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THE TITS ALTERNATIVE FOR NON-SPHERICAL PRIDE GROUPS

NATALIA KOPTEVA and GERALD WILLIAMS

Abstract

Pride groups, or “groups given by presentations in which each defining relator involves at most two types of
generators”, include Coxeter groups, Artin groups, triangles of groups, and Vinberg’s groups defined by periodic
paired relations. We show that every non-spherical Pride group that is not a triangle of groups satisfies the Tits
alternative.

1. Introduction

Pride groups, or “groups given by presentations in which each defining relator involves at
most two types of generators” [11], include Coxeter groups, Artin groups, triangles of groups,
and Vinberg’s groups defined by periodic paired relations. The cohomology of Pride groups
was considered in [11], geometric invariants were considered in [8], and a Freiheitssatz was
proven in [3].

In this paper we consider the Tits alternative for the class of Pride groups. Recall that a class
of groups C satisfies the Tits alternative if each group in C contains a non-abelian free subgroup
or has a soluble subgroup of finite index. This property is named after Tits who established
that it is satisfied by the class of linear groups [14]; in particular, it holds for Coxeter groups.

The Tits alternative has been considered, for example, for the classes of mapping class groups
of compact surfaces [7, 9], outer automorphism groups of free groups of finite rank [1, 2],
subgroups of Gromov hyperbolic groups [5], groups acting on CAT(0) cubical complexes [12],
triangles of groups [6], and groups defined by periodic paired relations [15, 16].

In this paper we prove the following

Theorem 1. Every non-spherical Pride group G based on a graph with at least 4 vertices

contains a non-abelian free subgroup, unless it is based on the graph shown in Figure 1, in

which case G is virtually abelian and has presentation

〈x1, x2, x3, x4 |x
2
1, x

2
2, x

2
3, x

2
4, (x1x2)

2, (x2x3)
2, (x3x4)

2, (x4x1)
2〉.

It is interesting to note that the “negatively curved” property of containing a non-abelian
free subgroup is found in this non-positively curved class of groups.

We now give our formal definitions. Let G be a finite simplicial graph with vertex set I(G),
and edge set E(G). Further, let there be non-trivial groups Gi (with fixed finite presentations)
associated to each vertex i ∈ I(G) and, in addition, for each edge {i, j} ∈ E(G) let Rij be a
(possibly empty) finite collection of cyclically reduced words. We assume each word in Rij is
of free product length greater than or equal to 2 in Gi ∗ Gj . The Pride group based on the
graph G with groups Gi assigned to the vertices and with edge relations R = ∪{i,j}∈E(G)Rij is
the group G = ∗i∈I(G)Gi/N , where N is the normal closure of R in ∗i∈I(G)Gi.

We refer to the groups Gi as vertex groups, and we define the edge groups to be Gij =
{Gi ∗ Gj}/Nij, where {i, j} ∈ E(G) and where Nij is the normal closure of Rij in Gi ∗ Gj .
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Figure 1.

More generally, if F is any full subgraph of G with vertex set I(F) ⊆ I(G), then the subgraph

group GF is {∗i∈I(F)Gi}/{Nij|{i, j} ∈ E(F)}. In particular, GG = G.
For each i, j ∈ I(G), the natural homomorphisms Gi → Gij , Gj → Gij determine a

homomorphism Gi ∗Gj → Gij . Let mij denote the length of a shortest non-trivial element in
its kernel (in the usual length function on the free product), or put mij = ∞ if the kernel is
trivial. Note that either mij = 1 (in which case one of the natural maps Gi → Gij , Gj → Gij

is not injective), or mij is even or infinite. The Gersten-Stallings angle (Gij ;Gi, Gj) between
the groups Gi and Gj in the group Gij is defined to be 2π/mij for mij > 1, and 0 for mij = ∞
[13].

