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Abstract
Using a custom build spectrophotometer equipped with Helmholtz coils and designed to

study the effects of magnetic fields on enzyme reactions in real-time we have investigated

the influence of fields, from 100 μT to 10 mT and at a variety of field frequencies, on the

membrane bound enzymes alkaline phosphatase and acetylcholinesterase. We have also

employed other methods to apply a magnetic field, e.g. Biostim. In contrast to earlier reports

we have been unable to detect any field effects on these enzymes under any field/frequency

regime. We discuss possible reasons for the discrepancy between this and earlier work and

note the particularly complex influence of small temperature changes that may confound

analysis.

Introduction
Over many years, and especially more recently, there has been considerable interest in the
effects of magnetic fields on biological systems [1–10]. Much of this interest has focused on the
effects of low intensity fields on the reactivity of light induced radicals. The reason for this is
that there is good experimental evidence that navigation during the migration of some birds
and insects is partly based on sensing the earth’s magnetic field [6–10] and that photoactivated
cryptochrome, a flavoprotein located in the eye of the organism, is the magnetosensor [6, 11–
13]. Furthermore, there is a well established theory that can provide a mechanism through
which low strength magnetic fields may influence the temporal behavior of correlated radical
pairs [6, 11], such as may be formed in cryptochrome during photoreduction or, possibly, dur-
ing re-oxidation of the photoreduced protein by oxygen [14].

Alternative radical based mechanisms through which biological systems may be influenced
by magnetic fields have also been advanced. For example, Buchachenko and co-workers have
proposed a mechanism based upon the fact that one of the isotopes of Mg, namely 25Mg, pos-
sesses a magnetic nucleus [15]. The proposal is that Mg participates in the mechanism of Mg
dependent kinases through phosphate-to-Mg electron transfer forming a radical-ion-pair and
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that the two spin states of this pair, singlet and triplet, contribute differently to ATP synthesis
with the triplet state being the more efficient. Because of coupling between the unpaired elec-
tron and the magnetic nucleus, 25Mg was proposed to enhance the activity of kinases by induc-
ing a higher population of the triplet state and to make the enzyme highly sensitive to applied
magnetic fields. Buchachenko et al. reported an increase in the rate of ATP synthesis catalysed
by creatine kinase (V. Xanthia venom) in the presence 25Mg and an increase by 50% at ~50 mT
field strength. Recent attempts to reproduce these results have, however, failed [16].

In 2005, Morelli et al. (2005) studied the effects of extremely low frequency (ELF) electro-
magnetic fields (EMF’s) on several (seven in total) membrane-associated enzymes [17]. They
claimed that the activities of three of these (alkaline phosphatase, acetylchlinesterase, and phos-
phoglycerate kinase) exhibited a decrease in activity (about 50%) when exposed to ELF EMF’s
and that this effect disappeared when the enzymes were dissolved in a buffer containing the
detergent Triton x-100, suggesting that fields may modify the membrane organization and
structure by acting directly on the anisotropy of diamagnetic susceptibility of membrane phos-
pholipids. In subsequent studies on acetylcholinesterase activity in cerebellum synaptosomal
membranes, Ravera et al. (2010) reported the effects of magnetic fields (50 Hertz sinusoidal)
exhibiting a sharp threshold, having no effect below a certain field strength and a significant
effect above this [18]. This behaviour is strongly reminiscent of a phase change in the mem-
brane lipid and this is a possible mechanism through which magnetic field influence membrane
bound enzymes. Previous physico-chemical studies by Caseli and co-workers support the find-
ings of Morelli et al., where lipid-anchored alkaline phosphatase incorporated into artificial
phospholipid monolayers showed a substantial decrease in enzyme activity following a phase
transition on applied increases in pressure [19]. Indeed, observed magnetic field effects on the
enzyme acetylcholinesterase are quite numerous [18, 19–21], as they are for a few other mem-
brane bound enzymes [5]. Most of these reports focus on the effects of magnetic fields on these
enzymes being attributed to the diamagnetic anisotropic properties of the membrane phos-
pholpids to which they are bound [5].

