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Humans display image-independent viewing biases when inspecting complex scenes. One of the
strongest such bias is the central tendency in scene viewing: observers favour making fixations towards
the centre of an image, irrespective of its content. Characterising these biases accurately is important for
three reasons: (1) they provide a necessary baseline for quantifying the association between visual fea-
tures in scenes and fixation selection; (2) they provide a benchmark for evaluating models of fixation
behaviour when viewing scenes; and (3) they can be included as a component of generative models of
eye guidance. In the present study we compare four commonly used approaches to describing image-
independent biases and report their ability to describe observed data and correctly classify fixations
across 10 eye movement datasets. We propose an anisotropic Gaussian function that can serve as an
effective and appropriate baseline for describing image-independent biases without the need to fit func-
tions to individual datasets or subjects.

� 2014 Elsevier Ltd. All rights reserved.
When we view complex scenes, where we look is influenced by
a combination of low-level scene statistics (Itti & Koch, 2000),
higher-level interpretation of the scene (Ehinger et al., 2009;
Einhäuser, Spain and Perona, 2008), task goals (Buswell, 1935;
Yarbus, 1967) and behavioural biases (Tatler & Vincent, 2009). If
we are to understand the relative contributions of these different
sources of guidance in scene viewing then techniques are required
for quantifying the extent to which decisions about where to look
can be attributed to each source.

At present, existing techniques can be categorised broadly into
two approaches. First, the statistical properties at the centre of gaze
can be quantified in order to measure how strongly a particular fea-
ture is associated with where gaze is directed (e.g., Pomplun, 2006;
Reinagel & Zador, 1999). Second, locations that are likely to be fix-
ated can be predicted based upon the distribution of statistical prop-
erties across an image and then the correspondence between the
distribution of human fixation locations and the regions predicted
as likely to be fixated from the statistical distribution can be assessed
(e.g., Torralba, Oliva, Castelhano, & Henderson, 2006).

Both approaches can be used to assess the potential correspon-
dence between a variety of low- or high-level features and fixation
selection: provided that the feature under investigation can be
quantified at each location in the scene, it is possible to quantify
the strength of that feature at fixation or its distribution over the
image. However, both approaches require a baseline measure in
order to consider whether the association between the feature
under test and fixation is greater than that expected by chance.
Typically, a randomly generated set of locations is used to sample
either the strength of the feature or the probability of selecting
locations that fall within the regions predicted as likely to be fix-
ated on the basis of the feature. The extent to which the control
locations and the fixated locations correspond with the feature
under test can then be used to assess whether any association
between the feature and fixation is greater than would be expected
by chance. A powerful and commonly used approach for making
this judgment is to use the signal detection theoretic measure of
the area under the receiver-operating-characteristics curve (see
Green & Swets, 1966). The manner in which the random locations
used as the baseline for such assessments are generated has impor-
tant implications for the manner in which findings can be inter-
preted and indeed can significantly impact on the results
(Henderson, Brockmole & Castelhano, 2007; Tatler, Baddeley &
Gilchrist, 2005).

One approach is to use a uniform distribution for selecting con-
trol locations (e.g., Einhäuser, Spain & Perona, 2008; Parkhurst,
Law & Niebur, 2002; Reinagel & Zador, 1999). Using such an
approach means that any association between fixation and the fea-
ture under test that is beyond that found in the baseline comparison
can be interpreted as suggesting that the feature is selected more
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than would be expected if the eyes were directed randomly around
a scene.

However, the existence of behavioural biases in how we view
scenes (Tatler, 2007; Tatler & Vincent, 2009) suggests that a uni-
form random baseline may misrepresent selection with respect
to features. That is, if the baseline comparison uses a uniform ran-
dom distribution for generating control locations, any association
found between fixation and features that extends beyond that in
the baseline condition is likely to reflect a combination of selection
based on image properties and image-independent biases in fixa-
tion behaviour. A more appropriate baseline for evaluating the
association between an image feature and fixation placement is
to select control locations from a distribution that reflects any
image-independent biases in viewing behaviour. The most promi-
nent and well-characterised image-independent bias in scene
viewing is the central fixation bias: humans preferentially fixate
the centre of the scene in a manner that is almost independent
of the scene displayed to observers (Tatler, 2007; Tseng et al.,
2009). As a result, control fixations can be drawn from distribu-
tions that reflect this central bias (see Tatler, 2007; Tatler,
Baddeley & Gilchrist, 2005, for discussion of this issue).