In [11] Pride formulated the following asphericity condition. A Pride group G based on a
graph G (with |I(G)| ≥ 3) is said to be non-spherical if

(i) (Gij ;Gi, Gj) ≤ π/2 for all i, j ∈ I(G); and
(ii) for any triangle {i, j, k} in G

(Gij ;Gi, Gj) + (Gjk ;Gj , Gk) + (Gik;Gi, Gk) ≤ π.

In the non-spherical case we can assume that the graph G is complete. To see this, observe
that if i, j ∈ I(G) and {i, j} /∈ E(G) then we can add the edge {i, j} and set Rij = ∅ without
changing the group G.

If |I(G)| = 3 then the Pride group G is the colimit of a triangle of groups. In [6], it was
proved that if the angle sum of the triangle is strictly less than π then G contains a non-
abelian free subgroup. In the same paper the Tits alternative was proved for a particular class
of non-spherical triangles of groups, namely, for non-spherical generalized tetrahedron groups.
In general, it is unknown if this property holds for non-spherical triangles of groups.

We also remark that every Pride group in which mij > 1 for all i, j can be represented
in terms of a 2-complex of groups. Moreover, if the Pride group is non-spherical then the
corresponding complex can be chosen to be non-spherical.

2. Proof of Theorem 1

Our method of proof has evolved from that developed in [4] and [6].
Let G = GG be a non-spherical Pride group, where G is complete. First suppose that G has

four vertices. Let I(G) = {1, 2, 3, 4} and let X = G1, Y = G2, Z = G3 and T = G4. We shall
sometimes write GXY for G12, GXZ for G13 and so on. Label the vertices of G by the vertex
groups and each edge {i, j} by (Gij ;Gi, Gj).

If (Gij ;Gi, Gj) + (Gjk;Gj , Gk) + (Gik;Gi, Gk) < π for some {i, j, k} ⊂ I(G) then, by [6],
Gijk contains a non-abelian free subgroup. By [3], every subgraph group embeds, so G also
contains a non-abelian free subgroup. Hence, we may assume that for all i, j, k ∈ I(G) the angle
sum is exactly π.
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Suppose that the edges incident to T are labelled by θ, α, and β. Since the angle sum is
π for each triangle it follows that the edges that do not share any vertices have the same
labels and all triangles in G are labelled by one of {θ, α, β} = {π/2, π/2, 0}, {π/2, π/3, π/6},
{π/2, π/4, π/4}, {π/3, π/3, π/3}. Without loss of generality we may assume that θ ≥ α ≥ β
and that

(GXZ ;GX , GZ) = (GY T ;GY , GT ) = θ,

(GXY ;GX , GY ) = (GZT ;GZ , GT ) = α,

(GY Z ;GY , GZ) = (GXT ;GX , GT ) = β.

Suppose (θ, α, β) 6= (π/2, π/2, 0) and consider a presentation P for G. Since all the vertex
groups are non-trivial, we may choose non-trivial elements x ∈ X , y ∈ Y , z ∈ Z and t ∈ T
such that x, y, z, t are all generators of P . We shall show that u = xyztxyz has infinite order
in G and that t and u generate a free product.

Let w(t, u) = tp1uq1 . . . tpmuqm or w(t, u) = uq1 , where m ≥ 1 and each pi, qi 6= 0, and assume
that w(t, u) = 1 in G. Consider a van Kampen diagram K over P whose boundary label is
w(t, u). Let D be an extremal disk of K. We divide D into Gij -regions. If two Gij -regions
intersect at least at one edge, then we can amalgamate them into a single region. We continue
in this way as often as possible, and so get a division of D into maximal Gij -regions. (Note
that the resulting division of D is not necessarily unique.)

By [3], the edge groups embed, so it can be assumed that the maximal regions are simply
connected. Let D̂ be the resulting diagram. On the boundary of D̂ an edge of D̂ is defined to
be a longest path whose edges are labelled by elements of the same vertex group. In the interior
an edge is defined to be the intersection of two adjacent maximal Gij- and Gik-regions. Note
that it is a path labelled by elements of Gi.