The intriguing findings of Morelli et al. have important implications for biology and indeed
human health, and prompted us to further investigate the effects of magnetic fields on the
activity of alkaline phosphatase (from a microsomal preparation from fresh bovine liver) and
acetylcholinesterase (from ghost cell membranes from fresh erythrocytes). We have adhered
rigidly to the protocols reported by Morelli et al. for enzyme preparation (ensuring that the
enzymes remain membrane bound) and for the assay systems. In addition we have employed a
specially designed spectrometer equipped with paired Helmholtz coils capable of real-time
spectroscopic assay [16]. For consistency with the earlier work we have also applied magnetic
fields using the Biostim equipment (see Materials and Methods), that was used by Morelli et al.
The Biostim is commercially available and has been used clinically to aid bone healing follow-
ing fracture and the findings that this device decreases the activity of specific membrane-asso-
ciated enzymes may therefore have important implications for our understanding of the
proposed beneficial effects of magnetic fields. With this in mind we consider it warranted to
revisit these studies given their possible medical importance and the use of the Biostim in clini-
cal contexts.

The real-time spectroscopic assay we employed has advantages over the fixed time point
assay used by Morelli et al. as it enables one to follow entire time courses and to apply fields of
a chosen strength and frequency continuously or in an “on and off”manner at any time during
the time course of a reaction, thereby permitting direct observation of any changes in the reac-
tion rate on application of a field.
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Materials and Methods
The blood samples used in this study were sourced from the blood bank based at Colchester Gen-
eral Hospital,Turner Road, Colchester, Essex, CO4 5JL, U.K. (URL www.colchesterhospital.nhs.
uk/pathology). These samples were of anonymous origin and is standard procedure. These sam-
ples were of course suitably screened by the Hospital's Pathology/Haemotology Departmant for
the presence of the main blood bourne diseases such as HIV, HBV, HCV, HTLV, Syphilis,
Malaria, to name but a few, to make them safe and so available for patient donation. Our labora-
tory based at the University of Essex and where this work was conducted, is one that specialises
in handling blood samples like those of donated blood obtained fromHospitals, as we work pre-
dominantly on the biochemical mechanisms of how haemoglobin functions.

Magnetic field production
Dual Helmholtz coil/spectrometer system. We have constructed a dual beam spectro-

photometer with sample and reference compartments each between paired Helmholtz coils.
The coils surrounding the sample apply a field, static or at a selected frequency, while those of
the reference are counter wound so that no field is produced but all heating and vibration
effects are equivalent to the sample coils. The generator system supplies a sinusoidal wave
shape on application of a desired frequency. The dual Helmholtz coils were placed approxi-
mately 1 m apart to avoid any mutual stray fields. Care was taken to ensure that no metal (espe-
cially iron) containing materials were in the local vicinity of the apparatus, and all the
equipment was arranged on a wooden bench and away from electrical wires. These procedures
ensured that no unwanted fields were detected in the vicinity of the apparatus on mapping the
area using a Hall probe. The spectrophotometer can follow the activity of enzyme reactions in
real time. The enzyme reaction mixture is split, one portion placed in each coil, and both sam-
ples are monitored. The apparatus has been fully described previously [16].

The temperature was maintained at a 25°C throughout all experiments and, most impor-
tantly, any temperature difference between the two reaction mixtures one where a field could
be applied (sample) and the other not (reference) was kept below 0.1°C to avoid any confound-
ing influence arising from temperature dependent activity differences between the two reaction
mixtures. The apparatus was housed in a constant temperature room and the optical cuvettes
placed in custom built Perspex water jackets connected to a temperature controlled water bath.
The coils were equipped with individually shaped aluminium cooling fins to ensure that their
temperatures were identical. In addition the temperature was monitored periodically using
thermometers (accurate to 0.1°C) placed in the two reaction mixture cells, sample and refer-
ence. The specific temperature of 25°C that we used was identical to that reported by Morelli
et al. for their studies.

