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Abstract—In this paper, the total system effective capacity
(EC) maximization problem for the uplink transmission, in a
multi-user multi-carrier OFDMA system, is formulated as a
combinatorial integer programming problem, subject to each
user’s link-layer energy efficiency (EE) requirement as well
as the individual’s average transmission power limit. To solve
this challenging problem, we first decouple it into a frequency
provisioning problem and an independent multi-carrier link-
layer EE-EC tradeoff problem for each user. In order to obtain
the subcarrier assignment solution, a low-complexity heuristic
algorithm is proposed, which not only offers close-to-optimal
solutions, while serving as many users as possible, but also has
a complexity linearly relating to the size of the problem. After
obtaining the subcarrier assignment matrix, the multi-carrier
link-layer EE-EC tradeoff problem for each user is formulated
and solved by using Karush-Kuhn-Tucker (KKT) conditions.
The per-user optimal power allocation strategy, which is across
both frequency and time domains, is then derived. Further, we
theoretically investigate the impact of the circuit power and the
EE requirement factor on each user’s EE level and optimal
average power value. The low-complexity heuristic algorithm
is then simulated to compare with the traditional exhaustive
algorithm and a fair-exhaustive algorithm. Simulation results
confirm our proofs and design intentions, and further show
the effects of delay quality-of-service (QoS) exponent, the total
number of users and the number of subcarriers on the system
tradeoff performance.

Index Terms—Link-layer energy-rate tradeoff, delay-outage
probability, effective capacity, energy efficiency.

I. I NTRODUCTION

Green communication networks, which not only emphasize
on spectrum efficiency (SE), but also promise high energy
efficiency (EE), have become imperative needs of future
communication systems. However, by nature, EE and SE could
require conflicting design approaches. From the information-
theoretic point of view, the EE-SE tradeoff problem in a down-
link orthogonal frequency division multiple access (OFDMA)
network was analyzed in [2], in which the impact of the
channel power gain and the circuit power on the EE-SE
relation was discussed. Considering the cognitive radio net-
works, a multi-objective optimization was formulated in [3],
in which the ergodic capacity was maximized and the total
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transmission power of femtocell base stations was minimized.
A general power consumption model in multi-user OFDMA
systems, including the transmission power, signal processing
power, and circuit power from both the transmitter and the
receiver sides, was first established in [4]. Then the authors
in [4] proposed a joint optimization method to iteratively
find the optimal solution for the EE-maximization problem,
subject to a peak transmit power constraint and a minimum
system data rate requirement. The EE and SE tradeoff problem
has also been extensively studied for other kinds of wireless
communication networks, such as energy-constrained wire-
less multi-hop networks with a single source-destination pair
[5], general narrowband interference-limited systems [6] and
OFDMA-based cooperative cognitive radio networks [7]. In
the aforementioned studies, however, the system throughput
was given by Shannon limit, without taking into account
delay constraints. For systems with delay-sensitive applica-
tions, such as video conferencing and online gaming, the
physical-layer based power and rate adaptation techniques may
not be efficient. In fact, 5G, the next generation of mobile
communication technology, has been anticipated to offer >1
Gbps downlink data rate, sub-1ms end-to-end latency and
90% reduction in network energy usage [8]. This infers that
the future wireless communication networks are targeted at
satisfying the end-user applications’ delay quality-of-service
(QoS) requirements, while at the same time increasing EE
and SE for green communications.

In order to fulfill these requirements, extensive studies
in the context of power control, scheduling, and admission
control have been widely provided in [9]–[21]. A cross-layer
optimization framework for delay-sensitive applications over
a single wireless link was formulated in [9], in which some
characteristics, e.g., delay deadlines, dependencies, distortion
impacts, are considered and discussed. The authors in [10]
provided energy-efficient transmission techniques for a group
of M packets subject to individual packet transmission delay
constraints. The above works all characterize the delay QoS
requirement for a dynamic queuing system in a deterministic
way, where the delay is bounded within a certain threshold
[11]. Although this sounds reasonable for real-time services,
satisfying fixed QoS guarantees is especially challenging in
fading communication scenarios, due to the random varia-
tions experienced in channel conditions, user mobility and
changing environment [12], which could lead to settling for
non-necessarily low data rates. In contrast to the above de-
terministic delay QoS bounds, in this paper we concentrate
on the delay QoS requirement in a statistical way, which
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considers and confines the delay bound violation probability
to a required value range. In this direction, the authors in [13]
introduced a link-layer capacity notion supporting statistical
delay QoS requirements, which is the concept of effective ca-
pacity (EC). Formulated as the dual of the effective bandwidth,
EC specifies the maximum arrival rate that can be supported by
a wireless channel given that a target delay-outage probability
requirement is guaranteed [13] [19]. Therefore, EC can be
regarded as the link-layer SE. The link-layer EE, henceforth,
can be formulated as the ratio of the EC to the total power
expenditure [14].

Due to the inconsistent property of the link-layer EE and
EC, many researchers have elaborately studied how to balance
the two metrics. Considering frequency flat-fading channels,
an optimal power allocation strategy to maximize EC sub-
ject to a link-layer EE constraint, for delay-limited mobile
multimedia applications was obtained in [15]. For a Rayleigh
flat-fading channel under delay-outage probability constraints,
a multi-objective optimization problem to jointly maximize
EE and EC was formulated and solved in [16]. The above
mentioned papers, however, focus on a point-to-point single-
channel communication system.

We note that based on the theory of Shannon limit, the
total average rate of a multi-carrier system is a linear sum-
mation of each subcarrier’s achievable average rate. This,
however, does not apply to systems with limited statistical
delay requirements. Specifically, in delay-constrained systems,
the concavity and monotonicity of the EC do not remain
homogeneous for single-carrier and multi-carrier systems [17].
In addition, for systems with statistical delay QoS constraints,
it has been proven that the optimal power allocation strategy
for single-carrier communications cannot be simply extended
to the multi-carrier communications [17]. Hence, considering a
single-user multi-carrier link over a frequency-selective fading
channel, the delay-constrained EC maximization and EE max-
imization problem were separately addressed in [17] and [18],
respectively. However, the link-layer EE-EC tradeoff problem
for the multi-carrier communications is not investigated and
analyzed in the literature. Especially, when we consider a
multi-user multi-carrier network, the link-layer EE-EC tradeoff
problem becomes more challenging. The formulated problem
will be a complex combinatorial integer programming prob-
lem, rather than a convex optimization problem in [17] which
was solved using Lagrangian method. In [20] and [21], an
EE optimization problem with statistical delay provisioning
and per-user’s EC requirement constraint was analyzed for a
downlink multi-user OFDMA network. In these papers, the
power allocation for each subcarrier is assumed to be only
related to its subcarrier’s channel power gain, and not related
to the same user’s other subcarriers’ channel power gains.
Therefore, based on this assumption and the independent and
identically distributed (i.i.d.) property of all subcarriers, the EC
value for a single-user multi-carrier system can be formulated
as a linear summation of the EC values of all subcarriers.
While this independent optimization approach is optimal in
maximizing the Shannon capacity (e.g., water-filling power
control for multi-carrier transmissions), it is not the optimal
policy to maximize the EC-based problems for an arbitrary
statistical delay provisioning [17]. In this paper, we will not

make this assumption, and aim to derive the optimal power
allocation strategy for each user, which is not only across the
time domain, but also across the frequency domain.

In this paper, we target to maximize the system total
EC for the uplink transmission in a multi-user multi-carrier
OFDMA network, subject to each user’s required link-layer
EE performance level and its individual resource limits. We
decouple the problem into two parts and provide the subcarrier
assignment solution and optimal power allocation strategy
for each user. In more detail, we propose a low-complexity
heuristic algorithm, which first allocates each served user the
exact number of its required subcarriers, and then implements
the optimal per-user power allocation strategy to calculate each
user’s current EC value. Finally, the remaining subcarriers will
be allocated by adopting the strategy that the user with current
minimum EC value has the allocation priority.

To sum up, this paper has the following contributions:

• A novel total EC maximization problem for the uplink
transmission, in a multi-user multi-carrier OFDMA sys-
tem, is formulated as a complex combinatorial integer
programming problem, subject to each user’s link-layer
EE requirement and the individual’s average input power
limit. A new adjustable EE requirement factor is defined
to further tune each user’s EE constraint value, which
transforms the formulated problem into a tradeoff prob-
lem between the system total EC and the users’ individual
EE achievements.

