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ABSTRACT Current resource allocation techniques in cellular networks are largely based on single-
slope path loss model, which falls short in accurately capturing the effect of physical environment. The
phenomenon of densification makes cell patterns more irregular; therefore, the multi-slope path loss model
is more realistic to approximate the increased variations in the links and interferences. In this paper,
we investigate the impacts of multi-slope path loss models, where different link distances are characterized
by different path loss exponents. We propose a framework for joint user association, power and subcarrier
allocation on the downlink of a heterogeneous network (HetNet). The proposed scheme is formulated as
a weighted sum rate maximization problem, ensuring the users’ quality-of-service requirements, namely
users’ minimum rate, and the base stations’ (BSs) maximum transmission power. We then compare the
performance of the proposed approach under different path loss models with demonstrate the effectiveness
of dual-slope path loss model in comparison to the single-slope path loss model. Simulation results show
that the dual-slope model leads to significant improvement in network’s performance in comparison to the
standard single-slope model by accurately approximating the path loss exponent dependence on the link
distance. Moreover, it improves the user offloading from macrocell BS to small cells by connecting the
users to nearby BSs with minimal attenuation. It has been shown that the path loss exponents significantly
influence the user association lying across the critical radius in the case of the dual-slope path loss model.

INDEX TERMS Heterogeneous network, weighted sum-rate, multi-slope path loss model, user association,
load balancing, resource optimization.

I. INTRODUCTION
To manage the exponential growth of wireless data traffic
[1] and to enable the high data rates, network densification
has drawn tremendous attention in the future fifth genera-
tion (5G) networks [2]. Heterogeneous networks (HetNets)
realize densification by deploying low-powered BSs to com-
plement the conventional cellular network. HetNets have a
great potential to cope with the proliferation of wireless
data traffic by allowing the fusion of technologies, frequency
bands, diverse cell sizes and network architectures [3], [4].
HetNets ensure significant enhancement in the overall net-
work performance complemented with high data rates and
expanded cell coverage. Nevertheless, these advantages come
along with new technical challenges which include hardware
expenses, user association, interference management, radio
resource management and energy efficiency (EE) [5], [6].
In order to optimize radio resources, some frameworks are
proposed in [7] and [8].

The mixed deployment of macrocell and small cells has
potential to improve the performance of the network [9].
Numerous works have focused on maximizing the data rates
and EE of the HetNets. In this regard, a framework for cell
association to maximize the sum rate of the downlink of a
HetNet is proposed in [10]. An upper bound on the sum rate
is derived by investigating load balancing and interference as
a tradeoff, using convex optimization. In [11], the downlink
sum capacity and fairness were analyzed to improve the
offloading in HetNets using inter-cell interference coordina-
tion and cell range expansion. Munir et al. [12] proposed
a framework which allows the femtocell BSs to maximize
the data rates of their home users by opting the frequency
band either from the millimeter wave (mmWave) and the sub-
6 GHz followed by the energy efficient macrocell user asso-
ciation. A low-complexity sub-optimal resource allocation
algorithm to maximize the EE for downlink orthogonal fre-
quency division multiple access (OFDMA) in multiple radio
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access technology (RAT) networks is proposed in [13]. The
proposed scheme delivers the performance close to an opti-
mal method with less complexity. In [14], a separation archi-
tecture to reduce the power consumption in a two-tier HetNet
is evaluated, using stochastic geometric model. In compar-
ison to the conventional macrocell BS, the proposed archi-
tecture reduces the energy consumption by more than 50%
by separating coverage BSs and traffic BSs. A tradeoff func-
tion is derived between spectrum efficiency and EE with the
known interference scenario, using bargaining co-operative
optimization framework in [15].

The main benefits of small cell deployment in a macrocell
include the improvements in data rates and EE of the network.
However, small cells with smaller coverage range, allow
small cell BSs to communicate at lower powers which limit
the fraction of users connected to them, resulting in conges-
tion at the macro-tier. Thus, load balancing is a challenging
issue, which needs to be addressed in order to realize the
benefits of HetNets in a best possibleway. Tomanage the high
user density and to increase the capacity, it is desirable to shift
the traffic load from the macrocell to the small cells. Various
load balancing techniques are studied to offload the traffic
frommacro-tier [16], [17]. One promising way to provide this
is through static cell biasing that allows users to offload to
small cells using a biased measured signal. This suboptimum
offloading technique is known as cell range expansion. How-
ever, the traffic demand in hot spots in the dense networks
often varies with time, which calls to dynamically adjust the
biases, resulting in enhanced load balancing gains [18], [19].

Most of the existing works on the performance analysis
of cellular networks, especially the ones using optimization
theory, use single-slope path loss model to characterize the
propagation environment [20]. However, the massive data
traffic and densification in the future wireless network lead
to increasing network irregularities, which, in turn, elevate
the variations in the links significantly [21]. In order to cater
for these variations, many physical factors including link
distances, ground reflections, scattering, and interferences,
make path loss modeling a complex task in cellular networks.
The standard path loss models are easy to study and analyze
but they characterize all the links in a cell with a single
path loss exponent (PLE), which lacks precision in a dense
wireless network [22]. Performance degradation occurs as
this model does not capture the dependence of the PLE
on the link distance perfectly [23]. However, in the most
recent works, this trend is shifted towards dual-slope path loss
model, as presented in [24]–[26]. In [24], coverage probabil-
ity and network throughput have been analyzed under multi-
slope path loss model on the downlink of a cellular network.
Ding et al. [25] investigate the path loss model incorporat-
ing both line-of-sight (LoS) and non line-of-sight (NLoS)
transmission in small cell networks and compare it with
standard path lossmodel. The paper further studies the impact
of dual-slope path loss model on the coverage probability
with varying small cell densities. This work was extended
to user association in HetNets using dual-slope path loss

model, in [26], which analyzed the effectiveness of biasing
and uplink/downlink decoupling with dual-slope model on
user association. This migration to dual-slope model is influ-
enced by network densification and mmWave communica-
tions. The network densification causes more irregularities
in cell patterns, which affects the interference composition
and thus, the links cannot be accurately approximated by a
single PLE [27], [28]. The use of mmWave spectrum, ranging
from 30-300 GHz, can improve the network performance
but faces many challenges including sensitivity to blocking
due to highly intermittent links [29]–[31]. Dual-slope path
loss model has a great potential to better approximate the
LoS and NLoS links, in mmWave systems, using different
PLEs. Considering this simplest path loss model does not
provide the precise dependence between the PLEs and the
link distances, there is a need for more accurate path loss
model to improve the performance in dense cellular networks,
as discussed in [27].