Biostim system. ELF EMF’s were also produced by an apparatus (Biostim Igea, Modena,
Italy) used mainly for clinical applications (e.g. accelerate the healing of bone fractures). The
generator system supplies a square wave with a maximal applied tension of 180 V, a period of
13.3 ms (75 Hz of frequency), a duty cycle of 10%, to a couple of Helmoltz coils (each with
1000 turns of copper wire of 0.2 mm of diameter) with internal and external diameter of 72.5
and 82.5 mm, respectively. Measurements of the maximal intensity of the magnetic field with a
gaussmeter, showed that it was fairly constant midway between the coils, giving values of about
2.5 mT at a distance of 3 cm.

Sample preparations
Microsome preparation. Fresh (~1 hour post mortem) bovine liver was chopped and

homogenized (Waring/Commercial Heavy Duty Blender) in Tris–HCl (20 mM, pH 7.5)
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containing 0.25 M sucrose. The homogenate was centrifuged for 10 minutes at 1000g. The
supernatant was collected and centrifuged for 20 min at 20,000g. The resulting supernatant
containing cytosol and microsomes was collected and centrifuged at 100,000g for 1 hour. The
pellet containing microsomes was stored at -80°C.

Ghost cell membrane preparation from human erythrocytes. Starting from 20 ml
human blood treated with 1 mg/ml EDTA (to avoid coagulation). The sample was centrifuged
at 3000g for 15 minutes at 4°C and the pellet containing erythrocytes was collected and re-sus-
pended in 150 mM KCl and 20 mM Tris–HCl, pH 7.4 and centrifuged/washed three to five
times depending at 5000g for 15 minutes. To obtain the erythrocyte membranes, the last pellet
was re-suspended in hemolysis buffer containing 1 mM EDTA and 10 mM Tris–HCl, pH 7.4
for. . . and then centrifuged at 20,000g for 30 minutes. The pellet containing erythrocyte mem-
branes was re-suspended in a few milliliters of distilled water. Samples were stored at -80°C.

Enzyme activity measurements
Alkaline phosphatase activity. Alkaline phosphatase activity was measured by using

4-nitrophenylphosphate as a substrate and monitoring 4-nitrophenol formation. The substrate
concentration range studied was from 0.07 to 5 mM. Microsomes from liver were added to a
reaction mixture containing 4-nitrophenylphosphate, 0.1 M glycine buffer (pH 10.5), 0.1 mM
ZnCl2, and 1 mMMgCl2. The increase in absorbance at 405 nm (ε = 1.85 mmol-1 cm-1) is pro-
portional to the nitrophenol produced. Microsome concentrations were varied in order to opti-
mize reaction times.

Acetylcholinesterase activity. Acetylcholinesterase activity was measured by using acet-
ylthiocholine chloride as substrate and monitoring the thiocoline production. The substrate
concentration range studied was from 0.025 to 0.40 mM. Ghost erythrocyte membrane prepa-
rations were added to a reaction mixture containing acetylthiocholine in 50 mM phosphate
buffer, pH 7.2. DTNB (0.5 mM) was added. Thiocoline reaction with DTNB formed thionitro-
benzoate (ε405 = 1.33 mM-1 cm-1) which was monitored spectrophotometrically by following
the rise in absorbance at 405 nm. Ghost erythrocyte membrane concentrations were varied in
order to optimize reaction times.

Determination of protein concentrations. The activities of the enzymes alkaline phos-
phatase and acetylcholinesterase in the work of Morelli et al. were expressed in U/mg (defined
as n/moles of substrate transformed/min/mg protein). Therefore, the total amount of protein
in our enzyme samples where microsomes (for alkaline phosphatase) and ghost erythrocyte
membranes (for acetylcholinesterse) were being used was calculated. This was achieved by car-
rying out Biuret (protein determination) assays using known amounts of microsomal and
ghost erythrocyte membrane samples [22]. A standard curve was made by adding known
amounts of bovine serum albumin (BSA) (10 mg/ml stock) to Biuret reagent, the concentration
range of BSA being 0–0.5 mg/ml final in 0.1 mg/ml increments, and leaving to stand for 15
mins at room temperature. An increase in absorbance (540–460 nm) was observed on increas-
ing [BSA], and a line of best fit plotted to the data points. Suitable known dilutions of micro-
somes and ghost erythrocyte membranes were made such that following the Biuret reaction as
described for the standards, the final absorbance value obtained was within the range of the
standard curve. All experiments were carried out in duplicate.