There exist a number of ways that are typically used to con-
struct a centrally-weighted distribution used in the baseline condi-
tion. One approach is to use a centred Gaussian to approximate the
central bias and this may be fitted to the overall distribution of fix-
ation locations in a dataset (Zhao & Koch, 2011), or scaled to the
aspect ratio of the images presented (Judd, Durand & Torralba,
2012). Alternatively, these control distributions may be generated
in ways that are aimed to maximise the chance of capturing any
individual viewing biases that participants display when viewing
scenes. There exist two main ways of attempting to capture indi-
vidual viewing biases in baseline samples of features. First, the
(x,y) locations of fixations on the test image can be used to sample
features at the same locations in another (randomly selected)
image (Parkhurst & Niebur, 2003). Second, (x,y) locations of fixa-
tions made by the same participant but when viewing different
images can be used to sample features on the test image (e.g.,
Tatler, Baddeley & Gilchrist, 2005; Tatler & Vincent, 2009).

At present, it is unclear whether and how these different
approaches to creating a baseline distribution vary in their suit-
ability. The present study compares distributions of fixations
across multiple existing datasets of eye movements in order to
consider whether a single common distribution might be an appro-
priate baseline across studies and individuals or whether it is nec-
essary to tailor the baseline distribution to each study and
individual.

Being able to capture the statistics of the baseline condition
appropriately is necessary for three reasons. First, if we wish to
consider the relative importance of any feature in decisions about
where to look, it is desirable to be able to quantify the unique var-
iance associated with the particular feature after removal of vari-
ance associated with other factors that may contribute to
decisions about where to look. In this way, any assessment of the
importance of visual information (low- or high-level) to fixation
selection should partial out variance that is associated with any
image-independent biases in looking behaviour. Thus, if we com-
pare the feature of interest to an appropriate baseline that
accounts for image-independent biases, then we are better able
to characterise associations between that feature and fixation
behaviour. This principle extends beyond simply evaluating low-
level salience models to any domain in which it is desirable to be
able to characterise the contribution of a particular source of infor-
mation to inspection behaviour. For example, in visual search par-
adigms, it is also useful to be able to remove any component of the
behaviour that is driven by looking biases that are unrelated to the
stimuli displayed.
Second, we can use this baseline as a benchmark for evaluating
models of eye movement behaviour in scene viewing, as employed
by Judd, Durand and Torralba (2012). Models should at least be
able to outperform a baseline model based on image-independent
biases such as looking at the centre of the screen. In their extensive
comparison of a range of different salience models, Judd, Durand
and Torralba (2012) found that only two models managed to out-
perform an image independent central bias baseline constructed
using an aspect ratio-scaled Gaussian distribution. As there
appears to be no empirical basis for this exact baseline, this may
in fact underestimate the amount of variance that can be
explained, and hence over-estimates the performance of the sal-
ience models.

Third, we can treat any image-independent bias as a factor in
eye movement control itself. Thus, if we can computationally
model these biases and derive appropriate characterisations of
these biases we can use these as a component of models of fixation
selection. That is, we can produce models with modules for low-
level information, high-level information and image-independent
biases. Given the strength of the central bias and its ability to pre-
dict human fixations, it is surprising that it is not more commonly
incorporated into computational models. Indeed in their review,
Judd, Durand and Torralba (2012) found only three studies that
explicitly included a central bias in their model: Parkhurst and
Niebur (2003) use the ‘‘shuffle’’ method; Zhao and Koch (2011) fit-
ted Gaussians to their data, but restricted their baseline to an iso-
tropic central bias, i.e., they fitted a covariance matrix with equal
horizontal and vertical variance; and Judd et al. (2009) used an iso-
tropic Gaussian fall-off that was stretched to match the aspect ratio
of the image. Other examples in the literature include Clarke, Coco
and Keller (2013) who used Euclidean distance from the centre of
the image, and Spain and Perona (2011) who used a wide range of
distance functions based on the Euclidean metric. Appropriate
characterisation of image-independent biases therefore will allow
appropriate and effective additions to existing models of fixation
selection.

In the present study we evaluated different approaches to char-
acterising baselines for understanding fixation behaviour when
viewing scenes. Using ten eye movements datasets, we compared
four ways of characterising image-independent biases in fixation
selection: (1) fitting an isotropic Gaussian to the data (as in Zhao
& Koch, 2011), (2) fitting a Gaussian scaled to the aspect ratio of
the images (as in Judd, Durand & Torralba, 2012), (3) anisotropic
Gaussians where the vertical and horizontal variances were fitted
to each dataset, and (4) anisotropic Gaussians where the vertical
and horizontal variances were fitted to each participant within
each dataset. The final two approaches attempt to capture any
experiment-specific (approach 3) or subject-specific (approach 4)
differences in image-independent biases and as such conform to
the recommendations made in previous discussions of this issue
(Borji, Sihite & Itti, 2013a, 2013b; Tatler, Baddeley & Gilchrist,
2005). By comparing across these four approaches we were able
to consider the relative ability of each approach for describing
the data effectively and also the impact that each approach has
upon our ability to classify fixated and control locations using each
approach. One potential problem with the subject-level fitting
(approach 4) is that this is likely to be sensitive to the sample size
of eye movements used to construct the baseline distributions.
This is a particular issue in studies with small numbers of trials
or short presentations times (hence few fixations per image). As
a result we considered how these approaches for describing the
baseline are influenced by small n. In all of these approaches an
empirical fit of the data is required to produce the baseline. We
considered whether this is really necessary or whether a general
purpose function can be employed that can be used irrespective
of the subject or experiment under investigation. Here we used
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the average vertical and horizontal scaling parameters from our
dataset-fitting approach (approach 3) as a general purpose base-
line. We evaluated the ability of this baseline to explain the
observed data and to classify fixated vs. control locations. From
these comparisons we are able to make a recommendation for best
practice when evaluating feature selection and model performance
or when constructing models of fixation selection in scene viewing.
1. Method