• The formulated challenging problem is first decoupled
into a frequency provisioning problem and an indepen-
dent link-layer multi-carrier EE-EC tradeoff problem for
each user. The traditional exhaustive algorithm and a fair-
exhaustive algorithm are introduced first, followed by a
low-complexity heuristic algorithm, which cares about
user fairness, offers a close-to-optimal performance, and
also has a complexity linearly relating to the size of the
problem.

• The independent multi-carrier power-constrained link-
layer EE-EC tradeoff problem is then solved and analyzed
for each user, given a subcarrier assignment matrix.
The optimal power allocation strategy, which is across
frequency and time domains, and the Pseudocode of the
power allocation process are derived and proposed.

• We prove that each user’s average optimal power level
monotonically decreases with its EE requirement factor.
Furthermore, we prove that each user’s link-layer EE
value monotonically decreases with its circuit power
value, but increases with its EE requirement factor.

• Simulation results reveal that when there is a link-layer
EE constraint, each user’s operational tradeoff EC value
1 will not show a monotonic trend with its delay QoS
exponent. Further, the tradeoff EC value achieved with
a smaller number of available subcarriers may be higher
than the one obtained with larger number of subcarriers.

1Here each user’s operational tradeoff EC value is the calculated final EC
value achieved at its EE requirement equality.
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Fig. 1: Uplink transmission in a multi-user multi-carrier network.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Multi-user Multi-carrier System Model

We consider the uplink transmission, where theK active
users send their own information to the base station, in a
multi-user multi-carrier OFDMA system depicted in Fig. 1.
A total bandwidth ofB is divided intoN subcarriers, each

with a bandwidth of
B

N
. Assume that each subcarrier is

exclusively assigned to at most one user at each time to
avoid interference among different users. The total number
of allocated subcarriers for all users does not exceed the
available frequency resources. Therefore, a feasible subcarrier
assignment indicator matrix can be denoted asφ, which
satisfies

φ ∈ Φ ,

{
[φk,n]K×N | φk,n ∈ {0, 1},

K∑

k=1

φk,n ≤ 1,

K∑

k=1

N∑

n=1

φk,n ≤ N, k ∈ K0, n ∈ N0

}
. (1)

Here, Φ denotes the set of all possible subcarrier alloca-
tion indicator matrices, andK0 = {1, 2, . . . ,K}, N0 =
{1, 2, . . . , N} denote the set of all users and all subcarriers,
respectively. The number of allocated subcarriers for thekth

user is denoted byNk, namely,Nk =
N∑

n=1
φk,n, and the

bandwidth allocated to thekth user is denoted byBk, i.e.,

Bk = Nk

B

N
.

Each transmitter implements a first-in-first-out (FIFO)
buffer, which prevents loss of packets that could occur when
the source rate is higher than the service rate, at the expense of
increasing the delay [13]. The upper-layer packets are divided
into frames at the data-link layer and are stored at the transmit
buffer. The frames are then split into bit streams at the physical
layer. By utilizing perfect channel state information (CSI)
knowledge fed back from the receiver and the predetermined
statistical QoS constraint, adaptive modulation and coding
(AMC) and adaptive power control policy are applied at the
transmitter side [17]. Then, the bit streams are read out of
the buffer and are transmitted through the wireless fading
subcarriers. At the receiver side, the reverse operations are
performed and the frames are recovered for further processing.
We assume that each subcarrier experiences block fading, i.e.,
the channel gains ofN subcarriers are invariant within a

Fig. 2: Queuing system model for each transmitter.

fading-block’s time durationTf , but independently varies from
one fading block to another. In addition, the length of each
fading-block,Tf , is considered to be an integer multiple of
the symbol durationTs, and is assumed to be less than the
fading coherence time [17].

For the kth user on thenth subcarrier at the fading-block
index t, the subcarrier power gain is denoted byγk,n[t], k ∈
K0, n ∈ N0. Also, each subcarrier is assumed to experience
i.i.d. additive white Gaussian noise (AWGN) with power
spectral density

η0
2

. Therefore, the instantaneous maximum

achievable rate of thekth user on thenth subcarrier at thetth

fading-block is given by

Rk,n [t] =
B

N
Tf log2

(
1 + Pk,n [t]

γk,n [t]

P k
Lη0

(
B
N

)
)

(bits) , (2)

where P k
L denotes the distance-based path-loss power and

Pk,n [t] is the nonnegative transmission power for thekth

user on thenth subcarrier, at thetth fading-block, i.e.,
Pk,n [t] ≥ 0. Specifically, for the kth user, the sub-
carrier power allocation vector is denoted asPk [t] =[
Pk,1 [t] Pk,2 [t] ... Pk,N [t]

]
2. The total achievable rate

over all allocated subcarriers for thekth user, which depends on
the subcarrier allocation indicator matrixφ and the subcarrier
power allocation vectorPk, can be denoted asRk (φ,Pk) =∑
n∈Nk

φk,nRk,n, whereNk is the set of subcarriers allocated

to thekth user.

B. Multi-user Multi-carrier Effective Capacity and Link-layer
Energy Efficiency

For each transmitter, the FIFO buffer is assumed to be a
dynamic queueing system with stationary ergodic arrival and
service processes, depicted in Fig. 2 [22]. By using the large
deviation theory, the queue length processQ (t) converges in
distribution to a steady-state queue lengthQ (∞) such that
[22]

− lim
x→∞

ln (Pr{Q (∞) > x})

x
= θ, (3)

wherePr{a > b} shows the probability thata > b holds. This
definition implies that the probability of the queue length ex-
ceeding a certain thresholdx decays exponentially fast asx in-
creases [23]. Note that in (3), the parameterθ (θ > 0) indicates
the exponential decay rate of the QoS violation probability. A
smaller value ofθ denotes a looser QoS requirement, while
larger θ implies a lower probability of violating the queue
length and a more stringent delay constraint. Particularly, when

2Since the service rate process of thekth user on thenth subcarrier is
considered to be stationary and ergodic [17], hereafter, the block indext

could be omitted for simplicity.
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θ → 0, which refers to a system with no delay constraint, the
optimum power allocation strategy is the traditional water-
filling approach and the maximum achievable rate is ergodic
capacity. For a transmitter withθ → ∞, the optimum power
allocation is the channel inversion with fixed rate transmission
technique, under which the delay-limited capacity can be
achieved. In other words, the ergodic capacity and the delay-
limited capacity can be considered as two extreme cases of
the effective capacity.

Taking the delay experienced by a source packet arriving
at time t, defined byD(t), into consideration, the probability
that the delay exceeds a maximum delay boundDmax, can be
estimated as [13]

P out
delay = Pr{D(t) > Dmax} ≈ Pr{Q(t) > 0}e−θµDmax, (4)

where P out
delay presents the delay-outage probability,Dmax is

in the unit of a symbol period,Pr{Q(t) > 0} denotes the
probability of a non-empty buffer at timet, and can be
approximated by the ratio of the constant arrival rate to the
average service rate [17], [22], i.e.,Pr{Q(t) > 0} ≈

µ

E[R[t]]
.

Hence, in order to meet a target delay-outage probability limit
P out

delay, a source needs to limit its data rate to the maximum of
µ, whereµ is the solution to (4).

Assume that the Gartner-Ellis theorem [24, Pages 34-36]
is satisfied. For thekth user, the EC value, in b/s/Hz, over a
multi-carrier transmission with a total bandwidthBk can be
expressed as [13]

Ek
c (θk,φ,Pk) = −

1

θkTfBk

ln
(
E

[
e−θkRk(φ,Pk)

])
, (5)

whereθk stands for the delay QoS exponent of thekth user
which is associated with the statistical delay QoS requirement
andE[·] indicates the expectation operator. Henceforth, EC of
the kth user becomes a function ofθk, φ, andPk.

By expandingRk (φ,Pk) and inserting it into (5), EC of
the kth user can be further expressed as

Ek
c (θk,φ,Pk) = −

1

θkTfBk

ln

(
E

[
e
−θk

∑
n∈Nk

φk,nRk,n
])

.

(6)

For the multi-user OFDMA network, the overall EC value
can be expressed as

Ec (θ,φ,P) =

∑K

k=1 NkE
k
c (θk,φ,Pk)∑K

k=1 Nk

(b/s/Hz) , (7)

where θ =
[
θ1 θ2 ... θK

]
is the K × 1

vector of delay exponents for allK users. P

denotes the transmission power allocation matrix,
for all users over all subcarriers, i.e.,P ∈ P ,{
[Pk,n]K×N

∈ R+ | Eγk

[∑N

n=1 φk,nPk,n

]
≤ P k

max, k ∈ K0

}
.

