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A19/B6: A NEW LANCZOS-TYPE ALGORITHM AND ITS
IMPLEMENTATION

ZAKIR ULLAH1, MUHAMMAD FAROOQ2 AND ABDELLAH SALHI3

Abstract. Lanczos-type algorithms are mostly derived using recur-
rence relationships between formal orthogonal polynomials. Various
recurrence relations between these polynomials can be used for this
purpose. In this paper, we discuss recurrence relations A19 and B6 for

the choice Ui(x) = P
(1)
i (x), where Ui is an auxiliary family of poly-

nomials of exact degree i. This leads to new Lanczos-type algorithm
A19/B6 that shows superior stability when compared to existing algo-
rithms of the same type. This new algorithm is derived and described
here. Computational results obtained with it are compared to those
of the most robust algorithms of this type namely A12, Anew

12 A5/B10

and A8/B10 on the same test problems. These results are included.

Key words : Lanczos algorithm; Systems of Linear Equations; For-
mal Orthogonal Polynomials
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1. Introduction

In 1950, the Lanczos algorithm, [26, 13], has been introduced to cal-
culate the eigenvalues of a matrix. However, it has later been adapted
for the solution of systems of linear equations (SLEs) where it is now
a well established solver. The Lanczos method is an iterative process
which, in exact arithmetic, gives the exact solution in at most n number
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of steps [27], where n is the dimension of the problem. Several Lanczos-
type algorithms have been designed and among them, the famous con-
jugate gradient algorithm of Hestenes and Stiefel [25], when the matrix
is Hermitian and the bi-conjugate gradient algorithm of Fletcher [22], in
the general case. In the last few decades, Lanczos-type algorithms have
evolved and different variants have been derived, which can be found in
[2, 3, 5, 7, 10, 11, 12, 9, 14, 23, 24, 28, 29, 30, 31, 34, 35, 17].

Lanczos-type algorithms are commonly derived using Formal Orthogo-
nal Polynomials (FOP’s), [5]. The connection between the Lanczos algo-
rithm, [27] and orthogonal polynomials, [32] has been studied extensively
in [2, 4, 5, 11, 12, 6, 8, 9, 16].

In this paper we will briefly recall recurrence relation A19 [17] for the
choice of auxiliary polynomial Ui(x) = xi, where xi is a monic polynomial
of degree i. Then we will derive expressions for the coefficients of this

polynomial for a new choice of Ui(x) = P
(1)
i (x) which was not considered

before. We will also recall B6 [1] for the same choice of Ui(x). We use
the new choice of A19 in combination of B6 to derive a new Lanczos-type
algorithm A19/B6. This algorithm is then applied to some problems
considered in [17, 1, 33], and its performance is compared with that
of existing algorithms of the same type namely A12, Anew12 A5/B10 and
A8/B10, [2, 17, 33]. The paper is organized as follows. In section 2 we will
explain the basic Lanczos process. In section 3 we will discuss the notion
of FOPs. Relations A19 and B6 are recalled in section 4. A conclusion is
given in section 5.

1.1. The Lanczos Process. Consider the following system of linear
equations,

Ax = b, (1)

The basic Lanczos approach for solving SLEs (1), can be explained as
follows.

Choose x0 and y, two arbitrary vectors in Rn, such that y 6= 0, then
Lanczos process [27] consists in generating a sequence of vectors xk ∈ Rn,
such that

(xk − x0) ∈ Fk(A, r0) = span(r0,Ar0, . . . ,A
k−1r0), (2)

and

rk = (b− Axk)⊥Ek(AT ,y) = span(y,ATy, . . . , (AT )k−1y), (3)

where AT is the transpose of matrix A.
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Equation (2) implies

xk − x0 = −β1r0 − β2Ar0 − · · · − βkAk−1r0. (4)

Multiplying both sides of (4) by A then adding and subtracting b on the
left hand side of (4) gives

rk = r0 + β1Ar0 + β2A
2r0 + · · ·+ βkA

kr0. (5)

If we set

Pk(x) = 1 + β1x+ ...+ βkx
k, (6)

then we can write from (5)

rk = Pk(A)r0. (7)

The polynomials Pk are known as residual polynomials [5]. Another
interpretation of the Pk can be found in [15]. From (3), the orthogonality
condition implies

((AT )iy, rk) = (y,Airk) = (y,AiPk(A)r0) = 0, for i = 0, ..., k − 1.
Thus, the coefficients β1,...,βk form a solution of the following system of
linear equations
β1(y,Ar0) + · · ·+ βk(y,A

kr0) = −(y, r0),
...