Multi-slope models apply different PLEs for different link
distances, which result in improved performance for dense
networks, as shown in [24]. This model considers different
slopes above and beyond the critical distance, which can be
used to approximate the two regimes of LoS and NLoS links.
The critical distance is the distance where the first Fresnel
zone becomes obstructed and below this distance all links
are LoS. This distance is also known as breakpoint distance
where the slope changes and it can be calculated as given
in [21] and [32]. This distance is highly dependent on the
antenna height and the Fresnel clearance zone starts expand-
ing with the increase in the antenna height. This is because
the increase in the antenna height pushes the obstructions in
the Fresnel zone farther. In addition to the antenna height,
this distance is slightly dependent on the environment as
well [33]. In case of mmWave communication, this distance
is environment dependent random variable, which increases
with low blocking environment, but can be approximated by
taking the average LoS link distance [34]. The dual-slope
model was first studied for LoS environment for free space
reference distance model in [35] and for the indoor scenario
in [36]. In [37], a dual-slope model has been proposed to
reduce the root mean square (RMS) error between the local
mean path loss samples and the path loss model, for NLoS
environment.

According to the best of our knowledge, the resource
allocation technique in a HetNet exploiting dual-slope path
loss model has not been presented previously and there is
no work in the literature that analyzes the network perfor-
mance under difference slopes in different tiers of a HetNet,
simultaneously. Most of the recent work on dual-slope path
model have considered single-tier networks [22], [24], [25],
[38]. Different from the existing works, this paper presents
the analysis of the proposed resource optimization framework
under different combinations of single-slope and dual-slope
path loss models in a two-tier network.

Highlighting the importance of using an accurate approx-
imation of links in dense networks [24]–[27], this paper
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formulate a joint user association, subcarrier and power
allocation to maximize the weighted sum rate of a Het-
Net multi-tier downlink, while satisfying constraints on the
BSs’ transmission power and users’ quality-of-service (QoS)
requirements. The proposed framework utilizes both single-
slope and dual-slope path loss models. For better tractability,
we transform the weighted sum rate maximization prob-
lem into a minimization problem using time sharing relax-
ation. We then prove that the transformed optimization prob-
lem is convex with respect to transmit power and subcar-
rier allocation variable using Hessian matrix. The optimal
solution to the proposed optimization problem is derived
by exploiting Karush–Kuhn–Tucker (KKT) conditions. The
main contributions of this paper can be summarized
as follows:
• We aim to maximize the weighted sum rate in the
downlink of a multi-tier HetNet while considering user
QoS requirement and maximum transmission power
constraints. In contrast to the existing works such as
[24]–[27], which highlight the importance of multi-
slope model and analyze coverage probability, our
objective is to propose and analyze the QoS-aware
resource optimization framework incorporating multi-
slope path loss model in a multi-tier HetNet.

• The proposed framework is evaluated under different
path loss models and we prove that dual-slope model
improves the sum rate and EE of the network in com-
parison to the single-slope model. Since dual-slope
model offloads the users to the closest BSs due to min-
imal attenuation, which increases the received signal
strength, the better data rate can be achieved. As a result
of better approximation of links in dual-slope model,
the power consumption reduces and EE improves.

• The user association and load balancing are analyzed
and we show that when dual-slope path loss model is
applied on small cells, the users connect to the nearby
small cell BSs due to reduced attenuations and smaller
PLE. Furthermore, we investigate the impact of PLEs
on the performance of the network exploiting dual-slope
path loss model and prove that the larger the NLoS
PLE of a tier, the larger the attenuation and more users,
residing outside the critical radius, offload to other tier.
In essence, we show that the dual-slope model is bene-
ficial for load-balancing in dense networks.

• The performance of a multi-tier HetNet using power
minimization and weighted EE maximization tech-
niques is also analyzed, under both single-slope and
dual-slope path loss models. We prove that the dual-
slope model performs better than the standard single-
slope model in all approaches.

The rest of this paper is organized as follows. In Section II,
we present the system model of the proposed framework and
introduce the path loss models. In Section III, we formulate
joint subcarrier and power allocation on the downlink of a
multi-tier HetNet as an objective function maximizing the
weighted sum rate. Section IV shows the simulation results

to demonstrate the performance of proposed scheme under
single and dual-slope path loss models and Section V gener-
alizes the conclusion drawn in the dual-slope case along with
the concluding remarks.

II. SYSTEM MODEL
Consider the downlink of a two-tier HetNet composed of
M − 1 picocell base stations (PBSs) overlaid on a macro-
cell. The macrocell base station (MBS) is represented by mo
whereas the set of all the base stations (BSs) in the system

is given as M = {mo,m1, . . . ,mM−1}. Let N =
M−1⋃
m=0

Nm be

the set of all users deployed uniformly over the entire area
where Nm represents the set of users connected to the mth

BS. The bandwidth, B, is equally divided among K identical
subcarriers where K = {1, 2, 3, . . . ,K } be the set of all the
subcarriers. Table 1 lists the terminology used throughout this
paper.