Here, P is all the possible power allocation matrices,
Eγk

[·] indicates the expectation over the PDF ofγk,
where γk is the kth user’s subcarrier power gains, i.e.,
γk =

[
γk,1 γk,2 ... γk,Nk

]
. P k

max represents the maximum
average power limit of thekth user.

Moreover, for thekth user, we define the link-layer EE as the
ratio of EC to the sum of its circuit powerP k

c , and the average

transmission power scaled by the power amplifier efficiency
ǫ, yielding

EEk (θk,φ,Pk) =
Ek

c (θk,φ,Pk)

P k
c +

1

ǫ
Eγk

[
∑

n∈Nk

φk,nPk,n

] . (8)

C. Problem Formulation

From a system point of view, the overall EC value needs
to be maximized to achieve the best system performance.
On the other hand, from the individual user point of view,
each user has its own link-layer EE requirement, average
transmission power limit and delay QoS constraint. Therefore,
considering a multi-user multi-carrier network, the overall
system throughput maximization problem, subject to each
user’s resource constraints, can be formulated as

Q1 : max
φ∈Φ,P∈P

Ec (θ,φ,P) (9a)

subject to: EEk (θk,φ,Pk) ≥ ηkreq, ∀k, (9b)

Eγk

[
N∑

n=1

φk,nPk,n

]
≤ P k

max, ∀k, (9c)

K∑

k=1

φk,n ≤ 1, ∀n, (9d)

K∑

k=1

N∑

n=1

φk,n ≤ N, (9e)

φk,n ∈ {0, 1}, ∀k, ∀n, (9f)

Pk,n ≥ 0, ∀k, ∀n, (9g)

whereηkreq is thekth user’s required link-layer EE level, defined
by a certain ratio of its maximum achievable link-layer EE
value, i.e.,ηkreq = χk

EE × ηk,Nmax . Here, ηk,Nmax = EEk
∣∣∣ Nk=N

Pk=Pk∗

EE

denotes thekth user’s maximum achievable EE value, when
all N subcarriers in the system are allocated to it.P k∗

EE is
the operational average input power which achievesηk,Nmax .
Further,χk

EE ∈ [0, 1] is an adjustable EE requirement factor,
which reveals the strictness of thekth user’s required EE level
and directly influences the system performance. In particular,
χk

EE = 0 indicates that thekth user has no EE requirement,
while χk

EE = 1 means that userk requires an operational EE
value atηk,Nmax . Sinceηk,Nmax depends on the individual user’s
delay QoS exponent and its maximum averge power limit,
its value is different for each user. Therefore, thekth user’s
required EE levelηkreq is different from the other users, even
when they have the same EE requirement factors.

Due to the conflicting property of the total system EC and
each user’s personal EE achievement, after introducingχk

EE,
the formulated problemQ1 becomes an adjustable tradeoff
problem. To be more specific, if the total system EC value has
a high priority, each user’s EE requirement factor value can be
required to be very low, which results in a low link-layer EE
level for each user. Correspondingly, if the total system EC
value has a low priority, each user’s EE requirement factor
can be relatively high, so that each user will have a satisfied
high level of link-layer EE.
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I II. OPTIMAL AND SUB-OPTIMAL SOLUTIONS

Since we assume that one subcarrier can be assigned to
only one user at a time, therefore there could beKN possible
subcarrier assignments [25]. Hence, the complexity of the
above combinatorial integer programming problem in finding
the jointly optimal subcarrier and power allocation grows
exponentially with the number of subcarriers. Furthermore,
we note that it is very difficult to jointly obtain the optimal
subcarrier allocation sets and all power allocation values in
every frame, due to the reasons below. Firstly, from (6), we
can notice that the EC formulation of thekth user not only
requires the multiplication of two unknown parameters, i.e.,
φk,n, and Rk,n, but also involves the expectation over the
joint PDF of all subcarriers’ channel power gains, i.e.,γk.
Secondly, the expectation and the multiplication operations
cannot be interchanged, even if all subcarriers are assumed
to be i.i.d., and that is because the power allocation value on
each subcarrier is related to the other subcarriers.

Henceforth, in order to make the formulated problemQ1
tractable, we divide the solving process into two steps: fre-
quency provisioning which decides the number of subcarriers
to be allocated to each user; and then optimal power allocation
for each user over all its allocated subcarriers. Specifically,
the proposed frequency provisioning algorithms, which are
independent of the instantaneous CSI knowledge in each
frame, will be implemented only once within a period of time.
On the other hand, for each user, the proposed optimal power
allocation strategy on each subcarrier, not only relies on the
instantaneous CSI of this subcarrier, but also depends on the
other subcarriers’ CSI knowledge in each frame.

We start from introducing three frequency provisioning
algorithms: traditional exhaustive algorithm, fair-exhaustive al-
gorithm and our proposed low-complexity heuristic frequency
allocation algorithm. After obtaining the subcarrier assign-
ments, the optimal power allocation strategy for each single-
user multi-carrier system will then be derived and obtained in
Section III-B.

A. Frequency Provisioning Algorithms

By applying frequency provisioning, we assume that all
subcarriers follows the same distribution. It is the number
of designated subcarriers which matters, regardless where
those subcarriers are located in the frequency band [25]. To
reduce the problem complexity and the solving time, we
first build a pre-calculated offline databaseD which stores
all users’ maximum achievable link-layer EE values, i.e.,
ηmax =

[
η1

max η2
max ... ηK

max

]T
, in terms of certain settings

of Pc, θ and N . Here ηk
max is a 1 × N vector of thekth

user’s maximum achievable EE values with different number
of allocated subcarriers, i.e.,ηk

max =
[
ηk,1max ηk,2max ... ηk,Nmax

]
.

Defineηreq =
[
η1req η2req ... ηKreq

]T
as theK × 1 vector of

the EE requirement values for allK users, then we will trans-
form ηreq to aK×1 vector which specifies all users’ required
number of subcarriers, i.e.,Sreq =

[
S1

req S2
req ... SK

req

]T
.

Let us consider thekth user as an example. Its required link-
layer EE value is denoted byηkreq, and correspondingly, its
subcarrier requirement value will be stored asSk

req.

Fig. 3: Transformηk

req to Sk

req.

To obtainSk
req, we provide a flowchart in Fig. 3 to compare

ηkreq with ηk
max. If the maximum achievable EE value obtained

with i subcarriers is larger than the required EE value, i.e.,
ηk,imax ≥ ηkreq, then we can conclude that the minimum number
of subcarriers required to satisfy thekth user’s EE requirement
ηkreq, is i, i.e., Sk

req = i. Henceforth, allK users’ EE require-
ments inηreq can be transformed to the subcarrier requirement
vectorSreq, by utilizing the flowchart in Fig. 3. In this way, the
feasibility of each user’s EE constraint can be easily checked
by comparing the number of allocated subcarriers with the
number of required subcarriers.

1) Traditional Exhaustive Algorithm

The traditional way to solve an NP-hard problem, like the
one we formulated in (9a)-(9g), is to carry out an exhaustive
search, which systematically enumerates all possible combi-
nations and finally locates the solution which optimizes the
objective function and satisfies all the problem constraints
[25]. Specifically, for problemQ1, the set of feasible com-
binations is found first. Then, the optimal power allocation
strategy proposed in the next section, will be applied to all
the feasible combinations. Finally, the feasible combination
which offers the maximum system throughput will be chosen
as the optimal solution. Although exhaustive search is able to
find the optimal frequency provisioning solution, it also lacks
user fairness and has a high computational complexity which
exponentially grows with the size of the problem.

2) Fair-Exhaustive Algorithm

To further find the optimal frequency provisioning solution
which not only maximizes the total system EC value, while
satisfying each user’s link-layer EE requirement, but also
serves the maximum number of users that can be allowed,
we propose a fair exhaustive algorithm. Firstly, the sum of all
users’ required subcarriers is compared with the total number
of subcarriersN to find the maximum number of users that
can be served. For example, let us assumeN = 8, and
the subcarrier requirement vector for all users is[1, 2, 2, 4].
Hence, the total available subcarriers can serve3 users at
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most. Secondly, the set of feasible subcarrier allocation vectors
is found, in which each allocation vector not only satisfies
all served users’ subcarrier requirements, but also serves the
maximum allowed number of users. Then, the optimal power
allocation strategy proposed in Section III-B will be applied
to all feasible allocation vectors to locate the fair and optimal
solution which outperforms the others.