Outline of MFE exposures we and Morelli’s group used
To fully understand the MFE exposure conditions/systems we and Morelli’s group (2005) used
in the studies on both enzymes alkaline phosphatase and acetylcholinesterase, these are set out
in Table 1.
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Results
Fig 1A shows the time courses for the release of 4-nitrophenol from 4-nitrophenlyphosphate
catalysed by alkaline phosphatase, in the absence and presence of a magnetic field (2.5 mT/75
Hz) applied using the dual Helmholtz/spectrophotometer system. The inset to Fig 1A shows a
plot of the time course with applied field (AF) minus that in the absence of the applied field
(C). Fig 1B shows similar time courses in the presence of the field applied by the Biostim appa-
ratus. The difference between Biostim on (bioon) and Biostim off (biooff) is also shown, see
inset. The activity of alkaline phosphatase (AF-C) was studied at five different substrate con-
centrations (0.07, 0.1, 0.25, 1, and 5 mM) and at each concentration experiments were carried
out three times (5x3 = 15 experiments in total). Table 2 shows the mean difference in activity
with standard deviation between the two field conditions. The activity of alkaline phosphatase
(bioon-biooff) was also studied at one substrate concentration (0.07 mM), in triplicate. The
mean and standard deviation of the difference in activity, (absorbance/min) between the “field
on” and “field off” conditions were calculated to be 3x10-5 and 2x10-5 ΔA405/min respectively.
This experiment using the Biostim has been designed to be as closely similar in methodology as
possible to that carried out by Morelli et al. [17] in which they observed a marked decrease in
enzyme activity.

In Fig 2 the activity of alkaline phosphatase in the presence and absence (“on” and “off”) of
an applied magnetic field is shown. At the start of the assay all reactant mixtures were placed in
the cuvette which was positioned in the monitoring beam. At t = ~5 mins an aliquot of
enzyme/microsomes was added (denoted 1x enzyme). It can be clearly seen that prior to this
first addition of enzyme, no reaction was observed. A further aliquot of enzyme (2x total) was
added at time = ~9 mins, and on this addition it can be seen that the rate of product formation
doubles. The inset to Fig 2 shows an expanded region of the linear time course of the reaction
in which the field (2.5 mT/75 Hz) was turned “on” and then “off”. A straight line of best fit is
shown plotted through all the data points that start one minute before the field was applied to
one minute after the field was switched “off” (R2 =>0.99), and this shows there is no change in
slope during the time the field was applied. Further more detailed analysis was carried out on
these experiments, where in a single experiment straight lines were fitted to the data points one
minute before the field was turned “on” to one minute after the field remained “on” and, one
minute after the field remained “on” to one minute after the field was turned “off”. This analy-
sis revealed that there was no change in the slopes on the field being turned either “on” or “off”
(R2 values => 0.99). These experiments were carried out five times in total, and all the lines of
best fit were analysed to ascertain if there was any deflection from linearity due to the field. No
significant effect of the field was observed in any of the experiments.

In Fig 3A, the activity (thionitrobenzoate formation, abs. 405 nm) of the enzyme acetylcho-
linesterase in the presence of an externally applied magnetic field (2.5 mT/75 Hz) is shown.
The same reaction is also shown where no external field was applied. The inset to Fig 3A shows
a plot of the applied field (AF) time course minus the no applied field (C) time course. Fig 3B
shows the activity of acetylcholinesterase in the presence and absence of an externally applied
magnetic field using the Biostim apparatus. The Biostim on (bioon) minus Biostim off (biooff)

Table 1. Different MF conditions are denoted as numbers 1, 2 and 3. T = tested and NT = not tested.