1.1. Datasets

In the present study, we considered a collection of ten datasets
collected over the previous decade. A number of different tasks are
represented, including free-viewing, visual search, memory and
scene description. Table 1 provides a summary of the number of
subjects and images in each dataset together with the task and dis-
play durations. Table 2 shows details of the experimental setups in
each of the 10 datasets analysed in the present study.

The images in seven of the ten datasets had an aspect ratio of
4:3. The images used by Yun et al. (2013) covered a range of aspect
ratios but 4:3 was by far the most common and so we restricted
our analysis to these images. The only other aspect ratio repre-
sented was 5:4 (Asher et al., 2013). The photographs used by
Einhäuser, Spain and Perona (2008) are of mixed aspect ratio, but
the images have had large black borders added which bring their
aspect ratio up to 4:3.

For our analyses we excluded any fixations that fell outside the
borders of the images. The very first fixation in each trial was
excluded because it began prior to scene onset and its location
was determined by the location of the pre-trial fixation target
rather than any content of the scene that followed. For all remain-
ing fixations, the x and y coordinates were normalised by half of
the width of the image, i.e., the centre of the image corresponded
to ð0;0Þ and fixations were points in the space ½�1;1� � ½�a; a�,
where a is the aspect ratio used in the dataset (typically,
a ¼ 0:75). An example of the distribution of fixations in a dataset
is shown in Fig. 1.

1.2. Modelling

1.2.1. Fitting empirical data
Previous implementations of the central bias are generally

based on either the Euclidean distance-to-centre (Clarke, Coco &
Keller, 2013) or a multivariate Gaussian probability density func-
tion. This Gaussian is sometimes isotropic (Zhao & Koch, 2011),
and sometimes set so that the ratio of horizontal to vertical vari-
ance is set to the aspect ratio of the image (Judd, Durand &
Torralba, 2012). From the form of the distribution in Fig. 1 it would
appear that both Euclidean and Gaussian fall-offs are likely to pro-
vide a good fit with the data. However, we favour using a Gaussian
as it has the desirable characteristic of assigning a positive, non-
Table 1
Summary of the 10 datasets used throughout this study.

Observers

Clarke, Coco and Keller (2013) 24
Yun et al. (2013) – SUN 8
Tatler, Baddeley and Gilchrist (2005) 14
Einhäuser, Spain and Perona (2008) 8
Tatler (2007) – free 22
Judd et al. (2009) 15
Yun et al. (2013) – PASCAL 3
Ehinger et al. (2009) 14
Tatler (2007) – search 30
Asher et al. (2013) 25
zero probability of fixation to all image locations. More specifically,
we use a two-dimensional Gaussian pdf with zero mean and
covariance matrix given by:

r2 0
0 mr2

 !
ð1Þ

where r2 is the horizontal variance of the fixations. We then calcu-
late the likelihood of the data for distributions with various m.

We evaluate five different methods for producing a centrally-
weighted Gaussian baseline:

� Isotropic: r2 is fitted to data, m ¼ 1.
� Aspect ratio: r2 is fitted to data, m ¼ 0:75 (=0.8 for Asher,

Tolhurst, Troscianko, & Gilchrist (2013)).
� Experiment-fitted: r2 and m fitted to whole dataset for each

experiment.
� Subject-fitted: r2 and m fitted to each participant’s data.
� Proposed baseline: r2 and m fixed across subjects and datasets,

set to average values from the experiment-fitted fits.

In the first four cases fits were optimised to explain the
observed fixation distributions (maximising likelihood). For the
proposed baseline parameters were set to the average r2 and m
derived from the experiment-fitted parameter estimates.

1.2.2. Classification performance of baseline models
In order to demonstrate that setting m < 1 leads to a significant

improved description of the data, we evaluated the ability of each
of the five baseline models to classify the empirical data from an
equal number of uniformly distributed samples. We did this by
training a logistic classifier and reporting the area under the ROC
curve (AUC). AUC values are reported as the mean of 1000-boot-
strapped samples with range and interquartile range shown in
box-and-whisker plots of the data in order to assess the relative
classification abilities of the five methods.