A snapshot of a two-tier HetNet consisting of picocells
overlaid on a macrocell, with users uniformly scattered over
the entire area, is shown in Fig. 1. Fig. 1(a) shows the scenario
where all BSs use single-slope path loss model. On the other
hand, Fig. 1(b) shows the scenario where MBS operates on
single-slope path loss model, whereas all PBSs operate on
a dual-slope path loss model. Fig. 1(c) shows the scenario
where MBS operates on dual-slope path loss model, whereas
all PBSs operate on single-slope path loss model. Fig. 1(d)
shows the scenario where all BSs use dual-slope path loss
model. These path loss models are explained in detail in
Section II-A.

Tomaintain the QoS requirements of the users, a constraint
on the minimum achievable rate is applied. We assume that
the minimum required rate is identical for all users and is
equal to Rmin. Let ρn,m[k] ε {0, 1} denote the subcarrier
allocation. If the subcarrier k of the mth BS is assigned to
the nth user, ρn,m[k] = 1, otherwise ρn,m[k] = 0. The
instantaneous achievable data rate (b/s/Hz) of the nth user
associated with BS m on each subcarrier k is given as

rn,m[k] = ρn,m[k]log2(1+ γn,m[k]pn,m[k]), (1)

where pn,m[k] represents the power allocated to the k th sub-
carrier for the user n at the BSm. Here, γn,m[k] is the channel-
to-noise ratio (CNR) of the nth user associated with the mth

BS on the subcarrier k and is defined as

γn,m[k] =
|hn,m[k]|2

N0L(dn,m)
, (2)

where hn,m[k] represents the channel gain of the nth user from
the mth BS on the subcarrier k and L(dn,m) is the path loss
between user n and BS m.

If user n is associated with BS m, then the total achievable
rate of the user n over all the allocated subcarriers is given as

Rn =
∑
m∈M

∑
k∈K

rn,m[k]. (3)
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FIGURE 1. A two-tier heterogeneous cellular network. (a) Single-slope
model in both macro-tier and pico-tier. (b) Single-slope model in
macro-tier and dualslope model in pico-tier. (c) Dual-slope model in
macro-tier and singleslope model in pico-tier. (d) Dual-slope model
in both macro-tier and picotier.

A. PROPAGATION MODELS
In this section, we present different path loss models to
characterize the large scale fading in a network.
Definition 1 (Single-Slope Path Loss Model): The single-

slope path loss model, L1(d), is given as

L1(d)[dB] = 20 log
(
4π
λc

)
+ 10α log(d)+ ξ, (4)

where d is the distance inmeters, λc corresponds to the carrier
wavelength and α is the PLE. In (4), ξ is a Gaussian random
variable (RV) with zero mean and σ 2 variance representing
shadow fading. The single-slope path loss model generally
falls short in accurately capturing the PLE dependence on the
physical environment in dense and millimeter wave capable
networks. These limitations lead to the consideration of dual-
slope path loss model, which is described below.
Definition 2 (Dual-Slope Path LossModel):The dual-slope

path loss model is given by [26] and [35]

L2(d)[dB] =


β + 10α0 log10(d)+ ξ d ≤ rc
β + 10α0 log10(rc)

+10α1 log
(
d
rc

)
+ ξ d > rc,

(5)

where rc is the critical radius of a cell, in meters. β represents
the floating intercept, α0 and α1 are the PLEs for below and
beyond rc.
Definition 3 (N-Slope Path Loss Model): The N -slope path

loss model is given as [24]

L(d)[dB]

=



l1(d) = β + 10α0 log10(d)+ ξ 0 < d ≤ r (1)c

l2
(
r (1)c , d

)
= l1

(
r (1)c

)
+10α1 log

(
d

r (1)c

)
r (1)c < d ≤ r (2)c

l3
(
r (1)c , r (2)c , d

)
= l2

(
r (1)c , r (2)c

)
+10α2 log

(
d

r (2)c

)
r (2)c < d ≤ r (3)c

...
...

lN
(
r (1)c , r (2)c , . . . , r (n)c , d

)
= lN−1

(
r (1)c , r (2)c , . . . , r (n)c

)
+10αn log

(
d

r (n)c

)
d > r (n)c ,

(6)

where αn, n = {0, 1, ..,N−1}, is the PLE such that 0 ≤ α0 ≤
α1 ≤ . . . ≤ αN−1. The critical distance is denoted as rc(n),
n = {0, 1, ..,N − 1}, such that rc(0) ≤ rc(1) ≤ . . . ≤ rc(N−1).
This model can be reduced to dual-slope path loss model with
N = 2.

III. PROPOSED WEIGHTED SUM RATE MAXIMIZATION
SCHEME: AN OPTIMIZATION APPROACH
In this section, we propose a joint user association, subcarrier
and power allocation scheme to maximize the weighted sum
rate on the downlink of a two-tier HetNet. In this approach,
we formulate weighted sum rate maximization as a single
objective optimization problem (SOP) subject to the BSs’
maximum transmission power consumption and users’ min-
imum achievable rate. The performance of the proposed

VOLUME 5, 2017 8717



H. Munir et al.: Resource Optimization in Multi-Tier HetNets Exploiting Multi-Slope Path Loss Model

TABLE 1. The notations for different parameters used in this study.

approach is then evaluated under different path loss models.
The SOP is given as follows

max
ρ,p

∑
m∈M

∑
n∈N

ωn
∑
k∈K

ρn,m[k]log2(1+ γn,m[k]pn,m[k]),

s.t. C1 :
∑
n∈N

∑
k∈K

ρn,m[k]pn,m[k] ≤ Pmax
m , ∀m.

C2 : Rn ≥ Rmin, ∀n.

C3 :
∑
n∈N

ρn,m[k] ≤ 1, ∀k,m.