Clearly, by enumerating all possible subcarrier allocation
vectors which can serve the allowed maximum number of
users, the above proposed algorithm exhaustively find the
optimal solution in a fair way. Although the fair-exhaustive
algorithm is less complex compared to the traditional exhaus-
tive algorithm, but its computational complexity is still very
high, especially when the number of available subcarriersN
is large. To further reduce algorithm complexity, we provide
the following heuristic algorithm, which is simple, fair and
close-to-optimal.

3) Heuristic Algorithm

There are three steps included in the proposed heuristic
frequency provisioning algorithm, which are allocation pro-
cess, calculation process and check process. Firstly, in order
to serve as many users as possible, in the allocation process,
we start from the user which requires the minimum number
of subcarriers. Each served user will be allocated the exact
number of its required subcarriers, so that all the allocated
users can satisfy their EE requirements. The allocation will
be repeated until the remaining subcarriers run out, or there
are not enough subcarriers to satisfy the next user’s EE
requirement, or all users’ subcarrier requirements have already
been satisfied. Then, the calculation process starts, in which
each served user operates the optimal power allocation strategy
described in Table II to obtain its corresponding EC value. In
the check process, we aim to maximize the system throughput,
based on the strategy that the user with current minimum
EC value has the allocation priority. Therefore, the remaining
subcarriers will be assigned one-by-one to the user who has
the current minimum EC value, until all subcarriers run out.

Assume the final subcarrier allocation vector is denoted by
N =

[
N1 N2 ... NK

]
. The Pseudocode of the proposed

heuristic algorithm is illustrated in Table I. We note that, the
proposed algorithm only needs at mostK − 1 comparisons
per iteration, given that each user’s EC values with various
number of subcarriers, is pre-calculated off-line and is stored
in a database. Therefore, the heuristic algorithm offers a
relatively low computational complexity comparing to the
two exhaustive algorithms whose complexity exponentially
increase with the number of subcarriers. On the other hand,
later, in simulation results, we will demonstrate that the
proposed low-complexity algorithm offers a close performance
with the fair-exhaustive algorithm.

Now, let us analyze and explain the strategies utilized in the
proposed heuristic algorithm. Firstly, in the allocation process,
the heuristic algorithm starts the allocation from the user which
has the minimum subcarrier requirement. Assume that useri
has the relatively small number of required subcarriers,Si

req.
By regardingθi and χi

EE as the two influencing parameters
on Si

req, a small value ofSi
req may result from the following

two possibilities: 1) useri has a small delay QoS exponent

TABLE I: Heuristic Algorithm

Initialization:
CalculateSreq, usingηreq and the pre-calculated

databaseD.
DefineStol = N , H = Sreq.

Allocation Process:
While Stol > 0

If H = 0
Break;

End
Find Hi = min(H), andHi > 0;
If Stol > Si

req

Ni = Si
req;

Stol = Stol − Si
req;

Hi = 0;
Else

Break;
End

End
Calculation Process:

For each useri with Hi = 0, apply the optimal
power allocation process in Table II.

Calculate theith user’s EC valueJi and define
J =

[
J1 J2 ... JK

]
.

Check Process:
While Stol > 0

Find Ji = min(J), in which useri satisfies
Hi = 0;

Ni = Ni + 1;
Apply the optimal power allocation process

to useri and updateJi.
End

Output: N ; Ec given in (7).

θi and the sameχi
EE value, comparing to the other users; 2)

useri has a small EE requirement factorχi
EE, and the sameθi

value, comparing to the others. For the first situation, a small
delay QoS exponentθi means a loose requirement on delay
QoS, which will offer a bigger EC value, when the allocated
number of subcarriers andχi

EE are fixed. Meanwhile, for the
second situation, a small value ofχi

EE also provides a larger EC
value, because now the EE requirement constraint is easy to be
satisfied and the multi-carrier system will have more resource
and flexibility to maximize the EC performance. Consequently,
the design idea of the allocation process not only makes sure
that as many users as possible can be served, but also intends
to serve the user which can contribute a larger EC value.

On the other hand, the design strategy of the check process,
i.e., the user with current minimum EC value has the allocation
priority, comes from Fig. 4, which describes the results of
maximum EC versus delay QoS exponentθ, for various values
of N , in a single-user multi-carrier system. Specifically, Fig.
4 reveals that the user with current minimum EC value has a
high possibility to offer the largest EC-increase, if given one
more subcarrier. In more detail, from Fig. 4, we notice that
for two users with the same values ofθ, if we allocate more
subcarriers to them, the user with current smaller EC value,
i.e., the one which has smaller number of subcarriers, will get
a larger EC-increase. Furthermore, for two users with the same
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Fig. 4: Effective capacity versus delay QoS exponentθ, for various
values ofN .

number of subcarriers, when we allocate each user two more
subcarriers, the user with relatively smaller EC value, namely,
the one which has larger delay QoS exponent, will provide a
larger EC-increase. Simulation results in Section IV confirm
the effectiveness of our design method, and inform that the
proposed heuristic algorithm offers very close performance
with the fair-exhaustive algorithm.

B. Optimal Power Allocation For A Single-user Multi-carrier
System

Given a subcarrier assignment matrixφ, the multi-user
OFDMA system can be viewed as a frequency-division mul-
tiple access (FDMA) system, where each user transmits data
through a number of assigned subcarriers independently [26].
Therefore, the original total EC maximization problem, subject
to each user’s link-layer EE requirement and maximum aver-
age power limit, can be transformed into a link-layer EE-EC
tradeoff problem for each single-user multi-carrier system.

Specifically, for thekth user, the problem can be expressed
as

Q2 : max
Pk,n≥0
n∈Nk

Ek
c (θk,Pk) (10a)

s.t. EEk (θk,Pk) ≥ ηkreq, (10b)

Eγk

[
Nk∑

n=1

Pk,n

]
≤ P k

max. (10c)

By recalling that the total bandwidth allocated to thekth

user isBk, the total instantaneous service rate of thekth user
is given by

Rk =
Bk

Nk

Tf

Nk∑

n=1

log2


1+Pk,n

γk,n

P k
Lη0

(
Bk

Nk

)


 (bits) . (11)

By inserting (11) into (5), we get the mathematical expression
of EC for thekth user. Correspondingly, the link-layer EE for
thekth user, as the ratio of EC to the total power expenditure,

can be obtained. Therefore, problemQ2 can be expanded as

Q3 : max
P r

k,n≥0

n∈Nk

−
1

αk

log2


Eγk




Nk∏

n=1

(
1+NkP

r
k,nγk,n

)−
αk

Nk






(12a)

s.t.

−
1

αk

log2


Eγk


∏Nk

n=1

(
1+NkP

r
k,nγk,n

)− αk

Nk






Kk
ℓ

(
P k
cr+

1

ǫ
Eγk

[
Nk∑
n=1

P r
k,n

]) ≥ηkreq,

(12b)

Kk
ℓ Eγk

[
Nk∑

n=1

P r
k,n

]
≤ P k

max, (12c)

whereαk ≡
θkTfBk

ln (2)
, P r

k,n =
Pk,n

Kk
ℓ

, and P k
cr =

P k
c

Kk
ℓ

. Here

Kk
ℓ = P k

Lη0Bk, which denotes the path loss factor, including
both AWGN power and path loss power. Setη̂kreq = Kk

ℓ η
k
req,

and P̂ k
max = P k

max/K
k
ℓ . Then, Kk

ℓ in (12a)-(12c) can be
canceled to scale the system performance with respect to the
path loss factor.

From (12a)-(12c), one can notice that the EC expression in
a single-user multi-carrier system is not a linear summation of
each subcarrier’s achievable EC value. Hence, the concavity
and monotonicity of the EC function in a single-subcarrier
system cannot be simply extended to the multi-carrier system.
In order to find the joint energy and spectral efficient power
allocation strategy in a single-user multi-carrier system, we
start from analyzing the proposed problemQ3.

By referring to the scaled multi-carrier transmit power
vector asP r

k =
[
P r
k,1 P r

k,2 ... P r
k,N

]
, we note that the

objective function (12a) is concave inP r
k [18]. Then, the

link-layer EE, as the ratio of a concave function over a non-
negative affine function inP r

k, is a quasi-concave function
in subcarrier power allocations [18]. Therefore, its upper
contour set defined by (12b) is convex [27]. Hence, (12a)-
(12c) is a concave optimization problem and the Karush-Kuhn-
Tucker (KKT) conditions are both sufficient and necessary for
the global optimum value. Specifically, the proposed optimal
power allocation strategy for thekth user is related to the joint
probability density function (PDF) of the subcarrier power
gainsγk, given byρ (γk).