1.2.3. Sensitivity of models to varying n
A key issue in evaluating the suitability of our various baseline

models is how robust these approaches are to variation in the
amount of data over which baseline fits are fitted. Our fourth pro-
posed approach – subject-fitting – is particularly at risk of requiring
fits over small numbers of fixation locations. Small sample sizes
may result from small numbers of trials nt or from short presenta-
tion times (therefore small numbers of fixations per trial, nf ). In the
present study, we explored the effect of sample size on the subject-
fitted baseline as this is both the most commonly used approach
and is the one most at risk from small sample sizes. We considered
the effect of varying number of trials, for two datasets with large
numbers of trials (Clarke, Coco & Keller, 2013; Judd, Durand &
Torralba, 2012) per participant by randomly selecting subsets of
trials varying in size from 1:nt . For this analysis we used 10-fold
cross validation to calculate performance of fits based upon differ-
Images Task Display duration

100 Object naming 5000 ms
104 Image description 5000 ms

48 Memory Variable
93 Object naming 3000 ms

120 Free viewing 5000 ms
1003 Free viewing 3000 ms
1000 Free viewing 3000 ms

912 Visual search Variable
120 Visual search 5000 ms
120 Visual search Variable



Table 2
Details of the experimental setups in each of the 10 datasets analysed in the present study. We provide only information reported in the original articles. Question marks indicate
information not reported in the original article.

Eye tracker Viewing distance Screen size Image size Viewing angle Chin head rest

Clarke, Coco and Keller (2013) EyeLink II 50 cm 2100 800 � 600 31 � 25� No
Yun et al. (2013) – SUN EyeLink 1000 ? ? ? ? ?
Tatler, Baddeley and Gilchrist (2005) EyeLink I 60 cm 1700 800 � 600 30 � 22� No
Einhäuser, Spain and Perona (2008) EyeLink 1000 80 cm 2000 1024 � 768 29 � 22� Yes
Tatler (2007) – free EyeLink II 60 cm 2100 1600 � 1200 40 � 30� No
Judd et al. (2009) ? 2 feet 1900 1024 � 768a ? Yes
Yun et al. (2013) – PASCAL EyeLink 1000 ? ? ? ? ?
Ehinger et al. (2009) ISCAN RK-464 75 cm 2100 800 � 600 23.5 � 17.7� Yes
Tatler (2007) – search EyeLink II 60 cm 2100 1600 � 1200 40 � 30� No
Asher et al. (2013) EyeLink 1000 55 cm ? 1024 � 1280 37.6 � 30.5� Yes

a For the Judd et al. dataset images varied in pixel dimensions but the majority were at 1024 � 768.
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ent sized (varying nt) subsets from 90% of the data for classifying
the remaining 10% of the data. The plotted AUC values are means
across 10 bootstrapped samples in each of the 10 folds.

Having a small number of fixations per trial is a common prob-
lem but realistically only arises as a result of short presentation
times. In such situations, the distributions of fixations and hence
the baseline estimates will be influenced not only by the limited
availability of fixations, but also by the known variation in
image-independent biases over the first few fixations after scene
onset. In particular the image-independent bias to look near the
centre of scenes is known to vary in strength as viewing pro-
gresses, with a more pronounced bias soon after scene onset than
later in viewing (Tatler, 2007). We therefore took a second
approach to modelling the influence of small numbers of fixations
per trial by considering the suitability of our proposed baseline as a
function of the number of fixations in a trial by fitting r2 and m to
only the first n fixations in each dataset. We also fitted functions to
describe how r2 and m vary with the number of fixations collected.
While fitting the first nf fixations gives a realistic impression of the
suitability of our proposed baseline and the reliability of subject-fit-
ted baselines for datasets comprising trials of varying duration, it
does not allow us to describe the ability to fit image-independent
biases at any given moment in viewing. In order to consider this
issue we fit data for the nth fixation in each dataset. Taken together
our fits of the first nf fixations and the nth fixation in viewing allow
us to characterise not only how well different baseline approaches
described the data for varying trial durations, but also how the
baseline fits varied over the course of viewing. Any change in r2

and m reflect how the distribution of fixations changed over fixation
number, with larger r2 indicating greater spread and larger m indi-
cating a greater horizontal to vertical ratio.
2. Results

2.1. Fitting empirical data

In the evaluated datasets the means of the fixation locations
were indeed at the centre of the image (Fig. 2). This suggests that
there were no large systematic biases towards fixating one region
over any other. For example, a bias towards fixating the lower half
of the image would not have been surprising as, generally, there is
more informative image content below the mid-line horizon than
above: the upper half of images is more likely to contain sky (out-
door scenes) or walls/ceilings (indoor scenes) and as such is less
likely to contain informative scene content. However, like Tatler
(2007) we found no such vertical shift, with all distributions cen-
tred around the vertical and horizontal centre of the scene. There-
fore, in the analyses that follow we used a Gaussian centred at the
scene centre.