C4 : ρn,m[k] ∈ {0, 1}, ∀n, k,m. (7)

where ωn represents the weight of the nth user such that 0 ≤
ωn ≤ 1. Here, C1 limits the maximum transmission power
of each BS to Pmax

m . The Constraint C2 ensures that each
user gets at least the minimum required rate, i.e, Rmin. The
constraints C3 and C4 ensure exclusive subcarrier allocation
at each BS such that each subcarrier can only be assigned to
one user at each BS. This above problem can be reduced to
rate maximization problem by using ωn = 1.
The maximization problem in (7) is a mixed integer pro-

gramming (MIP) problem due to binary and continuous
variables and is generally NP-hard. This optimization prob-
lem is also not convex with respect to (ρn,m[k], pn,m[k]).
In order to achieve the convexity, we reformulate the opti-
mization problem, as in [39], by replacing xlog2(1+ y) with
xlog2(1+

y
x ), which is now convex in (x, y). The optimization

problem in (7) becomes convex minimization problem and

given as

min
ρ,p
−

∑
m∈M

∑
n∈N

ωn
∑
k∈K

ρn,m[k]log2

(
1+

γn,m[k]pn,m[k]
ρn,m[k]

)
,

s.t. C1 :
∑
n∈N

∑
k∈K

ρn,m[k]pn,m[k] ≤ Pmax
m , ∀m.

C2 : Rn ≥ Rmin, ∀n.

C3 :
∑
n∈N

ρn,m[k] ≤ 1, ∀k,m.

C4 : ρn,m[k] ∈ [0, 1], ∀n, k,m. (8)

Here, the constraint C4 is relatively relaxed as the variables
are now continuous i.e., ρn,m[k] ∈ [0, 1] by using time
sharing and hence the optimization problem is convex. The
convexity of the objective function with respect to optimiza-
tion variables ρn,m[k] and pn,m[k] is proved. The proof of
convexity is given in detail in Appendix A. The Lagrangian
of the objective function in (8) can be written as

L = −
∑
m∈M

∑
n∈N

ωn
∑
k∈K

ρn,m[k]log2

(
1+

γn,m[k]pn,m[k]
ρn,m[k]

)

+

∑
m∈M

λm

(∑
n∈N

∑
k∈K

ρn,m[k]pn,m[k]− Pmax
m

)

+

∑
n∈N

ηn(Rmin− Rn)+
∑
m∈M

∑
k∈K

αm,k

(∑
n∈N

ρn,m[k]−1

)
+

∑
m∈M

∑
n∈N

∑
k∈K

µn,m,k (0− ρn,m[k])

+

∑
m∈M

∑
n∈N

∑
k∈K

νn,m,k (ρn,m[k]− 1), (9)

where Eλ = {λ0, λ1, . . . , λM−1} and Eη = {η1, η2, . . . , ηN }
are the Lagrange multiplier vectors associated with
the maximum transmit power and minimum required
rate constraints, respectively. The parameters Eα =

{α1,1, α1,2, . . . , αM−1,K }, Eµ = {µ1,1,1, . . . , µN ,M−1,K } and
Eν = {ν1,1,1, . . . , νN ,M−1,K } are the Lagrange multiplier
vectors associated with the exclusive subcarrier allocation
at each BS. The above equation can be written, after few
mathematical manipulation, as

L = −
∑
m∈M

∑
k∈K

ρn,m[k]
[∑
n∈N

ωnlog2

(
1+

γn,m[k]pn,m[k]
ρn,m[k]

)
+ ηnlog2

(
1+ γn,m[k]pn,m[k]

) ]
+

∑
m∈M

∑
n∈N

∑
k∈K

λmpn,m[k]ρn,m[k]+
∑
m∈M

λmPmax
m

+

∑
n∈N

ηnRmin +
∑
m∈M

∑
k∈K

αm,k

∑
n∈Nm

ρn,m[k]− 1


+

∑
m∈M

∑
n∈Nm

∑
k∈K

µn,m,k (0− ρn,m[k])

+

∑
m∈M

∑
n∈N

∑
k∈K

νn,m,k (ρn,m[k]− 1) (10)
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The optimal solutionmust satisfy the KKT conditions [40].
By taking the derivative of (10) w.r.t ρn,m[k], we have

∇ρn,m[k]L = −ωn

[
log2

(
1+

γn,m[k]pn,m[k]
ρn,m[k]

)
−

γn,m[k]pn,m[k]

ln2
(
ρn,m[k]+ γn,m[k]pn,m[k]

)]
− ηnlog2(1+ γn,m[k]pn,m[k])+ λmpn,m[k]

+
(
αm,k − µn,m,k + νn,m,k

)
= 0, (11)

Now, by taking the derivative of (10) with respect to
Lagrange multipliers associated with subcarrier assignment,
we get

αm,k∇αm,kL = αm,k

(∑
n∈N

ρn,m[k]− 1

)
= 0, (12)

µn,m,k∇µn,m,kL = µn,m,k (0− ρn,m[k]) = 0, (13)

νn,m,k∇νn,m,kL = νn,m,k (ρn,m[k]− 1) = 0. (14)

Eq. (11) can be rewritten as

ζn,m[k] = ωn

[
log2

(
1+

γn,m[k]pn,m[k]
ρn,m[k]

)
−

γn,m[k]pn,m[k]

ln2
(
ρn,m[k]+ γn,m[k]pn,m[k]

)]
+ ηnlog2(1+ γn,m[k]pn,m[k])− λmpn,m[k]

= αm,k − µn,m,k + νn,m,k . (15)

Using (14) and (14), we can say that the k th subcarrier is
assigned to the nth user by the mth BS when ρn,m[k] = 1,
giving µn,m,k = 0 and νn,m,k ≥ 0. Whereas, ρn,m[k] < 1
shows that the subcarrier k is not assigned to the nth user,
therefore µn,m,k = 0 and νn,m,k = 0. Thus,

ζn,m[k]− αm,k =

{
≥ 0 ρn,m[k] = 1,
= 0 ρn,m[k] < 1.