To solve the concave optimization problem (12a)-(12c),
we start from analyzing the power-unconstrained problem
(12a)-(12b), which paves the way for the power-constrained
optimization problem. By transforming (12b) to

−
1

αk

log2


Eγk




Nk∏

n=1

(
1 +NkP

r
k,nγk,n

)−
αk

Nk






−η̂kreq

(
P k
cr +

1

ǫ
Eγk

[
Nk∑

n=1

P r
k,n

])
≥ 0, (13)
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we get the Lagrangian function as follows

L (P r
k, λ) =−

1

αk

log2


Eγk




Nk∏

n=1

(
1+NkP

r
k,nγk,n

)−
αk

Nk






+ λ


−

1

αk

log2


Eγk




Nk∏

n=1

(
1 +NkP

r
k,nγk,n

)−
αk

Nk






−η̂kreq

(
P k
cr +

1

ǫ
Eγk

[
Nk∑

n=1

P r
k,n

]))
−

N∑

n=1

µnP
r
k,n, (14)

whereλ ∈ R is the Lagrange multiplier associated to (13)
andµn is the Lagrange multiplier associated to the constraint
P r
k,n ≥ 0, ∀ n ∈ Nk.

At the optimal power allocation, we have

∂L (P r
k, λ)

∂P r
k

= 0. (15)

Because of the complementary slackness condition [27], if
P r
k,n > 0, then µn = 0, ∀ n ∈ Nk. On the other hand, if

P r
k,n = 0, ∃ n ∈ Nk, then µn 6= 0. Thus, the following

two cases need to be considered to find the optimal power
allocation strategy.

1) Case 1: P r
k,n > 0, ∀ n ∈ Nk

In this case, allNk subcarriers are allocated non-zero
transmission power. Therefore, based on the complementary
slackness,{µn}

Nk

n=1 = 0. Then, the KKT condition (15) can
be simplified as

Nk∏

i=1

(
1 +NkP

r
k,iγk,i

)−
αk

Nk =
β

γk,n

(
1 +NkP

r
k,nγk,n

)
,

∀ n ∈ Nk, (16)

whereβ=
λη̂kreq

ǫ(λ+ 1) log2 e
Eγk


∏Nk

n=1

(
1+NkP

r
k,nγk,n

)− αk

Nk


.

By multiplying the right and left-hand sides of theNk

equations in (16), the optimal power allocation strategy can
be obtained as

P r
k,n=

1

Nk


 1

β
1

αk+1
∏Nk

i=1 γ
αk

(αk+1)Nk

k,i

−
1

γk,n


 , ∀ n ∈ Nk. (17)

The derived power allocation strategy (17) is optimal only
when all subcarriers are assigned with positive powers. If
there are one or more subcarriers which are allocated non-
positive powers, then the second case needs to be taken into
consideration.

2) Case 2: P r
k,j = 0, ∃ j ∈ Nk

If there existsP r
k,j ≤ 0, then the set of subcarriers, which

only positive powers should be assigned, needs to be found.

Firstly, we defineN̂k as

N̂k =



n∈Nk

∣∣∣∣∣
1

Nk


 1

β
1

αk+1
∏Nk

i=1 γ
αk

(αk+1)Nk

k,i

−
1

γk,n


≥0



 .

According to Lemma 1 in [17], the total power must be
assigned to the subcarriers which belong tôNk, while the

subcarriersn 6∈ N̂k should not be allocated any power.
Therefore, a new power-unconstrained optimization problem
could be expressed as

Q4 : max
P r

k,n≥0

n∈N̂k

−
1

αk

log2


Eγk




N̂k∏

n=1

(
1+NkP

r
k,nγk,n

)−
αk

Nk






(18a)

s.t.

−
1

αk

log2


Eγk


∏N̂k

n=1

(
1+NkP

r
k,nγk,n

)− αk

Nk






Kk
ℓ

(
P k
cr+

1

ǫ
Eγk

[
N̂k∑
n=1

P r
k,n

]) ≥ηkreq,

(18b)

whereN̂k = |N̂k| represents the cardinality of̂Nk.

Therefore, ifP r
k,n > 0, ∀ n ∈ N̂k, then, the optimization

problem can be solved exactly like Case 1. Otherwise, if there
are subcarriersn ∈ N̂k havingP r

k,n = 0, then N̂k must be
further partitioned by recursively repeating the above process
until a setN ∗

k can be found, in which all subcarriers are
allocated positive powers [18].

After obtaining N ∗
k , the optimal power allocations are

computed as

P r
k,n=





1

Nk




1

β
Nk

Nk+αkN∗
k

∏
i∈N∗

k
γ

αk
Nk+αkN∗

k

k,i

−
1

γk,n


, n ∈ N ∗

k

0, otherwise
(19)

whereN∗
k =| N ∗

k |.

The optimal value forβ, referred to asβ∗, is found when
the kth user’s EE constraint is satisfied with equality, yielding

−
1

αk

log2


Eγk




Nk∏

n=1

(
1 +NkP

r
k,nγk,n

)−
αk

Nk






−η̂kreq

(
P k
cr +

1

ǫ
Eγk

[
Nk∑

n=1

P r
k,n

])
= 0. (20)

Note that since EE versus EC is a bell shape curve, the required
EE level, if possible, can be achieved at two different EC
values, which means that there will be two solutions forβ, i.e.,
β1 andβ2, to satisfy (20). Assume thatPk1 = Pk |β=β1 , and

Pk2 = Pk |β=β2 , wherePk stands forKk
ℓ Eγk

[∑Nk

n=1 P
r
k,n

]
.

Therefore, the feasible set of the average input power level sat-
isfying the EE constraint (12b) can be written as

[
Pk1, Pk2

]
3.

Considering our intention to maximize EC and the fact that
EC is a monotonically increasing function inPk [18], the
optimal average input power valueP ∗

k , which solves the
power-unconstrained problem (12a)-(12b), is chosen as the
larger one which satisfies (20), i.e.,P ∗

k = max
[
Pk1, Pk2

]
.

Based on the assumption thatPk2 is larger thanPk1, therefore
P ∗
k = Pk2, and correspondingly,β∗ = β2. Here we complete

the solving process of the optimal power allocation for the

3Without losing any generality, we assume thatPk2 is larger thanPk1.
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TABLE II: Optimal Power Allocation Process

Input:
[
φ, θk, Tf, B,N,Nk, P

k
c , ǫ,K

k
ℓ ,γk, P

k
max, η

k
req

]

Step 1:
Have a initial guess ofβ.
Repeat

Create (20), using (17) or (19), which applies
Monte Carlo method.

Updateβ using bisection method.
Until find β∗ which solves (20).
CalculateP r

k,n, n ∈ Nk.

CalculateP ∗
k = Kk

ℓ Eγk

[∑Nk

n=1 P
r
k,n

] ∣∣∣∣
β=β∗

.

Step 2:
If P k

max < P ∗
k :

CreateP ∗
k =P k

max and updateβ∗, correspondingly.
CalculateP r

k,n, n ∈ Nk, in (17) or (19).
Step 3:

Calculate the value ofEk
c given in (6) and the

link-layer EEk value in (8).

Output:
[
P r
k,n, P

∗
k , E

k
c ,EE

k
]

power-unconstrained problem (12a)-(12b).

By utilizing the above proposed optimal power allocation
strategy, we start to analyze the optimization problem (12a)-
(12c) with the average input power constraint. After the feasi-
ble set of the average power value for the EE constraint (12b)
is found, the power-constrained EC maximization problem for
the kth user, subject to a link-layer EE constraint, can be
simplified to

Q5 : max
P r

k,n≥0

n∈Nk

−
1

αk

log2


Eγk




Nk∏

n=1

(
1+NkP

r
k,nγk,n

)−
αk

Nk






(21a)

s.t. Pk ∈
[
Pk1, Pk2

]
, (21b)

Pk ≤ P k
max. (21c)

We note that EC is a monotonically increasing function in
Pk [18], therefore, the optimal average power value which
solves the problem in (21a)-(21c) will be achieved at one of the
three endpoint values, i.e.,Pk1, Pk2, orP k

max. In more detail, if
Pk2 ≤ P k

max, the optimal power levelP ∗
k , equals toPk2, and

the optimal power allocation strategy (17) will be achieved
and operated. On the other hand, ifPk1 < P k

max < Pk2, the
system has to operate atP k

max and the optimal power allocation
to solve (12a)-(12b) is according to (17), wherein, optimalβ∗

is found such thatP ∗
k |β=β∗= P k

max. Moreover, ifP k
max < Pk1,

the power-constrained problemQ5 has no feasible solution.
For simplicity, we assume that each user’s maximum available
power is always sufficient to support the feasibility of its
required EE value, i.e,P k

max ≥ Pk1. Otherwise, the proposed
problem will be infeasible.