For the isotropic and aspect ratio baseline models we fitted a
diagonal covariance matrix to each dataset, allowing r2 to vary,
but setting m to 1 in the case of the isotropic model and 0.75 (or
0.8 for the Asher et al. (2013) dataset) for the aspect ratio model.
For the experiment-fitted and subject -fitted baseline models we fit-
ted a diagonal covariance matrix to each dataset, allowing both r2

and m to vary.
The distributions of r2 and m for the experiment-fitted baseline

model are given in Fig. 3. For all of the evaluated datasets m, the
ratio of vertical to horizontal variance, was not only less than 1
(i.e., vertical variance was less than horizontal variance), but was
also less than would be expected from the aspect ratio of the
images (typically 0.75). The mean value, m = 0.45 suggests that
the vertical variance is less than half the horizontal variance.
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Fig. 2. Mean fixation positions for the seven non-search datasets. Each � shows the mean fixation location over all fixations (pooled over subjects and trials) in the dataset.
Right, zoomed plot of the central region of the scenes to show dispersion of mean fixation locations in each dataset around the central point in the screen.
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For the proposed baseline model we used the mean r2 and m
across datasets calculated using the experiment-fitted baseline fits.
As such, in our proposed baseline model r2 ¼ 0:22 and m = 0.45.

Fig. 4 shows how varying m affected the likelihood of the fixa-
tions from each dataset. The results consistently showed that the
horizontal variation is larger than the vertical variation, and fur-
thermore, that setting m to the aspect ratio of the image does not
capture all of this effect. We also found that the difference between
fitting each dataset individually, and just using r2 = 0.22, m = 0.45
was comparatively minor. Interestingly the Ehinger et al. (2009)
dataset appears to be an outlier. Presumably this is due to the nat-
ure of the images: when searching for pedestrians in photographs
of street scenes, it is unsurprising there are more fixations located
along a horizontal band and less variance in the vertical direction,
and indeed the authors use a horizontal band as a contextual prior
in their study.
2.2. Classification performance of baseline models

We assessed the ability of each of our five baseline models to
distinguish the empirical fixations from a set of uniformly
distributed points using logistic regression. The results are shown
in Table 3 and Fig. 5. For all ten datasets, the isotropic baseline per-
formed the worst. The differences between our proposed baseline
and both the experiment-fitted and subject-fitted baseline models
were relatively minor.
2.3. Sensitivity of models to varying n

If we estimate the central bias from small sample sizes, the esti-
mate is likely to be a poorer fit and thus less well able to explain
empirical fixation distributions. Small sample size for estimates
of baselines is a particular problem for subject-fitted baselines,
especially if either the number of trials is small or the presentation
times for images are short. We simulated the problem of small
numbers of trials on the estimates of the central fixation bias by
randomly sampling nt trials (Fig. 6) for two datasets and consider-
ing how well baselines fitted to these limited samples explained
data on other (test) data from the same subject. For reference the
performance of our proposed baseline is also plotted alongside these
fits. It is clear that when the size of the dataset is limited by having
few trials, subject-fitted Gaussians were poor estimates of the
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Table 3
Area under ROC for each of the five baseline models evaluated for each of the 10 datasets.

Isotropic Aspect ratio Experiment fitted Subject fitted Proposed baseline

Clarke, Coco and Keller (2013) 0.728 0.736 0.742 0.741 0.742
Yun et al. (2013) – SUN 0.738 0.733 0.734 0.731 0.74
Tatler, Baddeley and Gilchrist (2005) 0.631 0.642 0.66 0.661 0.658
Einhäuser, Spain and Perona (2008) 0.751 0.759 0.767 0.766 0.769
Tatler (2007) – free 0.714 0.72 0.724 0.724 0.724
Judd et al. (2009) 0.780 0.788 0.795 0.799 0.795
Yun et al. (2013) – PASCAL 0.796 0.807 0.823 0.824 0.820
Ehinger et al. (2009) 0.646 0.668 0.729 0.732 0.703
Tatler (2007) – search 0.619 0.624 0.628 0.630 0.628
Asher et al. (2013) 0.590 0.594 0.597 0.601 0.597
Improvement over isotropic – 0.010 0.024 0.025 0.020
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Fig. 5. Classification performance for the five baseline models for each of the 10 datasets. Classification performance was assessed by training a logistic classifier and testing
its ability to distinguish fixations from uniformly distributed samples, for which we report the area under the ROC curve (AUC). In these box-and-whisker plots the horizontal
line shows the mean AUC from 1000 bootstrapped samples, the filled box indicates the interquartile range and the whiskers indicate the full range in the data.
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underlying central bias in fixation behaviour. As such, subject-spe-
cific fits based on small n will be a less reliable baseline than a
baseline with our proposed fixed vertical and horizontal scaling
(Fig. 6).