MF conditions Biostim Dual Helmholtz/ spectrophotometer

1 2.5 mT, 75 Hz, square wave, 10% on/off duty cycle T Morelli and Silkstone NT
2 2.5 mT, 75 Hz, sinusoidal wave NT T Silkstone

3 2.5 mT static field NT T Silkstone

doi:10.1371/journal.pone.0148369.t001
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plot is also shown for this experiment (see inset). Using the dual Helmholtz/spectrophotometer
system, the activity of acetylcholinesterase (AF-C) was studied at five different substrate con-
centrations (0.025, 0.05, 0.1, 0.2, and 0.5 mM) and at each concentration experiments were car-
ried in triplicate (5x3 = 15 experiments in total). Table 3 shows the results of these
experiments, with the mean and standard deviation for the difference in activity given. Using
the Biostim apparatus and spectrometer system, the activity of acetylcholinesterase (bioon-bio-

off) was studied, in triplicate at each substrate concentration, at the same concentrations as for

Fig 1. Alkaline phosphatase activity in the presence and absence of appliedmagnetic fields. A.
Alkaline phosphatase activity in the presence (2.5 mT/75 Hz) and absence of an applied magnetic field using
the dual Helmholtz/spectrophotometer system. Enzyme activity is assayed by measuring 4-nitrophenol
formation (abs. 405 nm) with time. Inset. Shows a plot of the applied field (AF) time course minus the no
applied field (C) time course. Conditions: [substrate] = 0.07 mM. B. Alkaline phosphatase activity in the
presence (2.5 mT/75 Hz) and absence of an applied magnetic field using the Biostim system. Inset. Shows a
plot of the applied field (biostim on, bioon) time course minus the no applied field (biostim off, biooff) time
course. Conditions: [substrate] = 0.07 mM.

doi:10.1371/journal.pone.0148369.g001
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the dual Helmholtz coil/spectrometer system (5x3 = 15 experiments in total). These results are
reported in Table 4. This experiment using the Biostim has been designed to be as closely simi-
lar in methodology as possible to that carried out by Morelli et al. [17] in which they observed
a marked decrease in enzyme activity.

In Fig 4, the activity of acetylcholinesterase is shown in the presence and absence of an
applied magnetic field on the same sample, the field being switched “on” and the “off” during
the time course (indicated by arrows). At the start of this assay, the reaction mixture was placed
in the cuvette, positioned in the monitoring beam, and at t = ~7 mins an aliquot of enzyme/
ghost cell membranes was added. Prior to this first addition of enzyme no reaction was
observed. The inset to Fig 4 shows an expanded region of the time course of the reaction where
this was linear and the field (2.5 mT/75 Hz) was turned “on” and then “off”. A straight line of

Table 2. For alkaline phosphatase using the dual Helmholtz coil/spectrometer system, the mean (mean) value of the slopes fitted for AF-C for each
substrate concentration is given. The mean value for each substrate concentration used was calculated from 3 separate experiments (n = 3), the slope for
each experimentAF-Cwas fitted using a straight line of best fit with R2 values >0.98 in all cases. The standard deviation (sd) is also given. Similar (less exten-
sive) data is also given for the alkaline phosphatase using the Biostim system (see results).

[substrate] mM 0.07 0.10 0.25 1.00 5.00

mean (x10-5) -0.33 1.00 0.33 6.00 -1.67

sd (x10-5) 8.33 7.00 6.11 3.46 8.14

doi:10.1371/journal.pone.0148369.t002

Fig 2. Alkaline phosphatase activity in the presence of an applied magnetic field (2.5 mT/75 Hz, field
on/field off as indicated by arrows) using the dual Helmholtz/spectrophotometer system. At the start of
the assay no enzyme is present in the reaction mixture. At time = ~5 mins an aliquot of enzyme/microsomes
is added (denoted 1x enzyme), and at time = ~9 mins another aliquot of enzyme/microsomes is added
(denoted 2x enzyme). Inset. A very good straight line fit of the data points for the region 1 min either side of
where the field was applied in an on/off manner (field applied at 12 mins and switched off at 14 mins).