(16)

From (12) and (16), it can be concluded that αm,k is a
constant for k th subcarrier at themth BS and the k th subcarrier
must be assigned to the nth user associated with the mth BS,
which maximizes

nm = arg max
n
{ζn,m[k]− αm,k}, ∀n ∈ N. (17)

For ρn,m[k] = 1, (17) becomes similar as solving

nm = arg max
n

{
ωn
[
log2(1+ γn,m[k]pn,m[k])

] }
, (18)

where rn,m[k] = log2(1+ γn,m[k]pn,m[k]) when the value of
ρn,m[k] = 1.

Thus, from (18), the subcarrier assignment can be deter-
mined as

ρn,m[k] =

1, nm = arg max
n
{ωn(rn,m[k])}

0, otherwise.
(19)

Now, by taking the derivative of (10) w.r.t pn,m[k] gives

∇pn,m[k]L = −
γn,m[k]
ln2

[
ωn

1+ γn,m[k]pn,m[k]
ρn,m[k]

+
ηn

(1+ γn,m[k]pn,m[k])

]
+ λmρn,m[k] = 0, (20)

Using (20), the optimal power for the nth user on the k th

subcarrier associated with the mth BS , for a given subcarrier
allocation, is given as

pn,m[k] =


(
ωn + ηn

ln2
(
λm
) − 1

γn,m[k]

)+
, if(ρn,m[k] = 1)

0, otherwise,
(21)

where [x]+ = max(0, x).
The expression for optimal power allocation on each sub-

carrier has a semi-closed form in terms of Lagrangian mul-
tipliers. From (21), we can say the given power allocation
is a modified water filling solution, where γn,m[k] is the
channel gain and water level are determined by Lagrangian
multipliers. These multipliers must satisfy KKT conditions.

The Lagrangian multipliers can be updated according to

λm(i+ 1) =
[
λm(i)−

s1
√
i

(∑
n∈N

∑
k∈K

pn,m[k]− Pmax
m

)]+
,

(22)

ηn(i+ 1) =
[
ηn(i)−

s2
√
i
(Rmin − Rn)

]+
, (23)

where i is the iteration number and sj = 0.1
√
i
, j ∈ {1, 2}. This

process of computing optimal power and subcarrier allocation
along with Lagrangian multipliers are updated until conver-
gence is achieved, guaranteeing optimal solution.

The complexity of the proposed approach to solve (8)
is O(M × K × N ) and with the accuracy requirement of
δ = 10−3, the complexity becomes O(I × M × K × N ×
log2(

1
δ
)) where I is the number of iterations required until the

algorithm converges. We observe that the proposed scheme
has polynomial time complexity. The complexity of the pro-
posed scheme is low in comparison to the complexity of the
exhaustive search over all possible combinations.

A. POWER MINIMIZATION APPROACH
For power minimization approach, the minimum achiev-
able rate constraint for each user is met with equality, i.e.,
Rn = Rmin. The optimal water level (inverse) for achieving
Rmin can be computed, using water filling equations, as

ηn =

2−Rmin
∏

k∈|Kn|

γn,m[k]

 1
|Kn|

, (24)

where |Kn| = {k ∈ K : γn,m[k] > ηn} is the subset of active
subcarriers for user n. More details about calculating ηn can
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be found in Appendix B. The power allocation can be done
using water level (inverse) ηn as

pn,m[k] =
[
1
ηn
−

1
γn,m[k]

]+
. (25)

For a given subcarrier assignment, the optimal power can
be calculated as

p∗n,m[k] = min{pn,m[k], pn,m[k]}, (26)

where pn,m[k] is given by (21).

B. WEIGHTED EE MAXIMIZATION APPROACH
In this approach, the water level (inverse), when weighted EE
is maximized without minimum rate constraint, is given as

η
m
=
W (xm.eym−1)

xm
, (27)

whereW (.) represents the Lambert function [41]. The proof is
given in Appendix C. Using the above water level, the power
allocation can be computed as

p
n,m

[k] =
[
ωn

η
m

−
1

γn,m[k]

]+
. (28)

The optimal power, for a given subcarrier allocation,
becomes

p∗n,m[k] = max
(
min

(
pn,m[k], pn,m[k]

)
, pn,m[k]

)
. (29)

IV. SIMULATION RESULTS
We consider a two-tier HetNet where a single macrocell is
located at the center and M − 1 picocells are uniformly
deployed over an area of 1000 × 1000 square meters. The
users are also uniformly scattered over the entire area. The
maximum transmit power of MBS and PBS is set to 46 dBm
and 30 dBm, respectively, whereas, the circuit power is con-
sidered to be 0.4 W and 0.1 W for MBS and PBS, respec-
tively. The minimum acceptable data rate, Rmin, for each user
is 4 b/s/Hz, whereas the power spectral density of noise is
−174 dBm/Hz. The weight of each user is set fixed to 1/N ,
where N is the total number of users. The parameters for path
loss models are listed in Table 2 [38], unless stated otherwise.

TABLE 2. Simulation parameters.

The relationship between the fraction of the users associ-
ated with the pico-tier and density of PBSs is demonstrated
in Fig. 2. As the density of the PBSs increases, the offloading
to pico-tier increases because the distances between the users
and the PBSs decreases and more users tend to choose PBSs

FIGURE 2. Fraction of users associated with pico-tier across varying PBSs
density, MBS density is held constant at 1 MBS/sq km. N = 30, K = 128,
Rmin = 4 b/s/Hz, rc (macrocell) = 375 m, rc (picocell) = 40 m and
θ1 = θ2 = 0 dB.

due to improved received power. This figure also compares
the offloading performance of the network while exploit-
ing single-slope and dual-slope path loss models. The fig-
ure shows that the offloading to pico-tier is minimum when
dual-slope model is used in macro-tier only. This is because
the users residing within the critical radius of the macrocell
prefer MBS over PBSs because smaller PLE is used within
the critical radius of the macrocell, resulting in reduced atten-
uation. This offloading becomes maximum when dual-slope
model is applied only on pico-tier, as more users are pushed
toward nearby PBSs with less attenuated coverage region.
The user offloading to pico-tier is comparatively small when
the dual-slope model is applied on both tiers as compared to
the previous case. This is because some users might come
within the critical radius of both picocell and macrocell at a
time and prefer MBS over PBS.