β1((AT )k−1y,Ar0) + · · ·+ βk((A
T )k−1y,Akr0) = −((AT )k−1y, r0).

(8)

The scalar products involved in the above system is defined as with the
first argument conjugated. If the determinant of the above system is not
zero then its solution exists, and thus we can obtain xk and rk from (4)
and (7) respectively. Obviously, in practice, solving the above system
directly for increasing values of k is not viable; k is the order of the
iterate in the solution process. Now we shall see how to solve the system
(8) for increasing value of k, that is, if polynomials Pk can be computed
recursively.
Now, let ci be defined as

ci = ((AT )iy, r0) = (y, Air0), for i = 1, 2, . . . ,

and the linear functional c on the space of polynomials be given by

c(xi) = ci, for i = 0, 1 . . . , (9)

so the system (8) can be written as

c(xiPk(x)) = 0, for i = 0, 1, . . . , k − 1. (10)
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These conditions show that Pk is a polynomial of degree at most k,
corresponding to the linear functional c and normalized by the condition
Pk(0) = 1. Using normalization condition Pk(0) = 1, equation (6) can
be written as

Pk(x) = 1 + xQk−1(x),

where Qk−1 = β1 +β2x+ ...+βkx
k−1. Replacing x by A and multiplying

both sides by r0 we get

Pk(A)r0 = r0 + AQk−1(A)r0.

Now using (7) the above relation becomes

rk = r0 + AQk−1(A)r0,

which can also be written as

b− Axk = b− Ax0 + AQk−1(A)r0.

Simplifying and multiplying by −A−1 on both sides of the last relation,
we get

xk = x0 −Qk−1(A)r0,

which shows that xk can be computed from rk recursively without in-
verting A.

1.2. Formal Orthogonal Polynomials. The polynomial Pk(x) dis-
cussed in the previous section is defined by the following formula [5,
6, 11, 9, 12],

Pk(x) =

∣∣∣∣∣∣∣∣
1 x · · · xk

c0 c1 · · · ck
...

...
...

ck−1 ck · · · c2k−1

∣∣∣∣∣∣∣∣
H

(1)
k

, (11)

where H
(1)
k is called the Hankel determinant [5], which is the determinant

of the system (8). This determinant has the following expression:

H
(1)
k =

∣∣∣∣∣∣∣∣
c1 c2 · · · ck
c2 c3 · · · ck+1
...

...
...

ck ck+1 · · · c2k−1

∣∣∣∣∣∣∣∣ .
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Clearly, Pk exists if and only if H
(1)
k 6= 0. We assume in the following

sections that for all k, H
(1)
k 6= 0. If for some k, H

(1)
k ≈ 0, then Pk does

not exist, and breakdown occurs in the solution process. This breakdown
issue is discussed elsewhere, [2, 17, 33].

Let us now define the family of orthogonal polynomials P
(1)
k (x) corre-

sponding to the linear functional c(1) where c(1) is define by

c(1)(xi) = c(xi+1) = ci+1, for i = 0, 1, . . . .

These polynomials are normalized by the condition that they are monic
[5, 6, 11] and are given by the following formula

P
(1)
k (x) =

∣∣∣∣∣∣∣∣
c1 · · · ck+1
...

...
ck · · · c2k

1 · · · xk

∣∣∣∣∣∣∣∣
H

(1)
k

. (12)

The necessary and sufficient condition for the existence and uniqueness

of P
(1)
k (x) is that the Hankel determinant, [5, 6, 11], is different from

zero, which is the same condition as for the existence of the polynomial
Pk(x).

2. Relations A19 and B6

In the following we will recall relations A19 [17, 18] and B6 [1, 2] for the
choice of auxiliary polynomial Ui(x) = xi, where xi is a monic polynomial
of degree i. Then we will derive expressions for the coefficients of these

polynomials for the choice of Ui(x) = P
(1)
i (x) which was not considered

before for relation A19. We use the new choice of A19 in tandem with B6

to derive a new Lanczos-type algorithm which we call A19/B6.

2.1. Relation A19. Consider the following recurrence relation investi-
gated in [17]

Pk(x) = (Akx
2 +Bkx+ Ck)P

(1)
k−2(x) + (Dkx+ Ek)Pk−1(x), (13)

where Pk, P
(1)
k−2 and Pk−1 are polynomials of degree k, k − 2 and k − 1

respectively and Ak, Bk, Ck, Dk and Ek are constants to be determined
using the normalization condition ∀k, Pk(0) = 1 and orthogonality con-
ditions (C1) and (C2) given below
∀i = 0, 1 · · · k − 1, c(UiPk) = 0 −→ (C1).
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∀i = 0, 1, · · · k − 1, c(1)(UiP
(1)
k ) = 0 −→ (C2).