Fig. 7 shows how r2 and m varied when fitting only the nth fix-
ation in each trial or the first n fixations of each trial in each data-
set. The patterns are similar for r2 and m for the nth or first n
fixations in each trial: with lower r2 and – to a lesser extent –
higher m early in the trial than later in the trial. These changing val-
ues show that the first few fixations after scene onset were distrib-
uted differently from later fixations, with less horizontal spread
and greater vertical spread. We fitted functions to describe the
change in mean r2 and m over the first n fixations in a trial as fol-
lows: r2 ¼ 0:23� 0:29=n (fit r2 ¼ 0:99), m ¼ 0:43� 0:09=en (fit
r2 ¼ 0:97) where n = the number of fixations collected per trial. It
should be noted that m asymptotes very early in viewing, at around
3–4 fixations. As such, no modification of our proposed baseline m of
0.45 is necessary provided presentations times allow at least 3–4
fixations per trial in any experiment. For r2, some modification
of our proposed baseline r2 of 0.22 is necessary for experiments
where fewer than 10 fixations are collected per trial, and for this
we recommend using the function above.
3. Discussion

Characterising image-independent biases in eye movements,
such as the tendency to look at the centre of a scene, is important
for understanding eye guidance in scene viewing for at least
three reasons. First, image-independent biases are an appropriate
and necessary baseline for quantifying the association between
visual features in scenes and fixation selection (e.g., see Tatler,
Baddeley & Gilchrist, 2005). Second, the overall performance of
models of fixation selection is often measured by comparing
the model’s performance to that from a reference model based
on image-independent biases such as the central fixation ten-
dency (e.g., Judd, Durand & Torralba, 2012). Therefore, an appro-
priate description of the image-independent biases in scene
viewing is essential for making such evaluations. Third, we can
incorporate the description of image-independent biases into
models of fixation selection in order to improve the ability of
models to generate human-like fixation behaviour (see Clarke,
Coco & Keller (2013), Judd, Ehinger, Durand, & Torralba (2009),
Parkhurst & Niebur (2003), Spain & Perona (2011) and Zhao &
Koch (2011), for examples of incorporating central tendencies
into models).
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Previous authors have argued for the need to compare feature
content at fixated locations to that at control locations, with
control locations drawn from a distribution that reflects any
image-independent biases in inspection behaviour (e.g., Borji &
Itti, 2013; Judd, Durand & Torralba, 2012; Tatler, Baddeley &
Gilchrist, 2005). However, different conventions exist for con-
structing the distribution for this baseline comparison dataset
(Borji, Sihite & Itti, 2013a, 2013b). Some authors have used a
uniform distribution for generating baseline locations (e.g.,
Einhäuser, Spain & Perona, 2008). However, other authors have
preferred measures that sample non-uniformly for their baseline
samples in order to capture aspects of the typical, non-uniform
inspection behaviour that is ubiquitous in scene viewing. A popular
approach for constructing a baseline distribution is to use the fix-
ation locations of the same individual on other images (e.g., Tatler,
Baddeley & Gilchrist, 2005). Using uniform random sampling or
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sampling that reflects image-independent biases can produce very
different findings, and it has been argued that uniform sampling
for baseline comparisons can mis-represent the association
between low-level features and fixation placement (Henderson,
Brockmole & Castelhano, 2007; Tatler, Baddeley & Gilchrist, 2005).

Using baselines that capture viewing biases such as the ten-
dency to look at the centre of the screen allows evaluations to
essentially account for between- or within-individual image inde-
pendent biases in inspection behaviour. However, creating a base-
line in this way is problematic if (1) the number of images in a
study is small or (2) presentation times are short. In both cases,
the number of samples that are used to create the baseline set of
locations will be small and thus estimates of any effect may be
noisy. It is also not clear from previous studies that have recom-
mended such approaches whether this degree of description is
necessary to provide an appropriate baseline: that is, is it necessary
to construct baseline samples that reflect individual- and experi-
ment-specific biases, or can a function that describes image-inde-
pendent biases across individuals and tasks be employed? Such a
function would remove the issues associated with small datasets
sizes when gathering baseline samples.