Now place D̂ on the sphere and take its dual D∗. Let v0 be the vertex corresponding to
S

2\D̂. We call a region of D∗ exterior if it involves v0 and interior otherwise. We give each
corner at a vertex of D∗ of degree δ the angle 2π/δ. The curvature c(∆) of a region ∆ of degree
q whose vertices have degrees δ1, δ2, . . . , δq is then defined by

c(∆) = (2 − q)π +

q∑

i=1

2π

δi
.

Then
∑

∆⊂D∗

c(∆) = 2πχ(S2) = 4π.

We remark that one can use the Gersten-Stallings angles to estimate the curvature as follows.
Suppose that a vertex v 6= v0 of D∗ has degree δ and comes from a maximal Gij -region of D̂.
Since the Gersten-Stallings angle (Gij ;Gi, Gj) is defined to be 2π/mij , where mij is the length
of a shortest non-trivial element in the kernel of Gi ∗ Gj → Gij , we have that δ ≥ mij so
2π/δ ≤ (Gij ;Gi, Gj). Moreover, the non-spherical condition implies (Gij ;Gi, Gj) ≤ π/2 so
δ ≥ 4.

Let ∆ be an interior region of D∗ of degree q. Observe that q ≥ 3. If q ≥ 4 then

c(∆) ≤ (2 − q)π +

q∑

i=1

π

2
≤ 0

and if q = 3 then (for some distinct i, j, k ∈ I(G))

c(∆) ≤ −π + (Gij ;Gi, Gj) + (Gjk;Gj , Gk) + (Gik;Gi, Gk) = 0.

Thus, the sum of the curvatures of interior regions is non-positive.
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Consider exterior regions. Observe that an exterior region can be a 2-gon. It is convenient
to define d(∆) = c(∆) − 2π/N , where N = deg(v0) is the number of exterior regions. Then

∑

ext.∆

c(∆) =
∑

ext.∆

d(∆) + 2π.

We aim to show
∑

ext.∆ d(∆) ≤ 0 and obtain a contradiction.

Split the boundary of D̂ into tpi and uε = (xyztxyz)ε pieces, where ε = ±1. We now consider
the sum of the curvatures of the exterior regions of D∗ arising from each uε piece.

T

A Y

B

ψ

φ

ψ
φ

θ

θ
∆ 1

∆ 3
∆ 2 ∆ 4

∆ 5

∆
7∆ 6

v0

tε
yε

yε
a

ab
b

ora
tp

(a) (b)

Figure 2.

The analysis of a uε piece is essentially the same for both ε = +1 and ε = −1, so we introduce
the following notation. Let (a, b) = (x, z), (A,B) = (X,Z), (φ, ψ) = (α, β) if ε = +1 and let
(a, b) = (z−1, x−1), (A,B) = (Z,X), (φ, ψ) = (β, α) if ε = −1. Note that with this convention
θ ≥ φ and θ ≥ ψ. Figure 2(a) indicates the Gersten-Stallings angles between the vertex groups
and Figure 2(b) shows the form of a uε piece, where the exterior regions of D∗ are labelled by
∆i (1 ≤ i ≤ 7) and each ∆i is a qi-gon.

Since any three consecutive edges on the boundary of D̂ are labelled by elements of three
different vertex groups, no two exterior 2-gons of D∗ can be adjacent. Therefore, at most four
of the ∆i can be 2-gons. Denote the chain ∆1∆2 . . .∆7 by S and write d(S) =

∑7
i=1 d(∆i).

Denote by v1 the vertex of ∆1\∆2 adjacent to v0.
We shall make frequent use of the following observations. Let ∆ be an exterior q-gon. If q = 2

then d(∆) = 2π/δ ≤ π/2. If q = 3 then no two adjacent vertices of ∆ arise from maximal GAB-
or GY T -regions, and so d(∆) ≤ −π+π/2+π/3 = −π/6. Similarly, if q ≥ 4 then d(∆) ≤ −2π/3.