Using the normalization condition, equation (13) gives

1 = Ek + CkP
(1)
k−2(0). (14)

Multiplying (13) by Ui, a polynomial of exact degree i and applying ‘c’
on both sides we get

c(UiPk) = Akc(x
2UiP

(1)
k−2) +Bkc(xUiP

(1)
k−2) + Ckc(UiP

(1)
k−2)

+Dkc(xUiPk−1) + Ekc(UiPk−1).
(15)

Similarly, using (C1), equation (15) becomes

Akc(x
2UiP

(1)
k−2) +Bkc(xUiP

(1)
k−2) + Ckc(UiP

(1)
k−2)

+Dkc(xUiPk−1) + Ekc(UiPk−1) = 0.
(16)

For i = 0, equation (16) becomes Ckc(U0P
(1)
k−2) = 0. Since c(U0P

(1)
k−2) 6= 0,

therefore, Ck = 0. Hence from (14), we get Ek = 1. The orthogonality
condition (C1) is true for ∀i = 1, 2, 3, · · · , k − 4. For i = k − 3, equa-

tion (16) becomes Akc(x
2Uk−3P

(1)
k−2) = 0. This implies that Ak = 0 as

c(x2Uk−3P
(1)
k−2) 6= 0. For i = k − 2, equation (16) gives

Bkc
(1)(Uk−2P

(1)
k−2) +Dkc(xUk−2Pk−1) = 0. (17)

For i = k − 1, equation (16) gives

Bkc
(1)(Uk−1P

(1)
k−2) +Dkc(xUk−1Pk−1) = −c(Uk−1Pk−1). (18)

If we set a11 = c(1)(Uk−2P
(1)
k−2), a12 = c(xUk−2Pk−1), a21 = c(1)(Uk−1P

(1)
k−2),

a22 = c(xUk−1Pk−1), b1 = 0, and b2 = −c(Uk−1Pk−1) then equations (17)
and (18) can be written as

a11Bk + a12Dk = 0, (19)

a21Bk + a22Dk = b2, (20)

respectively. If ∆k is the determinant of the coefficient matrix of the
above system then, ∆k = a11a22 − a21a12. If ∆k 6= 0 then Bk = − b2a12

∆k
,

Dk = a11b2
∆k

. Hence,

Pk(x) = BkxP
(1)
k−2(x) + (Dkx+ 1)Pk−1(x). (21)

Let us apply the recursive formula (21) for computing polynomials Pk
in order to find residuals rk and the corresponding vector xk. For this
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replace x by A and multiply both sides by r0. Using rk = Pk(A)r0 and

zk = P
(1)
k (A)r0, we get

rk = BkAzk−2 +DkArk−1 + rk−1. (22)

Since rk = b− Axk, (22) becomes

b− Axk = BkAzk−2 +DkArk−1 + b− Axk−1.

Multiplying this latter equation by A−1 on both sides results in

xk = xk−1 −Bkzk−2 −Dkrk−1, (23)

where coefficients Bk andDk can be identified as Bk = − b2a12
∆k

, Dk = a11b2
∆k

,

respectively. So, now we choose the polynomial Ui(x).

2.1.1. Case-I: When Ui(x) = xi. In the previous section we discussed A19

for general auxiliary polynomial Ui. Here we recall from [17] briefly the
same relation A19 by taking Ui = xi. In [17] we have ∆k = a11a22−a21a12,

where a11 = c(1)(xk−2P
(1)
k−2), a12 = c(xk−1Pk−1), a21 = c(1)(xk−1P

(1)
k−2),

a22 = c(xkPk−1), b1 = 0, and b2 = −c(xk−1Pk−1). If ∆k 6= 0 then
coefficients Bk and Dk appearing in (21) are as above. Since we know
that 

c(xkPk) = ((AT )ky, Pk(A)r0) = (yk, rk) and

c(xkP
(1)
k ) = ((AT )ky, P

(1)
k (A)r0) = (yk, zk),

with yk = ATyk−1,

(24)

using (24), we can write a11 = c(1)(xk−2P
(1)
k−2) = (yk−1, zk−2),

a12 = c(xk−1Pk−1) = (yk−1, rk−1), a21 = c(1)(xk−1P
(1)
k−2) = (yk, zk−2),

a22 = c(xkPk−1) = (yk, rk−1), b1 = 0, and b2 = −c(xk−1Pk−1) =
− (yk−1, rk−1).