To summarize, the Pseudocode of the optimal power alloca-
tion process to solve the power-constrained link-layer EE-EC
tradeoff problem for thekth user, through multiple subcarriers,
is illustrated in Table II. After we obtain the optimal power
allocation strategy and optimal operational average power

for problem Q3, further analysis is needed to thoroughly
understand and investigate the impact of thekth user’s circuit
power value and the EE requirement factor on its link-layer
EE-EC tradeoff performance. Hence, we provide the following
lemmas4.

C. The effects ofP k
c andχk

EE on thekth user’s EE-EC tradeoff
performance

Lemma 1:The kth user’s tradeoff link-layer EE value
EE
(
P ∗
k

)
decreases withP k

c .

Proof: The proof is provided in Appendix A.

Furthermore, the tradeoff optimal power value and the
system performance can also be influenced by the introduced
EE requirement factor. Specifically, whenχk

EE increases, the
required link-layer EE level increases. Therefore, the final
operational link-layer EE value which satisfies the EE require-
ment equality increases. Since the proposed tradeoff average
power operates at the EE-EC conflicting region, therefore the
corresponding EC value will decrease due to the increase in
EE level. Hence, we can obtain the following lemma 2.

Lemma 2:The optimal average power valueP ∗
k monotoni-

cally decreases withχk
EE, but the corresponding link-layer EE

value EE
(
P ∗
k

)
increases withχk

EE.

Proof: The proof follows the above explanations and is
omitted here due to page limit.

IV. SIMULATION RESULTS

In this section, we simulate the uplink transmission in
a multi-user multi-subcarrier system, in which the fading
statistics of the different subcarriers are considered to be
i.i.d. Rayleigh distributed such that the subcarrier power gains
are realized as exponential random variables with unit mean.
We numerically evaluate and compare the performance of
the exhaustive algorithm, the fair-exhaustive algorithm, the
heuristic algorithm and the algorithm proposed in [25], on
the total system EC-maximization problem, under the con-
straints of each user’s link-layer EE requirement and average
transmission power limit. To further analyze the problem and
confirm the lemmas proved in Section III-B, the impact of
the delay QoS exponentθ, the EE requirement factorχEE and
the circuit-to-noise power ratioPcr on each user’s operational
EC value and the total system EC performance is simulated
and analyzed. In the following simulations, we assume that
B ·Tf = 200, the power amplifier efficiencyǫ = 1, each user’s
individual average transmission power limitPmax = 10dB,
unless otherwise indicated.

In order to show the performance of the proposed heuristic
algorithm, Fig. 5 shows the results of the total system EC ver-
sus the number of subcarriersN , for the heuristic algorithm,
the exhaustive algorithm and the fair-exhaustive algorithm. To
get Fig. 5, the number of usersK is fixed, i.e.,K = 4, in
which all users have the same settings of EE requirement
factor, i.e.,χEE = 0.7, and the circuit-to-noise power ratio, i.e.,
Pcr = −10dB. The delay QoS exponent vectorθ is given by

4In these lemmas, we omit the influence ofP
k
max, by assuming that it is

large enough to support the optimal power allocation strategy, i.e.,P
k
max ≥ P ∗

k
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Fig. 5: The total effective capacity versus the number of subcarriers
N , for heuristic algorithm, exhaustive algorithm and fair-exhaustive

algorithm.
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Fig. 6: The number of served users versus the number of
subcarriersN , for heuristic algorithm, exhaustive algorithm and

fair-exhaustive algorithm.

[0.001, 0.001, 0.01, 0.01]. For the exhaustive algorithm, when
the number of subcarriersN increases, the total system EC
value does not change very much, due to the loose delay QoS
requirements for all the users. For fair-exhaustive algorithm
and heuristic algorithm, the total EC performance curves are
very close. This indicates that the proposed heuristic algorithm
not only has a low complexity and guarantees user fairness,
but also offers close-to-optimal performance.

To further compare the three algorithms, the plots for the
number of served users versus the number of subcarriersN are
included in Fig. 6. Although the exhaustive algorithm offers
the best system performance in Fig. 5, Fig. 6 indicates that it
serves the least number of users among all three algorithms.
Especially, for the exhaustive algorithm, whenN ∈ [4, 8],
it allocates all subcarriers to only one user, which shows a
lack of fairness. On the contrary, for the heuristic algorithm
and the fair-exhaustive algorithm, the number of served users
shows an increasing trend until it equals to the total number
of usersK, i.e., 4. This happens because the increase ofN
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Fig. 7: Average tradeoff optimal power value versus delay QoS
exponentθk, for various values ofNk.

means more available frequency resources and the ability of
supporting more users increases. We further note that normally,
the traditional exhaustive algorithm prefers to choose the
best user and allocates all subcarriers to it. However, Fig. 6
indicates that whenN increases from 8 to 14, the number of
served users for the exhaustive algorithm increases from 1 to
3 and then stays stable. This means that we may not have one
single best user, when all users’ delay QoS exponent values
are different.

To understand the above phenomenon thoroughly, we con-
sider thekth user’s multi-carrier system, and plot Fig. 7 and
Fig. 8 which respectively include the curves of the average
power versusθk, and the tradeoff EC value versusθk, for two
different values ofNk, with χk

EE = 0.2, andP k
cr = −10dB.

From Fig. 7, we note that with a fixedNk, whenθk increases,
the average power value increases. To explain this, we first
recall that, thekth user’s EE requirement value is defined as a
multiplication ofχk

EE andηk,Nk
max , in which ηk,Nk

max is a function
of θk andNk. With the fixed values ofNk and χk

EE, ηk,Nk
max

decreases withθk [18], and in turn, the EE requirement value
decreases. Furthermore, the curve of link-layer EE versus aver-
age power becomes wider when the user’s delay QoS exponent
becomes more stringent [15]. Therefore, whenθk increases,
the optimal tradeoff average power obtained at a reduced EE
requirement equality will become larger. Furthermore, Fig. 7
indicates that with a fixed value ofθk, when Nk becomes
larger, the average power value reduces. This is due to the fact
that when the values ofθk andχk

EE are fixed,ηk,Nk
max increases

with Nk [18], as well as the required EE level. From Fig. 1 in
[15], we note that a larger EE requirement will be satisfied at
a smaller average power value. Hence, more available number
of subcarriers could lead to less average power consumption.

Fig. 8 shows the relationship between thekth user’s tradeoff
EC value andθk for a single-user multi-carrier transmission
system. This figure reveals two important conflicting situations
and some insightful conclusions. Firstly, this figure indicates
that one user’s operational EC value will not show a monotonic
trend with its delay QoS exponent, when there is a link-layer
EE constraint. This phenomenon violates the monotonic trend
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Fig. 8: Effective capacity versus delay QoS exponentθk, for
various values ofNk.

of EC versus delay QoS exponent, in the EC-maximization
situation provided in [17]. From [17], we note that for a fixed
delay QoS exponent, the EC value increases monotonically
with the transmission power. Also, for a fixed transmission
power, the EC value monotonically decreases with the delay
QoS exponent. However, in our case, whenθk is small, the
kth user’s link-layer EE requirement can be easily satisfied
with a small value of transmission power. In contrast, when
θk becomes stringent, the required EE value has to be satisfied
with a very large power value, like the trend indicated in Fig.
7. In other words, the operational average power value will
increase withθk. But, the increase ofθk and the increase of
the average power will have a conflicting influence on the
user’s operational EC value. Therefore, with the inconsistent
influence of these two parameters, EC will not show a mono-
tonic trend, which can be confirmed from Fig. 8. Clearly, when
θk is loose, the tradeoff EC value will be more influenced by
θk. On the contrary, whenθk becomes stringent, the average
power dominates the situation, therefore the operational EC
value shows an increasing trend.