Claim 1. If v1 does not arise from any maximal GAT -region then d(S) ≤ 0.

Proof. Note that if d(∆i) > π/3 then i = 7. Hence, if |{i | qi = 2}| ≤ 2 then d(S) ≤
π/2 + π/3 − 5π/6 = 0.

Suppose that |{i | qi = 2}| = 3. If qi ≥ 4 for some i then d(S) ≤ 2π/3 + π/2 + 3(−π/6) +
(−2π/3) = 0. Hence, we may assume that qi ≤ 3 for 1 ≤ i ≤ 7. However, if qi = qi+2 = 2
for any i ≤ 4 then qi+1 ≥ 4; moreover, if q7 6= 2 then this condition holds for some i. Thus
{i | qi = 2} = {1, 4, 7}, {1, 5, 7}, {2, 5, 7}. Label consecutive vertices of S by v2, . . . , v5 so that
v2 is adjacent to v1.

{1, 4, 7}. The vertices v1 and v3 arise from maximal GAY - and GAT -regions, respectively.
Moreover, at most two of the five angles in ∆5, ∆6, and ∆7 can be greater than π/3. Then

d(S) ≤ φ+ (φ+ θ − π) + (θ + ψ − π) + ψ + 3
π

3
+ 2

π

2
− 2π = 2φ+ 2ψ + 2θ − 2π = 0.

{1, 5, 7}. Since v1 and v4 arise from maximal GAY -regions and q2 = q3 = q4 = 3, either v2
arises from a maximal GAB-region and v3 arises from a maximal GAT -region, or v2 arises from
a maximal GY B-region and v3 arises from a maximal GY T -region, see Figure 3(a). In both
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cases

d(S) ≤ 5φ+ 2ψ + 4θ − 4π = 3φ+ 2θ − 2π ≤ 0.

{2, 5, 7}. Since v2 and v4 arise from maximal GBY - and GAY -regions, we immediately get

d(S) ≤ 3φ+ 3ψ + 5θ − 4π = 2θ − π ≤ 0.

Finally, suppose that |{i | qi = 2}| = 4. Then {i | qi = 2} = {1, 3, 5, 7} and hence q2 ≥ 4 and
q4 ≥ 4. Since d(∆i) ≤ φ for i = 1, 3, 5 and d(∆7) ≤ π/2, we get d(S) ≤ 3φ+π/2−4π/3−π/6 ≤
0.

∆ 3

v0

tε

∆ 4

yε

∆ 5

yε

∆ 1 ∆ 2 ∆ 6

∆
7

v1
v2

v5

v4v3

G
AY

G
AY

a
b

ab

v0

tε

∆
7

yε
yε

∆ 2 ∆ 4
∆ 5

∆ 6

v2 v3 v4
v5

v6
+_ 1t

+_ 1t
v1

∆ 1 ∆ 3
a

b a
b

a

a
ab

(a) (b)

Figure 3.

Claim 2. If v1 arises from a maximal GAT –region then d(S) ≤ −π/3.

Proof. Since v1 arises from a maximalGAT -region, ∆1 is not a 2-gon and, therefore, |{i | qi =
2}| ≤ 3. If |{i | qi = 2}| ≤ 1 then d(S) ≤ π/2 + 6(−π/6) = −π/2.

Suppose that |{i | qi = 2}| = 2. If qi ≥ 4 for some i then d(S) ≤ −π/2. Hence, we may
assume that qi ≤ 3 for 1 ≤ i ≤ 7. However, if qi = qi+2 = 2 for any i ≤ 4 then qi+1 ≥ 4;
moreover, if q2 = 2 then q1 ≥ 4. This reduces us to the four cases: {i | qi = 2} = {3, 6}, {3, 7},
{4, 7}, {5, 7}. Label consecutive vertices of S by v2, . . . , v6 so that v2 is adjacent to v1.