Now, since all of the above relations are only valid for k ≥ 3, to evaluate
(22) and (23) recursively, we need to evaluate r1, r2, x1, x2, z1 and z2,
which are necessary, differently. These values are determined in detail
in [1, 17]. They are recalled briefly here, however, for completeness, as
follows.
r1 = r0 − ( c0

c1
)Ar0, x1 = x0 + ( c0

c1
)r0 where ci = (y,Air0),

r2 = r0 − αAr0 + βA2r0, x2 = x0 + αr0 − βAr0,
z1 = Ar0 − ( c2

c1
)r0, z2 = A2r0 − α1Ar0 + β1r0.

Also z̃1 = Az̃0 − ( c2
c1

)z̃0, z̃2 = A2z̃0 − α1Az̃0 + β1z̃0,
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where δ = c1c3 − c2
2, α = c0c3−c1c2

δ
, β =

c0c2−c21
δ

,δ1 = c1c3 − c2
2,

α1 = c1c4−c2c3
δ1

, and β1 =
c2c4−c23

δ1
.

2.1.2. Case-II: When Ui(x) = P
(1)
i (x). In this section, we derive A19

for a different choice of Ui(x) which was not considered before. All the
coefficients involved in A19 have completely different expressions for this

new choice of Ui(x) as explained below. For Ui(x) = P
(1)
i (x) all of the

above expressions will have the following form:

a11 = c(1)(P
(1)
k−2P

(1)
k−2), a12 = c(xP

(1)
k−2Pk−1), a21 = c(1)(P

(1)
k−1P

(1)
k−2),

a22 = c(xP
(1)
k−1Pk−1), b1 = 0, and b2 = −c(P (1)

k−1Pk−1). Using
c(1)(P

(1)
k−1P

(1)
k−2) = 0,

zk = P
(1)
k (A)r0, z̃k = P

(1)
k (AT )z̃0, rk = Pk(A)r0, and

c(UkPk) = (y, Uk(A)Pk(A)r0) = (Uk(A
T )y, Pk(A)r0) = (z̃k, rk)

[note z̃0 = y],

(25)

we get a21 = 0, a11 = c(1)(P
(1)
k−2P

(1)
k−2) = (z̃k−2, Azk−2), a12 = c(xP

(1)
k−2Pk−1)

= (z̃k−2, Ark−1), a22 = c(xP
(1)
k−1Pk−1) = (z̃k−1, Ark−1), b1 = 0, b2 =

−c(P (1)
k−1Pk−1) = −(z̃k−1, rk−1), ∆k = a11a22, Bk = − b2a12

∆k
, and Dk = b2

a22
.

Hence, after evaluating the coefficients Ak, Bk, Ck, ∆k and Ek for the

choice Ui(x) = P
(1)
i (x) equation(13) reduces to

Pk(x) = BkxP
(1)
k−2(x) + (Dkx+ 1)Pk−1(x). (26)

Replacing x by A and multiplying both sides by r0 and using rk =

Pk(A)r0, and zk = P
(1)
k (A)r0 we get

rk = BkAzk−2 +DkArk−1 + rk−1. (27)

Since rk = b− Axk, (14) becomes

xk = xk−1 −Bkzk−2 −Dkrk−1. (28)

2.2. Relation B6. Consider the following recurrence relation investi-
gated in [1]

P
(1)
k (x) = (Akx

2 +Bkx+ Ck)P
(1)
k−2(x) + (Dkx+ Ek)P

(1)
k−1(x), (29)

where P
(1)
k , P

(1)
k−2 and P

(1)
k−1 are polynomials of degree k, k − 2 and k − 1

respectively and Ak, Bk, Ck, Dk and Ek are constants to be determined

as already discussed in[1, 2] for the choices xi, Pk(x), P
(1)
k (x). We discuss
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and recall B6 for general auxiliary polynomial Ui, a polynomial of exact
degree i. Multiply (29) by Ui and apply c(1) on both sides to get

c(1)(UiP
(1)
k ) = Akc

(1)(x2UiP
(1)
k−2) +Bkc

(1)(xUiP
(1)
k−2)

+Ckc
(1)(UiP

(1)
k−2) +Dkc

(1)(xUiP
(1)
k−1) + Ekc

(1)(UiP
(1)
k−1).