In the present study we found that fitting an anisotropic Gauss-
ian to each dataset (thus to each experiment) produced a better
description of viewing behaviour than an isotropic Gaussian fitted
to each dataset. Thus, a baseline distribution that reflects a greater
spread of fixations horizontally than vertically provides a better
description of fixation behaviour than an isotropic distribution. If
the anisotropy was scaled to the aspect ratio of the image, the
baseline model both described the empirical observations better
and classified fixation data more reliably than the isotropic baseline
model. Descriptive power and classification accuracy were better
still if the horizontal and vertical scaling of the Gaussian was fitted
to each dataset (experiment-fitted baseline). In this case we found
that for all datasets the best vertical scaling was less than that of
the aspect ratio – that is, vertical spread was less than would be
expected from the aspect ratio of the images alone. Fitting the
Gaussian separately to each individual (subject-fitted baseline) pro-
duced a baseline that was comparable to the experiment-fitted
baseline in nine of the ten datasets we explored: only for the
Judd et al. (2009) dataset was the subject-fitted baseline noticeably
better than the experiment-fitted baseline model for classifying fix-
ations. This interestingly suggests that there may be little statisti-
cal advantage to constructing baselines separately for each
participant in an experiment and that fitting across participants
at the experiment level provides a baseline that is equally appro-
priate for meaningful statistical comparisons.

One issue with creating a baseline by fitting to individual sub-
jects or experimental datasets is that the estimate of the underly-
ing biases will become noisy for smaller dataset sizes. In an
attempt to circumvent this potential issue we evaluated a baseline
model constructed by taking the average vertical and horizontal
scaling from the experiment-fitted Gaussians. The rationale is that
it would be of benefit to be able to use a fixed Gaussian function
for any dataset of fixations gathered during scene viewing experi-
ments. We found that the mean classification performance of our
proposed baseline model was surprisingly close to that for the
experiment-fitted and subject-fitted baseline models. Indeed in nine
of the ten datasets the interquartile ranges for these three baseline
models overlapped considerably. Only for the Ehinger et al. (2009)
dataset was our proposed baseline model noticeably inferior to the
experiment-fitted and subject-fitted baseline models. It may be that
the combination of task (find people) and image set (street scenes)
resulted in a distribution of fixation behaviour that was unlike that
found in the other datasets we evaluated. Indeed, we found that
the effect of varying the vertical scaling for the fitted Gaussians
was very different for this dataset than for the other nine datasets.
The authors themselves found that a horizontal band across the
extent of a scene offered a good explanation of the data (providing
a contextual prior for searching for people in street scenes).
Because removing any influence of image-independent biases such
as the central fixation bias from evaluations of other factors in
models of scene viewing is advantageous, we would argue that it
is advantageous to include our proposed baseline model even in
datasets like that collected by Ehinger et al. where our proposed
baseline offers a poor overall fit to the observed data. In doing so
we isolate any fraction of inspection behaviour that is attributable
to these biases and so obtain a potentially better and fairer esti-
mate of the contribution of other factors to eye guidance.

The good performance of our proposed baseline model across a
variety of experimental tasks and subjects suggests that there is
no need to fit experiment-level or subject-level differences in
inspection biases. We therefore propose from the datasets exam-
ined in the present report that an appropriate baseline distribution
for experiments using images with aspect ratios around 4:3 is a
Gaussian probability density function with zero mean and covari-
ance matrix ½r2;0; 0; mr2� where r2 ¼ 0:23 and m ¼ 0:45. This rec-
ommended baseline avoids the risk of failing to estimate the
influence of image-independent biases when fits are based on
small numbers of observations: we found that the subject-fitted
baseline offered poor descriptions of fixation distributions for
small numbers of trials. Indeed, the subject-fitted baseline and
was poorer than our proposed baseline if the number of trials in
the experiment was less than around 15. Given that the strength
of the central bias in scene viewing is higher early in viewing than
later on Tatler (2007), we considered the influence of small num-
bers of fixations by modelling how r2 and m in our proposed base-
line change depending upon either (1) whether we modelled only
the nth fixation in a trial or (2) how many fixations are collected
after scene onset (thus modelling only the first n fixations per
trial). We found m to be relatively unaffected by the number of col-
lected fixations, with little change over fixations if only modelling
the nth fixation and only a small increase when modelling fewer
than the first 3–4 fixations per trial. We therefore suggest that m
of 0.45 is likely to be appropriate irrespective of presentation time
in an experiment, especially if trial durations allow at least 3–4 fix-
ations to be collected. For r2, it may be necessary to change the
value used for trials in which fewer than 10 fixations are collected
per trial (although little change is seen beyond the first five fixa-
tions), or if modelling any individual fixation up to around the
5th–7th in viewing. When modelling data collected with trial dura-
tions that result in fewer than 10 fixations per trial we therefore
recommend using a r2 ¼ 0:23� 0:29=nf .