doi:10.1371/journal.pone.0148369.g002
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best fit is shown plotted through all the data points that start one minute before the field was
applied to one minute after the field was switched “off” (R2 =>0.99), and this shows there is
no change in slope during the time the field was applied. Further more detailed analysis was
carried out on these experiments, where in a single experiment straight lines were fitted to the
data points one minute before the field was turned “on” to one minute after the field remained
“on” and, one minute after the field remained “on” to one minute after the field was turned

Fig 3. Acetylcholinesterase activity in the presence and absence of applied magnetic fields. A.
Acetylcholinesterase activity in the presence (2.5 mT/75 Hz) and absence of an applied magnetic field using
the dual Helmholtz/spectrophotometer system. Enzyme activity is assayed by measuring thionitrobenzoate
formation (abs. 405 nm) with time. Inset. Shows a plot of the applied field (AF) time course minus the no
applied field (C) time course. Conditions: [substrate] = 0.025 mM.B. Acetylcholinesterase activity in the
presence (2.5 mT/75 Hz) and absence of an applied magnetic field using the Biostim system. Inset. Shows a
plot of the applied field (biostim on, bioon) time course minus the no applied field (biostim off, biooff) time
course. Conditions: [substrate] = 0.10 mM.

doi:10.1371/journal.pone.0148369.g003
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“off”. This analysis revealed that there was no change in the slopes on the field being turned
either “on” or “off” (R2 values => 0.99). These experiments were carried out five times in total,
and all the lines of best fit were analysed to ascertain if there was any deflection from linearity
due to the field. No significant effect of the field was observed in any of the experiments.

In Fig 5A and 5B, Lineweaver-Burk plots have been calculated from the Michaelis-Menten
kinetics displayed by acetylcholinesterase activity of ghost cell membranes. Fig 5A shows these
plots obtained using the dual Helmholtz coil/spectrometer system and Fig 5B those for the
Biostim spectrometer system. The data points shown for both plots are the mean values of
three experiments at each substrate concentrations and the error bars are the standard devia-
tion. In Table 5 the Vmax and KM values in the presence and absence of externally applied mag-
netic fields are given. The values are very similar to those reported by Morrelli et al. in the
absence of field but in our experiments the Vmax did not exhibit an approximately 50% diminu-
tion in the presence of a field. The analysis/presentation of this experiment using the Biostim,
is almost identical to that carried out by Morelli et al. [17].

In Fig 6A and 6B, the activities of alkaline phosphatase and acetylcholinesterase are shown
in the absence and presence of a 2.5 mT static field. In Fig 6A the time courses for the release of
4-nitrophenol from 4-nitrophenlyphosphate catalysed by alkaline phosphatase is shown, in the
absence and presence of a magnetic field (2.5 mT static field) applied using the dual Helm-
holtz/spectrophotometer system. In Fig 6B the activity (thionitrobenzoate formation, abs. 405
nm) of the enzyme acetylcholinesterase in the absence and presence of an externally applied
magnetic field (2.5 mT static field) is shown. We do not discuss these results, but show them
for a more complete data set.

Discussion
In contrast to the reports by Morelli et al. [17], we have been unable to detect magnetic field
effects on the steady state kinetics of either acetylcholinesterase or alkaline phosphatase. This
discrepancy cannot be explained in terms of the assay conditions as we have paid particular
attention to reproducing the conditions used by these authors, although Morelli et al. [17] do
not report the temperature at which their experiments were performed. We also followed
closely the protocols that were reported by Morelli et al. for the preparation of the membrane
bound enzymes alkaline phosphatase and acetylcholinesterase. In addition, to be sure that
there were no differences in the way in which the field was applied, we undertook experiments
both with the Helmholtz coil system and with the Biostim apparatus used in the earlier studies.

Table 3. For acetylcholinesterase using the dual Helmholtz coil/spectrometer system, the mean (mean) value of the slopes fitted for AF-C for each
substrate concentration is given. The mean value for each substrate concentration used was calculated from 3 separate experiments (n = 3), the slope for
each experimentAF-C was fitted using a straight line of best fit with R2 values >0.98 in all cases. The standard deviation (sd) is also given.