(30)

Using (C2) we get

Akc
(1)(x2UiP

(1)
k−2) +Bkc

(1)(xUiP
(1)
k−2) + Ckc

(1)(UiP
(1)
k−2)

+Dkc
(1)(xUiP

(1)
k−1) + Ekc

(1)(UiP
(1)
k−1) = 0.

(31)

The orthogonality condition (C2) is true for ∀i = 0, 1, 2, · · · k − 5.

For i = k − 4, we get Akc
(1)(x2Uk−4P

(1)
k−2) = 0, which implies that

Ak = 0 as c(1)(x2Uk−4P
(1)
k−2) 6= 0. But P

(1)
k is a monic polynomial of

degree k; so Dk = 1. For i = k − 3, we get Bkc
(1)(xUk−3P

(1)
k−2) = 0. Since

c(1)(xUk−3P
(1)
k−2) 6= 0, Bk = 0.

For i = k − 2, we have c(1)(xUk−2P
(1)
k−1) + Ckc

(1)(Uk−2P
(1)
k−2) = 0 which

implies that

Ck = −
c(1)(xUk−2P

(1)
k−1)

c(1)(Uk−2P
(1)
k−2)

. (32)

For i = k − 1, we get

c(1)(xUk−1P
(1)
k−1) + Ckc

(1)(Uk−1P
(1)
k−2) + Ekc

(1)(Uk−1P
(1)
k−1) = 0.

Since c(1)(Uk−1P
(1)
k−1) 6= 0,

Ek =
−c(1)(xUk−1P

(1)
k−1)− Ckc(1)(Uk−1P

(1)
k−2)

c(1)(Uk−1P
(1)
k−1)

. (33)

Hence (29) becomes

P
(1)
k (x) = CkP

(1)
k−2(x) + (x+ Ek)P

(1)
k−1(x),

where

Ck = −
c(1)(xUk−2P

(1)
k−1)

c(1)(Uk−2P
(1)
k−2)

,

and

Ek =
−c(1)(xUk−1P

(1)
k−1)− Ckc(1)(Uk−1P

(1)
k−2)

c(1)(Uk−1P
(1)
k−1)

.
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2.2.1. Relation B6 when Ui(x) = P
(1)
i (x). In this case, (32) and (33)

become Ck = − c(x2P
(1)
k−2P

(1)
k−1)

c(xP
(1)
k−2P

(1)
k−2)

, and

Ek =
−c(1)(xP (1)

k−1P
(1)
k−1)−Ckc

(1)(P
(1)
k−1P

(1)
k−2)

c(1)(P
(1)
k−1P

(1)
k−1)

, respectively. Using


c(1)(P

(1)
k−1P

(1)
k−2) = 0,

zk = P
(1)
k (A)r0, z̃k = P

(1)
k (AT )z̃0, rk = Pk(A)r0, and

c(UkPk) = (y, Uk(A)Pk(A)r0) = (Uk(A
T )y, Pk(A)r0) = (z̃k, rk),

[note z̃0 = y],

(34)

we get Ck = − c(x2P
(1)
k−2P

(1)
k−1)

c(xP
(1)
k−2P

(1)
k−2)

= − (z̃k−2,A
2zk−1)

(z̃k−2,Azk−2)
, and

Ek = − c(x2P
(1)
k−1P

(1)
k−1)

c(xP
(1)
k−1P

(1)
k−1)

= − (z̃k−1,A
2zk−1)

(z̃k−1,Azk−1)
.

Hence after evaluating the coefficients Ak, Bk, Ck, Dk and Ek for the

choice Ui(x) = P
(1)
i (x) equation (29) reduces to

P
(1)
k (x) = CkP

(1)
k−2(x) + (x+ Ek)P

(1)
k−1(x). (35)

Replacing x by A, multiplying by r0 and using zk = P
(1)
k (A)r0 we get

zk = Ckzk−2 + Azk−1 + Ekzk−1.

Replacing x by AT and multiply by z̃0 = y and using z̃k = P
(1)
k (AT )z̃0,

we get

z̃k = Ckz̃k−2 + AT z̃k−1 + Ekz̃k−1.

2.3. Algorithm A19/B6. We now consider the combination of A19 and

B6 for the choice Ui(x) = P
(1)
i (x) which, as said earlier, was never con-

sidered before. The new algorithm is called A19/B6 and its pseudo-code
is given below as Algorithm 1.
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Algorithm 1 Lanczos-type Algorithm A19/B6.

