(µ2 − 1)u2(µ2 − 2)u3(µ2 − (3 +
√

5)/2)u4(µ2 − (3−
√

5)/2)u5

where u1, u2, u3, u4, u5 ≥ 0 and u1 + 2u2 + 2u3 + 2u4 + 2u5 = k. Since tr(X̄Ȳ ) is a
polynomial with integer coefficients in trX̄ = 1, trȲ = 0 we have that u5 = u4 so

σ(µ) = ±µu1(µ2 − 1)u2(µ2 − 2)u3(µ4 − 3µ2 + 1)u4 (5)

and u1 + 2u2 + 2u3 + 4u4 = k. Let

Ã =

(
eiπ/3 0

1 e−iπ/3

)
, B̃ =

(
i z

0 −i

)
.

Then trÃ = 1, trB̃ = 0, trÃB̃ = z −
√

3. Now the constant term in σ(z −
√

3)
is (−

√
3)u1 · 2u2 . But the constant term in tr(Ãα1B̃ . . . ÃαkB̃) is 2 cos((2

∑k
i=1 αi +

3k)π/3) = ±
√

3 so u1 = 1, u2 = 0 and thus k = 1 + 2u3 + 4u4.

Lemma 3 If
√

2 is a repeated root of σ(µ) then Γ contains a non-abelian free sub-
group.

Proof
Let q : Γ → Γ̄ denote the canonical epimorphism. By hypothesis, there is an essential
representation ρ : Γ̄ → PSL(2,C[µ]/(µ−

√
2)2). Indeed, we can construct ρ explicitly

via:

ρ(x) =

(
eiπ/3 µ

0 e−iπ/3

)
, ρ(y) =

(
0 −1
1 0

)
.

Composing this with the canonical epimorphism

ψ : PSL(2,C[µ]/(µ−
√

2)2) → PSL(2,C[µ]/(µ−
√

2)) ∼= PSL(2,C)

gives an essential representation ρ̃ = ψ ◦ ρ : Γ̄ → PSL(2,C) with image S4, corre-
sponding to the root

√
2 of the trace polynomial.

Let K̄ denote the kernel of ρ̃, V the kernel of ψ, and K the kernel of the composite
map ρ̃ ◦ q : Γ → PSL(2,C). Then V is a complex vector space, since its elements
have the form ±(I + (µ−

√
2)A) for various 2× 2 matrices A, with multiplication

[±(I + (µ−
√

2)A)][±(I + (µ−
√

2)B)] = ±(I + (µ−
√

2)(A+B)).
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Now K̄ is generated by conjugates of (xy)4 and ρ((xy)4) = −I + (µ −
√

2)M

where M =

(
2
√

2 −2(1 + i
√

3)
2(1− i

√
3) −2

√
2

)
. Since M is non-zero, K̄ (and hence K)

maps onto the free abelian group of rank 1. Let N be a normal subgroup of K such
that K/N ∼= Z.

Note that K is the fundamental group of a 2-dimensional CW-complex X arising
from the given presentation of Γ. This complex X has 24 cells of dimension 0, 48
cells of dimension 1, and 24(1

4 + 1
3 + 1

2) = 26 cells of dimension 2. Here, 24/4 = 6 of
the 2-cells (call them α1, . . . , α6, say) arise from the relator y4, 24/3 = 8 (α7, . . . , α14,
say) arise from the relator x3, and 24/2 = 12 (α15, . . . , α26, say) arise from the relator
w(x, y)2. Moreover, α1, . . . , α6 are attached by maps which are 2nd powers. Let X̂
be the regular covering complex of X corresponding to the normal subgroup N of K
and let α̂i denote a lift of the 2-cell αi. Then each of α̂1, . . . , α̂6 is a 2-cell attached
by a map which is a 2nd power.

Let GF2 denote the field of 2 elements. Now H2(X̂,GF2) is a subgroup of the
2-chain group C2(X̂,GF2) and since K/N freely permutes the cells of X̂, C2(X̂,GF2)
is a free GF2(K/N)-module on the basis α̂1, . . . , α̂26. Let Q be the free GF2(K/N)-
submodule of C2(X̂,GF2) of rank 6 generated by α̂1, . . . , α̂6. Since these 2-cells
are attached by maps which are 2nd powers, their boundaries in the 1-chain group
C1(X̂,GF2) are zero. Thus Q is a subgroup of H2(X̂,GF2). Since the rank of Q is
greater than χ(X) = 2, Theorem A of [13] implies that K, and hence Γ, contains a
non-abelian free subgroup �

Lemma 4 If (1+
√

5)/2 is a repeated root of σ(µ) then Γ contains a non-abelian free
subgroup.

Proof
The proof is similar to that of Lemma 3. In this case ρ̃ has image A5, corresponding to
the root (1+

√
5)/2. The complex X has 60 0-cells, 120 1-cells, and 60(1

4 + 1
3 + 1

2) = 65
2-cells (so χ(X) = 5). Moreover, 60/4 = 15 of the 2-cells (call them α1, . . . , α15,
say) are attached by maps which are 2nd powers. As before, the free GF2(K/N)-
submodule, Q, of C2(X̂,GF2) of rank 15 generated by α̂1, . . . , α̂15 is a subgroup of
H2(X̂,GF2). Since the rank of Q is greater than χ(X), Theorem A of [13] again
implies that K contains a non-abelian free subgroup. �

By Lemmas 3 and 4 we may assume u3, u4 ≤ 1 so k ≤ 7. A computer search
reveals that if k = 3 or 7 then there is no word w(x, y) such that τ(λ) is of the
form (2). If k = 5 then (up to cyclic permutation, inversion, and automorphisms
of 〈 x | x3 〉 and 〈 y | y4 〉) the only word w(x, y) with τ(λ) of the form (2) is
w = xyxyx2y3x2yxy3. In this case, a computer search using GAP [11] shows that Γ
contains a subgroup of index 4 which maps onto the free group of rank 2. If k = 1
then either Γ = 〈 x, y | x3 = y4 = (xy)2 = 1 〉 or Γ = 〈 x, y | x3 = y4 = (xy2)2 = 1 〉.
In the first case Γ ∼= S4, and in the second Γ can be written as an amalgamated free
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product
Γ = 〈 x, y2 | x3 = y4 = (xy2)2 = 1 〉 ∗

〈 y2 | y4 〉
〈 y | y4 〉

in which the amalgamated subgroup has index 3 in the first factor and index 2 in the
second, and thus Γ contains a non-abelian free subgroup. This completes the proof
of the Main Theorem.
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