[substrate] mM 0.025 0.05 0.10 0.20 0.40

mean (x10-5) 0.00 -2.00 0.67 -1.00 3.00

sd (x10-5) 2.65 4.36 4.16 2.65 5.57

doi:10.1371/journal.pone.0148369.t003

Table 4. For acetylcholinesterase using the dual Helmholtz coil/spectrometer system, the mean (mean) value of the slopes fitted for bioon-biooff for
each substrate concentration is given. The mean value for each substrate concentration used was calculated from 3 separate experiments (n = 3), the
slope for each experiment bioon-biooff was fitted using a straight line of best fit with R2 values >0.98 in all cases. The standard deviation (sd) is also given.

[substrate] mM 0.025 0.05 0.10 0.20 0.40

mean (x10-5) -1.33 1.67 -13.0 4.00 2.67

sd (x10-5) 5.51 5.13 7.37 5.00 7.51

doi:10.1371/journal.pone.0148369.t004
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One clear difference in which our method of assay is distinct from the previous investigators
is in regard to the method used to monitor activity, the earlier reports employing fixed-time
assays while we have used real-time spectral assays. It is difficult to see how this methodological
difference can account for the discrepancy between the studies.

The mechanism proposed by Morelli et al. to account for the magnetic field effect is that the
activities of the enzymes depend upon the fluidity of the phospholipid membrane in which
they are embedded. The field, acting through the diamagnetic susceptibility of the membrane,
is suggested to orient the lipid and restrain its thermal motion and thus affect the enzyme’s
activities. In support of this proposal Morelli et al. show that in the presence of Triton x-100, a
detergent that dissolves the membrane, the effect of the field is abolished. Although this expla-
nation is feasible in principle the fields that were used in the investigation make this unlikely
on energetic grounds. Given a field of ~10 mT the low magnetic susceptibility for diamagnetic
materials such as lipid molecules indicate an aligning energy of ~10−27 J. This may be com-
pared with thermal energy at 300°K (~kT, where k is the Boltzmann constant) of ~10−21 J, i.e. a
factor of 106 fold greater. Thus one may presume that fields of ~1 mT or less will have unde-
tectable influence on membrane fluidity (see for example [5]). Studies that have demonstrated
the effects of magnetic fields on phospholipids membranes have typically used field of the
order of 1 T or greater [23]. Water soluble proteins or protein domains tethered to membranes
can be affected by magnetic fields through the field-induced orientation/phase change in the
associated membrane e.g. bacterial purple membrane, but again at high field ~10 T [24]. Effects
at lower field strengths have, however, been reported in membranes containing ion channels.

Fig 4. Acetylcholinesterase activity in the presence of an applied magnetic field (2.5 mT/75 Hz, field
on/field off as indicated by arrows) using the dual Helmholtz/spectrophotometer system. At the start of
the assay no enzyme is present in the reaction mixture. At time = ~6.5 mins an aliquot of enzyme/ghost cell
membranes is added. Inset. A very good straight line fit of the data points for the region 1 min either side of
where the field was applied in an on/off manner (field applied at 8 mins and switched off at 10 mins).

doi:10.1371/journal.pone.0148369.g004
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Fig 5. Lineweaver-Burk plots calculated from the Michaelis-Menten kinetics of acetylcholinesterase
from ghost cell membranes. A. Plots for acetylcholinesterase activity in the presence and absence of an
applied magnetic field using the dual Helmholtz/spectrometer system (2.5 mT/75 Hz). B. Plots for
acetylcholinesterase activity using the Biostim apparatus. For each experiment using either apparatus, at any
given substrate concentration, one sample was placed in the counter wound coil where no field could be
applied and the other in the coil or Biostim where a field could be applied, and reactions were followed
simultaneously. Data obtained in the absence of a field is denoted by circles and those in the presence of
field by diamonds. The enzymatic activity V was measured in U/mg, which is defined as nmoles of substrate
converted per minute per mg of protein (nmoles/minute/mg). The protein concentration in mg/ml was
calculated using the Biuret method [19]), and these calculated values were used to establish the total protein
concentration present in the assays.

doi:10.1371/journal.pone.0148369.g005

Table 5. For acetylcholinestersase the Vmax and KM values in the presence and absence of externally appliedmagnetic fields for both apparatus
systems are calculated and given. The control coil in the dual Helmholtz system had no applied field administered in all experiments.