1: Choose x0 and y such that y 6= 0.
2: Set r0 = b− Ax0, z̃0 = y,
3: z0 = r0.
4: p = Ar0, p1 = Ap, p2 = Ap1, p3 = Ap2,
5: c0 = (y, r0), c1 = (y,p), c2 = (y,p1),
6: c3 = (y,p2), c4 = (y,p3), δ = c1c3 − c2

2,

7: α = c0c3−c1c2
δ

, β =
c0c2−c21

δ
, δ1 = c1c3 − c2

2,

8: α1 = c1c4−c2c3
δ1

, β1 =
c2c4−c23

δ1
,

9: r1 = r0 − ( c0
c1

)p, x1 = x0 + ( c0
c1

)r0,
10: r2 = r0 − αp + βp1,
11: x2 = x0 + αr0 − βp,
12: z1 = p− ( c2

c1
)r0, z2 = p1 − α1p + β1r0,

13: y1 = ATy, y2 = ATy1,
14: z̃1 = y1 − ( c2

c1
)z̃0,

15: z̃2 = y2 − α1y1 + β1z̃0,
16: for k=3,4,... do
17: q1 = Ark−1, q2 = Azk−1, q3 = Aq2, q4 = Azk−2, s = AT z̃k−1

18: a11 = c(1)(P
(1)
k−2P

(1)
k−2) = (z̃k−2, q4)

19: a12 = c(xP
(1)
k−2Pk−1) = (z̃k−2, q1)

20: a22 = c(xP
(1)
k−1Pk−1) = (z̃k−1, q1)

21: b2 = −c(P (1)
k−1Pk−1) = −(z̃k−1, rk−1)

22: ∆k = a11a22,
23: if ∆k ≤ ε
24: print “ghost-type breakdown”
25: stop.
26: end if
27: Bk = − b2a12

∆k
, Dk = b2

a22
28: rk = Bkq4 +Dkq1 + rk−1

29: xk = xk−1 −Bkzk−2 −Dkrk−1

30: if ||rk|| > ε then

31: Ck = − c(x2P
(1)
k−2P

(1)
k−1)

c(xP
(1)
k−2P

(1)
k−2)

= − (z̃k−2,q3)

(z̃k−2,q4)

32: Ek = − c(x2P
(1)
k−1P

(1)
k−1)

c(xP
(1)
k−1P

(1)
k−1)

= − (z̃k−1,q3)

(z̃k−1,q2)

33: zk = Ckzk−2 + q2 + Ekzk−1

34: z̃k = Ckz̃k−2 + s+ Ekz̃k−1

35: else
36: x = xk
37: stop
38: end if
39: end for
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Algorithm 1 has been implemented in Matlab and tested on the fol-
lowing problem which was considered in [17, 1, 33, 21]. This problem

arises in the 5-point discretisation of the operator −d2
dx2
− d2

dy2
+ γ d

dx
on a

rectangular region, [17, 1]. Comparative results on instances of the prob-
lem Ax = b ranging from dimension 10 to 900 for parameter δ taking
value 0.0 and 0.2 and for the tolerance ε = 10−05 are recorded in Tables
1 and 2.

A =


B −I · · · · · · 0

−I B −I ...
...

. . . . . . . . .
...

... −I B −I
0 · · · · · · −I B

 ,

with

B =


4 α · · · · · · 0

β 4 α
...

...
. . . . . . . . .

...
... β 4 α
0 · · · β 4

 ,

and α = −1 + δ, β = −1− δ. When δ = 0, the matrix of coefficients A is
symmetric and the problem is easy to solve. For δ = 0.2 the matrix A is
non-symmetric and the problem is comparatively harder as the region is
not a regular mesh. The dimension of the matrix B = 10. The right hand
side b is taken to be b = Ax, where x = (1, 1, . . . , 1)T , is the solution of
the system.
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Table 1. A19/B6 versus A12, Anew12 , A5/B10 and A8/B10