FIGURE 3. Weighted sum rate across varying PBSs density whereas, MBS
density is held constant at 1 MBS/sq km. N = 30, K = 128, Rmin = 4
b/s/Hz, rc (macrocell) = 375 m, rc (picocell) = 40 m and θ1 = θ2 = 0 dB.
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We can observe another advantage of dual-slopemodel that
it pushes the user to the closest BS so that it does not have
to be an edge user. Although, a user can be at the edge with
respect to some BSs but for some other nearly located small
cell BS, it won’’t be an edge user. In essence, the dual-slope
model reduces the number of edge users in comparison to the
single-slope model by offloading the majority of users to the
closest BSs, and thus improves the network performance.

Fig. 3 represents the effect of PBS density onweighted sum
rate. The figure shows an increasing trend in the weighted
sum rate with the increase in the density of PBSs. This is
because of the fact that the increase in PBS density decreases
the distances of the users from the PBSs, which decreases
the path losses, thus resulting in the improved data rates. The
figure shows that the performance of the scheme exploiting
dual-slopemodel in both tiers and the schemewith dual-slope
model in pico-tier only is very close. The difference between
these schemes is the path loss model in macro-tier whereas,
both schemes have dual-slope model in pico-tier. We observe
that the effect of dual-slope model onmacro-tier is negligible,
this is mostly due to the fact that the links are long and
thus, mostly links are NLoS. This, in turn, makes blocking
effect less severe in the macro environment. On the other
hand, the effect of dual-slope model in pico-tier is significant
due to short link distances. As both schemes have dual-slope
model in pico-tier, which dominates the overall behavior due
to the higher density of PBSs relative to MBS and thus, both
schemes show close performance.

FIGURE 4. Weighted sum rate and fraction of users associated to pico-tier
across varying critical radius of picocell for N = 25, M = 6, K = 128,
Rmin = 4 b/s/Hz, rc (macrocell) = 375 m and θ1 = θ2 = 0 dB.

The impact of the critical radius of the picocell on the
performance of the network for fixed number of users and
BSs is shown in Fig. 4. As the critical radius of the picocell
increases, more users start entering within the critical radius,
the attenuation decreases due to smaller PLE and the users
residing within rc prefer PBSs over MBS. As a result of
lower path losses and increased received power, the sum rate
increases with the increase in rc. However, the increasing

trend in the sum rate is sharp in the beginning and then it starts
slowing down with further increase in rc. This is because
of the fact that as rc increases, the user offloading to pico-
tier increases but the distance between the PBSs and the
users increases and the approximation of LoS links within the
critical radius of picocells start affecting. This figure further
reveals that the sum rate for the schemewith dual-slopemodel
only in pico-tier is better as more users are offloading from
macro-tier and the performance of the network improves.
However, after rc = 60 m, the sum rate of the scheme with
dual-slope model in pico tier only decreases as compared to
the schemewith dual-slope model in both tiers due to affected
link approximation in picocells.

FIGURE 5. Weighted sum rate and fraction of users associated to pico-tier
across varying critical radius of picocell for N = 50, M = 8, K = 128,
Rmin = 4 b/s/Hz, rc (macrocell) = 375 m and θ1 = θ2 = 0 dB.

Fig. 5 shows the significance of PLEs of the dual-slope
model in a network. This figure assumes dual-slope path loss
model in pico-tier and single-slope path loss model in macro-
tier. As can be seen from the figure that the case where the
PLEs of the pico-tier are smaller, rates are better. This is
because the smaller values of PLEs represent less obstruction
and attenuation, which decrease the path losses and increase
the received power which, in turn, increases the rates. The
fraction of users connected with pico-tier is higher for smaller
PLEs as they induce reduced attenuation in pico-tier. The
figure shows that the worst case happens when both tiers
experience approximately same PLEs. This is because the
links are approximated using same PLEs in both tiers but both
have different critical radii and these PLEs do not perfectly
characterize the network, which causes performance
degradation.

The user association across varying biasing factor of the
pico-tier is plotted in Fig. 6. Biasing effect is investigated by
varying the bias factor of the pico-tier, θ2, with no biasing
for the macro-tier. An increasing trend in user offloading can
be observed with the increasing pico-tier bias factor as bias-
ing improves the received signal strength originating from
PBSs. The figure reveals that the biasing with both single and
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FIGURE 6. Fraction of users associated with pico-tier across pico-tier
biasing factor for N = 25, M = 6, K = 128, Rmin = 4 b/s/Hz,
rc (macrocell) = 375 m, rc (picocell) = 60 m and θ1 = 0 dB.

dual-slope models is beneficial for offloading. However, with
dual-slope model in the picocell, this effect is more strong
as signal strength from PBSs is further enhanced due to less
attenuated links.

FIGURE 7. Weighted sum rate across pico-tier biasing factor for
N = 25, M = 6, K = 128, Rmin = 4 b/s/Hz, rc (macrocell) = 375 m,
rc (picocell) = 60 m and θ1 = 0 dB.