{3, 6}. Since v3 arises from a maximal GBT -region and v5 arises from a maximal GY B-region,
we have d(S) ≤ 4ψ + 3φ+ 5θ − 5π ≤ −2π/3.

{3, 7}. If uε is followed by tpi , then both v3 and v6 arise from maximal GBT -regions and thus

d(S) = d(∆1∆2∆3) + d(∆4∆5∆6) + d(∆7)

≤ (ψ + 2φ+ 2θ − 2π) − 3
π

6
+ φ ≤ −

π

3
.

So suppose that uε is followed by a (see Figure 3(b)). Then v6 arises from a maximal GAB-
region. If v4 arises from a maximal GAT -region or v5 arises from a maximal GBY -region then
d(S) ≤ 3ψ + 3φ + 6θ − 5π ≤ −π/2. Hence, we may assume that v4 arises from a maximal
GAB-region and v5 arises from a maximal GAY -region. It follows that deg(v4) ≥ 5, that is, the
angle at v4 is at most 2π/5, so we have

d(S) = d(∆1∆2∆3) + d(∆4∆5) + d(∆6∆7)

≤ (ψ + 2φ+ 2θ − 2π) +

(
2φ+ 2

2π

5
− 2π

)
+

(
−
π

6
+
π

2

)
≤ −

11π

30
.

{4, 7}. Since both v1 and v4 arise from maximalGAT -regions, d(∆1∆2∆3) ≤ 2ψ+2φ+2θ−3π =
−π. Then d(S) = d(∆1∆2∆3) + d(∆4∆5∆6∆7) ≤ −π + ψ − 2π/6 + π/2 ≤ −π/2.
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{5, 7}. If uε is followed by tpi , then q5 ≥ 4, a contradiction. Suppose uε is followed by a.
The vertex v5 arises from a maximal GAY -region and v6 arises from a maximal GAB-region.
If v3 arises from a maximal GBY -region or v4 arises from a maximal GAT -region then d(S) ≤
3ψ+3φ+6θ−5π ≤ −π/2. Therefore, we may assume that v4 arises from a maximal GY T -region.
It follows that v3 arises from a maximal GBT -region and hence deg(v4) ≥ 5. Thus,

d(S) ≤ ψ + 5φ+ 4θ + 2
2π

5
− 5π ≤ −

11π

30
.

Now suppose that |{i | qi = 2}| = 3. Then {i | qi = 2} is one of the following: {2, 4, 6}, {2, 4, 7},
{2, 5, 7}, {3, 5, 7}. However, if q2 = q4 = 2 then q1 ≥ 4 and q3 ≥ 4, and so d(S) ≤ −π/2.

{2, 5, 7}. Since q1 ≥ 4, we may assume that qi ≤ 3 for all 1 < i ≤ 7. In particular, q6 = 3, so
the 2-gon ∆7 comes from a maximal GAB-region. Since ∆2 and ∆5 come from maximal GBY -
and GAY -regions, respectively, we have

d(S) ≤ 3φ+ 4ψ + 5θ − 5π = ψ + 2θ − 2π ≤ −
2π

3
.

{3, 5, 7}. Then q4 ≥ 4 and again we may assume that qi ≤ 3 for all i 6= 4 and therefore the
2-gon ∆7 comes from a maximal GAB-region. Since ∆3 and ∆5 come from maximal GBT - and
GAY -regions, respectively, we have

d(S) ≤ 6φ+ ψ + 5θ − 5π = 5φ+ 4θ − 4π ≤ −
π

3
.

If w(t, u) = uq1 then Claims 1 and 2 imply the required contradiction that
∑

ext.∆ d(∆) ≤ 0.
Hence, u has infinite order in G.