for problems of different dimensions when δ = 0

A5/B10 A8/B10 A12 Anew12 A19/B6

n ||rk|| t(sec) ||rk|| t(sec) ||rk|| t(sec) ||rk|| t(sec) ||rk|| t(sec)
10 2.2940E−13 0.010854 1.7704E−13 0.010376 4.9623E−13 0.048924 2.9118E−13 0.020067 6.8468E−13 0.008025
20 2.5256E−14 0.011083 1.7489E−13 0.010333 1.7536E−13 0.048976 2.4453E−15 0.020012 6.1935E−07 0.008509
30 3.9026E−09 0.011525 4.9472E−09 0.010885 5.4705E−08 0.049626 2.5346E−10 0.021378 8.5523E−06 0.009085
40 1.4770E−10 0.011533 8.4658E−10 0.011027 1.4776E−08 0.049785 3.6924E−11 0.021413 8.1290E−06 0.010240
50 1.9959E−06 0.012044 1.3598E−06 0.011429 4.7994E−06 0.051143 1.2732E−06 0.022533 9.2021E−06 0.010890
60 9.1910E−06 0.012473 3.7470E−06 0.011487 5.0010E−06 0.051385 2.3592E−06 0.022561 3.1422E−06 0.010661
70 4.9035E−06 0.013022 4.2579E−06 0.012160 1.3781E−06 0.052743 5.1279E−07 0.023865 4.5622E−06 0.011104
80 4.4311E−06 0.013973 7.7199E−06 0.013356 7.5581E−06 0.052522 3.5448E−06 0.023640 7.2687E−06 0.011604
90 NaN 9.2478E−06 0.019182 6.2686E−06 0.055501 4.4189E−06 0.024360 3.4159E−06 0.012699
100 1.1889E−06 0.013331 3.1695E−06 0.012546 8.9530E−07 0.052106 2.3809E−07 0.023172 5.8577E−06 0.012053
200 NaN NaN NaN 8.2198E−06 0.041164 5.8982E−06 0.026923
300 NaN NaN NaN 7.3650E−06 0.083002 3.6483E−06 0.055710
400 NaN NaN NaN 8.2378E−06 0.121768 8.9684E−06 0.130579
500 NaN NaN NaN 9.8283E−06 0.990127 7.5932E−06 0.260776
600 NaN NaN NaN 9.8207E−06 1.574158 9.8773E−06 0.466735
700 NaN NaN NaN 9.4625E−06 2.854015 9.7121E−06 0.720233
800 NaN NaN NaN 9.1387E−06 4.476857 8.6149E−06 1.254427
900 NaN NaN NaN NaN 7.4319E−06 4.066442

The results show that for δ = 0 algorithm A19/B6 solved the given prob-
lems for dimensions up to 900 while the existing three algorithms namely
A5/B10, A8/B10 and A12 failed on systems of dimension n > 100.

Table 2. A19/B6 versus A12, Anew12 , A5/B10 and A8/B10

for problems of different dimensions when δ = 0.2

A5/B10 A8/B10 A12 Anew12 A19/B6

n ||rk|| t(sec) ||rk|| t(sec) ||rk|| t(sec) ||rk|| t(sec) ||rk|| t(sec)
10 9.8216E−10 0.017858 2.3567E−10 0.010808 2.0583E−08 0.049232 4.7266E−08 0.021279 7.5451E−06 0.017863
20 4.1778E−11 0.011341 5.8526E−11 0.010930 6.3915E−10 0.049101 5.9892E−10 0.021293 3.7108E−06 0.020886
30 2.6438E−06 0.012366 5.9072E−06 0.012117 5.9403E−06 0.050672 6.8627E−06 0.022881 9.2819E−06 0.021169
40 NaN NaN 7.6080E−06 0.051437 7.8688E−06 0.023776 6.8914E−06 0.023724
50 NaN NaN 8.8143E−06 0.066431 5.0100E−06 0.028116 7.2611E−06 0.022813
60 NaN NaN NaN 2.6424E−06 0.024839 5.9941E−06 0.025928
70 NaN NaN NaN 9.9853E−06 0.237743 9.3422E−06 0.024190
80 NaN NaN NaN NaN 3.8215E−06 0.025606
90 NaN NaN NaN NaN 7.7488E−06 0.037380
100 NaN NaN NaN NaN 7.7186E−06 0.045345
200 NaN NaN NaN NaN 3.5339E−06 0.052006
300 NaN NaN NaN NaN 6.5440E−06 0.136388
400 NaN NaN NaN NaN 7.2847E−06 0.259785
500 NaN NaN NaN NaN 2.8823E−06 0.278282
600 NaN NaN NaN NaN 8.9049E−06 0.445157