Secondly, Fig. 8 further reveals that one user’s tradeoff EC
value achieved at a smaller number of subcarriers may be
higher than the one obtained with relatively larger number
of subcarriers, when there is a link-layer EE constraint.
Specifically, whenθk is loose, e.g.,θk ∈ [10−4, 0.05125], the
tradeoff EC value with 4 subcarriers is higher than the one
obtained with 2 subcarriers. Whenθk becomes stringent, e.g.,
θk ∈ [0.05125, 100], the tradeoff EC value achieved with 4
subcarriers is lower than the one obtained with 2 subcarriers.
This phenomenon also violates the monotonic trend of EC
versus the number of subcarriers in EC-maximization situation
analyzed in [17]. This is due to the fact that with a link-
layer EE requirement, whenNk increase, the average power
value required to satisfy the EE constraint decreases. Since
the increase ofNk and the corresponding decrease of the
average power will have a conflicting influence on the user’s
operational EC value, the EC will not show a monotonic
trend. Apparently, Fig. 8 indicates that whenθk is loose, the
tradeoff EC value will be more influenced byNk. When θk
becomes stringent, the average power dominates the situation,
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Fig. 9: The total effective capacity versus the number of users K,
for heuristic algorithm and exhaustive algorithm.

therefore the operational EC value follows the same trend with
the average power. In conclusion, Fig. 7 and Fig. 8 indicate
that when there is a link-layer EE requirement, each user’s
operational tradeoff EC value may not show a monotonic trend
with its delay QoS exponent value or its available number
of subcarriers. This reveals that we may have multiple best
users, when all factors vary. Hence, in Fig. 6, the exhaustive
algorithm starts to serve more than one user whenN > 8.

To examine the effect of the number of users on a multi-user
multi-carrier system with limited resources, Fig. 9 includes the
plots for the total EC value versus the number of usersK,
for the heuristic algorithm and the fair-exhaustive algorithm.
Specifically, the total number of available subcarriers is fixed
at N = 10. All users are assumed to have the same circuit-
to-noise power ratioPcr = −10dB, the same delay QoS
exponentθ = 0.01, and the same EE requirement factor
χEE = 0.7. When the number of usersK increases, the total
EC values calculated from the two algorithms decrease and
then stabilize whenK ≥ 6. This happens because, whenK
increases from 2 to 6, the number of served users increases
and correspondingly, the number of subcarriers allocated to
each served user decreases. Henceforth, the achievable EC for
each served user reduces and the total EC value calculated
from (7) decreases. WhenK ≥ 6, the number of served users
remains the same, due to the limited number of available
subcarriers. Hence, the total EC value stays stable whenK
becomes greater than 6.

To indicate that the proposed heuristic algorithm performs
better than the other state-of-the-art algorithms, Fig. 10 plots
the total EC versus the number of subcarriers for the proposed
heuristic algorithm and the algorithm proposed in [25]. For
the algorithm proposed in [25], an initial subcarrier allocation
proportionate to each user’s EC requirement was set at the
beginning, and then the user with the highest slope of the EC
versus signal-to-noise ratio (SNR) curve will keep releasing
one subcarrier to the user with the lowest slope, until the
total power consumption cannot be reduced any more. It is
noted that [25] does not consider the tradeoff between EC
and the link-layer EE, and only the total power consumption



0090-6778 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2017.2699637, IEEE
Transactions on Communications

12

4 6 8 10 12 14
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

The number of subcarriers N

T
ot

al
 e

ffe
ct

iv
e 

ca
pa

ci
ty

 (
b/

s/
H

z)

 

 

Heuristic algorithm
Algorithm in [24]

Fig. 10: The total effective capacity versus the number of
subcarriersN , for heuristic algorithm and algorithm in [25] .

needs to be minimized. Since in our paper, we have link-
layer EE requirement for each user, for the initial subcarrier
allocation vector, we will make the elements proportionate
to the corresponding users’ EE requirements5. The number
of users isK = 4, and all the users are assumed to have
the same delay QoS exponent, i.e.,θ = 0.001, and the same
EE requirement factor, i.e.,χEE = 0.7. When the number of
subcarriers increases, the total EC values calculated from the
two algorithms first increase and then gradually stabilize. This
indicates that when all users have loose delay QoS require-
ments, increasing the number of available subcarriers will not
greatly improve the total system EC value. Further, from Fig.
10, it shows that our proposed heuristic algorithm performs
better than the algorithm in [25]. Apart from this, the allocation
algorithm in [25] also has no guarantee of each user’s link-
layer EE requirement, which can be confirmed from Fig. 14.
Hence, we can conclude that, to solve the formulated total EC-
maximization problem, subject to all users’ EE requirement
constraints, our proposed heuristic algorithm is more suitable,
because it outperforms the algorithm in [25], and is also
simple, fair and close-to-optimal.

Assume that allK users, having the sameθ value at
θ = 0.01, and the same circuit-to-noise power ratio value at
Pcr = −10dB, are split into two groups. In group 1, allK1

users are required to have the sameχEE, i.e., χEE = 0.1.
Meanwhile, the EE requirement factor valueχEE for all
K − K1 users in group 2 is 0.8. This indicates that the
users in group 1 have looser EE requirements compared to
the users in group 2. Set the total number of usersK = 6,
and the total number of subcarriersN = 12. Fig. 11 includes
the plots for the results of the system total EC versus the
number of usersK1 in group 1, for various values of circuit-
to-noise power ratioPcr . With fixed Pcr , whenK1 increases
from 0 to 6, the total system EC value, in b/s/Hz, gradually
increases. This is because whenK1 increases, the number
of users withχEE = 0.1 increases and correspondingly, the
number of users withχEE = 0.8 reduces. We note that for

5Hence, we had to tweak the algorithm slightly to be able to provide these
results.
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Fig. 11: The total effective capacity versus the number of users K1

in group 1, for various values ofPcr .

each user, a largeχEE value means that the user has a strict
requirement on its link-layer EE value and will end up with a
relatively small EC value. Therefore, when the number of users
with χEE = 0.8 reduces, the system can save more resource to
benefit the total system EC value, rather than sacrifice the
system performance to support the strict EE requirements.
When K1 increases from 5 to 6, the number of users with
χEE = 0.8 reduces from 1 to 0 and the total EC value grows
dramatically. This is due to the fact that in the check process
of heuristic algorithm, the user having current minimum EC
value will get the priority, which, in this case, corresponds
to the one withχEE = 0.8. Therefore, whenK1 = 5, the
heuristic algorithm spends many resources on the user with
χEE = 0.8. WhenK1 = 6, all users have the same loose EE
requirements, i.e.,χEE = 0.1, therefore, the system resources
can be arranged evenly, which results in a great growth in
the total EC value. Furthermore, from Fig. 11, we note that
whenPcr becomes larger, the system total EC value increases.
Since a bigger value ofPcr for all users will not change their
relative difference, and correspondingly, will not change the
subcarrier assignment solution, this phenomenon indicates that
given a fixed subcarrier assignment, when one user’s circuit
power value increases, the system total EC value will increase,
as well as its own EC value.

To analyze the impact of the circuit-to-noise power ratio
P k
cr and the EE requirement factorχk

EE on thekth user’s multi-
carrier system, Fig. 12 plots the results of the link-layer EE
(on the left hand side (LHS) y-Axis, in solid lines) and the
optimal tradeoff average power (on the right hand side (RHS)
y-Axis, in dash lines) versusP k

cr , for two different values of
χk

EE, consideringNk = 4 andθk = 0.01. Whenχk
EE is fixed,

the link-layer EE value decreases and the optimal average
power increases withP k

cr , which confirms the proved Lemma
1. Furthermore, with a fixed value ofP k

cr , whenχk
EE becomes

larger, thekth user’s link-layer EE value increases, but the
optimal average power decreases, which confirms the proposed
Lemma 2 in Section III-B.

The plots of EE (on the RHS y-Axis, in dash lines) and
EC (on the LHS y-Axis, in solid lines) versusχk

EE, for two



0090-6778 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2017.2699637, IEEE
Transactions on Communications

13

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

Circuit−to−noise power ratio

Li
nk

−
la

ye
r 

en
er

gy
 e

ffi
ci

en
cy

 (
b/

J/
H

z)

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

10

O
pt

im
al

 a
ve

ra
ge

 p
ow

er
 (

W
at

t)

χk
EE

=0.5

χk
EE

=0.7

×1/K
l
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Fig. 13: Effective capacity and link-layer energy efficiencyversus
χk

EE, for various values ofθk andNk.

different values of delay QoS exponentθk and various values
of Nk, are included in Fig. 13. From this figure, we note that
with fixed number of subcarriersNk, whenχk

EE increases, EE
increases. This confirms the proposed Lemma 2 in Section
III-B. Furthermore, with a fixedNk, EC decreases withχk

EE.
This is due to the fact that the tradeoff system operates in the
conflicting region of EE and EC, therefore the EE-increases
result from EC-reductions. Moreover, with fixedχk

EE andθk, as
the number of subcarriers increases, both EC and EE increase.
With fixed Nk, when the delay QoS exponentθk increases
from 0.001 to 0.01, both EE and EC decrease. Especially,
whenNk = 1, the decreases of EE and EC, as a result of the
increase inθk, are significant. However, whenNk is larger,
e.g.,Nk = 8, the decreases of EE and EC are minor. This
indicates that the multi-carrier communication system is more
robust against delay requirements, in comparison with single-
carrier communication systems. In other words, when the
system QoS requirement becomes more stringent, the multi-
carrier system would sacrifice less EE and EC to guarantee
the requiredθk.