Now suppose w(t, u) = tp1uq1 . . . tpmuqm . For each syllable tpiuqi = tpiuεuqi−ε, consider the
part of the boundary corresponding to tpiuε. Label the first exterior region ∆0 and, as before,
label the remaining regions ∆1, . . . ,∆7.

If q0 6= 2 then d(∆0) ≤ −π/6 and, therefore, d(∆0S) = d(∆0) + d(S) < 0. If ∆0 is a
2-gon then v1 arises from a GAT -region. But then, by Claim 2, d(S) ≤ −π/3 and, hence,
d(∆0S) ≤ ψ − π/3 ≤ 0. It follows that the sum of the d-values of all exterior regions arising
from any syllable tpiuqi is non-positive, and the required contradiction follows. Hence, t and
u generate a free product in G and, since u has infinite order, G contains a non-abelian free
subgroup.

Now suppose (θ, α, β) = (π/2, π/2, 0). Then G is isomorphic to an amalgamated free product
L ∗K M , where L = G14 ∗G4 G34, M = G12 ∗G2 G23 and K = G1 ∗G3. We may assume that
|G1| = |G3| = 2 for otherwise K (and hence G) contains a non-abelian free subgroup. Similarly
we may assume that |G2| = |G4| = 2, so Gi = 〈xi |x2

i 〉 for all i. Further, each mi,i+1 = 4 so
Gi,i+1 = 〈xi, xi+1 |x2

i , x
2
i+1, (xixi+1)

2〉 ∼= D4. Therefore, G has presentation

〈x1, x2, x3, x4 |x
2
1, x

2
2, x

2
3, x

2
4, (x1x2)

2, (x2x3)
2, (x3x4)

2, (x4x1)
2〉.

Since G is a group of isometries of the Euclidean plane, it is virtually abelian.
Thus the theorem is proved when G is based on a graph with four vertices. To complete

the proof in the general case, it remains to note that when G has five or more vertices it is
impossible to label the edges of G so that all four vertex subgraphs give rise to the virtually
abelian group. Therefore, one of the four vertex subgraph groups contains a non-abelian free
subgroup. Since by [3] subgraph groups embed, Theorem 1 is proved.
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3. Application

We consider the following class of groups which generalizes the groups defined by periodic
paired relations [15]. Let n ≥ 3, 1 ≤ i, j ≤ n, nij ≥ 1 and 1 ≤ t ≤ nij . For each such i, j, t let
2 ≤ qi, qi,j;t ≤ ∞ and suppose wi,j;t(xi, xj) is a cyclically reduced word in xi and xj . Define

Γ = 〈x1, . . . , xn |xqi

i , wi,j;t(xi, xj)
qi,j;t(1 ≤ i, j ≤ n, 1 ≤ t ≤ nij)〉.

Each group Γ can be realized as a Pride group by setting Gi = 〈xi |x
qi

i 〉 and Rij =
{wi,j;t(xi, xj)

qi,j;t | 1 ≤ t ≤ nij}. For each i, j define rij = min{ℓi,j;tqi,j;t | 1 ≤ t ≤ nij}, where
ℓi,j;t denotes the free product length of wi,j;t(xi, xj). If 1/rij + 1/rjk + 1/rik ≤ 1/2 for all
distinct 1 ≤ i, j, k ≤ n then by the Spelling Theorem for generalized triangle groups [6], the
Pride group Γ is non-spherical.

Corollary. Let Γ be as defined above with n ≥ 4. If 1/rij + 1/rjk + 1/rik ≤ 1/2 for all

distinct i, j, k, then Γ contains a non-abelian free subgroup unless it has presentation

〈x1, x2, x3, x4 |x
2
1, x

2
2, x

2
3, x

2
4, (x1x2)

2, (x2x3)
2, (x3x4)

2, (x4x1)
2〉,

in which case Γ is virtually abelian.

Acknowledgements. We would like to thank the referee for the careful reading of this paper.
The second author would like to thank the department of mathematics at the Université de
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