From Fig. 7, we observe the effect of biasing factor of pico-
tier on the weighted sum rate of the network. The weighted
sum rate for the scheme where single-slope model is used in
both tiers is better than the scheme where dual-slope model
in applied on macro-tier only because of the better user
offloading in the former scheme. However, after θ2 = 20 dB,
the trend changes as the user density at PBSs increases more
than 80 % for the scheme where single-slope model is used
in both tiers. This is because the single slope model does
not accurately approximate the high user density at PBSs
and the power budget at PBSs is limited as well and thus,
we observe a decreasing trend in weighted sum rate. The
weighted sum rate in case of other two schemes where dual-

slope model is used in pico-tier decreases with the increase
in the biasing factor. This is due to the fact that as the biasing
factor increases, for the fixed number of PBSs, almost all
the users offload to pico-tier, however, the power budget at
PBS is small compared toMBS, which decreases the received
power. This decrease in received power results in decreased
data rates. However, with the decrease in power consumption,
the weighted energy efficiency shows a huge improvement
for these schemes, as shown in Fig. 8.

FIGURE 8. Weighted energy efficiency across pico-tier biasing factor
for N = 25, M = 6, K = 128, Rmin = 4 b/s/Hz, rc (macrocell) = 375 m,
rc (picocell) = 60 m and θ1 = 0 dB.

FIGURE 9. Weighted EE across varying minimum rate threshold for
N = 30, M = 8, K = 128, rc (picocell) = 60 m, rc (macrocell) = 375 m
and θ1 = θ2 = 0 dB.

Furthermore, we investigated the influence of dual-slope
path lossmodel on theHetNet, for weighted EEmaximization
and power minimization approaches. In Fig. 9, the weighted
EE versus minimum rate threshold for the power minimiza-
tion approach is shown. We compare two different schemes
using single-slope and dual-slope path loss models. The sum
rate for both schemes is same, i.e., K × Rmin, fulfilling the
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minimum rate requirement of all users. The weighted EE
shows an increasing trend for all schemes in the beginning,
as weighted sum rate increases with the increase in Rmin and
then the trend reverses. This is because the EE is a trade-
off between sum rate and power consumption and beyond a
certain threshold of Rmin, the effect of power consumption
starts dominating and we observe a decreasing trend in EE.
However, the dominating effect of power consumption arrives
relatively late when dual-slope model is applied. As dual-
slope path loss model better approximates the link compared
to single-slope model, the users associate with nearby BSs
and experience lower path losses. As a result of lower path
losses with dual-slope model, the BSs require less transmit
power to fulfill the fixed minimum rate threshold and power
consumption is relatively small.

FIGURE 10. EE Maximization Approach for N = 30, M = 8, K = 128,
rc (picocell) = 60 m, rc (macrocell) = 375 m and θ1 = θ2 = 0 dB.
(a) Weighted sum rate across varying minimum rate threshold.
(b) Weighted EE across varying minimum rate threshold.

The weighted sum rate and weighted EE of the network
as the minimum rate requirement varies for weighted EE
maximization approach is shown in Fig. 10. We can see an
increasing trend in the weighted sum rate in Fig. 10(a). This
is because as the threshold increases, the achievable rate of
each user improves, which increases the overall sum rate.
Figure shows that the weighted sum rate is maximum when
dual-slope path loss model is applied on pico-tier only as the
user offloading is maximum in this case and users connect
with the nearby PBSs which decreases the distances between
the users and the BSs. This, in turn, increases the rates due
to higher received power. When dual-slope model is applied
on both tiers, the offloading to the pico-tier is slightly less as
compared to the previous mentioned scheme and thus, there
is a marginal decrease in sum rate. The offloading to the pico-
tier is minimumwhen the dual-slope model is only applied on
the macro-tier as more users prefer MBS over PBSs, thereby
triggering the under-utilization of the PBSs and we witness a
performance degradation in terms of sum rate in comparison
to other schemes.

Fig. 10(b) shows the weighted EE of the system for
weighted EE maximization approach. In the start, the scheme
with the maximum weighted sum rate shows the maximum
weighted EE and the scheme with the minimum weighted
sum rate shows the minimum weighted EE. This trend
changes at higher values of Rmin. As the minimum rate
requirement increases, the total power consumption increases
and we observe a downtrend in EE. This decline in EE comes
later for the scheme where dual-slope path loss model is
used solely in the network as compared to other schemes.
This is mainly due to the fact that the power consumption
is less in dual-slope model case due to lower path losses and
better approximation of links. Hence, at higher values ofRmin,
the EE is maximum with dual-slope model in both tiers as
compared to the case when dual-slope model is observed in
pico-tier only.

V. CONCLUSION
In this paper, we analyzed the impact of the dual-slope
path loss model on the performance of a downlink HetNet
where different PLEs are used for different ranges. In the
proposed approach, a joint user association, subcarrier and
power allocation is performed to maximize the weighted sum
rate. By analyzing the proposed scheme under different path
loss models, we observe that the dual-slope model shows
significant improvement in data rates and EE in comparison
to the single-slope model, which does not measure the PLE
dependence on the link distance accurately. The dual-slope
path loss model connects the users with the closest BS by
offloading them into the minimal attenuation region using
smaller PLE. The effect of PLEs were also studied and it has
been shown that the users lying within rc undergo lower path
losses with PLE, α0 < 3, in the dual-slope path loss model,
as compared to the PLE, α = 3, in the single-slope path loss
model. We also observe that the improvement in the perfor-
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mance of the network is significant for rc ≤ 60 m in picocells
due to better LoS links approximation, whereas the effect
of the dual-slope model in macro-tier is not very promising.
This paper also studiedweighted EEmaximization and power
minimization approaches under dual-slope path loss model.
In future, this analysis may be extended to include channel
estimation, which will be of significant importance in ultra-
dense networks.

APPENDIX A
PROOF OF CONVEXITY
Without loss of generality, the objective function in (8) can
be written as

f (ρn,m[k], pn,m[k]) = −ρn,m[k]log2

(
1+

γn,m[k]pn,m[k]
ρn,m[k]

)
.