Helmholtz coils Helmholtz coils Biostim

field coil (no applied field) control coil field coil (2.5 mT/75Hz) control coil ON OFF

KM (mM) 0.121 0.116 0.130 0.111 0.109 0.114

Vmax (U/mg) 2.917 2.791 2.985 2.632 2.618 2.667

doi:10.1371/journal.pone.0148369.t005
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For example miniature endplate potentials recorded in the isolated murine presynaptic neuro-
muscular junction were inhibited at relatively low field and exhibited an absolute flux density
threshold of 39.7 mT [25] The authors postulate that this effect is mediated through reorienta-
tion of diamagnetic molecular domains within the membrane. This behaviour has some simi-
larity to that reported by Ravera et al. [18], and one may surmise that if the synaptosomal
membrane associated acetylcholinesterase could also be associated with ion channels within
the membrane that reorientation of these may influence the esterase activity.

Alternatively, small changes in temperature, especially in the region of a phase transition,
may alter membrane fluidity and induce measurable effects in enzyme activity [26]. The field

Fig 6. A. Alkaline phosphatase activity in the presence (2.5 mT static field) and absence of applied magnetic
fields. Conditions: [substrate] = 0.07 mM. B. Acetylcholinesterase activity in the presence (2.5 mT static field)
and absence of an applied magnetic field. Conditions: [substrate] = 0.025 mM. All reactions were carried out
in the dual Helmholtz/spectrophotometer system. The applied field (AF) and no applied field (C) time courses
are shown.

doi:10.1371/journal.pone.0148369.g006
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effects reported by Morelli et al. for alkaline phosphatase exhibits a remarkably sharp transition
between 130 μT and 150 μT the activity halving over this 20 μT range. It is difficult to explain
such behaviour of system in response to a magnetic field without recourse to a mechanism
involving correlated radical pairs. It is more reminiscent of phase transition that is coupled to
temperature, for example the phase transition found in phospholipids lipid membrane that
leads to enhanced fluidity [26]. The temperature dependence of acetycholinesterase, at least, is
complex with clear inflection in the Arhenius plot at around 30°C. indicating a sharp change in
activation energy. Furthermore if enzymes are not assayed at saturating substrate concentra-
tion an increase in temperature will not only increase the rate (and hence Vmax) it is also likely
to alter KM and lead to a change in observed velocity which may be positive or negative.

During the course of our investigations we became aware of the need for extremely close
control of temperature and continuous monitoring of the temperature of sample and reference
reaction mixtures. In our hands differences between sample and reference of<0.1°C (at 25°C)
lead to measurable differences in these membrane bound enzyme’s activities. We suggest,
therefore, that the complex and confounding influences off temperature on these complex
physical systems, comprising mixed phospholipid membrane in which is embedded a dynamic
protein possessing catalytic activities involving multi-step mechanisms, may account for why
Morelli et al. observed magnetic field effects while we did not.

Although we have attempted to reproduce closely the experimental protocols and experi-
mental conditions of Morrelli and Ravera there may be some important differences of which
we are unaware. For example we do not know the phase transition temperature of the mem-
branes we used. One may suppose that any magnetic effect mediated by a reorientation of lipid
or protein within the membrane must depend strongly on temperature. Such orientation
would be energetically easier close to the membrane transition temperature and more difficult
below this temperature. If for example the lipid compositions of the membranes were different
between the preparations we used and those the group based in Italy used, a not unreasonable
proposition given the influence of nutritional differences on membrane composition, then a
temperature of 25°C may or close or relatively far from the membrane transition temperature.
This being the case parallel experiments at this temperature may yield conflicting results.
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