As can be seen in Table 2, for δ = 0.2, algorithm A19/B6 solved the given
problems for dimensions up to 500 while algorithms A5/B10, and A8/B10

failed for n = 40 and A12, Anew12 failed for n = 60 and above.
If we decrease the tolerance ε from 10−05 to 10−013 the numerical results
are strongly in favor of A19/B6 which is clear from Table 3 and Table 4.
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Table 3. A19/B6 versus A12, Anew12 , A5/B10 and A8/B10

for problems of different dimensions when δ = 0

A5/B10 A8/B10 A12 Anew12 A19/B6

n ||rk|| t(sec) ||rk|| t(sec) ||rk|| t(sec) ||rk|| t(sec) ||rk|| t(sec)
10 4.5196e−015 0.010969 4.4052e−014 0.010418 3.4389e−014 0.048920 2.9118e−015 0.020013 9.4527e−014 0.019143
20 2.5256e−014 0.010665 1.6217e−014 0.010309 4.4538e−014 0.048298 2.4453e−015 0.019989 8.2368e−014 0.019618
30 NaN NaN NaN 9.2583e−014 0.030612 3.2875e−014 0.023630
40 NaN NaN NaN 8.4447e−014 0.027055 2.2496e−014 0.027095
50 NaN NaN NaN 4.4856e−014 0.057526 1.5384e−014 0.027677
60 NaN NaN NaN NaN 3.9895e−014 0.025539
70 NaN NaN NaN 9.0212e−014 0.047472 2.0157e−014 0.027536
80 NaN NaN NaN NaN 7.3023e−014 0.028718
90 NaN NaN NaN 4.5477e−014 0.072918 6.4488e−014 0.032048
100 NaN NaN NaN 6.8764e−014 0.193226 4.8541e−014 0.030108
200 NaN NaN NaN 7.6191e−014 0.359243 4.8439e−014 0.076182
300 NaN NaN NaN 4.3659e−014 1.027307 6.8328e−014 0.227479
400 NaN NaN NaN 9.7388e−014 3.493297 7.2821e−014 0.517246
500 NaN NaN NaN 9.5239e−014 10.783390 6.3551e−014 1.951565

The results show that for ε = 10−013 and δ = 0 algorithms A19/B6 and
Anew12 solved the given problem for dimensions up to 500 while A5/B10,
A8/B10 and A12 failed for n = 30 and above.

Table 4. A19/B6 versus A12, Anew12 , A5/B10 and A8/B10

for problems of different dimensions when δ = 0.2

A5/B10 A8/B10 A12 Anew12 A19/B6

n ||rk|| t(sec) ||rk|| t(sec) ||rk|| t(sec) ||rk|| t(sec) ||rk|| t(sec)
10 1.4521E−14 0.012071 4.7905E−14 0.011465 2.9806E−14 0.050647 NaN 2.4294E−14 0.020081
20 NaN NaN NaN NaN 6.0869E−14 0.028402
30 NaN NaN NaN NaN 5.1766E−14 0.028676
40 NaN NaN NaN NaN 5.1502E−14 0.032685
50 NaN NaN NaN NaN 8.9242E−14 0.031879
60 NaN NaN NaN NaN 1.9212E−14 0.037306
70 NaN NaN NaN NaN 5.5211E−14 0.048051
80 NaN NaN NaN NaN 9.8420E−14 0.049704
90 NaN NaN NaN NaN 5.0930E−14 0.061245
100 NaN NaN NaN NaN 9.0537E−14 0.069353
200 NaN NaN NaN NaN 1.0460E−14 0.126791

Again, for ε = 10−013 and δ = 0.2 algorithm A19/B6 solved the given
problems up to dimension 200 while the other algorithms failed for n = 10
and above. The obvious reason is breakdown, [19, 20]. Since all these al-

gorithms consist of recursively computing Pk and P
(1)
k , which involves the

calculation of some scalar products appearing as denominators and nu-
merators of the coefficient of the recurrence relationships, when any of the
denominators become very small, as small as, for instance 2.3879×10−014,
breakdown occurs and the algorithms fail. This breakdown issue is be-
ing investigated further and any finding will be reported in forthcoming
papers.
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According to [1, 17, 21, 33], algorithms A12, Anew12 , A5/B10 and A8/B10

are considered as the most robust Lanczos-type algorithms. We have
now compared our new algorithm with these algorithms on a standard
problem considered in this paper and elsewhere. Our results show that
algorithm A19/B6 is faster through out, and more robust overall.

3. Conclusion

In this paper, we derived the recurrence relation A19 [17] and recalled
B6 [1] both using the general auxilliary polynomial Ui(x). We used A19

in tandem with B6 to derive a new Lanczos-type algorithm A19/B6. This
new algorithm has been applied to a number of instances of some stan-
dard test problem considered in [17, 1, 33] and elsewhere. The perfor-
mance of this algorithm is compared to that of existing and well es-
tablished algorithms of the same type namely, A12, Anew12 , A5/B10 and
A8/B10, [2, 17, 33]. Numerical results are strongly in favour of the new
algorithm A19/B6.
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