There now exists a number of models of salience in scenes.
These models use feature-level descriptions of scenes, typically
describing the extent to which particular pixels or groups of pixels
differ from their immediate surroundings or the scene as a whole
(see Borji & Itti, 2013; Judd, Durand & Torralba, 2012). These fea-
ture-level descriptions are then compared to human fixation
behaviour in order to evaluate whether they offer good descrip-
tions of how scenes are viewed. Recently, Judd, Durand and
Torralba (2012) suggested that an appropriate benchmark for test-
ing the performance of salience models is to compare their ability
to account for human fixation locations to the ability of a centre-
bias baseline model to account for the same fixation locations. In
their evaluation, only two models outperformed their central bias
baseline model: GBVS (Harel, Koch & Perona, 2006) and the
authors’ proposed model. Moreover, the difference in AUC between
these two models and the baseline was small: 0.018 for GVBS and
0.028 for the authors’ proposed model. For their baseline model,
Judd et al. used a Gaussian that reflected the aspect ratio of the
viewed scenes. We found that fitting the Gaussians to the individ-
ual datasets, individual subjects or using our proposed baseline



50 A.D.F. Clarke, B.W. Tatler / Vision Research 102 (2014) 41–51
settings provided a better description of the centre bias than our
aspect ratio model and that this resulted in an increase in AUC of
0.014, 0.015 and 0.010 respectively over the aspect ratio model.
Thus, using any of these descriptions of the image-independent
biases narrows the gap further between the best performing mod-
els of salience and a simple image-independent centre bias model.
It is therefore vital that any evaluation of the performance of a
computational model of salience should employ the most appro-
priate description of image-independent biases as a baseline condi-
tion. It remains to be seen whether existing models of salience can
outperform more appropriate descriptions of the centre bias in
scene viewing.

If the goal of modelling viewing behaviour is to produce a
model that generates and predicts fixation behaviour rather than
describes it, then factors that contribute to fixation selection pro-
cesses should be accurately described and incorporated into mod-
els. As a result, such models increasingly include a component
engineered to reflect image-independent biases to fixate the centre
of the scene (Clarke, Coco & Keller, 2013; Judd et al., 2009;
Parkhurst & Niebur, 2003; Spain & Perona, 2011; Zhao & Koch,
2011). Our proposed baseline offers a parameter-free component
that can be incorporated into models of fixation behaviour, which
describes centre biases across databases robustly, consistently out-
performing baselines based on an isotropic central bias, or scaling
by the aspect ratio. This baseline offers impressive explanatory
power for describing human fixation distributions, with high per-
formance for classifying fixations in the 10 datasets analysed here
and therefore offers an important component of any model of eye
movement behaviour. Incorporating this module in models of
scene viewing should produce models that generate fixation
behaviour that is more like that generated by human observers.

It should be noted that while our recommended baseline is
tested across ten datasets, drawn from a number of different tasks
including free viewing, search, memorisation and scene descrip-
tion, it is important to validate this baseline against a wider variety
of datasets in the future. There was some variation between the
experimental setups across the 10 datasets, with differences in
viewing distance, screen size, image resolution, image viewing
angle and the use of chin/forehead stabilization. It is not clear
whether these factors may themselves influence the nature of
the image-independent biases. While there is variation between
our datasets there is not sufficient variation to permit an explora-
tion of this issue, but our proposed baseline offers a description of
image-independent biases that works well over the range of setups
analysed here. We expect that images with aspect ratios substan-
tially different from 4:3 will require a different covariance matrix,
as will images with non-canonical views of scenes. Indeed, viewing
behaviour differs for 4:3 aspect ratio images presented with con-
tent shown at different orientations (Foulsham, Kingstone &
Underwood, 2008) and placing natural scenes within a circular
aperture reduces the prevalence of horizontal eye movements
and increases the prevalence of vertical eye movements
(Foulsham & Kingstone, 2010). Similarly, using dynamic scenes
may reduce the influence of the screen centre on viewing
(Cristino and Baddeley, 2009; ’t Hart et al., 2009) and centre biases
may not be a feature of viewing real world scenes (’t Hart et al.,
2009; Tatler et al., 2011). However, it was not our goal to describe
a baseline suitable to all experimental situations, but instead one
that is suitable for the experimental setups most commonly used
in the field: where images are displayed on computer monitors,
with relatively small variations in angular extent, often in 4:3
aspect ratio or similar and most commonly using free viewing or
search tasks. In the present work we have shown that in such sit-
uations a baseline that is not tailored to individual datasets (thus
different sets of images and different tasks) or individual subjects
performs as well as baselines that are fitted to each dataset or
subject. This suggests that our recommended baseline is unlikely
to be parochial to any particular image sets, individuals or tasks
and so is likely to generalise to new datasets, and can serve as a
suitable and easy to implement baseline for many experimental
scene viewing datasets.
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