(30)

The gradient of (30) can be calculated as

∇f (ρn,m[k], pn,m[k])

=



1
ln2

[
γn,m[k]pn,m[k]

ρn,m[k]+ γn,m[k]pn,m[k]

]
−ln

(
1+

γn,m[k]pn,m[k]
ρn,m[k]

)
−

1
ln2

(
γn,m[k]pn,m[k]

ρn,m[k]+ γn,m[k]pn,m[k]

)

. (31)

The convexity of the objective function in (8) with respect
to the optimization variables pn,m[k] and ρn,m[k] can be
proved by finding the Hessian of f (ρn,m[k], pn,m[k]) as
follows

∇
2f (ρn,m[k], pn,m[k]) =

γ 2 pn,m[k]

ln2
(
ρn,m[k]+ γn,m[k]pn,m[k]

)2
×


pn,m[k]
ρn,m[k]

−1

−1
ρn,m[k]
pn,m[k]

. (32)

Here, ρn,m[k], pn,m[k] and γn,m[k] are the positive values,
it can be shown that the eigenvalues are non-negative, thus
the Hessian of f (ρn,m[k], pn,m[k]) is positive semi-definite.
Therefore, the objective function is proved convex.

APPENDIX B
In case of power minimization approach given the minimum
rate threshold constraint with equality, i.e. Rn = Rmin,
the achievable rate for user n over all active subcarriers is
given as

Rmin =
∑
k∈|Kn|

log2
(
1+ γn,m[k]pn,m[k]

)
. (33)

Hence, considering pn,m[k] ≥ 0, the optimal power alloca-
tion, using water filling criteria, is given as

pn,m[k] =
[
1
ηn
−

1
γn,m[k]

]+
. (34)

By putting (34) in (33), we get

Rmin =
∑
k∈|K|

log2

(
1+

γn,m[k]
ηn

− 1
)
. (35)

2Rmin =

∏
k∈|Kn|

γn,m[k]
ηn

. (36)

ηn =

2Rmin
∏

k∈|Kn|

γn,m[k]

 1
|Kn|

. (37)

Hence, the solution to the power minimization problem is
given by (26).

APPENDIX C
The weighted energy efficiency (b/J/Hz) can be defined as

EE =

∑
m∈M

∑
n∈N

∑
k∈K ωnrn,m[k]

ε
∑

m∈M
∑

n∈Nm
∑

k∈K ρn,m[k]pn,m[k]+ PC
, (38)

where ε is the inverse of power amplifier efficiency and PC
is the total circuit power in the network and is defined as

PC = Pm0
c +

M−1∑
i=1

Pmic . (39)

The optimal transmit power of the BSm over all subcarriers
for an energy efficient system is given as

p∗m = arg max
pm∈Pm

φ(pm)
ϕ(pm)

, (40)

where

Pm =

{
pm ∈ R : ϕ(pm) ≤ Pmax

m ,
∑
k∈K

rn,m[k] ≥ Rmin

}
.

(41)

The function φ(pm) is given by,

φ(pm) =
∑
n∈N

∑
k∈K

ωnρn,m[k]ln
(
1+

γn,m[k]pn,m[k]
0

)
, (42)

where 0 is the SNR gap with respect to the Shannon capacity
[42]. Whereas, ϕ(pm) is defined as,

ϕ(pm) =
∑
n∈N

∑
k∈K

ρn,m[k]pn,m[k]+ PC . (43)

The optimization problem in (40) can be transformed into
an equivalent subtractive objective function and we have

U (η
n
) = max

pm
φ(pm)− ηmϕ(pm). (44)

Using (42) and (43), the solution of the optimization prob-
lem in (40) can be computed as

∂φ(pm)
∂pn,m[k]

∣∣∣∣
pn,m[k]=p∗n,m[k]

− η
m

∂ϕ(pm)
∂pn,m[k]

∣∣∣∣
pn,m[k]=p∗n,m[k]

= 0,

∀n, k. (45)
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ωnγn,m[k]
0

1+
(
γn,m[k]p∗n,m[k]

0

) − η
m
= 0. (46)

Rearranging the above equation, we get

p∗n,m[k] =

[
ωn

η
m

−
0

γn,m[k]

]+
, ∀ k ∈ K. (47)

After solving (44) and (46) simultaneously and putting
U (η

m
) = 0, the optimal water level is given as

−ln(η
m
)+ ym −

∑
n∈N

∑
k∈K

ρn,m[k]ωn = ηmxm, (48)

where x and y are given as

xm =
1
K

(
PC −

∑
n∈N

∑
k∈K

ρn,m[k]0
γn,m[k]

)
. (49)

ym =
1
K

∑
n∈N

∑
k∈K

ωnln
(
ρn,m[k]γn,m[k]ωn

0

)
. (50)

The closed form of (48) can be obtained by manipulating
it with (49) and (50). In order to achieve this, we define
ξm = ηm

xm, and (48) becomes

ξm = −ln(ηm)+ ym −
∑
n∈N

∑
k∈K

ρn,m[k]ωn. (51)

Rearranging the above equation, we get

η
m
= exp{−ξm}.exp

{
ym −

∑
n∈N

∑
k∈K

ρn,m[k]ωn

}
. (52)

Thus, using (52), (48) can be rewritten as

ξmexp{ξm} = xm.exp

{
ym −

∑
n∈N

∑
k∈K

ρn,m[k]ωn

}
. (53)

Now, using Lambert function W (.), we can write

ξm = W
(
xm.exp

{
ym −

∑
n∈N

∑
k∈K

ρn,m[k]ωn

})
, (54)

η
m
= exp

{(
ym −

∑
n∈N

∑
k∈K

ρn,m[k]ωn

)
−W

(
xm.exp

{
ym −

∑
n∈N

∑
k∈K

ρn,m[k]ωn
})}

. (55)
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