To further analyze and investigate the effect ofχEE on the

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.5

1

1.5

2

2.5

3

3.5

4

4.5

EE requirement factor χ
EE

T
ot

al
 e

ffe
ct

iv
e 

ca
pa

ci
ty

 (
b/

s/
H

z)

 

 
Heuristic algorithm(θ=0.001)
Heuristic algorithm(θ=0.1)
Fair−exhaustive algorithm(θ=0.001)
Fair−exhaustive algorithm(θ=0.1)
Algorithm in [24] (θ=0.001)
Algorithm in [24] (θ=0.1)
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Fig. 15: The total effective capacity versus maximum power value,
for different values ofθ.

multi-user multi-carrier system, Fig. 14 includes the plots for
the total EC value versus EE requirement factorχEE, with
two different values ofθ, for the heuristic algorithm, the
fair-exhaustive algorithm and the algorithm in [25]. Assume
that the total number of usersK = 4 and the total number
of available subcarriersN = 8. Specifically, all K users
have the same settings of delay QoS exponentθ, χEE, with
Pcr = −10dB. WhenχEE increases, the total EC value of the
multi-user multi-carrier system decreases in the heuristic al-
gorithm and the fair-exhaustive algorithm. Furthermore, when
θ = 0.001, the EC curves of the two algorithms are exactly
the same. This indicates that for a system withK users having
loose delay requirements, the difference between the total
EC values calculated from the two algorithms is very little,
even under different subcarrier assignment solutions. Whenθ
becomes larger, the total EC values become smaller. Since a
larger θ represents a more stringent delay QoS requirement,
therefore each user’s maximum achievable arrival rate that it
can support to maintain the target delay requirement, namely,
its EC value, becomes small. Henceforth, the total system
EC value reduces, correspondingly. For the algorithm in [25],
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Fig. 16: Delay-outage probability versus delay QoS exponentθk,
for different values ofχEE.

whenχEE increases, the total EC value stays stable. This is
because, this algorithm proposed in [25] does not guarantee
all users’ EE requirements. Therefore, in this case,χEE has no
influence on the total EC value.

Considering that the value of the maximum available power
for each user can influence the optimal results, we include Fig.
15 to show the performance of the heuristic algorithm and
the fair-exhaustive algorithm, when the maximum available
power value varies. The total number of subcarriers is fixed
at N = 6, and the number of users isK = 4. All users are
assumed to have the same settings forχEE, i.e., χEE = 0.5,
and the same circuit-to-noise power ratio, i.e.,Pcr = −10dB.
In addition, two different scenarios of delay QoS exponent
vector θ are included in Fig. 15, i.e., all elements inθ are
either 0.001 or 0.1. Firstly, we note that in both scenarios,
the calculated final EC values from the two algorithms are
close, only with very little difference which makes the two
curves difficult to distinguish. This confirms that the proposed
heuristic algorithm indeed guarantees a close-to-optimal per-
formance. Furthermore, when all users have more stringent
delay QoS requirements, the total EC value reduces, which
means that the value of EC needs to be sacrificed in this
situation. More importantly, from Fig. 15, we can notice that
for a fixedθ, the curves first increase, and then stabilize. This
is because when the maximum available power value is too
small to support the proposed optimal power value, the system
has to operate atPmax. Therefore, the final calculated EC value
is smaller in this case, since it is obtained atPmax, rather than at
the optimal power value. On the other hand, when the value of
Pmax becomes larger than the proposed optimal power value,
then the system will operate at the optimal average power,
which gives the maximum EC value, under each user’s EE
constraint. To find detailed analysis, please refer to Section
III-B.

Fig. 16 plots the delay-outage probability for thekth user,
P out

delay, versus delay QoS exponentθk, for various values ofχk
EE

with a maximum tolerable delay thresholdDmax = 200 and the
circuit-to-noise power ratioP k

cr = −10dB. This figure reveals
that for loose delay-constrained situations, e.g.,θk = 10−4,

the achievableP out
delay values stay the same with different

χk
EE values. When the delay requirement is more stringent,

e.g.,θk = 10−2, smallerχk
EE ends up with less delay-outage

probability. This happens because smallerχk
EE value means

more sacrifices of EE from its maximum value, and in turn,
results in more increases in its EC value. Therefore, the
probability that the buffer length exceedsDmax decreases,
henceforth, the delay-outage probability reduces.

V. CONCLUSIONS

A close-to-optimal subcarrier assignment solution jointed
with an optimal power allocation strategy for end users to
maximize the system total EC value, subject to all users’ aver-
age transmission power limits and link-layer EE constraints in
a multi-user multi-carrier uplink network, were proposed and
developed in this paper. The traditional exhaustive algorithm
was introduced, followed by a fair-exhaustive algorithm, which
offers the optimal frequency provisioning solution in a fair
manner. To reduce the computational complexity, we proposed
a fair heuristic algorithm, which offers close-to-optimal solu-
tions, and has a low complexity linearly relating to the size
of the problem. Given the subcarrier allocation matrix, the
power-constrained EC maximization problem in the single-
user multi-carrier system, under each user’s individual link-
layer requirement level, was solved. To thoroughly analyze the
tradeoff problem, the effects of the circuit power and the EE
requirement factor were proved and investigated. Simulation
results confirmed our design intentions, and further revealed
that when there is a link-layer EE constraint, each user’s
tradeoff EC value may not monotonically decrease with its
delay QoS provisioning, and the tradeoff EC value obtained
with less subcarriers may be higher than the one achieved with
more subcarriers.

APPENDIX A: PROOF OFLEMMA 1

Assume that the calculated tradeoff average power value
for thekth user, obtained with a circuit power valueP k

c,1, can
be denoted asP ∗

k,1. Meanwhile, when the allocated number
of subcarriers isN , the maximum achievable EE value, i.e.,
ηk,Nmax,1 = EEk

∣∣∣Nk=N

Pk
c =Pk

c,1

Pk=Pk∗

EE,1

, achieves atP k∗

EE,1. If the kth user has

a higher circuit power, i.e,P k
c,2 = P k

c,1 + ∆P k
c , ∆P k

c > 0,
the corresponding average power values which satisfy the EE
requirement equality (20) andηk,Nmax,2 can be written asP ∗

k,2

and P k∗

EE,2, respectively. From (20), we have the following
equations:

EEk
∣∣∣Pk

c =Pk
c,1

Pk=P∗
k,1

= χk
EE × EEk

∣∣∣Nk=N

Pk
c =Pk

c,1

Pk=Pk∗

EE,1

, (22a)

EEk
∣∣∣Pk

c =Pk
c,2

Pk=P∗
k,2

= χk
EE × EEk

∣∣∣Nk=N

Pk
c =Pk

c,2

Pk=Pk∗

EE,2

. (22b)

In order to investigate the influence of circuit powerP k
c on

the tradeoff EE value, we start from analyzing the effect ofP k
c

on the maximum EE valueηk,Nmax . For the system withP k
c,1, if
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we assume the operational average input power isP k∗

EE,2, the
corresponding link-layer EE value can be calculated as

EEk
∣∣∣Nk=N

Pk
c =Pk

c,1

Pk=Pk∗

EE,2

=

Ek
c

∣∣∣Nk=N

Pk=Pk∗

EE,2

P k
c,1 +

1

ǫ
P k∗

EE,2

. (23)

Meanwhile, for the system withP k
c,2, theηk,Nmax,2value is defined

as

EEk
∣∣∣Nk=N

Pk
c =Pk

c,2

Pk=Pk∗

EE,2

=

Ek
c

∣∣∣Nk=N

Pk=Pk∗

EE,2

P k
c,2 +

1

ǫ
P k∗

EE,2

. (24)

Apparently, we can notice that the link-layer EE value in (23)
is larger than the one in (24), becauseP k

c,1 < P k
c,2. Henceforth,

we can derive that the maximum achievable link-layer EE
value ηk,Nmax,1 for the system with circuit powerP k

c,1 is larger
than the one obtaining at a larger circuit powerP k

c,2. This
means that when one user’s circuit power becomes larger,
its maximum achievable EE value reduces. From (22a)-(22b),
we finally conclude that one user’s tradeoff EE level also
decreases with its circuit power.
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